1
|
Sidrônio MGS, Freitas MEG, Magalhães DWA, Carvalho DCM, Gonçalves VAB, Oliveira ACMDQ, Paulino GC, Borges GC, Ribeiro RL, de Sousa NF, Scotti MT, de Araújo DAM, Mendonça-Junior FJB, Freire KRDL, Rodrigues-Mascarenhas S, Santos BVDO, Rodrigues-Junior VS. Host-Mediated Antimicrobial Effects and NLRP3 Inflammasome Modulation by Caulerpin and Its Derivatives in Macrophage Models of Mycobacterial Infections. Microorganisms 2025; 13:561. [PMID: 40142455 PMCID: PMC11944515 DOI: 10.3390/microorganisms13030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/30/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Caulerpin, a bis-indole alkaloid isolated from Caulerpa racemosa, has several documented pharmacological activities, including antineoplastic and antiviral properties. This study aimed to evaluate the anti-inflammatory and anti-tubercular potentials of caulerpin and its analogues in RAW 264.7 macrophages infected with Mycobacterium spp. Additionally, we evaluated cytokine production and NLRP3 expression in this infection model. Toxicity tests were performed using Vero E6 and HepG2 cell lines and Artemia salina. Pre-incubation of RAW 264.7 cells with caulerpin and its analogues decreased internalized M. smegmatis and M. tuberculosis H37Ra. Furthermore, treatment of M. smegmatis-infected macrophages with caulerpin and its analogues reduced bacterial loads. Caulerpin reduced the CFU count of internalized bacilli in the M. tuberculosis H37Ra infection model. In addition, caulerpin and its diethyl derivative were notably found to modulate IL-1β and TNF-α production in the M. smegmatis infection model after quantifying pro-inflammatory cytokines and NLRP3. Caulerpin and its derivates did not affect the viability of Vero E6 and HepG2 cell lines or nauplii survival in toxicity studies. These findings demonstrate that caulerpin and its analogues exhibit anti-inflammatory activity against Mycobacterium spp. infection in RAW 264.7 macrophages and show promising potential for further efficacy and safety evaluation.
Collapse
Affiliation(s)
- Maria Gabriella S. Sidrônio
- Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (M.G.S.S.); (B.V.d.O.S.)
| | - Maria Eugênia G. Freitas
- Laboratory of Biotechnology in Microorganisms, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (M.E.G.F.); (G.C.P.); (G.C.B.); (R.L.R.)
| | - Daniel W. A. Magalhães
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (D.W.A.M.); (D.C.M.C.); (S.R.-M.)
| | - Deyse C. M. Carvalho
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (D.W.A.M.); (D.C.M.C.); (S.R.-M.)
| | - Vinícius A. B. Gonçalves
- Department of Cell and Molecular Biology, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (V.A.B.G.); (K.R.d.L.F.)
| | | | - Gisela C. Paulino
- Laboratory of Biotechnology in Microorganisms, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (M.E.G.F.); (G.C.P.); (G.C.B.); (R.L.R.)
| | - Gabriela C. Borges
- Laboratory of Biotechnology in Microorganisms, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (M.E.G.F.); (G.C.P.); (G.C.B.); (R.L.R.)
| | - Rafaelle L. Ribeiro
- Laboratory of Biotechnology in Microorganisms, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (M.E.G.F.); (G.C.P.); (G.C.B.); (R.L.R.)
| | - Natália Ferreira de Sousa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Department of Pharmaceutical Sciences, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (N.F.d.S.); (M.T.S.)
| | - Marcus T. Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Department of Pharmaceutical Sciences, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (N.F.d.S.); (M.T.S.)
| | - Demétrius A. M. de Araújo
- Postgraduate Program in Biotechnology (Renorbio), Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - Francisco Jaime B. Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraíba, João Pessoa 58071-160, PB, Brazil;
| | - Kristerson R. de Luna Freire
- Department of Cell and Molecular Biology, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (V.A.B.G.); (K.R.d.L.F.)
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (D.W.A.M.); (D.C.M.C.); (S.R.-M.)
| | - Bárbara Viviana de O. Santos
- Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (M.G.S.S.); (B.V.d.O.S.)
