1
|
Bernal-Conde LD, Peña-Martínez V, Morato-Torres CA, Ramos-Acevedo R, Arias-Carrión Ó, Padilla-Godínez FJ, Delgado-González A, Palomero-Rivero M, Collazo-Navarrete O, Soto-Rojas LO, Gómez-Chavarín M, Schüle B, Guerra-Crespo M. Alpha-Synuclein Gene Alterations Modulate Tyrosine Hydroxylase in Human iPSC-Derived Neurons in a Parkinson's Disease Animal Model. Life (Basel) 2024; 14:728. [PMID: 38929711 PMCID: PMC11204703 DOI: 10.3390/life14060728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) caused by SNCA gene triplication (3XSNCA) leads to early onset, rapid progression, and often dementia. Understanding the impact of 3XSNCA and its absence is crucial. This study investigates the differentiation of human induced pluripotent stem cell (hiPSC)-derived floor-plate progenitors into dopaminergic neurons. Three different genotypes were evaluated in this study: patient-derived hiPSCs with 3XSNCA, a gene-edited isogenic line with a frame-shift mutation on all SNCA alleles (SNCA 4KO), and a normal wild-type control. Our aim was to assess how the substantia nigra pars compacta (SNpc) microenvironment, damaged by 6-hydroxydopamine (6-OHDA), influences tyrosine hydroxylase-positive (Th+) neuron differentiation in these genetic variations. This study confirms successful in vitro differentiation into neuronal lineage in all cell lines. However, the SNCA 4KO line showed unusual LIM homeobox transcription factor 1 alpha (Lmx1a) extranuclear distribution. Crucially, both 3XSNCA and SNCA 4KO lines had reduced Th+ neuron expression, despite initial successful neuronal differentiation after two months post-transplantation. This indicates that while the SNpc environment supports early neuronal survival, SNCA gene alterations-either amplification or knock-out-negatively impact Th+ dopaminergic neuron maturation. These findings highlight SNCA's critical role in PD and underscore the value of hiPSC models in studying neurodegenerative diseases.
Collapse
Affiliation(s)
- Luis Daniel Bernal-Conde
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Molecular Neuropathology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Verónica Peña-Martínez
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Molecular Neuropathology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - C. Alejandra Morato-Torres
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Rodrigo Ramos-Acevedo
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Molecular Neuropathology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Óscar Arias-Carrión
- Movement and Sleep Disorders Unit, Dr. Manuel Gea González General Hospital, Mexico City 14080, Mexico;
| | - Francisco J. Padilla-Godínez
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Molecular Neuropathology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Alexa Delgado-González
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Molecular Neuropathology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Marcela Palomero-Rivero
- Neurodevelopment and Physiology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Omar Collazo-Navarrete
- National Laboratory of Genomic Resources, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City 04510, Mexico;
| | - Luis O. Soto-Rojas
- Laboratory of Molecular Pathogenesis, Laboratory 4, Building A4, Medical Surgeon Career, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Mexico City 54090, Mexico;
| | - Margarita Gómez-Chavarín
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
| | - Birgitt Schüle
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Magdalena Guerra-Crespo
- Laboratory of Regenerative Medicine, Physiology Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (L.D.B.-C.); (V.P.-M.); (C.A.M.-T.); (R.R.-A.); (F.J.P.-G.); (A.D.-G.); (M.G.-C.)
- Molecular Neuropathology Department, Neuroscience Division, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
2
|
Blokhin V, Pavlova EN, Katunina EA, Nodel MR, Kataeva GV, Moskalets ER, Pronina TS, Ugrumov MV. Dopamine Synthesis in the Nigrostriatal Dopaminergic System in Patients at Risk of Developing Parkinson's Disease at the Prodromal Stage. J Clin Med 2024; 13:875. [PMID: 38337569 PMCID: PMC10856030 DOI: 10.3390/jcm13030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is diagnosed by the onset of motor symptoms and treated long after its onset. Therefore, the development of the early diagnosis of PD is a priority for neurology. Advanced methodologies for this include (1) searching for patients at risk of developing prodromal PD based on premotor symptoms; (2) searching for changes in the body fluids in these patients as diagnostic biomarkers; (3) verifying the diagnosis of prodromal PD and diagnostic-value biomarkers using positron emission tomography (PET); (4) anticipating the development of motor symptoms. According to our data, the majority of patients (n = 14) at risk of developing PD selected in our previous study show pronounced interhemispheric asymmetry in the incorporation of 18F-DOPA into dopamine synthesis in the striatum. This was assessed for the caudate nucleus and putamen separately using the specific binding coefficient, asymmetry index, and putamen/caudate nucleus ratio. Interhemispheric asymmetry in the incorporation of 18F-DOPA into the striatum provides strong evidence for its dopaminergic denervation and the diagnostic value of previously identified blood biomarkers. Of the 17 patients at risk of developing prodromal PD studied using PET, 3 patients developed motor symptoms within a year. Thus, our study shows the promise of using the described methodology for the development of early diagnosis of PD.
