1
|
Kon T, Forrest SL, Lee S, Li J, Chasiotis H, Nassir N, Uddin MJ, Lang AE, Kovacs GG. SNCA and TPPP transcripts increase in oligodendroglial cytoplasmic inclusions in multiple system atrophy. Neurobiol Dis 2024; 198:106551. [PMID: 38839023 DOI: 10.1016/j.nbd.2024.106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
Multiple system atrophy (MSA) is characterized by glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-syn) in oligodendrocytes. The origin of α-syn accumulation in GCIs is unclear, in particular whether abnormal α-syn aggregates result from the abnormal elevation of endogenous α-syn expression in MSA or ingested from the neuronal source. Tubulin polymerization promoting protein (TPPP) has been reported to play a crucial role in developing GCI pathology. Here, the total cell body, nucleus, and cytoplasmic area density of SNCA and TPPP transcripts in neurons and oligodendrocytes with and without various α-syn pathologies in the pontine base in autopsy cases of MSA (n = 4) and controls (n = 2) were evaluated using RNAscope with immunofluorescence. Single-nucleus RNA-sequencing data for TPPP was evaluated using control frontal cortex (n = 3). SNCA and TPPP transcripts were present in the nucleus and cytoplasm of oligodendrocytes in both controls and diseased, with higher area density in GCIs and glial nuclear inclusions in MSA. Area densities of SNCA and TPPP transcripts were lower in neurons showing cytoplasmic inclusions in MSA. Indeed, TPPP transcripts were unexpectedly found in neurons, while the anti-TPPP antibody failed to detect immunoreactivity. Single-nucleus RNA-sequencing revealed significant TPPP transcript expression predominantly in oligodendrocytes, but also in excitatory and inhibitory neurons. This study addressed the unclear origin of accumulated α-syn in GCIs, proposing that the elevation of SNCA transcripts may supply templates for misfolded α-syn. In addition, the parallel behavior of TPPP and SNCA transcripts in GCI development highlights their potential synergistic contribution to inclusion formation. In conclusion, this study advances our understanding of MSA pathogenesis, offers insights into the dynamics of SNCA and TPPP transcripts in inclusion formation, and proposes regulating their transcripts for future molecular therapy to MSA.
Collapse
Affiliation(s)
- Tomoya Kon
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.
| | - Helen Chasiotis
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.
| | - Nasna Nassir
- Centre for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Mohammed J Uddin
- Centre for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates; GenomeArc Inc, Toronto, ON, Canada.
| | - Anthony E Lang
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Edmund J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada.
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Edmund J Safra Program in Parkinson's Disease and Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, Toronto, ON, Canada; Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Ishimoto T, Oono M, Kaji S, Ayaki T, Nishida K, Funakawa I, Maki T, Matsuzawa SI, Takahashi R, Yamakado H. A novel mouse model for investigating α-synuclein aggregates in oligodendrocytes: implications for the glial cytoplasmic inclusions in multiple system atrophy. Mol Brain 2024; 17:28. [PMID: 38790036 PMCID: PMC11127389 DOI: 10.1186/s13041-024-01104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
The aggregated alpha-synuclein (αsyn) in oligodendrocytes (OLGs) is one of the pathological hallmarks in multiple system atrophy (MSA). We have previously reported that αsyn accumulates not only in neurons but also in OLGs long after the administration of αsyn preformed fibrils (PFFs) in mice. However, detailed spatial and temporal analysis of oligodendroglial αsyn aggregates was technically difficult due to the background neuronal αsyn aggregates. The aim of this study is to create a novel mouse that easily enables sensitive and specific detection of αsyn aggregates in OLGs and the comparable analysis of the cellular tropism of αsyn aggregates in MSA brains. To this end, we generated transgenic (Tg) mice expressing human αsyn-green fluorescent protein (GFP) fusion proteins in OLGs under the control of the 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter (CNP-SNCAGFP Tg mice). Injection of αsyn PFFs in these mice induced distinct GFP-positive aggregates in the processes of OLGs as early as one month post-inoculation (mpi), and their number and size increased in a centripetal manner. Moreover, MSA-brain homogenates (BH) induced significantly more oligodendroglial αsyn aggregates than neuronal αsyn aggregates compared to DLB-BH in CNP-SNCAGFP Tg mice, suggestive of their potential tropism of αsyn seeds for OLGs. In conclusion, CNP-SNCAGFP Tg mice are useful for studying the development and tropism of αsyn aggregates in OLGs and could contribute to the development of therapeutics targeting αsyn aggregates in OLGs.