- Center for Teacher Training, UACEN, University of Campina Grande, Cajazeiras 58900-000, PB, Brazil
| | - Valnês S. Rodrigues-Junior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Department of Pharmaceutical Sciences, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil; (N.F.d.S.); (M.T.S.)
| |
Collapse
|
2
|
Li X, Qi X, Wang B, Fu L, Chen X, Luo X, Chen X, Lu Y. Efficacy of nintedanib as a host-directed therapy candidate in the treatment of tuberculosis. J Antimicrob Chemother 2025; 80:452-464. [PMID: 39656809 DOI: 10.1093/jac/dkae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND The lengthy duration and high frequency of drug resistance associated with currently used antimycobacterial drug treatments have intensified the need for alternative therapies against Mycobacterium tuberculosis, the causative agent of TB. METHODS MICs and intracellular macrophage cfu counts were tested to evaluate the antibacterial activity of nintedanib and pirfenidone against drug-susceptible and -resistant M. tuberculosis. A chronic murine model of pulmonary infection was used to assay the therapeutic efficacy of nintedanib. Macrophage transcriptome deep sequencing, a confocal assay, siRNA knockdown, Western blotting, quantitative RT-PCR and a cfu assay were used to investigate the antibacterial mechanism of nintedanib. RESULTS The MIC90 of nintedanib against M. tuberculosis standard strain H37Rv was 23.56-40.51 mg/L. TB murine model studies showed that nintedanib, coadministered with isoniazid, rifampicin and pyrazinamide, shortened treatment duration, and ameliorated pulmonary inflammation and fibrosis. In mechanism studies, transcriptome sequencing analysis revealed that nintedanib may eliminate M. tuberculosis through up-regulating macrophage autophagy. Furthermore, inhibition of autophagy by using siRNA targeting ATG5 or the autophagy inhibitor 3-methyladenine almost completely abolished nintedanib-mediated suppression of M. tuberculosis. Nintedanib induced autophagy by the JAK2/STAT3/Beclin1 pathway. When JAK2 or Beclin1 were knocked down through siRNA, nintedanib no longer inhibited M. tuberculosis. JAK2 activator coumermycin A1 and STAT3 agonist colivelin also reversed this phenotype. CONCLUSIONS In vitro activity of nintedanib against drug-susceptible and -resistant M. tuberculosis and efficacy in murine infections warrant the continued clinical evaluation of nintedanib as a new adjuvant therapy for standard treatment of TB.
Collapse
Affiliation(s)
- Xinda Li
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xueting Qi
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Bin Wang
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Lei Fu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xi Chen
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoyi Luo
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoyou Chen
- Infectious Diseases Department, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yu Lu
- Department of Pharmacology, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
3
|
Pawar A, Deka H, Battula M, Aljawdah HM, Patil PC, Chikhale R. Integrated machine learning and physics-based methods assisted de novo design of Fatty Acyl-CoA synthase inhibitors. Expert Opin Drug Discov 2025; 20:123-135. [PMID: 39587794 DOI: 10.1080/17460441.2024.2432972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Tuberculosis is an infectious disease that has become endemic worldwide. The causative bacteria Mycobacterium tuberculosis (Mtb) is targeted via several exciting drug targets. One newly discovered target is the Fatty Acyl-CoA synthase, which plays a significant role in activating the long-chain fatty acids. RESEARCH DESIGN & METHODS This study aims to generate novel compounds using Machine Learning (ML) algorithms to inhibit this synthase. Experimentally derived bioactive compounds were chosen from ChEMBL and used as inputs for effective molecule generation by Reinvent4. The library of new molecules generated was subjected to a two-tiered molecular docking protocol, and the results were further studied to obtain a binding free energy check. RESULTS The ML-based de novo drug design (DNDD) approach successfully generated a diverse library of novel molecules targeting Fatty Acyl-CoA synthase. After rigorous molecular docking and binding free energy analysis, four new compounds were identified as potential lead candidates with promising inhibitory effects on Mtb lipid metabolism. CONCLUSIONS The study demonstrated the effectiveness of a machine-learning approach in generating novel drug candidates against Mtb. The identified hit compounds show potential as inhibitors of Fatty Acyl-CoA synthase, offering a new avenue for developing treatments for tuberculosis, particularly in combating drug-resistant strains.