Collapse
Affiliation(s)
- Victor Blokhin
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Ekaterina N. Pavlova
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Elena A. Katunina
- Federal Center of Brain Research and Neurotechnologies of the Russian Federal Medical and Biological Agency, Moscow 117513, Russia;
- Faculty of Medicine, Department of Neurology, Neurosurgery and Medical Genetics, N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow 117997, Russia
| | - Marina R. Nodel
- Department of Nervous Diseases and Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia;
| | - Galina V. Kataeva
- Federal State Budget Institution Granov Russian Research Center of Radiology and Surgical Technologies Ministry of Health of the Russian Federation (RRCRST) 70, Leningradskaya Street, Pesochny, St. Petersburg 197758, Russia;
| | | | - Tatiana S. Pronina
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Michael V. Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| |
Collapse
|
3
|
Liu Z, Moon HS, Li Z, Laforest R, Perlmutter JS, Norris SA, Jha AK. A tissue-fraction estimation-based segmentation method for quantitative dopamine transporter SPECT. Med Phys 2022; 49:5121-5137. [PMID: 35635327 PMCID: PMC9703616 DOI: 10.1002/mp.15778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Quantitative measures of dopamine transporter (DaT) uptake in caudate, putamen, and globus pallidus (GP) derived from dopamine transporter-single-photon emission computed tomography (DaT-SPECT) images have potential as biomarkers for measuring the severity of Parkinson's disease. Reliable quantification of this uptake requires accurate segmentation of the considered regions. However, segmentation of these regions from DaT-SPECT images is challenging, a major reason being partial-volume effects (PVEs) in SPECT. The PVEs arise from two sources, namely the limited system resolution and reconstruction of images over finite-sized voxel grids. The limited system resolution results in blurred boundaries of the different regions. The finite voxel size leads to TFEs, that is, voxels contain a mixture of regions. Thus, there is an important need for methods that can account for the PVEs, including the TFEs, and accurately segment the caudate, putamen, and GP, from DaT-SPECT images. PURPOSE Design and objectively evaluate a fully automated tissue-fraction estimation-based segmentation method that segments the caudate, putamen, and GP from DaT-SPECT images. METHODS The proposed method estimates the posterior mean of the fractional volumes occupied by the caudate, putamen, and GP within each voxel of a three-dimensional DaT-SPECT image. The estimate is obtained by minimizing a cost function based on the binary cross-entropy loss between the true and estimated fractional volumes over a population of SPECT images, where the distribution of true fractional volumes is obtained from existing populations of clinical magnetic resonance images. The method is implemented using a supervised deep-learning-based approach. RESULTS Evaluations using clinically guided highly realistic simulation studies show that the proposed method accurately segmented the caudate, putamen, and GP with high mean Dice similarity coefficients of ∼ 0.80 and significantly outperformed (p < 0.01 $p < 0.01$ ) all other considered segmentation methods. Further, an objective evaluation of the proposed method on the task of quantifying regional uptake shows that the method yielded reliable quantification with low ensemble normalized root mean square error (NRMSE) < 20% for all the considered regions. In particular, the method yielded an even lower ensemble NRMSE of ∼ 10% for the caudate and putamen. CONCLUSIONS The proposed tissue-fraction estimation-based segmentation method for DaT-SPECT images demonstrated the ability to accurately segment the caudate, putamen, and GP, and reliably quantify the uptake within these regions. The results motivate further evaluation of the method with physical-phantom and patient studies.
Collapse
Affiliation(s)
- Ziping Liu
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Hae Sol Moon
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Zekun Li
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joel S. Perlmutter
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology,Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott A. Norris
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology,Washington University School of Medicine, St. Louis, Missouri, USA
| | - Abhinav K. Jha
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Thakur M, Kuresan H, Dhanalakshmi S, Lai KW, Wu X. Soft Attention Based DenseNet Model for Parkinson’s Disease Classification Using SPECT Images. Front Aging Neurosci 2022; 14:908143. [PMID: 35912076 PMCID: PMC9326232 DOI: 10.3389/fnagi.2022.908143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Deep learning algorithms have long been involved in the diagnosis of severe neurological disorders that interfere with patients’ everyday tasks, such as Parkinson’s disease (PD). The most effective imaging modality for detecting the condition is DaTscan, a variety of single-photon emission computerized tomography (SPECT) imaging method. The goal is to create a convolutional neural network that can specifically identify the region of interest following feature extraction. Methods The study comprised a total of 1,390 DaTscan imaging groups with PD and normal classes. The architecture of DenseNet-121 is leveraged with a soft-attention block added before the final classification layer. For visually analyzing the region of interest (ROI) from the images after classification, Soft Attention Maps and feature map representation are used. Outcomes The model obtains an overall accuracy of 99.2% and AUC-ROC score 99%. A sensitivity of 99.2%, specificity of 99.4% and f1-score of 99.1% is achieved that surpasses all prior research findings. Soft-attention map and feature map representation aid in highlighting the ROI, with a specific attention on the putamen and caudate regions. Conclusion With the deep learning framework adopted, DaTscan images reveal the putamen and caudate areas of the brain, which aid in the distinguishing of normal and PD cohorts with high accuracy and sensitivity.