Collapse
Affiliation(s)
- Tomoyuki Ishimoto
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Miki Oono
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Seiji Kaji
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takashi Ayaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Katsuya Nishida
- Department of Neurology, National Hospital Organization Hyogo-Chuo National Hospital, 1314 Ohara, Sanda, 669-1592, Japan
| | - Itaru Funakawa
- Department of Neurology, National Hospital Organization Hyogo-Chuo National Hospital, 1314 Ohara, Sanda, 669-1592, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Shu-Ichi Matsuzawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Hodaka Yamakado
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
3
|
Liu M, Wang Z, Shang H. Multiple system atrophy: an update and emerging directions of biomarkers and clinical trials. J Neurol 2024; 271:2324-2344. [PMID: 38483626 PMCID: PMC11055738 DOI: 10.1007/s00415-024-12269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/28/2024]
Abstract
Multiple system atrophy is a rare, debilitating, adult-onset neurodegenerative disorder that manifests clinically as a diverse combination of parkinsonism, cerebellar ataxia, and autonomic dysfunction. It is pathologically characterized by oligodendroglial cytoplasmic inclusions containing abnormally aggregated α-synuclein. According to the updated Movement Disorder Society diagnostic criteria for multiple system atrophy, the diagnosis of clinically established multiple system atrophy requires the manifestation of autonomic dysfunction in combination with poorly levo-dopa responsive parkinsonism and/or cerebellar syndrome. Although symptomatic management of multiple system atrophy can substantially improve quality of life, therapeutic benefits are often limited, ephemeral, and they fail to modify the disease progression and eradicate underlying causes. Consequently, effective breakthrough treatments that target the causes of disease are needed. Numerous preclinical and clinical studies are currently focusing on a set of hallmarks of neurodegenerative diseases to slow or halt the progression of multiple system atrophy: pathological protein aggregation, synaptic dysfunction, aberrant proteostasis, neuronal inflammation, and neuronal cell death. Meanwhile, specific biomarkers and measurements with higher specificity and sensitivity are being developed for the diagnosis of multiple system atrophy, particularly for early detection of the disease. More intriguingly, a growing number of new disease-modifying candidates, which can be used to design multi-targeted, personalized treatment in patients, are being investigated, notwithstanding the failure of most previous attempts.
Collapse
Affiliation(s)
- Min Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhiyao Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Wan L, Zhu S, Chen Z, Qiu R, Tang B, Jiang H. Multidimensional biomarkers for multiple system atrophy: an update and future directions. Transl Neurodegener 2023; 12:38. [PMID: 37501056 PMCID: PMC10375766 DOI: 10.1186/s40035-023-00370-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal progressive neurodegenerative disease. Biomarkers are urgently required for MSA to improve the diagnostic and prognostic accuracy in clinic and facilitate the development and monitoring of disease-modifying therapies. In recent years, significant research efforts have been made in exploring multidimensional biomarkers for MSA. However, currently few biomarkers are available in clinic. In this review, we systematically summarize the latest advances in multidimensional biomarkers for MSA, including biomarkers in fluids, tissues and gut microbiota as well as imaging biomarkers. Future directions for exploration of novel biomarkers and promotion of implementation in clinic are also discussed.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Leńska-Mieciek M, Madetko-Alster N, Alster P, Królicki L, Fiszer U, Koziorowski D. Inflammation in multiple system atrophy. Front Immunol 2023; 14:1214677. [PMID: 37426656 PMCID: PMC10327640 DOI: 10.3389/fimmu.2023.1214677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Misfolding protein aggregation inside or outside cells is the major pathological hallmark of several neurodegenerative diseases. Among proteinopathies are neurodegenerative diseases with atypical Parkinsonism and an accumulation of insoluble fibrillary alpha-synuclein (synucleinopathies) or hyperphosphorylated tau protein fragments (tauopathies). As there are no therapies available to slow or halt the progression of these disea ses, targeting the inflammatory process is a promising approach. The inflammatory biomarkers could also help in the differential diagnosis of Parkinsonian syndromes. Here, we review inflammation's role in multiple systems atrophy pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Marta Leńska-Mieciek
- Department of Neurology and Epileptology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Fiszer
- Department of Neurology and Epileptology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | |
Collapse
|
6
|
Oligodendrocytes Prune Axons Containing α-Synuclein Aggregates In Vivo: Lewy Neurites as Precursors of Glial Cytoplasmic Inclusions in Multiple System Atrophy? Biomolecules 2023; 13:biom13020269. [PMID: 36830639 PMCID: PMC9953613 DOI: 10.3390/biom13020269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
