1
|
Nielsen PYØ, Okarmus J, Meyer M. Role of Deubiquitinases in Parkinson's Disease-Therapeutic Perspectives. Cells 2023; 12:651. [PMID: 36831318 PMCID: PMC9954239 DOI: 10.3390/cells12040651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that has been associated with mitochondrial dysfunction, oxidative stress, and defects in mitophagy as well as α-synuclein-positive inclusions, termed Lewy bodies (LBs), which are a common pathological hallmark in PD. Mitophagy is a process that maintains cellular health by eliminating dysfunctional mitochondria, and it is triggered by ubiquitination of mitochondrial-associated proteins-e.g., through the PINK1/Parkin pathway-which results in engulfment by the autophagosome and degradation in lysosomes. Deubiquitinating enzymes (DUBs) can regulate this process at several levels by deubiquitinating mitochondrial substrates and other targets in the mitophagic pathway, such as Parkin. Moreover, DUBs can affect α-synuclein aggregation through regulation of degradative pathways, deubiquitination of α-synuclein itself, and/or via co-localization with α-synuclein in inclusions. DUBs with a known association to PD are described in this paper, along with their function. Of interest, DUBs could be useful as novel therapeutic targets against PD through regulation of PD-associated defects.
Collapse
Affiliation(s)
- Pernille Y. Ø. Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
2
|
Sturm ET, Castro C, Mendez-Colmenares A, Duffy J, Burzynska A(AZ, Stallones L, Thomas ML. Risk Factors for Brain Health in Agricultural Work: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3373. [PMID: 35329061 PMCID: PMC8954905 DOI: 10.3390/ijerph19063373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Abstract
Certain exposures related to agricultural work have been associated with neurological disorders. To date, few studies have included brain health measurements to link specific risk factors with possible neural mechanisms. Moreover, a synthesis of agricultural risk factors associated with poorer brain health outcomes is missing. In this systematic review, we identified 106 articles using keywords related to agriculture, occupational exposure, and the brain. We identified seven major risk factors: non-specific factors that are associated with agricultural work itself, toluene, pesticides, heavy metal or dust exposure, work with farm animals, and nicotine exposure from plants. Of these, pesticides are the most highly studied. The majority of qualifying studies were epidemiological studies. Nigral striatal regions were the most well studied brain area impacted. Of the three human neuroimaging studies we found, two focused on functional networks and the third focused on gray matter. We identified two major directions for future studies that will help inform preventative strategies for brain health in vulnerable agricultural workers: (1) the effects of moderators such as type of work, sex, migrant status, race, and age; and (2) more comprehensive brain imaging studies, both observational and experimental, involving several imaging techniques.
Collapse
Affiliation(s)
- Emily Terese Sturm
- Department of Psychology, Colorado State University, Fort Collins, CO 80523, USA; (E.T.S.); (A.M.-C.); (J.D.); (L.S.)
| | - Colton Castro
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Andrea Mendez-Colmenares
- Department of Psychology, Colorado State University, Fort Collins, CO 80523, USA; (E.T.S.); (A.M.-C.); (J.D.); (L.S.)
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA;
| | - John Duffy
- Department of Psychology, Colorado State University, Fort Collins, CO 80523, USA; (E.T.S.); (A.M.-C.); (J.D.); (L.S.)
| | - Agnieszka (Aga) Z. Burzynska
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Human Development and Family Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Lorann Stallones
- Department of Psychology, Colorado State University, Fort Collins, CO 80523, USA; (E.T.S.); (A.M.-C.); (J.D.); (L.S.)
| | - Michael L. Thomas
- Department of Psychology, Colorado State University, Fort Collins, CO 80523, USA; (E.T.S.); (A.M.-C.); (J.D.); (L.S.)
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
3
|
Ham SJ, Lee D, Xu WJ, Cho E, Choi S, Min S, Park S, Chung J. Loss of UCHL1 rescues the defects related to Parkinson's disease by suppressing glycolysis. SCIENCE ADVANCES 2021; 7:7/28/eabg4574. [PMID: 34244144 PMCID: PMC8270484 DOI: 10.1126/sciadv.abg4574] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/27/2021] [Indexed: 05/03/2023]
Abstract
The role of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1; also called PARK5) in the pathogenesis of Parkinson's disease (PD) has been controversial. Here, we find that the loss of UCHL1 destabilizes pyruvate kinase (PKM) and mitigates the PD-related phenotypes induced by PTEN-induced kinase 1 (PINK1) or Parkin loss-of-function mutations in Drosophila and mammalian cells. In UCHL1 knockout cells, cellular pyruvate production and ATP levels are diminished, and the activity of AMP-activated protein kinase (AMPK) is highly induced. Consequently, the activated AMPK promotes the mitophagy mediated by Unc-51-like kinase 1 (ULK1) and FUN14 domain-containing 1 (FUNDC1), which underlies the effects of UCHL1 deficiency in rescuing PD-related defects. Furthermore, we identify tripartite motif-containing 63 (TRIM63) as a previously unknown E3 ligase of PKM and demonstrate its antagonistic interaction with UCHL1 to regulate PD-related pathologies. These results suggest that UCHL1 is an integrative factor for connecting glycolysis and PD pathology.
Collapse
Affiliation(s)
- Su Jin Ham
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daewon Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Wen Jun Xu
- Department of Manufacturing Pharmacy, Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunjoo Cho
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sekyu Choi
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Soohong Min
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghyouk Park
- Department of Manufacturing Pharmacy, Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongkyeong Chung
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Saini P, Rudakou U, Yu E, Ruskey JA, Asayesh F, Laurent SB, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Espay AJ, Rouleau GA, Alcalay RN, Fon EA, Postuma RB, Gan-Or Z. Association study of DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 with Parkinson's disease. Neurobiol Aging 2020; 100:119.e7-119.e13. [PMID: 33239198 DOI: 10.1016/j.neurobiolaging.2020.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
Rare mutations in genes originally discovered in multigenerational families have been associated with increased risk of Parkinson's disease (PD). The involvement of rare variants in DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 loci has been poorly studied or has produced conflicting results across cohorts. However, they are still being often referred to as "PD genes" and used in different models. To further elucidate the role of these 5 genes in PD, we fully sequenced them using molecular inversion probes in 2408 patients with PD and 3444 controls from 3 different cohorts. A total of 788 rare variants were identified across the 5 genes and 3 cohorts. Burden analyses and optimized sequence Kernel association tests revealed no significant association between any of the genes and PD after correction for multiple comparisons. Our results do not support an association of the 5 tested genes with PD. Combined with previous studies, it is unlikely that any of these genes plays an important role in PD. Their designation as "PARK" genes should be reconsidered.
Collapse
Affiliation(s)
- Prabhjyot Saini
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Uladzislau Rudakou
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Eric Yu
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Farnaz Asayesh
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Sandra B Laurent
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Oury Monchi
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Yves Dauvilliers
- Department of Neurology, National Reference Center for Narcolepsy, Sleep Unit, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Inserm U1061, Montpellier, France
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | - Lior Greenbaum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, The Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Alberto J Espay
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ronald B Postuma
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
5
|
Monin M, Lesage S, Brice A. Basi molecolari della malattia di Parkinson. Neurologia 2019. [DOI: 10.1016/s1634-7072(18)41584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
6
|
Wilson CL, Murphy LB, Leslie J, Kendrick S, French J, Fox CR, Sheerin NS, Fisher A, Robinson JH, Tiniakos DG, Gray DA, Oakley F, Mann DA. Ubiquitin C-terminal hydrolase 1: A novel functional marker for liver myofibroblasts and a therapeutic target in chronic liver disease. J Hepatol 2015; 63:1421-8. [PMID: 26264933 PMCID: PMC4866442 DOI: 10.1016/j.jhep.2015.07.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Ubiquitination is a reversible protein modification involved in the major cellular processes that define cell phenotype and behaviour. Ubiquitin modifications are removed by a large family of proteases named deubiquitinases. The role of deubiquitinases in hepatic stellate cell (HSC) activation and their contribution to fibrogenesis are poorly defined. We have identified that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is highly induced following HSC activation, determined its function in activated HSC and its potential as a therapeutic target for fibrosis. METHODS Deubiquitinase expression was determined in day 0 and day 10 HSC. Increased UCHL1 expression was confirmed in human HSC and in an alcoholic liver disease (ALD) patient liver. The importance of UCHL1 in hepatic fibrosis was investigated in CCl4 and bile duct ligation injured mice using a pharmacological inhibitor (LDN 57444). The effects of UCHL1 inhibition on HSC proliferation were confirmed by Western blot and 3H thymidine incorporation. RESULTS Here we report that pharmacological inhibition of UCHL1 blocks progression of established fibrosis in CCl4 injured mice. UCHL1 siRNA knockdown, LDN 57444 treatment, or HSC isolated from UCHL1(-/-) mice show attenuated proliferation in response to the mitogen, platelet-derived growth factor. Additionally, we observed changes in the phosphorylation of the cell cycle regulator retinoblastoma protein (Rb) in the absence of UCHL1 highlighting a potential mechanism for the reduced proliferative response. CONCLUSIONS UCHL1 expression is highly upregulated upon HSC activation and is involved in the regulation of HSC proliferation. This study highlights therapeutic opportunities for pharmacological targeting of UCHL1 in chronic liver disease.