Collapse
Affiliation(s)
- Mahima Thakur
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Harisudha Kuresan
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Samiappan Dhanalakshmi
- Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Samiappan Dhanalakshmi,
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Khin Wee Lai,
| | - Xiang Wu
- School of Medical Information Engineering, Xuzhou Medical University, Xuzhou, China
- Xiang Wu,
| |
Collapse
|
5
|
Krenovsky JP, Bötzel K, Ceballos-Baumann A, Fietzek UM, Schoser B, Maetzler W, Ferrari U, Drey M. Interrelation between Sarcopenia and the Number of Motor Neurons in Patients with Parkinsonian Syndromes. Gerontology 2020; 66:409-415. [PMID: 32088717 DOI: 10.1159/000505590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Pathogenesis in a subgroup of sarcopenic patients seems to be based on a reduced number of motor neurons. This study aimed at investigating the overlap between sarcopenia and neurodegeneration, as reflected by a low number of motor neurons in patients with Parkinsonian syndromes (PS). METHODS The motor unit number index (MUNIX) of the hypothenar muscle was used to assess the number and size (MUSIX) of motor units (MUs) in patients with idiopathic Parkinson disease (iPD, n = 53), patients with atypical Parkinsonian syndrome (aPS, n = 21), and a control group (n = 30). Mean age of participants was 70.3 years and 54.1% were female. Skeletal muscle mass by bioelectrical impedance analysis, hand-grip strength and gait speed were measured. Based on these assessments, sarcopenia was diagnosed according to the criteria of the European Working Group on Sarcopenia in Older People. RESULTS Sarcopenia criteria were met by 10 patients with PS (13.5%). The study group had significantly lower MUNIX values than the control group (109 [SD ±39.1] vs. 129 [SD ±45.1]; p = 0.020) even after adjustment for age and sex. Three of the 5 sarcopenic iPD patients (75%) had pathological low MUNIX values (<80). DISCUSSION/CONCLUSION Sarcopenia is a frequent comorbidity in PS. The pathologically low MUNIX values found in 75% of our sarcopenic iPD patients provides further support for the existence of a neurodegenerative overlap syndrome with a reduced number of MUs potentially leading to sarcopenia. This finding warrants further evaluation.
Collapse
Affiliation(s)
- Jan-Peter Krenovsky
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany,
| | - Kai Bötzel
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Andres Ceballos-Baumann
- Schön Klinik München Schwabing, Department of Neurology and Clinical Neurophysiology, Munich, Germany
| | - Urban M Fietzek
- Schön Klinik München Schwabing, Department of Neurology and Clinical Neurophysiology, Munich, Germany
| | - Benedikt Schoser
- Friedrich Baur Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - Uta Ferrari
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Michael Drey
- Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Wichmann T. Changing views of the pathophysiology of Parkinsonism. Mov Disord 2019; 34:1130-1143. [PMID: 31216379 DOI: 10.1002/mds.27741] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Studies of the pathophysiology of parkinsonism (specifically akinesia and bradykinesia) have a long history and primarily model the consequences of dopamine loss in the basal ganglia on the function of the basal ganglia/thalamocortical circuit(s). Changes of firing rates of individual nodes within these circuits were originally considered central to parkinsonism. However, this view has now given way to the belief that changes in firing patterns within the basal ganglia and related nuclei are more important, including the emergence of burst discharges, greater synchrony of firing between neighboring neurons, oscillatory activity patterns, and the excessive coupling of oscillatory activities at different frequencies. Primarily focusing on studies obtained in nonhuman primates and human patients with Parkinson's disease, this review summarizes the current state of this field and highlights several emerging areas of research, including studies of the impact of the heterogeneity of external pallidal neurons on parkinsonism, the importance of extrastriatal dopamine loss, parkinsonism-associated synaptic and morphologic plasticity, and the potential role(s) of the cerebellum and brainstem in the motor dysfunction of Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology/School of Medicine and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Quintero JE, Ai Y, Andersen AH, Hardy P, Grondin R, Guduru Z, Gash DM, Gerhardt GA, Zhang Z. Validations of apomorphine-induced BOLD activation correlations in hemiparkinsonian rhesus macaques. NEUROIMAGE-CLINICAL 2019; 22:101724. [PMID: 30822717 PMCID: PMC6396014 DOI: 10.1016/j.nicl.2019.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 11/27/2022]
Abstract
Identification of Parkinson's disease at the earliest possible stage of the disease may provide the best opportunity for the use of disease modifying treatments. However, diagnosing the disease during the pre-symptomatic period remains an unmet goal. To that end, we used pharmacological MRI (phMRI) to assess the function of the cortico-basal ganglia circuit in a non-human primate model of dopamine deficiency to determine the possible relationships between phMRI signals with behavioral, neurochemical, and histological measurements. Animals with unilateral treatments with the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), that expressed stable, long-term hemiparkinsonism were challenged with the dopaminergic receptor agonist, apomorphine, and structure-specific phMRI blood oxygen level-dependent (BOLD) activation responses were measured. Behavioral, histopathological, and neurochemical measurements were obtained and correlated with phMRI activation of structures of the cortico-basal ganglia system. Greater phMRI activations in the basal ganglia and cortex were associated with slower movement