α-Synucleinopathies are spreading neurodegenerative disorders characterized by the intracellular accumulation of insoluble aggregates populated by α-Synuclein (α-Syn) fibrils. In Parkinson's disease (PD) and dementia with Lewy bodies, intraneuronal α-Syn aggregates are referred to as Lewy bodies in the somata and as Lewy neurites in the neuronal processes. In multiple system atrophy (MSA) α-Syn aggregates are also found within mature oligodendrocytes (OLs) where they form Glial Cytoplasmic Inclusions (GCIs). However, the origin of GCIs remains enigmatic: (i) mature OLs do not express α-Syn, precluding the seeding and the buildup of inclusions and (ii) the artificial overexpression of α-Syn in OLs of transgenic mice results in a burden of soluble phosphorylated α-Syn but fails to form α-Syn fibrils. In contrast, mass spectrometry of α-Syn fibrillar aggregates from MSA patients points to the neuronal origin of the proteins intimately associated with the fibrils within the GCIs. This suggests that GCIs are preassembled in neurons and only secondarily incorporated into OLs. Interestingly, we recently isolated a synthetic human α-Syn fibril strain (1B fibrils) capable of seeding a type of neuronal inclusion observed early and specifically during MSA. Our goal was thus to investigate whether the neuronal α-Syn pathology seeded by 1B fibrils could eventually be transmitted to OLs to form GCIs in vivo. After confirming that mature OLs did not express α-Syn to detectable levels in the adult mouse brain, a series of mice received unilateral intra-striatal injections of 1B fibrils. The resulting α-Syn pathology was visualized using phospho-S129 α-Syn immunoreactivity (pSyn). We found that even though 1B fibrils were injected unilaterally, many pSyn-positive neuronal somas were present in layer V of the contralateral perirhinal cortex after 6 weeks. This suggested a fast retrograde spread of the pathology along the axons of crossing cortico-striatal neurons. We thus scrutinized the posterior limb of the anterior commissure, i.e., the myelinated interhemispheric tract containing the axons of these neurons: we indeed observed numerous pSyn-positive linear Lewy Neurites oriented parallel to the commissural axis, corresponding to axonal segments filled with aggregated α-Syn, with no obvious signs of OL α-Syn pathology at this stage. After 6 months however, the commissural Lewy neurites were no longer parallel but fragmented, curled up, sometimes squeezed in-between two consecutive OLs in interfascicular strands, or even engulfed inside OL perikarya, thus forming GCIs. We conclude that the 1B fibril strain can rapidly induce an α-Syn pathology typical of MSA in mice, in which the appearance of GCIs results from the pruning of diseased axonal segments containing aggregated α-Syn.
Collapse
|
7
|
Sidoroff V, Bower P, Stefanova N, Fanciulli A, Stankovic I, Poewe W, Seppi K, Wenning GK, Krismer F. Disease-Modifying Therapies for Multiple System Atrophy: Where Are We in 2022? JOURNAL OF PARKINSON'S DISEASE 2022; 12:1369-1387. [PMID: 35491799 PMCID: PMC9398078 DOI: 10.3233/jpd-223183] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple system atrophy is a rapidly progressive and fatal neurodegenerative disorder. While numerous preclinical studies suggested efficacy of potentially disease modifying agents, none of those were proven to be effective in large-scale clinical trials. Three major strategies are currently pursued in preclinical and clinical studies attempting to slow down disease progression. These target α-synuclein, neuroinflammation, and restoration of neurotrophic support. This review provides a comprehensive overview on ongoing preclinical and clinical developments of disease modifying therapies. Furthermore, we will focus on potential shortcomings of previous studies that can be avoided to improve data quality in future studies of this rare disease.
Collapse
Affiliation(s)
- Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pam Bower
- The Multiple System Atrophy Coalition, Inc., McLean, VA, USA
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Iva Stankovic
- Neurology Clinic, University Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Parkinson's disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties. Proc Natl Acad Sci U S A 2022; 119:e2111405119. [PMID: 35294277 PMCID: PMC8944747 DOI: 10.1073/pnas.2111405119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Our results demonstrate the existence of early cellular pathways and network alterations in oligodendrocytes in the alpha-synucleinopathies Parkinson’s disease and multiple system atrophy. They further reveal the involvement of an immune component triggered by alpha-synuclein protein, as well as a connection between (epi)genetic changes and immune reactivity in multiple system atrophy. The knowledge generated in this study could be used to devise novel therapeutic approaches to treat synucleinopathies. Limited evidence has shed light on how aSYN proteins affect the oligodendrocyte phenotype and pathogenesis in synucleinopathies that include Parkinson’s disease (PD) and multiple system atrophy (MSA). Here, we investigated early transcriptomic changes within PD and MSA O4+ oligodendrocyte lineage cells (OLCs) generated from patient-induced pluripotent stem cells (iPSCs). We found impaired maturation of PD and MSA O4+ OLCs compared to controls. This phenotype was associated with changes in the human leukocyte antigen (HLA) genes, the immunoproteasome subunit PSMB9, and the complement component C4b for aSYN p.A53T and MSA O4+ OLCs, but not in SNCAtrip O4+ OLCs despite high levels of aSYN assembly formation. Moreover, SNCA overexpression resulted in the development of O4+ OLCs, whereas exogenous treatment with aSYN species led to significant toxicity. Notably, transcriptome profiling of genes encoding proteins forming Lewy bodies and glial cytoplasmic inclusions revealed clustering of PD aSYN p.A53T O4+ OLCs with MSA O4+ OLCs. Our work identifies early phenotypic and pathogenic changes within human PD and MSA O4+ OLCs.