Collapse
Affiliation(s)
- Atul Pawar
- SilicoScientia Private Limited, Bengaluru, India
| | | | | | - Hossam M Aljawdah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Preeti Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, India
| | - Rupesh Chikhale
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, UK
| |
Collapse
|
4
|
Kotliarova MS, Shumkov MS, Goncharenko AV. Toward Mycobacterium tuberculosis Virulence Inhibition: Beyond Cell Wall. Microorganisms 2024; 13:21. [PMID: 39858789 PMCID: PMC11767696 DOI: 10.3390/microorganisms13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful bacterial pathogens in human history. Even in the antibiotic era, Mtb is widespread and causes millions of new cases of tuberculosis each year. The ability to disrupt the host's innate and adaptive immunity, as well as natural persistence, complicates disease control. Tuberculosis traditional therapy involves the long-term use of several antibiotics. Treatment failures are often associated with the development of resistance to one or more drugs. The development of medicines that act on new targets will expand treatment options for tuberculosis caused by multidrug-resistant or extensively drug-resistant Mtb. Therefore, the development of drugs that target virulence factors is an attractive strategy. Such medicines do not have a direct bacteriostatic or bactericidal effect, but can disarm the pathogen so that the host immune system becomes able to eliminate it. Although cell wall-associated targets are being actively studied for anti-TB drug development, other virulence factors important for adaptation and host interaction are also worth comprehensive analysis. In this review, specific Mtb virulence factors (such as secreted phosphatases, regulatory systems, and the ESX-1 secretion system) are identified as promising targets for novel anti-virulence drug development. Additionally, models for the search of virulence inhibitors are discussed, such as virtual screening in silico, in vitro enzyme inhibition assay, the use of recombinant Mtb strains with reporter constructs, phenotypic analysis using in vitro cell infection models and specific environments.
Collapse
Affiliation(s)
- Maria S. Kotliarova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology, Federal Research Center, Russian Academy of Sciences, Moscow 119071, Russia; (M.S.S.); (A.V.G.)
| | | | | |
Collapse
|
5
|
Raqib R, Sarker P. Repurposed Drugs and Plant-Derived Natural Products as Potential Host-Directed Therapeutic Candidates for Tuberculosis. Biomolecules 2024; 14:1497. [PMID: 39766204 PMCID: PMC11673177 DOI: 10.3390/biom14121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death due to infectious disease. It is a treatable disease; however, conventional treatment requires a lengthy treatment regimen with severe side effects, resulting in poor compliance among TB patients. Intermittent drug use, the non-compliance of patients, and prescription errors, among other factors, have led to the emergence of multidrug-resistant TB, while the mismanagement of multidrug-resistant TB (MDR-TB) has eventually led to the development of extensively drug-resistant tuberculosis (XDR-TB). Thus, there is an urgent need for new drug development, but due to the enormous expenses and time required (up to 20 years) for new drug research and development, new therapeutic approaches to TB are required. Host-directed therapies (HDT) could be a most attractive strategy, as they target the host defense processes instead of the microbe and thereby may prevent the alarming rise of MDR- and XDR-TB. This paper reviews the progress in HDT for the treatment of TB using repurposed drugs which have been investigated in clinical trials (completed or ongoing) and plant-derived natural products that are in clinical or preclinical trial stages. Additionally, this review describes the existing challenges to the development and future research directions in the implementation of HDT.