Collapse
Affiliation(s)
- Caroline L. Wilson
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Lindsay B. Murphy
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jack Leslie
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Stuart Kendrick
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jeremy French
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Christopher R. Fox
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Neil S. Sheerin
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Fisher
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - John H. Robinson
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Dina G. Tiniakos
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Douglas A. Gray
- Ottawa Hospital Research Institute, 501 Smyth Rd, Ottawa K1H 8L6, Canada
| | - Fiona Oakley
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Derek A. Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK,Corresponding author. Address: Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK. Tel.: +44 191 222 3851, fax: +44 191 222 0723, (D.A. Mann)
| |
Collapse
|
7
|
Macchi F, Deleersnijder A, Van den Haute C, Munck S, Pottel H, Michiels A, Debyser Z, Gerard M, Baekelandt V. High-content analysis of α-synuclein aggregation and cell death in a cellular model of Parkinson's disease. J Neurosci Methods 2015; 261:117-27. [PMID: 26620202 DOI: 10.1016/j.jneumeth.2015.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alpha-synuclein (α-SYN) aggregates represent a key feature of Parkinson's disease, but the exact relationship between α-SYN aggregation and neurodegeneration remains incompletely understood. Therefore, the availability of a cellular assay that allows medium-throughput analysis of α-SYN-linked pathology will be of great value for studying the aggregation process and for advancing α-SYN-based therapies. NEW METHOD Here we describe a high-content neuronal cell assay that simultaneously measures oxidative stress-induced α-SYN aggregation and apoptosis. RESULTS We optimized an automated and reproducible assay to quantify both α-SYN aggregation and cell death in human SH-SY5Y neuroblastoma cells. COMPARISON WITH EXISTING METHODS Quantification of α-SYN aggregates in cells has typically relied on manual imaging and counting or cell-free assays, which are time consuming and do not allow a concurrent analysis of cell viability. Our high-content analysis method for quantification of α-SYN aggregation allows simultaneous measurements of multiple cell parameters at a single-cell level in a fast, objective and automated manner. CONCLUSIONS The presented analysis approach offers a rapid, objective and multiparametric approach for the screening of compounds and genes that might alter α-SYN aggregation and/or toxicity.
Collapse
Affiliation(s)
- Francesca Macchi
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Angélique Deleersnijder
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Chris Van den Haute
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Sebastian Munck
- KU Leuven, Department of Human Genetics, Flanders Interuniversity Institute of Biotechnology, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Hans Pottel
- KU Leuven Campus Kulak Kortrijk, Public Health and Primary Care, Interdisciplinary Research Facility Life Sciences, Etienne Sabbelaan 53, Kortrijk B-8500, Flanders, Belgium
| | - Annelies Michiels
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Melanie Gerard
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; KU Leuven campus Kulak Kortrijk, Laboratory of Biochemistry, Interdisciplinary Research Facility Life Sciences, Etienne Sabbelaan 53, Kortrijk B-8500, Flanders, Belgium
| | - Veerle Baekelandt
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium.
| |
Collapse
|
8
|
Powis RA, Mutsaers CA, Wishart TM, Hunter G, Wirth B, Gillingwater TH. Increased levels of UCHL1 are a compensatory response to disrupted ubiquitin homeostasis in spinal muscular atrophy and do not represent a viable therapeutic target. Neuropathol Appl Neurobiol 2015; 40:873-87. [PMID: 25041530 DOI: 10.1111/nan.12168] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/25/2014] [Indexed: 12/21/2022]
Abstract
AIM Levels of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) are robustly increased in spinal muscular atrophy (SMA) patient fibroblasts and mouse models. We therefore wanted to establish whether changes in UCHL1 contribute directly to disease pathogenesis, and to assess whether pharmacological inhibition of UCHL1 represents a viable therapeutic option for SMA. METHODS SMA mice and control littermates received a pharmacological UCHL1 inhibitor (LDN-57444) or DMSO vehicle. Survival and weight were monitored daily, a righting test of motor performance was performed, and motor neurone loss, muscle fibre atrophy and neuromuscular junction pathology were all quantified. Ubiquitin-like modifier activating enzyme 1 (Uba1) was then pharmacologically inhibited in neurones in vitro to examine the relationship between Uba1 levels and UCHL1 in SMA. RESULTS Pharmacological inhibition of UCHL1 failed to improve survival, motor symptoms or neuromuscular pathology in SMA mice and actually precipitated the onset of weight loss. LDN-57444 treatment significantly decreased spinal cord mono-ubiquitin levels, further exacerbating ubiquitination defects in SMA mice. Pharmacological inhibition of Uba1, levels of which are robustly reduced in SMA, was sufficient to induce accumulation of UCHL1 in primary neuronal cultures. CONCLUSION Pharmacological inhibition of UCHL1 exacerbates rather than ameliorates disease symptoms in a mouse model of SMA. Thus, pharmacological inhibition of UCHL1 is not a viable therapeutic target for SMA. Moreover, increased levels of UCHL1 in SMA likely represent a downstream consequence of decreased Uba1 levels, indicative of an attempted supportive compensatory response to defects in ubiquitin homeostasis caused by low levels of SMN protein.
Collapse
Affiliation(s)
- Rachael A Powis
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
9
|
McKeon JE, Sha D, Li L, Chin LS. Parkin-mediated K63-polyubiquitination targets ubiquitin C-terminal hydrolase L1 for degradation by the autophagy-lysosome system. Cell Mol Life Sci 2014; 72:1811-24. [PMID: 25403879 DOI: 10.1007/s00018-014-1781-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 11/24/2022]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a key neuronal deubiquitinating enzyme which is mutated in Parkinson disease (PD) and in childhood-onset neurodegenerative disorder with optic atrophy. Furthermore, reduced UCH-L1 protein levels are associated with a number of neurodegenerative diseases, whereas up-regulation of UCH-L1 protein expression is found in multiple types of cancer. However, very little is known about how UCH-L1 protein level is regulated in cells. Here, we report that UCH-L1 is a novel interactor and substrate of PD-linked E3 ubiquitin-protein ligase parkin. We find that parkin mediates K63-linked polyubiquitination of UCH-L1 in cooperation with the Ubc13/Uev1a E2 ubiquitin-conjugating enzyme complex and promotes UCH-L1 degradation by the autophagy-lysosome pathway. Targeted disruption of parkin gene expression in mice causes a significant decrease in UCH-L1 ubiquitination with a concomitant increase in UCH-L1 protein level in brain, supporting an in vivo role of parkin in regulating UCH-L1 ubiquitination and degradation. Our findings reveal a direct link between parkin-mediated ubiquitin signaling and UCH-L1 regulation, and they have important implications for understanding the roles of these two proteins in health and disease.
Collapse
Affiliation(s)
- Jeanne E McKeon
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | | | |
Collapse
|
10
|
Association between ubiquitin carboxy-terminal hydrolase-L1 S18Y variant and risk of Parkinson's disease: the impact of ethnicity and onset age. Neurol Sci 2014; 36:179-88. [PMID: 25370916 DOI: 10.1007/s10072-014-1987-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/21/2014] [Indexed: 01/06/2023]
Abstract
The Ubiquitin carboxy-terminal hydrolase-L1 (UCHL1) is a candidate risk gene for Parkinson' disease (PD), and a function SNP (rs5030732) in the coding region of this gene has been studied for the association with the disease extensively among worldwide populations, but the results were inconsistent and controversial. Here, to estimate the association between UCHL1 S18Y polymorphism and risk of PD in general population, we conducted a systematic meta-analysis by combining all available case-control subjects in Asian, European, and American populations, with a total of 7742 PD cases and 8850 healthy controls, and the pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) for UCHL1 S18Y polymorphism and PD were calculated using the Mantel-Haenszel method with a fixed- or random-effects model. Subgroup analysis was also performed in different onset age-matched groups. Among high-quality studies, UCHL1 S18Y polymorphism was moderately associated with the risk of PD (allele contrasts, OR = 1.063, 95% CI 1.008-1.122; p = 0.024; regressive genetic model, OR = 1.078, 95% CI 1.005-1.157; p = 0.035). When stratifying for ethnicity, none association were observed in subgroups. Analysis of early-onset PD (EOPD) and late-onset PD (LOPD) revealed that the polymorphism was not associated with the risk of PD. In conclusion, our meta-analysis suggests that UCHL1 S18Y polymorphism is moderately associated with susceptibility to PD, and more studies are needed to confirm our conclusion.