Collapse
|
9
|
Hass EW, Sorrentino ZA, Lloyd GM, McFarland NR, Prokop S, Giasson BI. Robust α-synuclein pathology in select brainstem neuronal populations is a potential instigator of multiple system atrophy. Acta Neuropathol Commun 2021; 9:80. [PMID: 33941284 PMCID: PMC8091528 DOI: 10.1186/s40478-021-01173-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
Multiple system atrophy (MSA) is an insidious middle age-onset neurodegenerative disease that clinically presents with variable degrees of parkinsonism and cerebellar ataxia. The pathological hallmark of MSA is the progressive accumulation of glial cytoplasmic inclusions (GCIs) in oligodendrocytes that are comprised of α-synuclein (αSyn) aberrantly polymerized into fibrils. Experimentally, MSA brain samples display a high level of seeding activity to induce further αSyn aggregation by a prion-like conformational mechanism. Paradoxically, αSyn is predominantly a neuronal brain protein, with only marginal levels expressed in normal or diseased oligodendrocytes, and αSyn inclusions in other neurodegenerative diseases, including Parkinson's disease and Dementia with Lewy bodies, are primarily found in neurons. Although GCIs are the hallmark of MSA, using a series of new monoclonal antibodies targeting the carboxy-terminal region of αSyn, we demonstrate that neuronal αSyn pathology in MSA patient brains is remarkably abundant in the pontine nuclei and medullary inferior olivary nucleus. This neuronal αSyn pathology has distinct histological properties compared to GCIs, which allows it to remain concealed to many routine detection methods associated with altered biochemical properties of the carboxy-terminal domain of αSyn. We propose that these previously underappreciated sources of aberrant αSyn could serve as a pool of αSyn prion seeds that can initiate and continue to drive the pathogenesis of MSA.
Collapse
Affiliation(s)
- Ethan W Hass
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Grace M Lloyd
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Nikolaus R McFarland
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
10
|
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disease variably associated with motor, nonmotor, and autonomic symptoms, resulting from putaminal and cerebellar degeneration and associated with glial cytoplasmic inclusions enriched with α-synuclein in oligodendrocytes and neurons. Although symptomatic treatment of MSA can provide significant improvements in quality of life, the benefit is often partial, limited by adverse effects, and fails to treat the underlying cause. Consistent with the multisystem nature of the disease and evidence that motor symptoms, autonomic failure, and depression drive patient assessments of quality of life, treatment is best achieved through a coordinated multidisciplinary approach driven by the patient's priorities and goals of care. Research into disease-modifying therapies is ongoing with a particular focus on synuclein-targeted therapies among others. This review focuses on both current management and emerging therapies for this devastating disease.
Collapse
Affiliation(s)
- Matthew R. Burns
- Norman Fixel Institute for Neurological Diseases at UFHealth, Movement Disorders Division, Department of Neurology, University of Florida, 3009 SW Williston Rd, Gainesville, FL 32608 USA
| | - Nikolaus R. McFarland
- Norman Fixel Institute for Neurological Diseases at UFHealth, Movement Disorders Division, Department of Neurology, University of Florida, 3009 SW Williston Rd, Gainesville, FL 32608 USA
| |
Collapse
|
11
|
Cao B, Chen X, Zhang L, Wei Q, Liu H, Feng W, Chen Y, Shang H. Elevated Percentage of CD3 + T-Cells and CD4 +/CD8 + Ratios in Multiple System Atrophy Patients. Front Neurol 2020; 11:658. [PMID: 32733370 PMCID: PMC7358310 DOI: 10.3389/fneur.2020.00658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
α-synuclein is involved in the pathogenesis of multiple system atrophy (MSA) and can be regulated by peripheral immune activation (PIA). We aimed to clarify the correlations between PIA and the prevalence of MSA and to analyze the role of PIA in the progression of the disease. A total of 321 patients with probable MSA and 321 age- and gender-matched healthy controls were included in this study. Lymphocyte subsets, including CD3+, CD4+, and CD8+ cells, and the levels of immunoglobulins IgG, IgM, and IgA were evaluated. The proportions of CD3+ and CD4+ T-lymphocytes were significantly increased in MSA patients compared with those of normal controls. In addition, the ratio of CD4+ to CD8+ cells was significantly increased in male MSA patients and IgG concentrations were decreased in female MSA patients. Furthermore, the concentrations of IgM in female MSA patients were dynamically different at various disease stages and gradually decreased from the early stage until the end stage of the disease (p = 0.029). Other detected immunological indexes were not significantly different during the entire disease course. In this study, high proportions of CD3+ and CD4+ T-lymphocytes and decreased IgG levels were associated with an increased risk for MSA in a Chinese patient population. In addition, PIA may be involved in the progression of MSA.