Collapse
Affiliation(s)
- Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Unit, Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh;
| | | |
Collapse
|
6
|
Kalsum S, Akber M, Loreti MG, Andersson B, Danielson E, Lerm M, Brighenti S. Sirtuin inhibitors reduce intracellular growth of M. tuberculosis in human macrophages via modulation of host cell immunity. Sci Rep 2024; 14:28150. [PMID: 39548210 PMCID: PMC11568201 DOI: 10.1038/s41598-024-79136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Host-directed therapies aiming to strengthen the body's immune system, represent an underexplored opportunity to improve treatment of tuberculosis (TB). We have previously shown in Mycobacterium tuberculosis (Mtb)-infection models and clinical trials that treatment with the histone deacetylase (HDAC) inhibitor, phenylbutyrate (PBA), can restore Mtb-induced impairment of antimicrobial responses and improve clinical outcomes in pulmonary TB. In this study, we evaluated the efficacy of different groups of HDAC inhibitors to reduce Mtb growth in human immune cells. A panel of 21 selected HDAC inhibitors with different specificities that are known to modulate infection or inflammation was tested using high-content live-cell imaging and analysis. Monocyte-derived macrophages or bulk peripheral blood cells (PBMCs) were infected with the green fluorescent protein (GFP)-expressing Mtb strains H37Ra or H37Rv and treated with HDAC inhibitors in the micromolar range in parallel with a combination of the first-line antibiotics, rifampicin, and isoniazid. Host cell viability in HDAC inhibitor treated cell cultures was monitored with Cytotox-red. Seven HDAC inhibitors were identified that reduced Mtb growth in macrophages > 45-75% compared to average 40% for PBA. The most effective compounds were inhibitors of the class III HDAC proteins, the sirtuins. While these compounds may exhibit their effects by improving macrophage function, one of the sirtuin inhibitors, tenovin, was also highly effective in extracellular killing of Mtb bacilli. Antimicrobial synergy testing using checkerboard assays revealed additive effects between selected sirtuin inhibitors and subinhibitory concentrations of rifampicin or isoniazid. A customized macrophage RNA array including 23 genes associated with cytokines, chemokines and inflammation, suggested that Mtb-infected macrophages are differentially modulated by the sirtuin inhibitors as compared to PBA. Altogether, these results demonstrated that sirtuin inhibitors may be further explored as promising host-directed compounds to support immune functions and reduce intracellular growth of Mtb in human cells.
Collapse
Affiliation(s)
- Sadaf Kalsum
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, ANA Futura, Huddinge, 141 52, Sweden
- Division of Medical Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 581 83, Sweden
| | - Mira Akber
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, ANA Futura, Huddinge, 141 52, Sweden
| | - Marco Giulio Loreti
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, ANA Futura, Huddinge, 141 52, Sweden
| | - Blanka Andersson
- Division of Medical Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 581 83, Sweden
| | - Eva Danielson
- Division of Medical Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 581 83, Sweden
| | - Maria Lerm
- Division of Medical Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, 581 83, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, ANA Futura, Huddinge, 141 52, Sweden.
| |
Collapse
|
7
|
Wang J, Fan XY, Hu Z. Immune correlates of protection as a game changer in tuberculosis vaccine development. NPJ Vaccines 2024; 9:208. [PMID: 39478007 PMCID: PMC11526030 DOI: 10.1038/s41541-024-01004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The absence of validated correlates of protection (CoPs) hampers the rational design and clinical development of new tuberculosis vaccines. In this review, we provide an overview of the potential CoPs in tuberculosis vaccine research. Major hindrances and potential opportunities are then discussed. Based on recent progress, it is reasonable to anticipate that success in the ongoing efforts to identify CoPs would be a game-changer in tuberculosis vaccine development.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
8
|
Kellogg JJ, Alonso MN, Jordan RT, Xiao J, Cafiero JH, Bush T, Chen X, Towler M, Weathers P, Shell SS. An O-methylflavone from Artemisia afra kills non-replicating hypoxic Mycobacterium tuberculosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118500. [PMID: 38944359 PMCID: PMC11285045 DOI: 10.1016/j.jep.2024.118500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE African wormwood (Artemisia afra Jacq. ex Willd.) has been used traditionally in southern Africa to treat illnesses causing fever and was recently shown to possess anti-tuberculosis activity. As tuberculosis is an endemic cause of fever in southern Africa, this suggests that the anti-tubercular activity of A. afra may have contributed to its traditional medicinal use. AIM OF THE STUDY Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a deadly and debilitating disease globally affecting millions annually. Emerging drug-resistant Mtb strains endanger the efficacy of the current therapies employed to treat tuberculosis; therefore, there is an urgent need to develop novel drugs to combat this disease. Given the reported activity of A. afra against Mtb, we sought to determine the mechanisms by which A. afra inhibits and kills this bacterium. MATERIALS AND METHODS We used transcriptomics to investigate the impact of Artemisia spp. extracts on Mtb physiology. We then used chromatographic fractionation and biochemometric analyses to identify a bioactive fractions of A. afra extracts and identify an active compound. RESULTS Transcriptomic analysis revealed that A. afra exerts different effects on Mtb compared to A. annua or artemisinin, suggesting that A. afra possesses other phytochemicals with unique modes of action. A biochemometric study of A. afra resulted in the isolation of an O-methylflavone (1), 5-hydroxy-7-methoxy-2-(4-methoxyphenyl)chromen-4-one, which displayed considerable activity against Mtb strain mc26230 in both log phase growth and metabolically downshifted hypoxic cultures. CONCLUSIONS The present study demonstrated that an O-methylflavone constituent of Artemisia afra explains part of the activity of this plant against Mtb. This result contributes to a mechanistic understanding of the reported anti-tubercular activity of A. afra and highlights the need for further study of this traditional medicinal plant and its active compounds.