speed, decreased daytime activity, or more pronounced parkinsonian features. Animals showed decreased stimulus-evoked dopamine release in the putamen and substantia nigra pars compacta and lower basal glutamate levels in the motor cortex on the MPTP-lesioned hemisphere compared to the contralateral hemisphere. The altered neurochemistry was significantly correlated with phMRI signals in the motor cortex and putamen. Finally, greater phMRI activations in the caudate nucleus correlated with fewer tyrosine hydroxylase-positive (TH+) nigral cells and decreased TH+ fiber density in the putamen. These results reveal the correlation of phMRI signals with the severity of the motor deficits and pathophysiological changes in the cortico-basal ganglia circuit. Apomorphine in hemiparkinsonian animals can evoke changes in functional MRI signals. Cortico-basal ganglia activation correlates to behavior, neurochemistry, histology Pharmacological MRI has potential to be biomarker for Parkinson's disease.
Collapse
Affiliation(s)
- J E Quintero
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Yi Ai
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - A H Andersen
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - P Hardy
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - R Grondin
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Z Guduru
- Department of Neurology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - D M Gash
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - G A Gerhardt
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Z Zhang
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA.
| |
Collapse
|
8
|
Sabaghi A, Heirani A, Kiani A, Yosofvand N. Effects of Prenatal Seizures on Cognitive and Motor Performance in Mice Offspring (with Emphasis on BDNF and GDNF Levels). NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09759-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Sung YH, Lee J, Nam Y, Shin HG, Noh Y, Shin DH, Kim EY. Differential involvement of nigral subregions in idiopathic parkinson's disease. Hum Brain Mapp 2017; 39:542-553. [PMID: 29064601 DOI: 10.1002/hbm.23863] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/08/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022] Open
Abstract
In this study, the prevalence of abnormality in putative nigrosome 1 and nigrosome 4 (N1 and N4, respectively) was investigated in early versus late-stage idiopathic Parkinson's disease (IPD) patients. A total of 128 IPD patients (early stage[n = 89]; late stage[n = 39]) and 15 healthy subjects were scanned for high-resolution (0.5 × 0.5 × 1.0 mm3 ) multiecho gradient-recalled echo MRI and dopamine transporter PET imaging. The MRI data were processed for susceptibility map-weighted imaging (SMWI) to improve a contrast-to-noise ratio, and the images were resliced at 0.5 mm to define N1 and N4. When each side of N1 and N4 was assessed separately for the loss of hyperintensity by two independent reviewers, the consensus review results showed that in early-stage IPD (178 substantia nigras [SNs]), the loss of hyperintensity was observed more often in only the N1 region (65.2%) when compared to in both N1 and N4 regions (34.8%). In late-stage IPD (78 SNs), on the other hand, the loss in only the N1 region (25.6%) was less prevalent than in both N1 and N4 (74.4%) (P < 0.0001). Additionally, intact SNs (both in N1 and N4) were observed 17 SNs (9.6%) of the early-stage IPD patients, whereas it was not found in any SNs of the late-stage IPD patients (P = 0.005). Moreover, involvement of both N1 and N4 on both sides was found in 19.1% of the early-stage IPD patients, whereas its incidence was higher (61.5%) in the late-stage IPD patients (P < 0.0001), suggesting that the loss of hyperintensity in IPD progresses from N1 to N4 as the disease advances. Hum Brain Mapp 39:542-553, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Young Hee Sung
- Department of Neurology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Yoonho Nam
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyeong-Geol Shin
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Young Noh
- Department of Neurology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Dong Hoon Shin
- Department of Neurology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Eung Yeop Kim
- Department of Radiology, Gachon University Gil Medical Center, Incheon, South Korea
| |
Collapse
|
10
|
Francardo V, Schmitz Y, Sulzer D, Cenci MA. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp Neurol 2017; 298:137-147. [PMID: 28988910 DOI: 10.1016/j.expneurol.2017.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Disease-modifying treatments remain an unmet medical need in Parkinson's disease (PD). Such treatments can be operationally defined as interventions that slow down the clinical evolution to advanced disease milestones. A treatment may achieve this outcome by either inhibiting primary neurodegenerative events ("neuroprotection") or boosting compensatory and regenerative mechanisms in the brain ("neurorestoration"). Here we review experimental paradigms that are currently used to assess the neuroprotective and neurorestorative potential of candidate treatments in animal models of PD. We review some key molecular mediators of neuroprotection and neurorestoration in the nigrostriatal dopamine pathway that are likely to exert beneficial effects on multiple neural systems affected in PD. We further review past and current strategies to therapeutically stimulate these mediators, and discuss the preclinical evidence that exercise training can have neuroprotective and neurorestorative effects. A future translational task will be to combine behavioral and pharmacological interventions to exploit endogenous mechanisms of neuroprotection and neurorestoration for therapeutic purposes. This type of approach is likely to provide benefit to many PD patients, despite the clinical, etiological, and genetic heterogeneity of the disease.