Collapse
Affiliation(s)
- Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Weihua Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Pérez-Soriano A, Arnal Segura M, Botta-Orfila T, Giraldo D, Fernández M, Compta Y, Fernández-Santiago R, Ezquerra M, Tartaglia GG, Martí MJ. Transcriptomic differences in MSA clinical variants. Sci Rep 2020; 10:10310. [PMID: 32587362 PMCID: PMC7316739 DOI: 10.1038/s41598-020-66221-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/15/2020] [Indexed: 11/09/2022] Open
Abstract
Background: Multiple system atrophy (MSA) is a rare oligodendroglial synucleinopathy of unknown etiopathogenesis including two major clinical variants with predominant parkinsonism (MSA-P) or cerebellar dysfunction (MSA-C). Objective: To identify novel disease mechanisms we performed a blood transcriptomic study investigating differential gene expression changes and biological process alterations in MSA and its clinical subtypes. Methods: We compared the transcriptome from rigorously gender and age-balanced groups of 10 probable MSA-P, 10 probable MSA-C cases, 10 controls from the Catalan MSA Registry (CMSAR), and 10 Parkinson Disease (PD) patients. Results: Gene set enrichment analyses showed prominent positive enrichment in processes related to immunity and inflammation in all groups, and a negative enrichment in cell differentiation and development of the nervous system in both MSA-P and PD, in contrast to protein translation and processing in MSA-C. Gene set enrichment analysis using expression patterns in different brain regions as a reference also showed distinct results between the different synucleinopathies. Conclusions: In line with the two major phenotypes described in the clinic, our data suggest that gene expression and biological processes might be differentially affected in MSA-P and MSA-C. Future studies using larger sample sizes are warranted to confirm these results.
Collapse
Affiliation(s)
- Alexandra Pérez-Soriano
- Parkinson's Disease & Movement Disorders Unit, Hospital Clínic/IDIBAPS/CIBERNED/European Reference Network for Rare Neurological Diseases (ERN-RND)/Institut de Neurociències, University of Barcelona, Catalonia, Spain.,Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, IDIBAPS, Barcelona, Catalonia, Spain.,Gene Function and Evolution Group, Centre for Genomic Regulation (CRG), Parc de Recerca Biomédica de Barcelona (PRBB), Barcelona, Catalonia, Spain
| | - Magdalena Arnal Segura
- Gene Function and Evolution Group, Centre for Genomic Regulation (CRG), Parc de Recerca Biomédica de Barcelona (PRBB), Barcelona, Catalonia, Spain.,Human Computational Biology Group, Hospital del Mar Medical Research Institute (IMIM), Parc de Recerca Biomédica de Barcelona (PRBB), Barcelona, Catalonia, Spain
| | - Teresa Botta-Orfila
- Gene Function and Evolution Group, Centre for Genomic Regulation (CRG), Parc de Recerca Biomédica de Barcelona (PRBB), Barcelona, Catalonia, Spain.,Biological Fluids Biobank; IDIBAPS-Hospital Clinic of Barcelona, Barcelona, Catalonia, Spain
| | - Darly Giraldo
- Parkinson's Disease & Movement Disorders Unit, Hospital Clínic/IDIBAPS/CIBERNED/European Reference Network for Rare Neurological Diseases (ERN-RND)/Institut de Neurociències, University of Barcelona, Catalonia, Spain
| | - Manel Fernández
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, IDIBAPS, Barcelona, Catalonia, Spain.,María de Maeztu Unit of Excellence (Institute of Neurosciences, University of Barcelona), Ministry of Science, Innovation and Universities, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Parkinson's Disease & Movement Disorders Unit, Hospital Clínic/IDIBAPS/CIBERNED/European Reference Network for Rare Neurological Diseases (ERN-RND)/Institut de Neurociències, University of Barcelona, Catalonia, Spain
| | - Rubén Fernández-Santiago
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, IDIBAPS, Barcelona, Catalonia, Spain
| | - Mario Ezquerra
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, IDIBAPS, Barcelona, Catalonia, Spain
| | - Gian G Tartaglia
- Gene Function and Evolution Group, Centre for Genomic Regulation (CRG), Parc de Recerca Biomédica de Barcelona (PRBB), Barcelona, Catalonia, Spain.,María de Maeztu Unit of Excellence (Institute of Neurosciences, University of Barcelona), Ministry of Science, Innovation and Universities, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - M J Martí
- Parkinson's Disease & Movement Disorders Unit, Hospital Clínic/IDIBAPS/CIBERNED/European Reference Network for Rare Neurological Diseases (ERN-RND)/Institut de Neurociències, University of Barcelona, Catalonia, Spain.