Collapse
Affiliation(s)
- Joshua J Kellogg
- Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Maria Natalia Alonso
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - R Teal Jordan
- Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Junpei Xiao
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Juan Hilario Cafiero
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Trevor Bush
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Xiaoling Chen
- Department of Veterinary & Biomedical Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Melissa Towler
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Pamela Weathers
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Scarlet S Shell
- Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
| |
Collapse
|
9
|
DeMichele E, Buret AG, Taylor CT. Hypoxia-inducible factor-driven glycolytic adaptations in host-microbe interactions. Pflugers Arch 2024; 476:1353-1368. [PMID: 38570355 PMCID: PMC11310250 DOI: 10.1007/s00424-024-02953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/07/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Mammalian cells utilize glucose as a primary carbon source to produce energy for most cellular functions. However, the bioenergetic homeostasis of cells can be perturbed by environmental alterations, such as changes in oxygen levels which can be associated with bacterial infection. Reduction in oxygen availability leads to a state of hypoxia, inducing numerous cellular responses that aim to combat this stress. Importantly, hypoxia strongly augments cellular glycolysis in most cell types to compensate for the loss of aerobic respiration. Understanding how this host cell metabolic adaptation to hypoxia impacts the course of bacterial infection will identify new anti-microbial targets. This review will highlight developments in our understanding of glycolytic substrate channeling and spatiotemporal enzymatic organization in response to hypoxia, shedding light on the integral role of the hypoxia-inducible factor (HIF) during host-pathogen interactions. Furthermore, the ability of intracellular and extracellular bacteria (pathogens and commensals alike) to modulate host cellular glucose metabolism will be discussed.
Collapse
Affiliation(s)
- Emily DeMichele
- School of Medicine and Systems Biology Ireland, The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Cormac T Taylor
- School of Medicine and Systems Biology Ireland, The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
10
|
Parkkinen J, Bhowmik R, Tolvanen M, Carta F, Supuran CT, Parkkila S, Aspatwar A. Mycobacterial β-carbonic anhydrases: Molecular biology, role in the pathogenesis of tuberculosis and inhibition studies. Enzymes 2024; 55:343-381. [PMID: 39222997 DOI: 10.1016/bs.enz.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mycobacterium tuberculosis (Mtb), which causes tuberculosis (TB), is still a major global health problem. According to the World Health Organization (WHO), TB still causes more deaths worldwide than any other infectious agent. Drug-sensitive TB is treatable using first-line drugs; treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB requires second- and third-line drugs. However, due to the long duration of treatment, the noncompliance of patients with different levels of resistance of Mtb to these drugs has worsened the situation. Previously developed anti-TB drugs targeted the replication machinery, protein synthesis, and cell wall biosynthesis pathways of Mtb. Therefore, novel drugs targeting alternate pathways crucial for the survival and pathogenesis of Mtb in the human host are needed. The genome of Mtb encodes three β-carbonic anhydrases (CAs) that are fundamental for pH homeostasis, hypoxia, survival, and pathogenesis. Recently, several studies have shown that the β-CAs of Mtb could be inhibited both in vitro and in vivo using small chemical molecules, suggesting that these enzymes could be novel targets for developing anti-TB compounds that are devoid of resistance by Mtb. In addition, homologs of β-CAs are absent in humans; therefore, drugs developed to target these enzymes might have minimal off-target effects. In this work, we describe the roles of β-CAs in Mtb and discuss bioinformatics and cheminformatics tools used in development and discovery of novel inhibitors of these enzymes. In addition, we summarize the in vitro and in vivo studies demonstrating that the β-CAs of Mtb are indeed druggable targets.
Collapse
Affiliation(s)
- Jenny Parkkinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Fabrizio Carta
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Ltd. and Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
11
|
Komarova K, Vinogradova L, Lukin A, Zhuravlev M, Deniskin D, Chudinov M, Gureev M, Dogonadze M, Zabolotnykh N, Vinogradova T, Lavrova A, Yablonskiy P. The Nitrofuran-Warhead-Equipped Spirocyclic Azetidines Show Excellent Activity against Mycobacterium tuberculosis. Molecules 2024; 29:3071. [PMID: 38999023 PMCID: PMC11243650 DOI: 10.3390/molecules29133071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
A series of 21 new 7'H-spiro[azetidine-3,5'-furo [3,4-d]pyrimidine]s substituted at the pyrimidine ring second position were synthesized. The compounds showed high antibacterial in vitro activity against M. tuberculosis. Two compounds had lower minimum inhibitory concentrations against Mtb (H37Rv strain) compared with isoniazid. The novel spirocyclic scaffold shows excellent properties for anti-tuberculosis drug development.
Collapse
Affiliation(s)
- Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Alexey Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Maxim Zhuravlev
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Dmitry Deniskin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Mikhail Chudinov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Maxim Gureev
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave 4, 194064 Saint Petersburg, Russia
| | - Marine Dogonadze
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
| | - Natalia Zabolotnykh
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
| | - Tatiana Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
| | - Anastasia Lavrova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
- Sophya Kovalevskaya North-West Mathematical Research Center, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Petr Yablonskiy
- Department of Hospital Surgery, Faculty of Medicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
12
|
Khanna H, Gupta S, Sheikh Y. Cell-Mediated Immune Response Against Mycobacterium tuberculosis and Its Potential Therapeutic Impact. J Interferon Cytokine Res 2024; 44:244-259. [PMID: 38607324 DOI: 10.1089/jir.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Cell-mediated immune response is critical for Mycobacterium tuberculosis (M.tb) control. Understanding of pathophysiology and role played by different cell mediators is essential for vaccine development and better management of patients with M.tb. A complex array of cytokines and chemokines are involved in the immune response against M.tb; however, their relative contribution in protection remains to be further explored. The purpose of this review is to summarize the current understanding regarding the cytokine and chemokine profiles in M.tb infection in order to assist research in the field to pursue new direction in prevention and control. We have also summarized recent findings on vaccine trials that have been developed and or are under trials that are targeting these molecules.
Collapse
Affiliation(s)
- Harshika Khanna
- Department of Pediatrics, King George's Medical University, Lucknow, India
| | | | - Yasmeen Sheikh
- Department of Pediatrics, King George's Medical University, Lucknow, India
| |
Collapse
|
13
|
Ma Y, Zhang Y, Huang Y, Chen Z, Xian Q, Su R, Jiang Q, Wang X, Xiao G. One-Pot Assembly of Mannose-Capped Lipoarabinomannan Motifs up to 101-Mer from the Mycobacterium tuberculosis Cell Wall. J Am Chem Soc 2024; 146:4112-4122. [PMID: 38226918 DOI: 10.1021/jacs.3c12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Lipoarabinomannan (LAM) from the Mycobacterium tuberculosis cell envelope represents important targets for the development of new therapeutic agents against tuberculosis, which is a deadly disease that has plagued mankind for a long time. However, the accessibility of long, branched, and complex lipoarabinomannan over 100-mer remains a long-standing challenge. Herein, we report the modular synthesis of mannose-capped lipoarabinomannan 101-mer from the M. tuberculosis cell wall using a one-pot assembly strategy on the basis of glycosyl ortho-(1-phenylvinyl)benzoates (PVB), which not only accelerates the modular synthesis but also precludes the potential problems associated with one-pot glycosylation with thioglycosides. Shorter sequences including 18-mer, 19-mer, and 27-mer are also synthesized for in-depth structure-activity relationship biological studies. Current synthetic routes also highlight the following features: (1) streamlined synthesis of various linear and branched glycans using one-pot orthogonal glycosylation on the combination of glycosyl N-phenyltrifluoroacetimidates, glycosyl ortho-alkynylbenzoates, and glycosyl PVB; (2) highly stereoselective construction of 10 1,2-cis-arabinofuranosyl linkages using 5-O-(2-quinolinecarbonyl)-directing 1,2-cis-arabinofuranosylation via a hydrogen-bond-mediated aglycone delivery strategy; and (3) convergent [(18 + 19) × 2 + 27] one-pot synthesis of the 101-mer LAM polysaccharide. The present work demonstrates that this orthogonal one-pot glycosylation strategy can highly streamline the chemical synthesis of long, branched, and complex polysaccharides.
Collapse
Affiliation(s)
- Yuxin Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Qingyun Xian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Rui Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Qiong Jiang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
14
|
Ghoshal A, Verma A, Bhaskar A, Dwivedi VP. The uncharted territory of host-pathogen interaction in tuberculosis. Front Immunol 2024; 15:1339467. [PMID: 38312835 PMCID: PMC10834760 DOI: 10.3389/fimmu.2024.1339467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) effectively manipulates the host processes to establish the deadly respiratory disease, Tuberculosis (TB). M.tb has developed key mechanisms to disrupt the host cell health to combat immune responses and replicate efficaciously. M.tb antigens such as ESAT-6, 19kDa lipoprotein, Hip1, and Hsp70 destroy the integrity of cell organelles (Mitochondria, Endoplasmic Reticulum, Nucleus, Phagosomes) or delay innate/adaptive cell responses. This is followed by the induction of cellular stress responses in the host. Such cells can either undergo various cell death processes such as apoptosis or necrosis, or mount effective immune responses to clear the invading pathogen. Further, to combat the infection progression, the host secretes extracellular vesicles such as exosomes to initiate immune signaling. The exosomes can contain M.tb as well as host cell-derived peptides that can act as a double-edged sword in the immune signaling event. The host-symbiont microbiota produces various metabolites that are beneficial for maintaining healthy tissue microenvironment. In juxtaposition to the above-mentioned mechanisms, M.tb dysregulates the gut and respiratory microbiome to support its replication and dissemination process. The above-mentioned interconnected host cellular processes of Immunometabolism, Cellular stress, Host Microbiome, and Extracellular vesicles are less explored in the realm of exploration of novel Host-directed therapies for TB. Therefore, this review highlights the intertwined host cellular processes to control M.tb survival and showcases the important factors that can be targeted for designing efficacious therapy.
Collapse
Affiliation(s)
| | | | | | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
15
|
Li LS, Yang L, Zhuang L, Ye ZY, Zhao WG, Gong WP. From immunology to artificial intelligence: revolutionizing latent tuberculosis infection diagnosis with machine learning. Mil Med Res 2023; 10:58. [PMID: 38017571 PMCID: PMC10685516 DOI: 10.1186/s40779-023-00490-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Latent tuberculosis infection (LTBI) has become a major source of active tuberculosis (ATB). Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI, these methods can only differentiate infected individuals from healthy ones but cannot discriminate between LTBI and ATB. Thus, the diagnosis of LTBI faces many challenges, such as the lack of effective biomarkers from Mycobacterium tuberculosis (MTB) for distinguishing LTBI, the low diagnostic efficacy of biomarkers derived from the human host, and the absence of a gold standard to differentiate between LTBI and ATB. Sputum culture, as the gold standard for diagnosing tuberculosis, is time-consuming and cannot distinguish between ATB and LTBI. In this article, we review the pathogenesis of MTB and the immune mechanisms of the host in LTBI, including the innate and adaptive immune responses, multiple immune evasion mechanisms of MTB, and epigenetic regulation. Based on this knowledge, we summarize the current status and challenges in diagnosing LTBI and present the application of machine learning (ML) in LTBI diagnosis, as well as the advantages and limitations of ML in this context. Finally, we discuss the future development directions of ML applied to LTBI diagnosis.
Collapse
Affiliation(s)
- Lin-Sheng Li
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
- Hebei North University, Zhangjiakou, 075000, Hebei, China
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Ling Yang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhao-Yang Ye
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wei-Guo Zhao
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| | - Wen-Ping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|