Collapse
|
11
|
Rhodes SL, Fitzmaurice AG, Cockburn M, Bronstein JM, Sinsheimer JS, Ritz B. Pesticides that inhibit the ubiquitin-proteasome system: effect measure modification by genetic variation in SKP1 in Parkinson׳s disease. ENVIRONMENTAL RESEARCH 2013; 126:1-8. [PMID: 23988235 PMCID: PMC3832349 DOI: 10.1016/j.envres.2013.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/07/2013] [Accepted: 08/02/2013] [Indexed: 05/06/2023]
Abstract
Cytoplasmic inclusions known as Lewy bodies, a hallmark of Parkinson's disease (PD) pathology, may protect against cytotoxic proteins. Since the ubiquitin-proteasome system (UPS) degrades cytotoxic proteins, dysfunction in the UPS may contribute to PD etiology. Our goal in this study was to screen pesticides for proteasome inhibition and investigate (i) whether ambient exposures to pesticides that inhibit the UPS increase PD risk and (ii) whether genetic variation in candidate genes of the UPS pathway modify those increased risks. We assessed 26S UPS activity in SK-N-MC(u) cells by fluorescence. We recruited idiopathic PD cases (n=360) and population-based controls (n=816) from three counties in California with considerable commercial agriculture. We determined ambient pesticide exposure by our validated GIS-based model utilizing residential and workplace address histories. We limited effect measure modification assessment to Caucasians (287 cases, 453 controls). Eleven of 28 pesticides we screened inhibited 26S UPS activity at 10 µM. Benomyl, cyanazine, dieldrin, endosulfan, metam, propargite, triflumizole, and ziram were associated with increased PD risk. We estimated an odds ratio of 2.14 (95% CI: 1.42, 3.22) for subjects with ambient exposure to any UPS-inhibiting pesticide at both residential and workplace addresses; this association was modified by genetic variation in the s-phase kinase-associated protein 1 gene (SKP1; interaction p-value=0.005). Our results provide evidence that UPS-inhibiting pesticides play a role in the etiology of PD and suggest that genetic variation in candidate genes involved in the UPS pathway might exacerbate the toxic effects of pesticide exposures.
Collapse
Affiliation(s)
- Shannon L. Rhodes
- Dept of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA
| | | | - Myles Cockburn
- Dept of Preventive Medicine, USC Keck School of Medicine, Los Angeles, CA
- Dept of Geography, USC, Los Angeles, CA
| | - Jeff M. Bronstein
- Dept of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Janet S. Sinsheimer
- Depts of Human Genetics and Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Dept of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA
| | - Beate Ritz
- Dept of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA
- Dept of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Dept of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA
| |
Collapse
|
12
|
Liu X, Ma T, Qu B, Ji Y, Liu Z. Pesticide-induced gene mutations and Parkinson disease risk: a meta-analysis. Genet Test Mol Biomarkers 2013; 17:826-32. [PMID: 23987116 DOI: 10.1089/gtmb.2013.0313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS Increasing scientific evidence suggests that pesticide-induced gene mutations may contribute to increasing susceptibility to Parkinson disease (PD), but many existing studies have yielded inconclusive results. This meta-analysis aims at assessing the exact roles of pesticide-induced gene mutations in the development of PD. METHODS An extensive literature search for relevant studies was conducted on PubMed, Embase, Web of Science, Cochrane Library, and CBM databases from their inception through May 1st, 2013. This meta-analysis was performed using the STATA 12.0 software. The crude odds ratio with 95% confidence interval was calculated. RESULTS Ten case-control studies were included with a total of 1248 PD patients and 1831 healthy controls. Our meta-analysis revealed that PD patients with pesticide exposure had higher gene mutation rates than those of healthy controls. Subgroup analysis by gene type indicated that the mutation rates in the GSTP1, SLC6A3, and MDR1 genes of PD patients with pesticide exposure were higher than those of healthy controls. No publication bias was detected in this meta-analysis. CONCLUSION The current meta-analysis indicates that pesticide-induced gene mutations may contribute to increasing susceptibility to PD, especially in the GSTP1, SLC6A3, and MDR1 genes.
Collapse
Affiliation(s)
- Xiaowei Liu
- 1 Department of Emergency, The First Affiliated Hospital of China Medical University , Liaoning, Shenyang, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Miyake Y, Tanaka K, Fukushima W, Kiyohara C, Sasaki S, Tsuboi Y, Yamada T, Oeda T, Shimada H, Kawamura N, Sakae N, Fukuyama H, Hirota Y, Nagai M. UCHL1 S18Y variant is a risk factor for Parkinson's disease in Japan. BMC Neurol 2012; 12:62. [PMID: 22839974 PMCID: PMC3488468 DOI: 10.1186/1471-2377-12-62] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/16/2012] [Indexed: 01/28/2023] Open
Abstract
Background A recent meta-analysis on the UCHL1 S18Y variant and Parkinson’s disease (PD) showed a significant inverse association between the Y allele and PD; the individual studies included in that meta-analysis, however, have produced conflicting results. We examined the relationship between UCHL1 S18Y single nucleotide polymorphism (SNP) and sporadic PD in Japan. Methods Included were 229 cases within 6 years of onset of PD, defined according to the UK PD Society Brain Bank clinical diagnostic criteria. Controls were 357 inpatients and outpatients without neurodegenerative disease. Adjustment was made for sex, age, region of residence, smoking, and caffeine intake. Results Compared with subjects with the CC or CA genotype of UCHL1 S18Y SNP, those with the AA genotype had a significantly increased risk of sporadic PD: the adjusted OR was 1.57 (95 % CI: 1.06 − 2.31). Compared with subjects with the CC or CA genotype of UCHL1 S18Y and the CC or CT genotype of SNCA SNP rs356220, those with the AA genotype of UCHL1 S18Y and the TT genotype of SNP rs356220 had a significantly increased risk of sporadic PD; the interaction, however, was not significant. Our previous investigation found significant inverse relationships between smoking and caffeine intake and PD in this population. There were no significant interactions between UCHL1 S18Y and smoking or caffeine intake affecting sporadic PD. Conclusions This study reveals that the UCHL1 S18Y variant is a risk factor for sporadic PD. We could not find evidence for interactions affecting sporadic PD between UCHL1 S18Y and SNCA SNP rs356220, smoking, or caffeine intake.
Collapse
Affiliation(s)
- Yoshihiro Miyake
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pesticide exposure and Parkinson's disease: epidemiological evidence of association. Neurotoxicology 2012; 33:947-71. [PMID: 22627180 DOI: 10.1016/j.neuro.2012.05.011] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 12/21/2022]
Abstract
It has been suggested that exposure to pesticides might be involved in the etiology of Parkinson's disease (PD). We conducted an updated systematic review of the epidemiologic literature over the past decade on the relationship between pesticide exposure and PD, using the MEDLINE database. Despite methodological differences, a significantly increased PD risk was observed in 13 out of 23 case-control studies that considered overall exposure to pesticides (risk estimates of 1.1-2.4) and in 10 out of 12 studies using other research designs (risk estimates of 2 or higher). Various studies found stronger associations in genetically susceptible individuals. Among a growing number of studies on the effects of exposure to specific pesticides (n=20), an increased PD risk has been associated with insecticides, especially chlorpyrifos and organochlorines, in six studies (odds ratios of 1.8-4.4), and with the herbicide paraquat, the fungicide maneb or the combination of both. Findings considerably strengthen the evidence that exposure to pesticides in well water may contribute to PD, whereas studies of farming and rural residence found inconsistent or little association with the disease. Taken together, this comprehensive set of results suggests that the hypothesis of an association between pesticide exposure and PD cannot be ruled out. However, inadequate data on consistent responses to exposure hinder the establishment of a causal relationship with PD. Given the extensive worldwide use of many pesticides, further studies are warranted in larger populations that include detailed quantitative data on exposure and determination of genetic polymorphisms.