| | | |
Collapse
|
13
|
Piras IS, Bleul C, Schrauwen I, Talboom J, Llaci L, De Both MD, Naymik MA, Halliday G, Bettencourt C, Holton JL, Serrano GE, Sue LI, Beach TG, Stefanova N, Huentelman MJ. Transcriptional profiling of multiple system atrophy cerebellar tissue highlights differences between the parkinsonian and cerebellar sub-types of the disease. Acta Neuropathol Commun 2020; 8:76. [PMID: 32493431 PMCID: PMC7268362 DOI: 10.1186/s40478-020-00950-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 01/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare adult-onset neurodegenerative disease of unknown cause, with no effective therapeutic options, and no cure. Limited work to date has attempted to characterize the transcriptional changes associated with the disease, which presents as either predominating parkinsonian (MSA-P) or cerebellar (MSC-C) symptoms. We report here the results of RNA expression profiling of cerebellar white matter (CWM) tissue from two independent cohorts of MSA patients (n = 66) and healthy controls (HC; n = 66). RNA samples from bulk brain tissue and from oligodendrocytes obtained by laser capture microdissection (LCM) were sequenced. Differentially expressed genes (DEGs) were obtained and were examined before and after stratifying by MSA clinical sub-type.We detected the highest number of DEGs in the MSA-C group (n = 747) while only one gene was noted in MSA-P, highlighting the larger dysregulation of the transcriptome in the MSA-C CWM. Results from both bulk tissue and LCM analysis showed a downregulation of oligodendrocyte genes and an enrichment for myelination processes with a key role noted for the QKI gene. Additionally, we observed a significant upregulation of neuron-specific gene expression in MSA-C and enrichment for synaptic processes. A third cluster of genes was associated with the upregulation of astrocyte and endothelial genes, two cell types with a key role in inflammation processes. Finally, network analysis in MSA-C showed enrichment for β-amyloid related functional classes, including the known Alzheimer's disease (AD) genes, APP and PSEN1.This is the largest RNA profiling study ever conducted on post-mortem brain tissue from MSA patients. We were able to define specific gene expression signatures for MSA-C highlighting the different stages of the complex neurodegenerative cascade of the disease that included alterations in several cell-specific transcriptional programs. Finally, several results suggest a common transcriptional dysregulation between MSA and AD-related genes despite the clinical and neuropathological distinctions between the two diseases.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Christiane Bleul
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Isabelle Schrauwen
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Present Address: Department of Neurology, Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Joshua Talboom
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Lorida Llaci
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Present address: Division of Biology and Biomedical Sciences, Molecular Genetics and Genomics Program, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew D De Both
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Marcus A Naymik
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Science, and Neuroscience Research Australia, Sydney, Australia
| | - Conceicao Bettencourt
- Queen Square Brain Bank for Neurological Disorders and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Geidy E Serrano
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Lucia I Sue
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Nadia Stefanova
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthew J Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
14
|
Uemura N, Uemura MT, Lo A, Bassil F, Zhang B, Luk KC, Lee VMY, Takahashi R, Trojanowski JQ. Slow Progressive Accumulation of Oligodendroglial Alpha-Synuclein (α-Syn) Pathology in Synthetic α-Syn Fibril-Induced Mouse Models of Synucleinopathy. J Neuropathol Exp Neurol 2019; 78:877-890. [PMID: 31504665 PMCID: PMC6934438 DOI: 10.1093/jnen/nlz070] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synucleinopathies are composed of Parkinson disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Alpha-synuclein (α-Syn) forms aggregates mainly in neurons in PD and DLB, while oligodendroglial α-Syn aggregates are characteristic of MSA. Recent studies have demonstrated that injections of synthetic α-Syn preformed fibrils (PFFs) into the brains of wild-type (WT) animals induce intraneuronal α-Syn aggregates and the subsequent interneuronal transmission of α-Syn aggregates. However, injections of α-Syn PFFs or even brain lysates of patients with MSA have not been reported to induce oligodendroglial α-Syn aggregates, raising questions about the pathogenesis of oligodendroglial α-Syn aggregates in MSA. Here, we report that WT mice injected with mouse α-Syn (m-α-Syn) PFFs develop neuronal α-Syn pathology after short postinjection (PI) intervals on the scale of weeks, while oligodendroglial α-Syn pathology emerges after longer PI intervals of several months. Abundant oligodendroglial α-Syn pathology in white matter at later time points is reminiscent of MSA. Furthermore, comparison between young and aged mice injected with m-α-Syn PFFs revealed that PI intervals rather than aging correlate with oligodendroglial α-Syn aggregation. These results provide novel insights into the pathological mechanisms of oligodendroglial α-Syn aggregation in MSA.
Collapse
Affiliation(s)
- Norihito Uemura
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Maiko T Uemura
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Angela Lo
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fares Bassil
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bin Zhang
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelvin C Luk
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Virginia M -Y Lee
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - John Q Trojanowski
- Laboratory Medicine, Department of Pathology, School of Medicine, Institute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Monzio Compagnoni G, Di Fonzo A. Understanding the pathogenesis of multiple system atrophy: state of the art and future perspectives. Acta Neuropathol Commun 2019; 7:113. [PMID: 31300049 PMCID: PMC6624923 DOI: 10.1186/s40478-019-0730-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022] Open
Abstract
Multiple System Atrophy (MSA) is a severe neurodegenerative disease clinically characterized by parkinsonism, cerebellar ataxia, dysautonomia and other motor and non-motor symptoms. Although several efforts have been dedicated to understanding the causative mechanisms of the disease, MSA pathogenesis remains widely unknown. The aim of the present review is to describe the state of the art about MSA pathogenesis, with a particular focus on alpha-synuclein accumulation and mitochondrial dysfunction, and to highlight future possible perspectives in this field. In particular, this review describes the most widely investigated hypotheses explaining alpha-synuclein accumulation in oligodendrocytes, including SNCA expression, neuron-oligodendrocyte protein transfer, impaired protein degradation and alpha-synuclein spread mechanisms. Afterwards, several recent achievements in MSA research involving mitochondrial biology are described, including the role of COQ2 mutations, Coenzyme Q10 reduction, respiratory chain dysfunction and altered mitochondrial mass. Some hints are provided about alternative pathogenic mechanisms, including inflammation and impaired autophagy. Finally, all these findings are discussed from a comprehensive point of view, putative explanations are provided and new research perspectives are suggested. Overall, the present review provides a comprehensive and up-to-date overview of the mechanisms underlying MSA pathogenesis.
Collapse
|
16
|
Olsen AL, Feany MB. Glial α-synuclein promotes neurodegeneration characterized by a distinct transcriptional program in vivo. Glia 2019; 67:1933-1957. [PMID: 31267577 DOI: 10.1002/glia.23671] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
α-Synucleinopathies are neurodegenerative diseases that are characterized pathologically by α-synuclein inclusions in neurons and glia. The pathologic contribution of glial α-synuclein in these diseases is not well understood. Glial α-synuclein may be of particular importance in multiple system atrophy (MSA), which is defined pathologically by glial cytoplasmic α-synuclein inclusions. We have previously described Drosophila models of neuronal α-synucleinopathy, which recapitulate key features of the human disorders. We have now expanded our model to express human α-synuclein in glia. We demonstrate that expression of α-synuclein in glia alone results in α-synuclein aggregation, death of dopaminergic neurons, impaired locomotor function, and autonomic dysfunction. Furthermore, co-expression of α-synuclein in both neurons and glia worsens these phenotypes as compared to expression of α-synuclein in neurons alone. We identify unique transcriptomic signatures induced by glial as opposed to neuronal α-synuclein. These results suggest that glial α-synuclein may contribute to the burden of pathology in the α-synucleinopathies through a cell type-specific transcriptional program. This new Drosophila model system enables further mechanistic studies dissecting the contribution of glial and neuronal α-synuclein in vivo, potentially shedding light on mechanisms of disease that are especially relevant in MSA but also the α-synucleinopathies more broadly.
Collapse
Affiliation(s)
- Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Kim T, Valera E, Desplats P. Alterations in Striatal microRNA-mRNA Networks Contribute to Neuroinflammation in Multiple System Atrophy. Mol Neurobiol 2019; 56:7003-7021. [PMID: 30968343 DOI: 10.1007/s12035-019-1577-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
Multiple systems atrophy (MSA) is a rare neurodegenerative disorder characterized by the accumulation of α-synuclein in glial cells and neurodegeneration in the striatum, substantia nigra, and cerebellum. Aberrant miRNA regulation has been associated with neurodegeneration, including alterations of specific miRNAs in brain tissue, serum, and cerebrospinal fluid from MSA patients. Still, a causal link between deregulation of miRNA networks and pathological changes in the transcriptome remains elusive. We profiled ~ 800 miRNAs in the striatum of MSA patients in comparison to healthy individuals to identify specific miRNAs altered in MSA. In addition, we performed a parallel screening of 700 transcripts associated with neurodegeneration to determine the impact of miRNA deregulation on the transcriptome. We identified 60 miRNAs with abnormal levels in MSA brains that are involved in extracellular matrix receptor interactions, prion disease, inflammation, ubiquitin-mediated proteolysis, and addiction pathways. Using the correlation between miRNA expression and the abundance of their known targets, miR-124-3p, miR-19a-3p, miR-27b-3p, and miR-29c-3p were identified as key regulators altered in MSA, mainly contributing to neuroinflammation. Finally, our study also uncovered a potential link between Alzheimer's disease (AD) and MSA pathologies that involves miRNAs and deregulation of BACE1. Our results provide a comprehensive appraisal of miRNA alterations in MSA and their effect on the striatal transcriptome, supporting that aberrant miRNA expression is highly correlated with changes in gene transcription associated with MSA neuropathology, in particular those driving inflammation, disrupting myelination, and potentially impacting α-synuclein accumulation via deregulation of autophagy and prion mechanisms.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA
| | - Elvira Valera
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA
| | - Paula Desplats
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA. .,Department of Pathology, University of California San Diego, 9500 Gilman Dr., MTF 344 MC0624, La Jolla, CA, 92093-0624, USA.
| |
Collapse
|
18
|
Kiely AP, Miners JS, Courtney R, Strand C, Love S, Holton JL. Exploring the putative role of kallikrein-6, calpain-1 and cathepsin-D in the proteolytic degradation of α-synuclein in multiple system atrophy. Neuropathol Appl Neurobiol 2018; 45:347-360. [PMID: 29993134 DOI: 10.1111/nan.12512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
Abstract
AIMS There is evidence that accumulation of α-synuclein (α-syn) in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) results from impaired removal of α-syn rather than its overproduction. Kallikrein-6 (KLK6), calpain-1 (CAPN1) and cathepsin-D (CTSD) are among a small number of proteases that cleave α-syn and are dysregulated in PD and DLB. Our aim in this study was to determine whether protease activity is altered in another α-synucleinopathy, multiple system atrophy (MSA), and might thereby modulate the regional distribution of α-syn accumulation. METHODS mRNA and protein level and/or activity of KLK6, CAPN1 and CTSD were measured and assessed in relation to α-syn load in multiple brain regions (posterior frontal cortex, caudate nucleus, putamen, occipital cortex, pontine base and cerebellar white matter), in MSA (n = 20) and age-matched postmortem control tissue (n = 20). RESULTS CTSD activity was elevated in MSA in the pontine base and cerebellar white matter. KLK6 and CAPN1 levels were elevated in MSA in the putamen and cerebellar white matter. However, the activity or level of these proteolytic enzymes did not correlate with the regional distribution of α-syn. CONCLUSIONS Accumulation of α-syn in MSA is not due to reduced activity of the proteases we have studied. We suggest that their upregulation is likely to be a compensatory response to increased α-syn in MSA.
Collapse
Affiliation(s)
- A P Kiely
- Queen Square Brain Bank, UCL Institute of Neurology, University College London, London, UK
| | - J S Miners
- Dementia Research Group, Clinical Neurosciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - R Courtney
- Queen Square Brain Bank, UCL Institute of Neurology, University College London, London, UK
| | - C Strand
- Queen Square Brain Bank, UCL Institute of Neurology, University College London, London, UK
| | - S Love
- Dementia Research Group, Clinical Neurosciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - J L Holton
- Queen Square Brain Bank, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
19
|
Marchese D, Botta-Orfila T, Cirillo D, Rodriguez JA, Livi CM, Fernández-Santiago R, Ezquerra M, Martí MJ, Bechara E, Tartaglia GG. Discovering the 3' UTR-mediated regulation of alpha-synuclein. Nucleic Acids Res 2018; 45:12888-12903. [PMID: 29149290 PMCID: PMC5728410 DOI: 10.1093/nar/gkx1048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/20/2017] [Indexed: 12/24/2022] Open
Abstract
Recent evidence indicates a link between Parkinson's Disease (PD) and the expression of a-synuclein (SNCA) isoforms with different 3′ untranslated regions (3′UTRs). Yet, the post-transcriptional mechanisms regulating SNCA expression are unknown. Using a large-scale in vitro /in silico screening we identified RNA-binding proteins (RBPs) that interact with SNCA 3′ UTRs. We identified two RBPs, ELAVL1 and TIAR, that bind with high affinity to the most abundant and translationally active 3′ UTR isoform (575 nt). Knockdown and overexpression experiments indicate that both ELAVL1 and TIAR positively regulate endogenous SNCA in vivo. The mechanism of regulation implies mRNA stabilization as well as enhancement of translation in the case of TIAR. We observed significant alteration of both TIAR and ELAVL1 expression in motor cortex of post-mortem brain donors and primary cultured fibroblast from patients affected by PD and Multiple System Atrophy (MSA). Moreover, trans expression quantitative trait loci (trans-eQTLs) analysis revealed that a group of single nucleotide polymorphisms (SNPs) in TIAR genomic locus influences SNCA expression in two different brain areas, nucleus accumbens and hippocampus. Our study sheds light on the 3′ UTR-mediated regulation of SNCA and its link with PD pathogenesis, thus opening up new avenues for investigation of post-transcriptional mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Domenica Marchese
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Teresa Botta-Orfila
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Davide Cirillo
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Barcelona Supercomputing Center (BSC), Torre Girona c/Jordi Girona, 29, 08034 Barcelona, Spain
| | - Juan Antonio Rodriguez
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Centro Nacional de Análisis Genómico, c/BaldiriReixac, 4, 08028 Barcelona, Spain
| | - Carmen Maria Livi
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Rubén Fernández-Santiago
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Parkinson's Disease and Movement Disorders Unit, Institut de Neurociències Hospital Clínic, CIBERNED, Barcelona, