1
|
Zhang Y, Mo C, Ai P, He X, Xiao Q, Yang X. Pharmacomicrobiomics: a new field contributing to optimizing drug therapy in Parkinson's disease. Gut Microbes 2025; 17:2454937. [PMID: 39875349 PMCID: PMC11776486 DOI: 10.1080/19490976.2025.2454937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/19/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Gut microbiota, which act as a determinant of pharmacokinetics, have long been overlooked. In recent years, a growing body of evidence indicates that the gut microbiota influence drug metabolism and efficacy. Conversely, drugs also exert a substantial influence on the function and composition of the gut microbiota. Pharmacomicrobiomics, an emerging field focusing on the interplay of drugs and gut microbiota, provides a potential foundation for making certain advances in personalized medicine. Understanding the communication between gut microbiota and antiparkinsonian drugs is critical for precise treatment of Parkinson's disease. Here, we provide a historical overview of the interplay between gut microbiota and antiparkinsonian drugs. Moreover, we discuss potential mechanistic insights into the complex associations between gut microbiota and drug metabolism. In addition, we also draw attention to microbiota-based biomarkers for predicting antiparkinsonian drug efficacy and examine current state-of-the-art knowledge of microbiota-based strategies to optimize drug therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Penghui Ai
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqin He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Shalash AS, Badr MY, Salah Y, Elgamal S, Elaidy SA, Elhamrawy EAM, Abdel-Tawab H, Hamid E, El-Seidy EA, Dawood NL. Gastrointestinal Manifestations in Parkinson's Disease Using a Validated Arabic Version of Gastrointestinal Dysfunction Scale: A Multicenter Study. Mov Disord Clin Pract 2025. [PMID: 40088075 DOI: 10.1002/mdc3.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/30/2024] [Accepted: 01/28/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Gastrointestinal symptoms (GIS) contribute to the morbidity of Parkinson's disease (PD), with limited specific assessment tools. OBJECTIVE This multicenter study aimed to translate and validate the Gastrointestinal Dysfunction Scale for PD (GIDS-PD) into an Arabic version and to investigate the characteristics of GIS and its correlates. METHODS A total of 162 patients with PD and 165 age- and sex-matched healthy controls were assessed using the GIDS-PD. Arabic version was assessed for test-retest reliability, construct validity, convert validity, and floor or ceiling effects. Patients were assessed also using the International Parkinson and Movement Disorders Society-Unified Parkinson's Disease Rating Scale, Non-motor Symptoms Scale, and Parkinson's Disease Questionnaire-39. RESULTS The Arabic version of the GIDS-PD exhibited proper convergent validity, inter- and intrarater consistency, and an acceptable ceiling effect. Compared to controls, patients exhibited significantly higher frequency of all GIDS-PD items: difficulty in passing stools (86.42%), experiencing hard stools (65%), sensation of incomplete evacuation (75.93%), abdominal pain (69.14%), abnormal increase in passing stools (50.62%), abdominal distention (85.19%), involuntary weight loss (48.77%), difficulty in swallowing (64.81%), excessive salivation (68.52%), heartburn (82.10%), and nausea (43.83%). GISs were correlated to disease duration, motor and nonmotor severity, motor complications, and poorer quality of life (QoL). Predictors of the GIDS-PD included disease stage, motor severity, nonmotor burden, age, and dopaminergic daily dosage. CONCLUSION This multicenter study provided a validated Arabic version of GIDS-PD and demonstrated the high frequency of different GISs; their high correlation with motor severity, nonmotor burden, dopaminergic dosage, and age; and their negative impact on QoL, implying the importance of their assessment and management.
Collapse
Affiliation(s)
- Ali Soliman Shalash
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Yassien Badr
- Department of Neuropsychiatry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Yara Salah
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shimaa Elgamal
- Neuropsychiatry Department, Faculty of Medicine, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Shaimaa Ahmed Elaidy
- Department of Neurology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Hayam Abdel-Tawab
- Neurology Department, Faculty of Medicine (for Girls), Al-Azhar University, Cairo, Egypt
| | - Eman Hamid
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ehab Ahmed El-Seidy
- Department of Neuropsychiatry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Noha Lotfy Dawood
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Gorecki AM, Anyaegbu CC, Fitzgerald M, Fuller KA, Anderton RS. Imaging flow cytometry reveals LPS-induced changes to intracellular intensity and distribution of α-synuclein in a TLR4-dependent manner in STC-1 cells. Methods 2025; 234:93-111. [PMID: 39486562 DOI: 10.1016/j.ymeth.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Parkinson's disease is a chronic neurodegenerative disorder, where pathological protein aggregates largely composed of phosphorylated α-synuclein are implicated in disease pathogenesis and progression. Emerging evidence suggests that the interaction between pro-inflammatory microbial factors and the gut epithelium contributes to α-synuclein aggregation in the enteric nervous system. However, the cellular sources and mechanisms for α-synuclein pathology in the gut are still unclear. METHODS The STC-1 cell line, which models an enteroendocrine population capable of communicating with the gut microbiota, immune and nervous systems, was treated with a TLR4 inhibitor (TAK-242) prior to microbial lipopolysaccharide (LPS) exposure to investigate the role of TLR4 signalling in α-synuclein alterations. Antibodies targeting the full-length protein (α-synuclein) and the Serine-129 phosphorylated form (pS129) were used. Complex, multi-parametric image analysis was conducted through confocal microscopy (with Zen 3.8 analysis) and imaging flow cytometry (with IDEAS® analysis). RESULTS Confocal microscopy revealed heterogenous distribution of α-synuclein and pS129 in STC-1 cells, with prominent pS129 staining along cytoplasmic processes. Imaging flow cytometry further quantified the relationship between various α-synuclein morphometric features. Thereafter, imaging flow cytometry demonstrated a dose-specific effect of LPS, where the low (8 μg/mL), but not high dose (32 μg/mL), significantly altered measures related to α-synuclein intensity, distribution, and localisation. Pre-treatment with a TLR4 inhibitor TAK-242 alleviated some of these significant alterations. CONCLUSION This study demonstrates that LPS-TLR4 signalling alters the intracellular localisation of α-synuclein in enteroendocrine cells in vitro and showcases the utility of combining imaging flow cytometry to investigate subtle protein changes that may not be apparent through confocal microscopy alone. Further investigation is required to understand the apparent dose-dependent effects of LPS on α-synuclein in the gut epithelium in healthy states as well as conditions such as Parkinson's disease.
Collapse
Affiliation(s)
- Anastazja M Gorecki
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia; Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia; School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia; Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia; Perron Institute for Neurological and Translational Science, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
| | - Kathryn A Fuller
- Translational Cancer Pathology Laboratory, School of Biomedical Sciences (M504), The University of Western Australia, Crawley, WA, Australia
| | - Ryan S Anderton
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
4
|
Fanciulli A, Sixel-Döring F, Buhmann C, Krismer F, Hermann W, Winkler C, Woitalla D, Jost WH, Trenkwalder C, Höglinger G. Diagnosis and treatment of autonomic failure, pain and sleep disturbances in Parkinson's disease: guideline "Parkinson's disease" of the German Society of Neurology. J Neurol 2025; 272:90. [PMID: 39751950 PMCID: PMC11698777 DOI: 10.1007/s00415-024-12730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND AND OBJECTIVE Non-motor symptoms frequently develop throughout the disease course of Parkinson's disease (PD), and pose affected individuals at risk of complications, more rapid disease progression and poorer quality of life. Addressing such symptom burden, the 2023 revised "Parkinson's disease" guideline of the German Society of Neurology aimed at providing evidence-based recommendations for managing PD non-motor symptoms, including autonomic failure, pain and sleep disturbances. METHODS Key PICO (Patient, Intervention, Comparison, Outcome) questions were formulated by the steering committee and refined by the assigned authors. Recommendations were drafted based on relevant studies, systematic reviews, meta-analyses and high-quality guidelines identified by the literature search. They were subsequently reviewed, revised, and voted by the Guideline Group in online consensus conferences. Consensus was achieved in case of > 75% agreement among the group members. The consensus was considered strong, if agreement was > 95%. RESULTS The guideline entails: (i) 10 PICOs and 23 recommendations on the diagnosis and treatment of urogenital, cardiovascular and gastrointestinal autonomic failure; (ii) four PICOs and four recommendations on the possible types of pain in PD individuals, their diagnosis and treatment; (iii) 11 PICOs and 11 recommendations on the screening, diagnosis and treatment of sleep disturbances and excessive daytime sleepiness in PD individuals, as well as on their prognostic implications. Thirty-one out of 38 recommendations achieved a strong consensus. CONCLUSION The current German PD guideline provides a practice-oriented and etiology-driven stepwise approach to the diagnosis and treatment of autonomic failure, pain and sleep disturbances in PD individuals.
Collapse
Affiliation(s)
- Alessandra Fanciulli
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Friederike Sixel-Döring
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurology, Philipps-Universität, Marburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Clinic Eppendorf, Hamburg, Germany
| | - Florian Krismer
- Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Wiebke Hermann
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Christian Winkler
- Department of Neurology, Lindenbrunn Hospital, Coppenbrügge, Germany
| | | | | | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Günter Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
5
|
Sahbaz G, Tekol SD, Barut BO. Gastrointestinal dysfunction in Parkinson's Disease: absence of anti-gliadin antibodies. Asia Pac J Clin Nutr 2024; 33:490-495. [PMID: 39209358 PMCID: PMC11389800 DOI: 10.6133/apjcn.202412_33(4).0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/13/2024] [Accepted: 04/13/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND OBJECTIVES Parkinson disease (PD), which is a neurodegenerative disorder, includes several gastrointestinal symptoms that are similar to those of Celiac disease (CD). However, the presence of celiac antibodies in PD patients has not yet been studied. Our aim in this study is to compare anti-transglutaminase (ATA) and antigliadin antibodies (AGA) as well as gastrointestinal symptoms and nutrition habits between patients with Parkinson's disease (PD) and healthy controls. METHODS AND STUDY DESIGN Serum AGA IgG and IgA and the ATA antibodies IgA and IgG were studied in 102 PD patients and 91 healthy controls. Gastrointestinal symptoms, specifically constipation, were investigated using the gastrointestinal system rating scale (GSRS) and the constipation rating scale (CRS). Dietary habits were also investigated and compared between the groups. RESULTS No significant differences were found between the two groups in terms of celiac antibodies. As expected, the hypokinetic GSRS and CRS scores were significantly higher in the PD group (p<0.001). Dietary habits, especially carbohydrate-rich diets, had a negative impact on gastrointestinal symptoms in the PD patients. CONCLUSIONS Studies have suggested a connection between PD and CD, which infers a probable non-celiac gluten intolerance and the need to offer PD patients an elimination diet. However, the results of our study did not support any link between celiac antibodies and PD. Notwithstanding, the negative impact of a carbohydrate-rich diet in PD patients still leaves a question regarding gluten sensitivity in these patients.
Collapse
Affiliation(s)
- Gulhan Sahbaz
- Department of Neurology, University of Health Sciences Istanbul Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
| | - Serap Demir Tekol
- Department of Clinical Microbiology, University of Health Sciences Istanbul Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
| | - Banu Ozen Barut
- Department of Neurology, University of Health Sciences Istanbul Kartal Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey.
| |
Collapse
|
6
|
Choi AH, Delgado M, Chen KY, Chung ST, Courville A, Turner SA, Yang S, Airaghi K, Dustin I, McGurrin P, Wu T, Hallett M, Ehrlich DJ. A randomized feasibility trial of medium chain triglyceride-supplemented ketogenic diet in people with Parkinson's disease. BMC Neurol 2024; 24:106. [PMID: 38561682 PMCID: PMC10983636 DOI: 10.1186/s12883-024-03603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND A ketogenic diet (KD) may benefit people with neurodegenerative disorders marked by mitochondrial depolarization/insufficiency, including Parkinson's disease (PD). OBJECTIVE Evaluate whether a KD supplemented by medium chain triglyceride (MCT-KD) oil is feasible and acceptable for PD patients. Furthermore, we explored the effects of MCT-KD on blood ketone levels, metabolic parameters, levodopa absorption, mobility, nonmotor symptoms, simple motor and cognitive tests, autonomic function, and resting-state electroencephalography (rsEEG). METHODS A one-week in-hospital, double-blind, randomized, placebo-controlled diet (MCT-KD vs. standard diet (SD)), followed by an at-home two-week open-label extension. The primary outcome was KD feasibility and acceptability. The secondary outcome was the change in Timed Up & Go (TUG) on day 7 of the diet intervention. Additional exploratory outcomes included the N-Back task, Unified Parkinson's Disease Rating Scale, Non-Motor Symptom Scale, and rsEEG connectivity. RESULTS A total of 15/16 subjects completed the study. The mean acceptability was 2.3/3, indicating willingness to continue the KD. Day 7 TUG time was not significantly different between the SD and KD groups. The nonmotor symptom severity score was reduced at the week 3 visit and to a greater extent in the KD group. UPDRS, 3-back, and rsEEG measures were not significantly different between groups. Blood ketosis was attained by day 4 in the KD group and to a greater extent at week 3 than in the SD group. The plasma levodopa metabolites DOPAC and dopamine both showed nonsignificant increasing trends over 3 days in the KD vs. SD groups. CONCLUSIONS An MCT-supplemented KD is feasible and acceptable to PD patients but requires further study to understand its effects on symptoms and disease. TRIAL REGISTRATION Trial Registration Number NCT04584346, registration dates were Oct 14, 2020 - Sept 13, 2022.
Collapse
Affiliation(s)
- Alexander H Choi
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Mid-Atlantic Permanente Medical Group, Kaiser Permanente Mid-Atlantic States, Rockville, MD, USA.
| | - Melanie Delgado
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kong Y Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie T Chung
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amber Courville
- NIH Clinical Center Nutrition Department, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Turner
- NIH Clinical Center Nutrition Department, National Institutes of Health, Bethesda, MD, USA
| | - Shanna Yang
- NIH Clinical Center Nutrition Department, National Institutes of Health, Bethesda, MD, USA
| | - Kayla Airaghi
- NIH Clinical Center Nutrition Department, National Institutes of Health, Bethesda, MD, USA
| | - Irene Dustin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Patrick McGurrin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tianxia Wu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Debra J Ehrlich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Yuan XY, Chen YS, Liu Z. Relationship among Parkinson's disease, constipation, microbes, and microbiological therapy. World J Gastroenterol 2024; 30:225-237. [PMID: 38314132 PMCID: PMC10835526 DOI: 10.3748/wjg.v30.i3.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/16/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
This comprehensive review elucidates the complex interplay between gut microbiota and constipation in Parkinson's disease (PD), a prevalent non-motor symptom contributing significantly to patients' morbidity. A marked alteration in the gut microbiota, predominantly an increase in the abundance of Proteobacteria and Bacteroidetes, is observed in PD-related constipation. Conventional treatments, although safe, have failed to effectively alleviate symptoms, thereby necessitating the development of novel therapeutic strategies. Microbiological interventions such as prebiotics, probiotics, and fecal microbiota transplantation (FMT) hold therapeutic potential. While prebiotics improve bowel movements, probiotics are effective in enhancing stool consistency and alleviating abdominal discomfort. FMT shows potential for significantly alleviating constipation symptoms by restoring gut microbiota balance in patients with PD. Despite promising developments, the causal relationship between changes in gut microbiota and PD-related constipation remains elusive, highlighting the need for further research in this expanding field.
Collapse
Affiliation(s)
- Xin-Yang Yuan
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| | - Yu-Sen Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| | - Zhou Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, Guangdong Province, China
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang 524000, Guangdong Province, China
| |
Collapse
|
8
|
Choi EL, Taheri N, Tan E, Matsumoto K, Hayashi Y. The Crucial Role of the Interstitial Cells of Cajal in Neurointestinal Diseases. Biomolecules 2023; 13:1358. [PMID: 37759758 PMCID: PMC10526372 DOI: 10.3390/biom13091358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neurointestinal diseases result from dysregulated interactions between the nervous system and the gastrointestinal (GI) tract, leading to conditions such as Hirschsprung's disease and irritable bowel syndrome. These disorders affect many people, significantly diminishing their quality of life and overall health. Central to GI motility are the interstitial cells of Cajal (ICC), which play a key role in muscle contractions and neuromuscular transmission. This review highlights the role of ICC in neurointestinal diseases, revealing their association with various GI ailments. Understanding the functions of the ICC could lead to innovative perspectives on the modulation of GI motility and introduce new therapeutic paradigms. These insights have the potential to enhance efforts to combat neurointestinal diseases and may lead to interventions that could alleviate or even reverse these conditions.
Collapse
Affiliation(s)
- Egan L. Choi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Negar Taheri
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Elijah Tan
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Kenjiro Matsumoto
- Laboratory of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyoto 610-0395, Japan;
| | - Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Gorecki AM, Spencer H, Meloni BP, Anderton RS. The Poly-Arginine Peptide R18D Interferes with the Internalisation of α-Synuclein Pre-Formed Fibrils in STC-1 Enteroendocrine Cells. Biomedicines 2023; 11:2089. [PMID: 37626586 PMCID: PMC10452853 DOI: 10.3390/biomedicines11082089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
In Parkinson's disease (PD), gut inflammation is hypothesised to contribute to α-synuclein aggregation, but gastrointestinal α-synuclein expression is poorly characterised. Cationic arginine-rich peptides (CARPs) are an emerging therapeutic option that exerts various neuroprotective effects and may target the transmission of protein aggregates. This study aimed to investigate endogenous α-synuclein expression in enteroendocrine STC-1 cells and the potential of the CARP, R18D (18-mer of D-arginine), to prevent internalisation of pre-formed α-synuclein fibrils (PFFs) in enteroendocrine cells in vitro. Through confocal microscopy, the immunoreactivity of full-length α-synuclein and the serine-129 phosphorylated form (pS129) was investigated in STC-1 (mouse enteroendocrine) cells. Thereafter, STC-1 cells were exposed to PFFs tagged with Alexa-Fluor 488 (PFF-488) for 2 and 24 h and R18D-FITC for 10 min. After confirming the uptake of both PFFs and R18D-FITC through fluorescent microscopy, STC-1 cells were pre-treated with R18D (5 or 10 μM) for 10 min prior to 2 h of PFF-488 exposure. Immunoreactivity for endogenous α-synuclein and pS129 was evident in STC-1 cells, with prominent pS129 staining along cytoplasmic processes and in perinuclear areas. STC-1 cells internalised PFFs, confirmed through co-localisation of PFF-488 and human-specific α-synuclein immunoreactivity. R18D-FITC entered STC-1 cells within 10 min and pre-treatment of STC-1 cells with R18D interfered with PFF uptake. The endogenous presence of α-synuclein in enteroendocrine cells, coupled with their rapid uptake of PFFs, demonstrates a potential for pathogenic spread of α-synuclein aggregates in the gut. R18D is a novel therapeutic approach to reduce the intercellular transmission of α-synuclein pathology.
Collapse
Affiliation(s)
- Anastazja M. Gorecki
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA 6160, Australia; (H.S.)
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Holly Spencer
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA 6160, Australia; (H.S.)
| | - Bruno P. Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, First Floor, G-Block, QEII Medical Centre, Nedlands, WA 6008, Australia
| | - Ryan S. Anderton
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA 6160, Australia; (H.S.)
| |
Collapse
|
10
|
Zhang Z, Liu Z, Lv A, Fan C. How Toll-like receptors influence Parkinson's disease in the microbiome-gut-brain axis. Front Immunol 2023; 14:1154626. [PMID: 37207228 PMCID: PMC10189046 DOI: 10.3389/fimmu.2023.1154626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Recently, a large number of experimenters have found that the pathogenesis of Parkinson's disease may be related to the gut microbiome and proposed the microbiome-gut-brain axis. Studies have shown that Toll-like receptors, especially Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4), are key mediators of gut homeostasis. In addition to their established role in innate immunity throughout the body, research is increasingly showing that the Toll-like receptor 2 and Toll-like receptor 4 signaling pathways shape the development and function of the gut and enteric nervous system. Notably, Toll-like receptor 2 and Toll-like receptor 4 are dysregulated in Parkinson's disease patients and may therefore be identified as the core of early gut dysfunction in Parkinson's disease. To better understand the contribution of Toll-like receptor 2 and Toll-like receptor 4 dysfunction in the gut to early α-synuclein aggregation, we discussed the structural function of Toll-like receptor 2 and Toll-like receptor 4 and signal transduction of Toll-like receptor 2 and Toll-like receptor 4 in Parkinson's disease by reviewing clinical, animal models, and in vitro studies. We also present a conceptual model of the pathogenesis of Parkinson's disease, in which microbial dysbiosis alters the gut barrier as well as the Toll-like receptor 2 and Toll-like receptor 4 signaling pathways, ultimately leading to a positive feedback loop for chronic gut dysfunction, promoting α-synuclein aggregation in the gut and vagus nerve.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China
- Baotou Clinical Medical College, Inner Mongolia Medical University, Baotou, China
| | - Zhihui Liu
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China
- *Correspondence: Zhihui Liu,
| | - Ao Lv
- The First Clinical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chenhui Fan
- Safety Engineering, People’s Public Security University of China, Beijing, China
| |
Collapse
|
11
|
Impact of Gastrointestinal Symptoms on Health-Related Quality of Life in an Australian Parkinson’s Disease Cohort. PARKINSON'S DISEASE 2022; 2022:4053665. [DOI: 10.1155/2022/4053665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Background. Gastrointestinal symptoms (GIS) in people with Parkinson’s disease (PwP) are often underreported and may remain untreated. Constipation is a common nonmotor symptom that can adversely affect health-related quality of life (QoL); however, the impact of other GIS has not been adequately investigated. Objectives. To investigate the relationship between QoL and constipation using the Bristol Stool Chart, bowel movement frequency, and a perceived constipation measure; and to explore the relationship between QoL and other GIS in an Australian PD cohort. Methods. The impact of constipation and other GIS on QoL, as measured using the PDQ-39 scale, was assessed in a cohort of 144 (89 males, 55 females) clinic-attending PwP. Constipation was assessed using the Bristol Stool Chart as well as a composite constipation measure, and the Gastrointestinal Symptom Rating Scale (GSRS) was used to rate other GIS. Covariate corrected linear regression models were utilised to determine significant associations between GIS and QoL scores. Results. Individual and combined constipation measures were significantly associated with poorer QoL (
and
, respectively). Analysis of GSRS symptom domains showed that in addition to symptoms of gastrointestinal hypomotility, a number of other symptoms such as increased eructation and increased flatus were also associated with poorer QoL. Conclusions. The findings point to the importance of GIS as contributor to health-related QoL in PwP. A better understanding of the relationship between GIS and QoL will help facilitate the development of more effective screening and treatment programs to improve symptom management and QoL for PwP.
Collapse
|
12
|
Bhidayasiri R, Phuenpathom W, Tan AH, Leta V, Phumphid S, Chaudhuri KR, Pal PK. Management of dysphagia and gastroparesis in Parkinson's disease in real-world clinical practice - Balancing pharmacological and non-pharmacological approaches. Front Aging Neurosci 2022; 14:979826. [PMID: 36034128 PMCID: PMC9403060 DOI: 10.3389/fnagi.2022.979826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 12/23/2022] Open
Abstract
Gastrointestinal (GI) issues are commonly experienced by patients with Parkinson's disease (PD). Those that affect the lower GI tract, such as constipation, are the most frequently reported GI problems among patients with PD. Upper GI issues, such as swallowing dysfunction (dysphagia) and delayed gastric emptying (gastroparesis), are also common in PD but are less well recognized by both patients and clinicians and, therefore, often overlooked. These GI issues may also be perceived by the healthcare team as less of a priority than management of PD motor symptoms. However, if left untreated, both dysphagia and gastroparesis can have a significant impact on the quality of life of patients with PD and on the effectiveness on oral PD medications, with negative consequences for motor control. Holistic management of PD should therefore include timely and effective management of upper GI issues by utilizing both non-pharmacological and pharmacological approaches. This dual approach is key as many pharmacological strategies have limited efficacy in this setting, so non-pharmacological approaches are often the best option. Although a multidisciplinary approach to the management of GI issues in PD is ideal, resource constraints may mean this is not always feasible. In 'real-world' practice, neurologists and PD care teams often need to make initial assessments and treatment or referral recommendations for their patients with PD who are experiencing these problems. To provide guidance in these cases, this article reviews the published evidence for diagnostic and therapeutic management of dysphagia and gastroparesis, including recommendations for timely and appropriate referral to GI specialists when needed and guidance on the development of an effective management plan.
Collapse
Affiliation(s)
- Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| | - Warongporn Phuenpathom
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Valentina Leta
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, Parkinson’s Foundation Centre of Excellence, King’s College London, London, United Kingdom
| | - Saisamorn Phumphid
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - K. Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, Parkinson’s Foundation Centre of Excellence, King’s College London, London, United Kingdom
| | - Pramod Kumar Pal
- National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
13
|
Gastrointestinal Dysfunction Impact on Life Quality in a Cohort of Russian Patients with Parkinson’s Disease I-III H&Y Stage. PARKINSON'S DISEASE 2022; 2022:1571801. [PMID: 35529475 PMCID: PMC9072049 DOI: 10.1155/2022/1571801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/27/2022] [Accepted: 04/09/2022] [Indexed: 11/18/2022]
Abstract
Background There are still no clearly proven methods to slow down or stop the progression of Parkinson's disease (PD). Thus, improving the quality of life (QoL) of patients with PD becomes of primary importance. Autonomic dysfunction and its symptoms are known to worsen the quality of life in PD, but the degree of this influence is underinvestigated. Particularly, impacts of the separate significant gastrointestinal symptoms, such as dyspepsia, constipation, and abdominal pain, in PD should be more precisely evaluated with the help of specific scales. Objective To assess the impacts of gastrointestinal dysfunction and its symptoms on PD patient's QoL using PDQ-39. Methods 111 PD patients in the I-III Hoehn and Yahr (H&Y) stage were enrolled in the study. The following scales were applied: UPDRS III, PDQ-39, GSRS, GDSS, MMSE, BDI, STAI-S, and STAI-T. Results The linear regression model showed that the PDQ-39 SI depended on summary assessments GSRS-SI (β = 0.333, p < 0.001), BDI (β = 0.463, p < 0.001), and UPDRS III (β = 0.163, p < 0.05). The use of the stepwise method, adding GSRS-SI and UPDRS III scores to the BDI predictor, improved the model (R2 increased from 0.454 to 0.574). The investigation of GSRS domain's influence revealed that PDQ-39 SI had a significant correlation with almost all of them, but the regression analysis showed significant QoL impacts of only two factors: constipation and abdominal pain (β = 0.288, p < 0.01 and β = 0.243, p < 0.05 accordingly). Conclusions Our results suggest a considerable negative influence of depression and gastrointestinal dysfunction (especially constipation and abdominal pain) on QoL of patients with PD. Their impact on QoL in patients with I-III H&Y stages of PD is more significant than that of motor symptoms. Therefore, the correction of depression and gastrointestinal dysfunction should be prioritized in PD therapy.
Collapse
|
14
|
Warnecke T, Schäfer KH, Claus I, Del Tredici K, Jost WH. Gastrointestinal involvement in Parkinson's disease: pathophysiology, diagnosis, and management. NPJ Parkinsons Dis 2022; 8:31. [PMID: 35332158 PMCID: PMC8948218 DOI: 10.1038/s41531-022-00295-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests an increasing significance for the extent of gastrointestinal tract (GIT) dysfunction in Parkinson's disease (PD). Most patients suffer from GIT symptoms, including dysphagia, sialorrhea, bloating, nausea, vomiting, gastroparesis, and constipation during the disease course. The underlying pathomechanisms of this α-synucleinopathy play an important role in disease development and progression, i.e., early accumulation of Lewy pathology in the enteric and central nervous systems is implicated in pharyngeal discoordination, esophageal and gastric motility/peristalsis impairment, chronic pain, altered intestinal permeability and autonomic dysfunction of the colon, with subsequent constipation. Severe complications, including malnutrition, dehydration, insufficient drug effects, aspiration pneumonia, intestinal obstruction, and megacolon, frequently result in hospitalization. Sophisticated diagnostic tools are now available that permit more detailed examination of specific GIT impairment patterns. Furthermore, novel treatment approaches have been evaluated, although high-level evidence trials are often missing. Finally, the burgeoning literature devoted to the GIT microbiome reveals its importance for neurologists. We review current knowledge about GIT pathoanatomy, pathophysiology, diagnosis, and treatment in PD and provide recommendations for management in daily practice.
Collapse
Affiliation(s)
- T Warnecke
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, 48149, Münster, Germany
| | - K-H Schäfer
- Research and Transfer Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Zweibrücken, Germany
| | - I Claus
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, 48149, Münster, Germany
| | - K Del Tredici
- Clinical Neuroanatomy, Department of Neurology, Center for Biomedical Research, University of Ulm, 89081, Ulm, Germany
| | - W H Jost
- Parkinson-Klinik Ortenau, 77709, Wolfach, Germany.
| |
Collapse
|
15
|
Parkinson's Disease Medication Alters Small Intestinal Motility and Microbiota Composition in Healthy Rats. mSystems 2022; 7:e0119121. [PMID: 35076270 PMCID: PMC8788331 DOI: 10.1128/msystems.01191-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Parkinson’s disease (PD) is known to be associated with altered gastrointestinal function and microbiota composition. To date, the effect of PD medication on the gastrointestinal function and microbiota, at the site of drug absorption, the small intestine, has not been studied, although it may represent an important confounder in reported microbiota alterations observed in PD patients. To this end, healthy (non-PD) wild-type Groningen rats were employed and treated with dopamine, pramipexole (in combination with levodopa-carbidopa), or ropinirole (in combination with levodopa-carbidopa) for 14 sequential days. Rats treated with dopamine agonists showed a significant reduction in small intestinal motility and an increase in bacterial overgrowth in the distal small intestine. Notably, significant alterations in microbial taxa were observed between the treated and vehicle groups; analogous to the changes previously reported in human PD versus healthy control microbiota studies. These microbial changes included an increase in Lactobacillus and Bifidobacterium and a decrease in Lachnospiraceae and Prevotellaceae. Markedly, certain Lactobacillus species correlated negatively with levodopa levels in the systemic circulation, potentially affecting the bioavailability of levodopa. Overall, the study highlights a significant effect of PD medication intrinsically on disease-associated comorbidities, including gastrointestinal dysfunction and small intestinal bacterial overgrowth, as well as the gut microbiota composition. The results urge future studies to take into account the influence of PD medication per se when seeking to identify microbiota-related biomarkers for PD. IMPORTANCE Parkinson’s disease (PD) is the second most common neurodegenerative disorder and is known to be associated with altered gastrointestinal function and microbiota composition. We previously showed that the gut bacteria harboring tyrosine decarboxylase enzymes interfere with levodopa, the main treatment for PD (S. P. van Kessel, A. K. Frye, A. O. El-Gendy, M. Castejon, A. Keshavarzian, G. van Dijk, and S. El Aidy, Nat Commun 10:310, 2019). Although PD medication could be an important confounder in the reported alterations, its effect, apart from the disease itself, on the microbiota composition or the gastrointestinal function at the site of drug absorption, the small intestine, has not been studied. The findings presented here show a significant impact of commonly prescribed PD medication on the small intestinal motility, small intestinal bacterial overgrowth, and microbiota composition, irrespective of the PD. Remarkably, we observed negative associations between bacterial species harboring tyrosine decarboxylase activity and levodopa levels in the systemic circulation, potentially affecting the bioavailability of levodopa. Overall, this study shows that PD medication is an important factor in determining gastrointestinal motility and, in turn, microbiota composition and may, partly, explain the differential abundant taxa previously reported in the cross-sectional PD microbiota human studies. The results urge future studies to take into account the influence of PD medication on gut motility and microbiota composition when seeking to identify microbiota-related biomarkers for PD.
Collapse
|
16
|
Gut bacterial tyrosine decarboxylase associates with clinical variables in a longitudinal cohort study of Parkinsons disease. NPJ Parkinsons Dis 2021; 7:115. [PMID: 34911958 PMCID: PMC8674283 DOI: 10.1038/s41531-021-00260-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota influences the clinical response of a wide variety of orally administered drugs. However, the underlying mechanisms through which drug–microbiota interactions occur are still obscure. Previously, we reported that tyrosine decarboxylating (TDC) bacteria may restrict the levels of levodopa reaching circulation in patients with Parkinson’s disease (PD). We observed a significant positive association between disease duration and the abundance of the bacterial tdc-gene. The question arises whether increased exposure to anti-PD medication could affect the abundance of bacterial TDC, to ultimately impact drug efficacy. To this end, we investigated the potential association between anti-PD drug exposure and bacterial tdc-gene abundance over a period of 2 years in a longitudinal cohort of PD patients and healthy controls. Our data reveal significant associations between tdc-gene abundance, several anti-PD medications, including entacapone, rasagiline, pramipexole, and ropinirole but not levodopa, and gastrointestinal symptoms, warranting further research on the effect of anti-PD medication on microbial changes and gastrointestinal function.
Collapse
|
17
|
Gorecki AM, Anyaegbu CC, Anderton RS. TLR2 and TLR4 in Parkinson's disease pathogenesis: the environment takes a toll on the gut. Transl Neurodegener 2021; 10:47. [PMID: 34814947 PMCID: PMC8609261 DOI: 10.1186/s40035-021-00271-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is an incurable, devastating disorder that is characterized by pathological protein aggregation and neurodegeneration in the substantia nigra. In recent years, growing evidence has implicated the gut environment and the gut-brain axis in the pathogenesis and progression of PD, especially in a subset of people who exhibit prodromal gastrointestinal dysfunction. Specifically, perturbations of gut homeostasis are hypothesized to contribute to α-synuclein aggregation in enteric neurons, which may spread to the brain over decades and eventually result in the characteristic central nervous system manifestations of PD, including neurodegeneration and motor impairments. However, the mechanisms linking gut disturbances and α-synuclein aggregation are still unclear. A plethora of research indicates that toll-like receptors (TLRs), especially TLR2 and TLR4, are critical mediators of gut homeostasis. Alongside their established role in innate immunity throughout the body, studies are increasingly demonstrating that TLR2 and TLR4 signalling shapes the development and function of the gut and the enteric nervous system. Notably, TLR2 and TLR4 are dysregulated in patients with PD, and may thus be central to early gut dysfunction in PD. To better understand the putative contribution of intestinal TLR2 and TLR4 dysfunction to early α-synuclein aggregation and PD, we critically discuss the role of TLR2 and TLR4 in normal gut function as well as evidence for altered TLR2 and TLR4 signalling in PD, by reviewing clinical, animal model and in vitro research. Growing evidence on the immunological aetiology of α-synuclein aggregation is also discussed, with a focus on the interactions of α-synuclein with TLR2 and TLR4. We propose a conceptual model of PD pathogenesis in which microbial dysbiosis alters the permeability of the intestinal barrier as well as TLR2 and TLR4 signalling, ultimately leading to a positive feedback loop of chronic gut dysfunction promoting α-synuclein aggregation in enteric and vagal neurons. In turn, α-synuclein aggregates may then migrate to the brain via peripheral nerves, such as the vagal nerve, to contribute to neuroinflammation and neurodegeneration typically associated with PD.
Collapse
Affiliation(s)
- Anastazja M Gorecki
- School of Biological Science, University of Western Australia, Crawley, WA, Australia.
- Neurodegenerative Disorders Research Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Ralph and Patricia Sarich Neuroscience Research Institute, Curtin University, Nedlands, WA, Australia
| | - Ryan S Anderton
- Faculty of Medicine, Nursing and Midwifery and Faculty of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
- School of Nursing, Midwifery, Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
18
|
Kenna JE, Chua EG, Bakeberg M, Tay A, McGregor S, Gorecki A, Horne M, Marshall B, Mastaglia FL, Anderton RS. Changes in the Gut Microbiome and Predicted Functional Metabolic Effects in an Australian Parkinson's Disease Cohort. Front Neurosci 2021; 15:756951. [PMID: 34776854 PMCID: PMC8588830 DOI: 10.3389/fnins.2021.756951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023] Open
Abstract
Background: There has been increasing recognition of the importance of the gut microbiome in Parkinson's disease (PD), but the influence of geographic location has received little attention. The present study characterized the gut microbiota and associated changes in host metabolic pathways in an Australian cohort of people with PD (PwP). Methods: The study involved recruitment and assessment of 87 PwP from multiple Movement Disorders Clinics in Australia and 47 healthy controls. Illumina sequencing of the V3 and V4 regions of the 16S rRNA gene was used to distinguish inter-cohort differences in gut microbiota; KEGG analysis was subsequently performed to predict functional changes in host metabolic pathways. Results: The current findings identified significant differences in relative abundance and diversity of microbial operational taxonomic units (OTUs), and specific bacterial taxa between PwP and control groups. Alpha diversity was significantly reduced in PwP when compared to controls. Differences were found in two phyla (Synergistetes and Proteobacteria; both increased in PwP), and five genera (Colidextribacter, Intestinibacter, Kineothrix, Agathobaculum, and Roseburia; all decreased in PwP). Within the PD cohort, there was no association identified between microbial composition and gender, constipation or use of gastrointestinal medication. Furthermore, KEGG analysis identified 15 upregulated and 11 downregulated metabolic pathways which were predicted to be significantly altered in PwP. Conclusion: This study provides the first comprehensive characterization of the gut microbiome and predicted functional metabolic effects in a southern hemisphere PD population, further exploring the possible mechanisms whereby the gut microbiota may exert their influence on this disease, and providing evidence for the incorporation of such data in future individualized therapeutic strategies.
Collapse
Affiliation(s)
- Jade E Kenna
- School of Medicine, The University of Western Australia, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Eng Guan Chua
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Nedlands, WA, Australia
| | - Megan Bakeberg
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,School of Medicine, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Alfred Tay
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Nedlands, WA, Australia
| | - Sarah McGregor
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Anastazja Gorecki
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Malcolm Horne
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Barry Marshall
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia.,Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,Institute for Health Research, University of Notre Dame Australia, Fremantle, WA, Australia.,School of Nursing, Midwifery, Health Sciences and Physiotherapy, The University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|