Collapse
|
15
|
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson's disease. Physiol Rev 2011; 91:1161-218. [PMID: 22013209 DOI: 10.1152/physrev.00022.2010] [Citation(s) in RCA: 422] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a common motor disorder of mysterious etiology. It is due to the progressive degeneration of the dopaminergic neurons of the substantia nigra and is accompanied by the appearance of intraneuronal inclusions enriched in α-synuclein, the Lewy bodies. It is becoming increasingly clear that genetic factors contribute to its complex pathogenesis. Over the past decade, the genetic basis of rare PD forms with Mendelian inheritance, representing no more than 10% of the cases, has been investigated. More than 16 loci and 11 associated genes have been identified so far; genome-wide association studies have provided convincing evidence that polymorphic variants in these genes contribute to sporadic PD. The knowledge acquired of the functions of their protein products has revealed pathways of neurodegeneration that may be shared between inherited and sporadic PD. An impressive set of data in different model systems strongly suggest that mitochondrial dysfunction plays a central role in clinically similar, early-onset autosomal recessive PD forms caused by parkin and PINK1, and possibly DJ-1 gene mutations. In contrast, α-synuclein accumulation in Lewy bodies defines a spectrum of disorders ranging from typical late-onset PD to PD dementia and including sporadic and autosomal dominant PD forms due to mutations in SCNA and LRRK2. However, the pathological role of Lewy bodies remains uncertain, as they may or may not be present in PD forms with one and the same LRRK2 mutation. Impairment of autophagy-based protein/organelle degradation pathways is emerging as a possible unifying but still fragile pathogenic scenario in PD. Strengthening these discoveries and finding other convergence points by identifying new genes responsible for Mendelian forms of PD and exploring their functions and relationships are the main challenges of the next decade. It is also the way to follow to open new promising avenues of neuroprotective treatment for this devastating disorder.
Collapse
Affiliation(s)
- Olga Corti
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière; Institut National de la Santé et de la Recherche Médicale U.975, Paris, France
| | | | | |
Collapse
|
16
|
Xilouri M, Kyratzi E, Pitychoutis PM, Papadopoulou-Daifoti Z, Perier C, Vila M, Maniati M, Ulusoy A, Kirik D, Park DS, Wada K, Stefanis L. Selective neuroprotective effects of the S18Y polymorphic variant of UCH-L1 in the dopaminergic system. Hum Mol Genet 2011; 21:874-89. [DOI: 10.1093/hmg/ddr521] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
The UCHL1 S18Y polymorphism and Parkinson's disease in a Japanese population. Parkinsonism Relat Disord 2011; 17:473-5. [PMID: 21345711 DOI: 10.1016/j.parkreldis.2011.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/24/2011] [Accepted: 01/28/2011] [Indexed: 12/14/2022]
Abstract
UCHL1 plays an important role in the ubiquitin-proteasome system and is a biologically plausible candidate gene for Parkinson's disease (PD). However, results from genetic association studies of the UCHL1 S18Y polymorphism have been equivocal. Meta-analyses indicate that the polymorphism's risk effect might be restricted to Asian populations and early-onset disease. To further explore the role of UCHL1 in PD, we genotyped S18Y in 605 PD patients and 1620 controls of Japanese ancestry. We did not find evidence of an association in the overall sample (SY vs. SS: adjusted OR=1.11, P=0.37; YY vs. SS: adjusted OR=1.01, P=0.94). In the early-onset stratum, however, we observed a trend toward a reduction in risk for those with the Y allele (SY vs. SS, adjusted OR, 0.75; 95% CI, 0.47-1.20; YY vs. SS, OR, 0.64; 95% CI, 0.36-1.14; trend test, P=0.12). These results indicate that, if involved in PD, the S18Y variant is not a major determinant of risk and its effect might be restricted to early-onset disease.
Collapse
|
18
|
Wang L, Guo JF, Nie LL, Luo L, Zuo X, Shen L, Jiang H, Yan XX, Xia K, Pan Q, Tang BS. Case-control study of the UCH-L1 S18Y variant in sporadic Parkinson's disease in the Chinese population. J Clin Neurosci 2011; 18:541-4. [PMID: 21315600 DOI: 10.1016/j.jocn.2010.07.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/27/2010] [Accepted: 07/24/2010] [Indexed: 10/18/2022]
Abstract
The ubiquitin carboxy-terminal hydrolase L1 gene (UCH-L1) has been implicated in the etiology of Parkinson's disease (PD). In several previous studies, an S18Y (C54A) polymorphism in exon 3 of the UCH-L1 gene has been found to be protective against PD. We performed polymerase chain reaction-restriction fragment length polymorphism analysis for DNA samples from 408 Chinese patients with PD and 398 Chinese healthy controls. For the S18Y variant, there was no significant difference either in the individual allele or genotype frequencies between cases and control subjects. Possession of the S18Y variant did not alter the risk of developing PD (odds ratio: 0.827; 95% confidence interval=0.596-1.147). There was no statistically significant difference in terms of age or sex distribution between the patients and controls (p>0.05). Overall, considering our present results together with those of our previous studies, we now have access to data from more than 1000 patients from different regions of China, supporting the conclusion that the S18Y polymorphism may not have a protective effect against PD in the Chinese population.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rudolph T, Sjölander A, Palmér MS, Minthon L, Wallin A, Andreasen N, Tasa G, Juronen E, Blennow K, Zetterberg H, Zetterberg M. Ubiquitin carboxyl-terminal esterase L1 (UCHL1) S18Y polymorphism in patients with cataracts. Ophthalmic Genet 2011; 32:75-9. [PMID: 21268678 PMCID: PMC3116718 DOI: 10.3109/13816810.2010.544360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background: Cataract is characterized by light-scattering protein aggregates. The ubiquitin-proteasome system has been proposed a role in proteolytic removal of these protein aggregates. Ubiquitin carboxyl-terminal esterase L1 (UCHL1) is a de-ubiquitinating enzyme with important functions in recycling of ubiquitin. A protective role of the p.S18Y polymorphism of the UCHL1 gene has been shown in Parkinson's disease. The current study aimed to examine possible effects on cataract formation. Methods: Patients with cataract (n = 493) and controls (n = 142) were analyzed for the UCHL1 p.S18Y polymorphism using dynamic allele-specific hybridization. Results: Significant differences were observed in allele and genotype frequencies of the p.S18Y polymorphism between controls and cataract patients, where a positive UCHL1 allele A carrier status was associated with the cataract diagnosis (adjusted OR 1.7 [95% CI = 1.1-2.6] p = 0.02). No significant differences were seen in genotype distribution when stratifying for type of cataract. Nor did the mean age at cataract surgery differ between genotypes. Conclusion: The current study does not support a protective role for the UCHL1 S18Y polymorphism in cataract development, but may instead suggest a disease-promoting effect.
Collapse
Affiliation(s)
- Thiemo Rudolph
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Section of Ophthalmology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zetterberg M, Sjölander A, von Otter M, Palmér MS, Landgren S, Minthon L, Wallin A, Andreasen N, Blennow K, Zetterberg H. Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) S18Y polymorphism in Alzheimer's disease. Mol Neurodegener 2010; 5:11. [PMID: 20302621 PMCID: PMC2848225 DOI: 10.1186/1750-1326-5-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/19/2010] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by protein aggregates, i.e. senile plaques and neurofibrillary tangles. The ubiquitin-proteasome system has been proposed a role in proteolytic removal of these protein aggregates. Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a de-ubiquitinating enzyme with important functions in recycling of ubiquitin. The S18Y polymorphism of the UCHL1 gene confers protection against Parkinson's disease. In this study, the genotype and allele frequencies of the UCHL1 S18Y polymorphism were investigated in 452 AD patients and 234 control subjects, recruited from four memory clinics in Sweden. Using a binary logistic regression model including UCHL1 allele A and APOE ε4 allele positivity, age and sex as covariates with AD diagnosis as dependent variable, an adjusted OR of 0.82 ([95% CI 0.55-1.24], P = 0.35) was obtained for a positive UCHL1 allele A carrier status. The present study thus do not support a protective effect of the UCHL1 S18Y polymorphism against AD.
Collapse
Affiliation(s)
- Madeleine Zetterberg
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, Section of Ophthalmology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mitsui T, Hirayama K, Aoki S, Nishikawa K, Uchida K, Matsumoto T, Kabuta T, Wada K. Identification of a novel chemical potentiator and inhibitors of UCH-L1 by in silico drug screening. Neurochem Int 2010; 56:679-86. [PMID: 20144674 DOI: 10.1016/j.neuint.2010.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 01/27/2010] [Accepted: 01/30/2010] [Indexed: 11/29/2022]
Abstract
Ubiquitin-C-terminal hydrolase L1 (UCH-L1) is a de-ubiquitinating enzyme expressed in the brain and reproductive tissues as well as certain cancers. The hydrolase activity of UCH-L1 has been implicated in Alzheimer's disease and cancer invasion; therefore, it may represent a therapeutic target for these diseases. The present study was undertaken to identify novel chemical modulators for the hydrolase activity of UCH-L1. To identify chemicals that bind to the active site of UCH-L1, we carried out in silico structure-based drug screening using human UCH-L1 crystal structure data (PDB ID: 2ETL) and virtual compound libraries containing 26,891 and 304,205 compounds. Among the compounds with the highest binding scores, we identified one that potentiates the hydrolase activity of UCH-L1, and six that inhibit the activity in enzymatic assays. These compounds may be useful for research on UCH-L1 function, and could lead to candidate therapeutics for UCH-L1-associated diseases.
Collapse
Affiliation(s)
- Takeshi Mitsui
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ragland M, Hutter C, Zabetian C, Edwards K. Association between the ubiquitin carboxyl-terminal esterase L1 gene (UCHL1) S18Y variant and Parkinson's Disease: a HuGE review and meta-analysis. Am J Epidemiol 2009; 170:1344-57. [PMID: 19864305 PMCID: PMC2778765 DOI: 10.1093/aje/kwp288] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 08/13/2009] [Indexed: 01/26/2023] Open
Abstract
The ubiquitin carboxyl-terminal esterase L1 gene, UCHL1, located on chromosome 4p14, has been studied as a potential candidate gene for Parkinson's disease risk. The authors conducted a Human Genome Epidemiology review and meta-analysis of published case-control studies of the UCHL1 S18Y variant and Parkinson's disease in Asian and Caucasian samples. The meta-analysis of studies in populations of Asian ancestry showed a statistically significant association between the Y allele and reduced risk of Parkinson's disease under a recessive model (odds ratio (OR) for YY vs. SY + SS = 0.79, 95% confidence interval (CI): 0.67, 0.94; P = 0.006). For a dominant model, the association was not significant in Asian populations (OR for YY + SY vs. SS = 0.88, 95% CI: 0.68, 1.14; P = 0.33). For populations of European ancestry, the meta-analysis showed a significant association between the Y allele and decreased risk of Parkinson's disease under a dominant model (OR = 0.89, 95% CI: 0.81, 0.98; P = 0.02) but not under a recessive model (OR = 0.92, 95% CI: 0.66, 1.30; P = 0.65). Using the Venice criteria, developed by the Human Genome Epidemiology Network Working Group on the assessment of cumulative evidence, the authors concluded that moderate evidence exists for an association between the S18Y variant and Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Karen Edwards
- Correspondence to Dr. Karen Edwards, University of Washington, Center for Genomics and Public Health, Box 354921, 6200 NE 74th Street, Building 29, Suite 250, Seattle, WA 98115 (e-mail: )
| |
Collapse
|
23
|
Westerlund M, Hoffer B, Olson L. Parkinson's disease: Exit toxins, enter genetics. Prog Neurobiol 2009; 90:146-56. [PMID: 19925845 DOI: 10.1016/j.pneurobio.2009.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/15/2009] [Accepted: 11/10/2009] [Indexed: 12/21/2022]
Abstract
Parkinson's disease was long considered a non-hereditary disorder. Despite extensive research trying to find environmental risk factors for the disease, genetic variants now stand out as the major causative factor. Since a number of genes have been implicated in the pathogenesis it seems likely that several molecular pathways and downstream effectors can affect the trophic support and/or the survival of dopamine neurons, subsequently leading to Parkinson's disease. The present review describes how toxin-based animal models have been valuable tools in trying to find the underlying mechanisms of disease, and how identification of disease-linked genes in humans has led to the development of new transgenic rodent models. The review also describes the current status of the most common genetic susceptibility factors for Parkinson's disease identified up to today.
Collapse
Affiliation(s)
- Marie Westerlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
24
|
Benedetto A, Au C, Aschner M. Manganese-Induced Dopaminergic Neurodegeneration: Insights into Mechanisms and Genetics Shared with Parkinson’s Disease. Chem Rev 2009; 109:4862-84. [DOI: 10.1021/cr800536y] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexandre Benedetto
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Catherine Au
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Michael Aschner
- Department of Pediatrics, Center for Molecular Neuroscience, Department of Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| |
Collapse
|
25
|
Tan EK, Lu CS, Peng R, Teo YY, Wu-Chou YH, Chen RS, Weng YH, Chen CM, Fung HC, Tan LC, Zhang ZJ, An XK, Lee-Chen GJ, Lee MC, Fook-Chong S, Burgunder JM, Wu RM, Wu YR. Analysis of the UCHL1 genetic variant in Parkinson's disease among Chinese. Neurobiol Aging 2009; 31:2194-6. [PMID: 19329225 DOI: 10.1016/j.neurobiolaging.2008.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 11/29/2008] [Indexed: 10/21/2022]
Abstract
The inverse association of the functional ubiquitin carboxy-terminal hydrolase L1 (UCHL1) S18Y variant with Parkinson's disease (PD) among Caucasian populations has been debated. We conducted a large-scale analysis to investigate the age-of-onset effect of the UCHL1 variant in PD among ethnic Chinese. Individual data sets from 5 centers comprising a total of 4088 study subjects were analyzed. In the univariate analysis, only data from 1 center showed a trend towards a protective effect among young subjects. However, in the combined analysis, no significant association between the UCHL1 variant and PD was detected (A allele frequency 0.531 vs. 0.528, p=0.87, OR 1.01, 95% CI 0.92-1.1). Among subjects less than 60 years old, the OR is 0.99 (95% CI 0.84-1.16, p=0.88). A multivariate logistic regression analysis showed that family history, UCHL1 variant and the interaction of UCHL1 variant and age at onset (p=0.816) were not significantly associated with PD.
Collapse
Affiliation(s)
- E K Tan
- Department of Neurology, Singapore General Hospital, National Neuroscience Institute, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Membrane-associated farnesylated UCH-L1 promotes alpha-synuclein neurotoxicity and is a therapeutic target for Parkinson's disease. Proc Natl Acad Sci U S A 2009; 106:4635-40. [PMID: 19261853 DOI: 10.1073/pnas.0806474106] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1) is linked to Parkinson's disease (PD) and memory and is selectively expressed in neurons at high levels. Its expression pattern suggests a function distinct from that of its widely expressed homolog UCH-L3. We report here that, in contrast to UCH-L3, UCH-L1 exists in a membrane-associated form (UCH-L1(M)) in addition to the commonly studied soluble form. C-terminal farnesylation promotes the association of UCH-L1 with cellular membranes, including the endoplasmic reticulum. The amount of UCH-L1(M) in transfected cells is shown to correlate with the intracellular level of alpha-synuclein, a protein whose accumulation is associated with neurotoxicity and the development of PD. Reduction of UCH-L1(M) in cell culture models of alpha-synuclein toxicity by treatment with a farnesyltransferase inhibitor (FTI-277) reduces alpha-synuclein levels and increases cell viability. Proteasome function is not affected by UCH-L1(M), suggesting that it may negatively regulate the lysosomal degradation of alpha-synuclein. Therefore, inhibition of UCH-L1 farnesylation may be a therapeutic strategy for slowing the progression of PD and related synucleinopathies.
Collapse
|
27
|
Abstract
Deubiquitylating enzymes (DUBs) can hydrolyze a peptide, amide, ester or thiolester bond at the C-terminus of UBIQ (ubiquitin), including the post-translationally formed branched peptide bonds in mono- or multi-ubiquitylated conjugates. DUBs thus have the potential to regulate any UBIQ-mediated cellular process, the two best characterized being proteolysis and protein trafficking. Mammals contain some 80–90 DUBs in five different subfamilies, only a handful of which have been characterized with respect to the proteins that they interact with and deubiquitylate. Several other DUBs have been implicated in various disease processes in which they are changed by mutation, have altered expression levels, and/or form part of regulatory complexes. Specific examples of DUB involvement in various diseases are presented. While no specific drugs targeting DUBs have yet been described, sufficient functional and structural information has accumulated in some cases to allow their rapid development. Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- Shweta Singhal
- Ubiquitin Laboratory, Division of Molecular Bioscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
28
|
Zhang ZJ, Burgunder JM, An XK, Wu Y, Chen WJ, Zhang JH, Wang YC, Xu YM, Gou YR, Yuan GG, Mao XY, Peng R. Lack of evidence for association of a UCH-L1 S18Y polymorphism with Parkinson's disease in a Han-Chinese population. Neurosci Lett 2008; 442:200-2. [PMID: 18638528 DOI: 10.1016/j.neulet.2008.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 07/01/2008] [Accepted: 07/06/2008] [Indexed: 02/05/2023]
Abstract
Mutation in UCH-L1 has been reported as a rare cause of autosomal dominant Parkinson's disease (PD). A S18Y polymorphism in the same gene has been associated with sporadic PD. We investigated the frequency of this polymorphism among the Han-Chinese ethnic population in a case-control study. A total of 600 patients with PD and 334 unrelated healthy controls were genotyped using PCR-restriction fragment length polymorphism analysis. We did not observe any difference in allele or genotype frequencies between the cases and the controls (P>0.05). Our results do not support a role for this variant in sporadic PD.
Collapse
Affiliation(s)
- Z-J Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kyratzi E, Pavlaki M, Stefanis L. The S18Y polymorphic variant of UCH-L1 confers an antioxidant function to neuronal cells. Hum Mol Genet 2008; 17:2160-71. [DOI: 10.1093/hmg/ddn115] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
30
|
Hutter CM, Samii A, Factor SA, Nutt JG, Higgins DS, Bird TD, Griffith A, Roberts JW, Leis BC, Montimurro JS, Kay DM, Edwards KL, Payami H, Zabetian CP. Lack of evidence for an association between UCHL1 S18Y and Parkinson's disease. Eur J Neurol 2007; 15:134-9. [PMID: 18093156 DOI: 10.1111/j.1468-1331.2007.02012.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UCHL1 has been proposed as a candidate gene for Parkinson's disease (PD). A meta-analysis of white and Asian subjects reported an inverse association between the non-synonymous UCHL1 S18Y polymorphism and PD risk. However, this finding was not replicated in a large case-control study and updated meta-analysis restricted to white subjects. We performed a case-control study of 1757 PD patients recruited from movement disorder clinics and 2016 unrelated controls from four regions of the United States. All subjects self-reported as white. We did not observe evidence for an association between S18Y genotypes and PD (overall P-value for association: P = 0.42). After adjustment for age, sex, and recruitment region, the odds ratio for Y/S versus S/S was 0.91 (95% CI: 0.78-1.06) and for Y/Y versus S/S was 0.87 (95% CI: 0.58-1.29). We also did not observe a significant association for recessive or dominant models of inheritance, or after stratification by age at onset, age at blood draw, sex, family history of PD, or recruitment region. Our results suggest that UCHL1 S18Y is not a major susceptibility factor for PD in white populations although we cannot exclude the possibility that the S18Y variant exerts weak effects on risk, particularly in early-onset disease.
Collapse
Affiliation(s)
- Carolyn M Hutter
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Papapetropoulos S, Adi N, Ellul J, Argyriou AA, Chroni E. A prospective study of familial versus sporadic Parkinson's disease. NEURODEGENER DIS 2007; 4:424-7. [PMID: 17934325 DOI: 10.1159/000107702] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 12/16/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Most cases are sporadic but about 10-15% of patients have a positive family history of PD. OBJECTIVE To compare clinical phenotypes between familial (fPD) and sporadic (sPD) PD patients. METHODS Fifty-nine consecutive patients with at least one first-degree relative with PD were prospectively studied. After exclusion of 9 PD patients with positive family carrying known disease causing mutations, the remaining 50 were compared with 50 age- and sex-matched sPD patients. RESULTS Despite our methodological approach (strict diagnostic criteria, validated scales, structured interviews, multi- and two-member group formation and exclusion of patients with identifiable mutations) no major differences in the clinical phenotype between fPD and sPD were found. CONCLUSION Similar phenotypic characteristics of motor signs and symptoms suggest that at least the topography of the neurodegenerative insult leading to the parkinsonian clinical syndrome in fPD and sPD is similar. Similar etiologies are also suggested.
Collapse
|
32
|
Testud F, Grillet JP, Nisse C. Effets à long terme des produits phytosanitaires : le point sur les données épidémiologiques récentes. ARCH MAL PROF ENVIRO 2007. [DOI: 10.1016/s1775-8785(07)73890-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Carmine Belin A, Westerlund M, Bergman O, Nissbrandt H, Lind C, Sydow O, Galter D. S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson's disease in Sweden. Parkinsonism Relat Disord 2007; 13:295-8. [PMID: 17287139 DOI: 10.1016/j.parkreldis.2006.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/22/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is a neuron-specific enzyme that removes ubiquitin from the C-terminal end of substrates and a component of the ubiquitin-proteasome system. A protective effect of a UCH-L1 variant, S18Y, was suggested since the common variant was found to be inversely associated with sporadic Parkinson's disease (PD). We investigated the association of S18Y in our Swedish PD material. The tyrosine variant was significantly inversely associated with PD (P=0.049) and with a low age of onset (50 years) (P=0.017) in the case-control material, supporting the hypothesis of a protective function.
Collapse
Affiliation(s)
- Andrea Carmine Belin
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8 B2:4, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
34
|
Setsuie R, Wada K. The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem Int 2007; 51:105-11. [PMID: 17586089 DOI: 10.1016/j.neuint.2007.05.007] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 05/07/2007] [Accepted: 05/09/2007] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD), the most common neurodegenerative diseases, are caused by both genetic and environmental factors. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is involved in the pathogenesis of both of these neurodegenerative diseases. Several functions of UCH-L1, other than as an ubiquitin hydrolase, have been proposed; these include acting as an ubiquitin ligase and stabilizing mono-ubiquitin. This review focuses on recent findings on the functions and the regulation of UCH-L1, in particular those that relate to PD and AD.
Collapse
Affiliation(s)
- Rieko Setsuie
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | | |
Collapse
|
35
|
|
36
|
Abstract
During the past decade, there has been a remarkable progress in our understanding of the biology of Parkinson disease (PD), which has been translated into searching for novel therapy for PD. Much focus is shifted from the development of drugs that only relieve PD symptoms to new generation of remedies that can potentially protect dopaminergic neurons and modify the disease course. Several novel therapeutic approaches have been tested in preclinical experiments and in clinical trials, including molecules targeting on genes involved in the pathogenesis of the disease, neurotrophic factors critical for dopaminergic neuron survival and function, new generation of dopamine receptor agonists that may possess neuroprotective effects, and agents of antioxidation, antiinflammation, and antiapoptosis. The results of these studies will shed new light to our hope that PD can be cured in the future.
Collapse
Affiliation(s)
- Sheng Chen
- Institute of Neurology, Ruijin Hospital, Shanghai 2nd Medical University, Shanghai, China
| | | |
Collapse
|
37
|
Abstract
Much has been learned in recent years about the genetics of familial Parkinson's disease. However, far less is known about those malfunctioning genes which contribute to the emergence and/or progression of the vast majority of cases, the 'sporadic Parkinson's disease', which is the focus of our current review. Drastic differences in the reported prevalence of Parkinson's disease in different continents and countries suggest ethnic and/or environmental-associated multigenic contributions to this disease. Numerous association studies showing variable involvement of multiple tested genes in these distinct locations support this notion. Also, variable increases in the risk of Parkinson's disease due to exposure to agricultural insecticides indicate complex gene-environment interactions, especially when genes involved in protection from oxidative stress are explored. Further consideration of the brain regions damaged in Parkinson's disease points at the age-vulnerable cholinergic-dopaminergic balance as being involved in the emergence of sporadic Parkinson's disease in general and in the exposure-induced risks in particular. More specifically, the chromosome 7 ACHE/PON1 locus emerges as a key region controlling this sensitive balance, and animal model experiments are compatible with this concept. Future progress in the understanding of the genetics of sporadic Parkinson's disease depends on globally coordinated, multileveled studies of gene-environment interactions.
Collapse
Affiliation(s)
- Liat Benmoyal-Segal
- Department of Biological Chemistry, The Life Sciences Institute, Jerusalem, Israel
| | | |
Collapse
|
38
|
Schweitzer K, Decker E, Zhu L, Miller RE, Mirra SS, Spina S, Ghetti B, Wang M, Murrell J. Aberrantly regulated proteins in frontotemporal dementia. Biochem Biophys Res Commun 2006; 348:465-72. [PMID: 16890190 DOI: 10.1016/j.bbrc.2006.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/17/2006] [Indexed: 12/12/2022]
Abstract
Non-Alzheimer's disease of the frontal type, or frontotemporal dementia (FTD), is the second most common form of dementia. Yet, a detailed characterization of the disease has been especially limiting. To identify mechanisms possibly involved in disease pathology or progression, a proteomic analysis of proteins isolated from human frontal cortex with frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) was performed. We used 2D gel electrophoresis and MALDI-TOF to identify a total of 24 proteins differentially expressed in FTDP-17. We identified a ubiquitin C-terminal hydrolase, UCHL1, as well as several proteins involved in oxidative stress to be differentially expressed. Data presented implicate UCHL1 and ubiquitin-mediated degradation as well as oxidative stress response in disease pathology or progression.
Collapse
Affiliation(s)
- Kelly Schweitzer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Healy DG, Abou-Sleiman PM, Casas JP, Ahmadi KR, Lynch T, Gandhi S, Muqit MMK, Foltynie T, Barker R, Bhatia KP, Quinn NP, Lees AJ, Gibson JM, Holton JL, Revesz T, Goldstein DB, Wood NW. UCHL-1is not a Parkinson's disease susceptibility gene. Ann Neurol 2006; 59:627-33. [PMID: 16450370 DOI: 10.1002/ana.20757] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The UCHL-1 gene is widely cited as a susceptibility factor for sporadic Parkinson's disease (PD). The strongest evidence comes from a meta-analysis of small studies that reported the S18Y polymorphism as protective against PD, after pooling studies of white and Asian subjects. Here, we present data that challenge this association. METHODS In a new large case-control study in white individuals (3,023 subjects), the S18Y variant was not protective against PD under any genetic model of inheritance. Similarly, a more powerful haplotype-tagging approach did not detect other associated variants. RESULTS Finally, in an updated S18Y-PD meta-analysis (6,594 subjects), no significant association was observed under additive, recessive, or dominant models (odds ratio = 1.00 [95% confidence interval: 0.74-1.33]; odds ratio = 1.01 [95% confidence interval: 0.76-1.35]; and odds ratio = 0.96 [95% confidence interval: 0.86-1.08], respectively), and a cumulative meta-analysis showed a trend toward a null effect. INTERPRETATION Based on the current evidence, the UCHL-1 gene does not exhibit a protective effect in PD.
Collapse
Affiliation(s)
- Daniel G Healy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tan EK, Puong KY, Fook-Chong S, Chua E, Shen H, Yuen Y, Pavanni R, Wong MC, Puvan K, Zhao Y. Case–control study of UCHL1 S18Y variant in Parkinson's disease. Mov Disord 2006; 21:1765-8. [PMID: 16941465 DOI: 10.1002/mds.21064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A recent meta-analysis observed a greater significant inverse association of the ubiquitin carboxy-terminal hydrolase L1 (UCHL1) S18Y variant with Parkinson's disease (PD) for Asian (predominantly Japanese) populations compared with Caucasian populations. We performed an independent case-control study in 335 PD and 341 control subjects with data from a Chinese population to investigate the age-of-onset effect of the UCHL1 variant in PD. The Y/Y and Y/S genotypes were less frequent in the PD young-onset group than in controls and the frequency of the Y alleles was higher in young controls compared to young-onset PD (age at examination <or= 65 years; P = 0.003). Multivariate analysis revealed the Y/Y genotype was significantly lower (P = 0.008) in the young-onset PD (Y/Y vs. S/S: odds ratio [OR]: 0.42; 95% confidence interval [CI]: 0.24, 0.74; S/Y vs. S/S: OR: 0.66, 95% CI: 0.41, 1.08) compared with controls, but this difference was not seen for the late-onset PD. Kaplan-Meier analysis carried out on PD subjects demonstrated that the Y/Y genotype was associated with a later onset of PD than Y/S plus S/S genotypes (P = 0.05). We provided an independent confirmation of the protective effect of the UCHL1 S18Y variant (Y/Y genotype) against PD in young Chinese subjects. Further functional studies of the S18Y variant in both cell and animal models will be of interest.
Collapse
Affiliation(s)
- Eng-King Tan
- Department of Neurology, Singapore General Hospital, Singapore.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li AA, Mink PJ, McIntosh LJ, Teta MJ, Finley B. Evaluation of Epidemiologic and Animal Data Associating Pesticides With Parkinson???s Disease. J Occup Environ Med 2005; 47:1059-87. [PMID: 16217247 DOI: 10.1097/01.jom.0000174294.58575.3e] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exposure to pesticides may be a risk factor for developing Parkinson's disease (PD). To evaluate the evidence regarding this association in the scientific literature, we examined both analytic epidemiologic studies of PD cases in which exposure to pesticides was queried directly and whole-animal studies for PD-like effects after systemic pesticide exposure. Epidemiologic studies were considered according to study quality parameters, and results were found to be mixed and without consistent exposure-response or pesticide-specific patterns. These epidemiologic studies were limited by a lack of detailed and validated pesticide exposure assessment. In animal studies, no pesticide has yet demonstrated the selective set of clinical and pathologic signs that characterize human PD, particularly at levels relevant to human populations. We conclude that the animal and epidemiologic data reviewed do not provide sufficient evidence to support a causal association between pesticide exposure and PD.
Collapse
Affiliation(s)
- Abby A Li
- Health Sciences Practice, Exponent, Inc., San Francisco, California 94114, USA.
| | | | | | | | | |
Collapse
|
42
|
Jain S, Wood NW, Healy DG. Molecular genetic pathways in Parkinson's disease: a review. Clin Sci (Lond) 2005; 109:355-64. [PMID: 16171459 DOI: 10.1042/cs20050106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Major progress has been made in the last decade in understanding the genetic basis of PD (Parkinson's disease) with five genes unequivocally associated with disease. As a result, multiple pathways have been implicated in the pathogenesis of PD, including proteasome impairment and mitochondrial dysfunction. Although Mendelian genetics has been successful in establishing a genetic predisposition for familial PD, this has not been reiterated in the sporadic form. In fact no genetic factors have been unequivocally associated with increased risk for sporadic PD. The difficulty in identifying susceptibility factors in PD has not only been because of numerous underpowered studies, but we have been unable to dissect out the genetic component in a multifactorial disease. This review aims to summarize the genetic findings within PD.
Collapse
Affiliation(s)
- Shushant Jain
- Department of Molecular Neuroscience, Institute of Neurology, Queen Square, London WC1N 3BG, U.K
| | | | | |
Collapse
|
43
|
Johnson MD, Yu LR, Conrads TP, Kinoshita Y, Uo T, McBee JK, Veenstra TD, Morrison RS. The Proteomics of Neurodegeneration. ACTA ACUST UNITED AC 2005; 5:259-70. [PMID: 16078862 DOI: 10.2165/00129785-200505040-00006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The continuing improvement and refinement of proteomic and bioinformatic tools has made it possible to obtain increasing amounts of structural and functional information about proteins on a global scale. The emerging field of neuroproteomics promises to provide powerful strategies for further characterizing neuronal dysfunction and cell loss associated with neurodegenerative diseases. Neuroproteomic studies have thus far revealed relatively comprehensive quantitative changes and post-translational modifications (mostly oxidative damage) of high abundance proteins, confirming deficits in energy production, protein degradation, antioxidant protein function, and cytoskeletal regulation associated with neurodegenerative diseases such as Alzheimer and Parkinson disease. The identification of changes in low-abundance proteins and characterization of their functions based on protein-protein interactions still await further development of proteomic methodologies and more dedicated application of these technologies by neuroscientists. Once accomplished, however, the resulting information will certainly provide a truly comprehensive view of neurodegeneration-associated changes in protein expression, facilitating the identification of novel biomarkers for the early detection of neurodegenerative diseases and new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mark D Johnson
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98195-6470, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Gilgun-Sherki Y, Djaldetti R, Melamed E, Offen D. Polymorphism in candidate genes: implications for the risk and treatment of idiopathic Parkinson's disease. THE PHARMACOGENOMICS JOURNAL 2004; 4:291-306. [PMID: 15224083 DOI: 10.1038/sj.tpj.6500260] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Idiopathic Parkinson's disease (IPD) is a progressive neurodegenerative disorder for which no restorative or neuroprotective therapy is available. Interest has recently been directed to association studies on polymorphisms of various genes, mainly those related to dopamine metabolism and transport, and their effect on response to PD, which includes primarily levodopa and dopaminomimetics. Approximately 15-20% of patients with PD do not respond to levodopa, and the majority of those who do respond develop adverse fluctuations in motor response, primarily levodopa-induced dyskinesias. This review summarizes the influence of polymorphisms in various genes on the relative risk of IPD and on levodopa efficacy. It focuses on the importance of well-designed polymorphism studies that include large samples of patients with IPD and tightly matched controls and use identical methodologies. Valid data on such polymorphisms might increase the efficacy of levodopa, decrease its side effects, and reduce the occurrence of levodopa-induced dyskinesias. They might also provide a novel diagnostic tool for PD.
Collapse
Affiliation(s)
- Y Gilgun-Sherki
- Laboratory of Neurosciences, Felsenstein Medical Research Center, Petah Tiqva, Israel
| | | | | | | |
Collapse
|
45
|
Healy DG, Abou-Sleiman PM, Wood NW. Genetic causes of Parkinson?s disease: UCHL-1. Cell Tissue Res 2004; 318:189-94. [PMID: 15221445 DOI: 10.1007/s00441-004-0917-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 05/07/2004] [Indexed: 01/02/2023]
Abstract
The ubiquitin proteasome system is an important cellular pathway that ubiquitinates damaged proteins and degrades them via the 26S proteasome. Abnormalities of this pathway can result in molecular protein aggregation and have been associated with Parkinson's disease (PD). UCHL-1, an enzyme central to the system, possesses catalytic hydrolase activity that can hydrolyze peptide-ubiquitin bonds and recycle ubiquitin monomers for re-use in the same process. Recently, UCHL-1 has been shown to possess a second dimerisation-dependent ligase activity and, at least in vitro, this ligase activity promotes alpha synuclein aggregation. UCHL-1 was first implicated in PD by the discovery of an I93M mutation identified in a German sib-pair with probable autosomal dominant PD. Although no further UCHL-1 mutations have been identified, a common non-synonymous S18Y polymorphism has been suggested to reduce disease susceptibility in non-mendelian forms of PD. In vitro functional data support this protective effect, with evidence that S18Y possesses reduced ligase activity compared with wild type UCHL-1. One study has found increased hydrolase activity associated with S18Y, although another study has not. Important issues regarding UCHL-1 and its role in PD remain inconclusive, especially regarding the pathogenicity of the mendelian I93M mutation. This review tries to address some of these uncertainties.
Collapse
Affiliation(s)
- Daniel G Healy
- Department of Molecular Neuroscience, Institute of Neurology, Queen Square, WC1N 3BG, London, UK.
| | | | | |
Collapse
|
46
|
Liu Y, Lashuel HA, Choi S, Xing X, Case A, Ni J, Yeh LA, Cuny GD, Stein RL, Lansbury PT. Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. ACTA ACUST UNITED AC 2004; 10:837-46. [PMID: 14522054 DOI: 10.1016/j.chembiol.2003.08.010] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuronal ubiquitin C-terminal hydrolase (UCH-L1) has been linked to Parkinson's disease (PD), the progression of certain nonneuronal tumors, and neuropathic pain. Certain lung tumor-derived cell lines express UCH-L1 but it is not expressed in normal lung tissue, suggesting that this enzyme plays a role in tumor progression, either as a trigger or as a response. Small-molecule inhibitors of UCH-L1 would be helpful in distinguishing between these scenarios. By utilizing high-throughput screening (HTS) to find inhibitors and traditional medicinal chemistry to optimize their affinity and specificity, we have identified a class of isatin O-acyl oximes that selectively inhibit UCH-L1 as compared to its systemic isoform, UCH-L3. Three representatives of this class (30, 50, 51) have IC(50) values of 0.80-0.94 micro M for UCH-L1 and 17-25 micro M for UCH-L3. The K(i) of 30 toward UCH-L1 is 0.40 micro M and inhibition is reversible, competitive, and active site directed. Two isatin oxime inhibitors increased proliferation of the H1299 lung tumor cell line but had no effect on a lung tumor line that does not express UCH-L1. Inhibition of UCH-L1 expression in the H1299 cell line using RNAi had a similar proproliferative effect, suggesting that the UCH-L1 enzymatic activity is antiproliferative and that UCH-L1 expression may be a response to tumor growth. The molecular mechanism of this response remains to be determined.
Collapse
Affiliation(s)
- Yichin Liu
- Center for Neurologic Diseases, Brigham and Women's Hospital, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
von Bohlen und Halbach O, Schober A, Krieglstein K. Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 2004; 73:151-77. [PMID: 15236834 DOI: 10.1016/j.pneurobio.2004.05.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 05/11/2004] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder. The etiology of PD is likely due to combinations of environmental and genetic factors. In addition to the loss of neurons, including dopaminergic neurons in the substantia nigra pars compacta, a further morphologic hallmark of PD is the presence of Lewy bodies and Lewy neurites. The formation of these proteinaceous inclusions involves interaction of several proteins, including alpha-synuclein, synphilin-1, parkin and UCH-L1. Animal models allow to get insight into the mechanisms of several symptoms of PD, allow investigating new therapeutic strategies and, in addition, provide an indispensable tool for basic research. In animals PD does not arise spontaneously, thus, characteristic and specific functional changes have to be mimicked by application of neurotoxic agents or by genetic manipulations. In this review we will focus on genes and gene loci involved in PD, the functions of proteins involved in the formation of cytoplasmatic inclusions, their interactions, and their possible role in PD. In addition, we will review the current animal models of PD.
Collapse
Affiliation(s)
- O von Bohlen und Halbach
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
48
|
Maraganore DM, Lesnick TG, Elbaz A, Chartier-Harlin MC, Gasser T, Krüger R, Hattori N, Mellick GD, Quattrone A, Satoh JI, Toda T, Wang J, Ioannidis JPA, de Andrade M, Rocca WA, Toda T. UCHL1 is a Parkinson's disease susceptibility gene. Ann Neurol 2004; 55:512-21. [PMID: 15048890 DOI: 10.1002/ana.20017] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reported inverse association between the S18Y variant of the ubiquitin carboxy-terminal hydrolase L1 (UCHL1) gene and Parkinson's disease (PD) has strong biological plausibility. If confirmed, genetic association of this variant with PD may support molecular targeting of the UCHL1 gene and its product as a therapeutic strategy for PD. In this light, we performed a collaborative pooled analysis of individual-level data from all 11 published studies of the UCHL1 S18Y gene variant and PD. There were 1,970 cases and 2,224 unrelated controls. We found a statistically significant inverse association of S18Y with PD. Carriers of the variant allele (Y/Y plus Y/S vs S/S) had an odds ratio (OR) of 0.84 (95% confidence interval [CI], 0.73-0.95) and homozygotes for the variant allele (Y/Y vs S/S plus Y/S) had an OR of 0.71 (95% CI, 0.57-0.88). There was a linear trend in the log OR consistent with a gene dose effect (p = 0.01). The inverse association was most apparent for young cases compared with young controls. There was no evidence for publication bias and the associations remained significant after excluding the first published, hypothesis-generating study. These findings confirm that UCHL1 is a susceptibility gene for PD and a potential target for disease-modifying therapies.
Collapse
|
49
|
Elbaz A, Levecque C, Clavel J, Vidal JS, Richard F, Amouyel P, Alpérovitch A, Chartier-Harlin MC, Tzourio C. CYP2D6 polymorphism, pesticide exposure, and Parkinson's disease. Ann Neurol 2004; 55:430-4. [PMID: 14991823 DOI: 10.1002/ana.20051] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We performed a case-control study of Parkinson's disease (PD) in a population characterized by a high prevalence of pesticide exposure and studied the joint effect of pesticide exposure and CYP2D6. Although they are based on a small group of subjects with the joint exposure, our findings are consistent with a gene-environment interaction disease model according to which (1) pesticides have a modest effect in subjects who are not CYP2D6 poor metabolizers, (2) pesticides' effect is increased in poor metabolizers (approximately twofold), and (3) poor metabolizers are not at increased PD risk in the absence of pesticide exposure.
Collapse
Affiliation(s)
- Alexis Elbaz
- National Institute of Health and Medical Research (INSERM) Unit 360, Hôpital de la Salpêtrière, 47 boulevard de l'Hôpital, 75651 Paris Cedex 13, France. elbaz@chups,jussieu.fr
| | | | | | | | | | | | | | | | | |
Collapse
|