Collapse
Affiliation(s)
- Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Yvonne Schmitz
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - David Sulzer
- Departments Neurology, Psychiatry, Pharmacology, Columbia University Medical Center: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York 10032, NY, USA
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
11
|
Saari L, Kivinen K, Gardberg M, Joutsa J, Noponen T, Kaasinen V. Dopamine transporter imaging does not predict the number of nigral neurons in Parkinson disease. Neurology 2017; 88:1461-1467. [DOI: 10.1212/wnl.0000000000003810] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/23/2016] [Indexed: 11/15/2022] Open
Abstract
Objective:To examine possible associations between in vivo brain dopamine transporter SPECT imaging and substantia nigra pars compacta (SNc) neuronal survival in Parkinson disease (PD).Methods:Nigral neuron numbers were calculated for 18 patients (11 patients with neuropathologically confirmed PD) who had been examined with dopamine transporter (DAT) SPECT before death. Correlation analyses between SNc tyrosine hydroxylase (TH)–positive and neuromelanin-containing neuron counts and DAT striatal specific binding ratios (SBRs) were performed with semiquantitative region of interest–based and voxel-based analyses.Results:Mean putamen SBR did not correlate with the number of substantia nigra TH-positive (r = −0.11, p = 0.66) or neuromelanin-containing (r = −0.07, p = 0.78) neurons. Correlations remained clearly nonsignificant when the time interval between SPECT and death was used as a covariate, when the voxel-based analysis was used, and when only patients with PD were included.Conclusions:This cohort study demonstrates that postmortem SNc neuron counts are not associated with striatal DAT binding in PD. These results fit with the theory that there is no correlation between the number of substantia nigra neurons and striatal dopamine after a certain level of damage has occurred. Striatal DAT binding in PD may reflect axonal dysfunction or DAT expression rather than the number of viable neurons.
Collapse
|
12
|
Wang T, Wang L, Li C, Han B, Wang Z, Li J, Lv Y, Wang S, Fu F. Hydroxysafflor Yellow A Improves Motor Dysfunction in the Rotenone-Induced Mice Model of Parkinson’s Disease. Neurochem Res 2017; 42:1325-1332. [DOI: 10.1007/s11064-017-2176-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022]
|
13
|
Guilarte TR, Gonzales KK. Manganese-Induced Parkinsonism Is Not Idiopathic Parkinson's Disease: Environmental and Genetic Evidence. Toxicol Sci 2016. [PMID: 26220508 DOI: 10.1093/toxsci/kfv099] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Movement abnormalities caused by chronic manganese (Mn) intoxication clinically resemble but are not identical to those in idiopathic Parkinson's disease. In fact, the most successful parkinsonian drug treatment, the dopamine precursor levodopa, is ineffective in alleviating Mn-induced motor symptoms, implying that parkinsonism in Mn-exposed individuals may not be linked to midbrain dopaminergic neuron cell loss. Over the last decade, supporting evidence from human and nonhuman primates has emerged that Mn-induced parkinsonism partially results from damage to basal ganglia nuclei of the striatal "direct pathway" (ie, the caudate/putamen, internal globus pallidus, and substantia nigra pars reticulata) and a marked inhibition of striatal dopamine release in the absence of nigrostriatal dopamine terminal degeneration. Recent neuroimaging studies have revealed similar findings in a particular group of young drug users intravenously injecting the Mn-containing psychostimulant ephedron and in individuals with inherited mutations of the Mn transporter gene SLC30A10. This review will provide a detailed discussion about the aforementioned studies, followed by a comparison with their rodent analogs and idiopathic parkinsonism. Together, these findings in combination with a limited knowledge about the underlying neuropathology of Mn-induced parkinsonism strongly support the need for a more complete understanding of the neurotoxic effects of Mn on basal ganglia function to uncover the appropriate cellular and molecular therapeutic targets for this disorder.
Collapse
Affiliation(s)
- Tomás R Guilarte
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| | - Kalynda K Gonzales
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032
| |
Collapse
|
14
|
Eid L, Parent M. Chemical anatomy of pallidal afferents in primates. Brain Struct Funct 2016; 221:4291-4317. [PMID: 27028222 DOI: 10.1007/s00429-016-1216-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/15/2016] [Indexed: 12/24/2022]
Abstract
Neurons of the globus pallidus receive massive inputs from the striatum and the subthalamic nucleus, but their activity, as well as those of their striatal and subthalamic inputs, are modulated by brainstem afferents. These include serotonin (5-HT) projections from the dorsal raphe nucleus, cholinergic (ACh) inputs from the pedunculopontine tegmental nucleus, and dopamine (DA) afferents from the substantia nigra pars compacta. This review summarizes our recent findings on the distribution, quantitative and ultrastructural aspects of pallidal 5-HT, ACh and DA innervations. These results have led to the elaboration of a new model of the pallidal neuron based on a precise knowledge of the hierarchy and chemical features of the various synaptic inputs. The dense 5-HT, ACh and DA innervations disclosed in the associative and limbic pallidal territories suggest that these brainstem inputs contribute principally to the planification of motor behaviors and the regulation of attention and mood. Although 5-HT, ACh and DA inputs were found to modulate pallidal neurons and their afferents mainly through asynaptic (volume) transmission, genuine synaptic contacts occur between these chemospecific axon varicosities and pallidal dendrites, revealing that these brainstem projections have a direct access to pallidal neurons, in addition to their indirect input through the striatum and subthalamic nucleus. Altogether, these findings reveal that the brainstem 5-HT, ACh and DA pallidal afferents act in concert with the more robust GABAergic inhibitory striatopallidal and glutamatergic excitatory subthalamopallidal inputs. We hypothesize that a fragile equilibrium between forebrain and brainstem pallidal afferents plays a key role in the functional organization of the primate basal ganglia, in both health and disease.
Collapse
Affiliation(s)
- Lara Eid
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Université Laval, F-6530-1, 2601, de la Canardière, Quebec, QC, G1J 2G3, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Université Laval, F-6530-1, 2601, de la Canardière, Quebec, QC, G1J 2G3, Canada.
| |
Collapse
|
15
|
Eid L, Parent M. Morphological evidence for dopamine interactions with pallidal neurons in primates. Front Neuroanat 2015; 9:111. [PMID: 26321923 PMCID: PMC4531254 DOI: 10.3389/fnana.2015.00111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/27/2015] [Indexed: 12/04/2022] Open
Abstract
The external (GPe) and internal (GPi) segments of the primate globus pallidus receive dopamine (DA) axonal projections arising mainly from the substantia nigra pars compacta and this innervation is here described based on tyrosine hydroxylase (TH) immunohistochemical observations gathered in the squirrel monkey (Saimiri sciureus). At the light microscopic level, unbiased stereological quantification of TH positive (+) axon varicosities reveals a similar density of innervation in the GPe (0.19 ± 0.02 × 106 axon varicosities/mm3 of tissue) and GPi (0.17 ± 0.01 × 106), but regional variations occur in the anteroposterior and dorsoventral axes in both GPe and GPi and along the mediolateral plane in the GPe. Estimation of the neuronal population in the GPe (3.47 ± 0.15 × 103 neurons/mm3) and GPi (2.69 ± 0.18 × 103) yields a mean ratio of, respectively, 28 ± 3 and 68 ± 15 TH+ axon varicosities/pallidal neuron. At the electron microscopic level, TH+ axon varicosities in the GPe appear significantly smaller than those in the GPi and very few TH+ axon varicosities are engaged in synaptic contacts in the GPe (17 ± 3%) and the GPi (15 ± 4%) compared to their unlabeled counterparts (77 ± 6 and 50 ± 12%, respectively). Genuine synaptic contacts made by TH+ axon varicosities in the GPe and GPi are of the symmetrical and asymmetrical type. Such synaptic contacts together with the presence of numerous synaptic vesicles in all TH+ axon varicosities observed in the GPe and GPi support the functionality of the DA pallidal innervation. By virtue of its predominantly volumic mode of action, DA appears to exert a key modulatory effect upon pallidal neurons in concert with the more direct GABAergic inhibitory and glutamatergic excitatory actions of the striatum and subthalamic nucleus. We argue that the DA pallidal innervation plays a major role in the functional organization of the primate basal ganglia under both normal and pathological conditions.
Collapse
Affiliation(s)
- Lara Eid
- Department of Psychiatry and Neuroscience, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval Quebec City, QC, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Université Laval Quebec City, QC, Canada
| |
Collapse
|
16
|
Huot P, Fox SH, Brotchie JM. Monoamine reuptake inhibitors in Parkinson's disease. PARKINSON'S DISEASE 2015; 2015:609428. [PMID: 25810948 PMCID: PMC4355567 DOI: 10.1155/2015/609428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/26/2014] [Indexed: 12/13/2022]
Abstract
The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Department of Pharmacology and Division of Neurology, Faculty of Medicine, Université de Montréal and Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Susan H. Fox
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| | - Jonathan M. Brotchie
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| |
Collapse
|
17
|
The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease. PLoS One 2015; 10:e0117391. [PMID: 25693197 PMCID: PMC4332861 DOI: 10.1371/journal.pone.0117391] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/21/2014] [Indexed: 01/28/2023] Open
Abstract
The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring dopamine neurons in Parkinson's disease.
Collapse
|
18
|
Marin C, Bonastre M, Mengod G, Cortés R, Rodríguez-Oroz MC, Obeso JA. Subthalamic 6-OHDA-induced lesion attenuates levodopa-induced dyskinesias in the rat model of Parkinson's disease. Exp Neurol 2013; 250:304-12. [PMID: 24140562 DOI: 10.1016/j.expneurol.2013.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/27/2013] [Accepted: 10/02/2013] [Indexed: 01/09/2023]
Abstract
The subthalamic nucleus (STN) receives direct dopaminergic innervation from the substantia nigra pars compacta that degenerates in Parkinson's disease. The present study aimed to investigate the role of dopaminergic denervation of STN in the origin of levodopa-induced dyskinesias. Rats were distributed in four groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the STN and in the medial forebrain bundle (MFB) as follows: a) MFB-sham plus STN-sham, b) MFB-sham plus STN-lesion, c) MFB-lesion plus STN-sham, and d) MFB-lesion plus STN-lesion. Four weeks after lesions, animals were treated with levodopa (6mg/kg with 15mg/kg benserazide i.p.) twice daily for 22 consecutive days. Abnormal involuntary movements were measured. In situ hybridization was performed measuring the expression of striatal preproenkephalin, preprodynorphin, STN cytochrome oxidase (CO) and nigral GAD67 mRNAs. STN 6-OHDA denervation did not induce dyskinesias in levodopa-treated MFB-sham animals but attenuated axial (p<0.05), limb (p<0.05) and orolingual (p<0.01) dyskinesias in rats with a concomitant lesion of the nigrostriatal pathway. The attenuation of dyskinesias was associated with a decrease in the ipsilateral STN CO mRNA levels (p<0.05). No significant differences between MFB-lesion plus STN-sham and MFB-lesion plus STN-lesion groups in the extent of STN dopaminergic denervation were observed. Moreover, intrasubthalamic microinfusion of dopamine in the MFB-lesion plus STN-lesion group triggered orolingual (p<0.01), but not axial or limb, dyskinesias. These results suggest that dopaminergic STN innervation influences the expression of levodopa-induced dyskinesias but also the existence of non dopaminergic-mediated mechanisms. STN noradrenergic depletion induced by 6-OHDA in the STN needs to be taken in account as a possible mechanism explaining the attenuation of dyskinesias in the combined lesion group.
Collapse
Affiliation(s)
- C Marin
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CELLEX), Barcelona, Spain; Centro de Investigación en Redes sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | | | | | | | | | | |
Collapse
|
19
|
Modulation of the activity of globus pallidus by dopamine D1-like receptors in parkinsonian rats. Neuroscience 2011; 194:181-8. [DOI: 10.1016/j.neuroscience.2011.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/11/2011] [Accepted: 08/03/2011] [Indexed: 11/19/2022]
|
20
|
Rommelfanger KS, Wichmann T. Extrastriatal dopaminergic circuits of the Basal Ganglia. Front Neuroanat 2010; 4:139. [PMID: 21103009 PMCID: PMC2987554 DOI: 10.3389/fnana.2010.00139] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/23/2010] [Indexed: 11/20/2022] Open
Abstract
The basal ganglia are comprised of the striatum, the external and internal segment of the globus pallidus (GPe and GPi, respectively), the subthalamic nucleus (STN), and the substantia nigra pars compacta and reticulata (SNc and SNr, respectively). Dopamine has long been identified as an important modulator of basal ganglia function in the striatum, and disturbances of striatal dopaminergic transmission have been implicated in diseases such as Parkinson's disease (PD), addiction and attention deficit hyperactivity disorder. However, recent evidence suggests that dopamine may also modulate basal ganglia function at sites outside of the striatum, and that changes in dopaminergic transmission at these sites may contribute to the symptoms of PD and other neuropsychiatric disorders. This review summarizes the current knowledge of the anatomy, functional effects and behavioral consequences of the dopaminergic innervation to the GPe, GPi, STN, and SNr. Further insights into the dopaminergic modulation of basal ganglia function at extrastriatal sites may provide us with opportunities to develop new and more specific strategies for treating disorders of basal ganglia dysfunction.
Collapse
|
21
|
Alyea RA, Laurence SE, Kim SH, Katzenellenbogen BS, Katzenellenbogen JA, Watson CS. The roles of membrane estrogen receptor subtypes in modulating dopamine transporters in PC-12 cells. J Neurochem 2008; 106:1525-33. [PMID: 18489713 DOI: 10.1111/j.1471-4159.2008.05491.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The effects of 17beta-estradiol (E(2)) on dopamine (DA) transport could explain gender and life-stage differences in the incidence of some neurological disorders. We tested the effects of E(2) at physiological concentrations on DA efflux in nerve growth factor-differentiated rat pheochromocytoma cells that express estrogen receptors (ER) alpha, ERbeta, and G-protein coupled receptor 30 (GPR30), and DA transporter (DAT). DAT efflux was determined as the transporter-specific loss of (3)H-DA from pre-loaded cells; a 9-15 min 10(-9 )M E(2) treatment caused maximal DA efflux. Such rapid estrogenic action suggests a non-genomic response, and an E(2)-dendrimer conjugate (limited to non-nuclear actions) caused DA efflux within 5 min. Efflux dose-responses for E(2) were non-monotonic, also characteristic of non-genomic estrogenic actions. ERalpha siRNA knockdown abolished E(2)-mediated DA efflux, while ERbeta knockdown did not, and GPR30 knockdown increased E(2)-mediated DA efflux (suggesting GPR30 is inhibitory). Use of ER-selective agonists/antagonists demonstrated that ERalpha is the predominant mediator of E(2)-mediated DA efflux, with inhibitory contributions from GPR30 and ERbeta. E(2) also caused trafficking of ERalpha to the plasma membrane, trafficking of ERbeta away from the plasma membrane, and unchanged membrane GPR30 levels. Therefore, ERalpha is largely responsible for non-genomic estrogenic effects on DAT activity.
Collapse
Affiliation(s)
- Rebecca A Alyea
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | |
Collapse
|
22
|
Scherfler C, Schwarz J, Antonini A, Grosset D, Valldeoriola F, Marek K, Oertel W, Tolosa E, Lees AJ, Poewe W. Role of DAT-SPECT in the diagnostic work up of parkinsonism. Mov Disord 2008; 22:1229-38. [PMID: 17486648 DOI: 10.1002/mds.21505] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The diagnosis of idiopathic Parkinson's disease (PD) can be achieved with high degrees of accuracy in cases with full expression of classical clinical features. However, diagnostic uncertainty remains in early disease with subtle or ambiguous signs. Functional imaging has been suggested to increase the diagnostic yield in parkinsonian syndromes with uncertain clinical classification. Loss of striatal dopamine nerve terminal function, a hallmark of neurodegenerative parkinsonism, is strongly related to decreases of dopamine transporter (DAT) density, which can be measured by single photon emission computed tomography (SPECT). The use of DAT-SPECT facilitates the differential diagnosis in patients with isolated tremor symptoms not fulfilling PD or essential tremor criteria, drug-induced, psychogenic and vascular parkinsonism as well as dementia when associated with parkinsonism. This review addresses the value of DAT-SPECT in early differential diagnosis, and its potential as a screening tool for subjects at risk of developing PD as well as issues around the assessment of disease progression.
Collapse
|
23
|
Rodríguez-Navarro JA, Casarejos MJ, Menéndez J, Solano RM, Rodal I, Gómez A, Yébenes JGD, Mena MA. Mortality, oxidative stress and tau accumulation during ageing in parkin null mice. J Neurochem 2007; 103:98-114. [PMID: 17623040 DOI: 10.1111/j.1471-4159.2007.04762.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Young parkin null (pk-/-) mice have subtle abnormalities of behaviour, dopamine (DA) neurotransmission and free radical production, but no massive loss of DA neurons. We investigated whether these findings are maintained while ageing. Pk-/- mice have reduced life span and age-related reduced exploratory behaviour, abnormal walking and posture, and behaviours similar to those of early Parkinson's disease (PD), reduced number of nigrostriatal DA neurons and proapoptotic shifts in the survival/death proteins in midbrain and striatum. Contrary to young pk-/- animals 24-month-old pk-/- mice do not have compensatory elevation of GSH in striatum, glutathione reductase (GR) and glutathione peroxidase (GPx) activities are increased and catalase unchanged. Aged pk-/- mice accumulate high levels of tau and fail to up-regulate CHIP and HSP70. Our results suggest that aged pk-/- mice lack of the compensatory mechanisms that maintain a relatively normal DA function in early adulthood. This study could help to explain the effects of ageing in patients with genetic risks for Parkinson's disease.
Collapse
|
24
|
Papapetropoulos S, Basel M, Mash DC. Dopaminergic innervation of the human striatum in Parkinson's disease. Mov Disord 2007; 22:286-8. [PMID: 17083095 DOI: 10.1002/mds.21196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
|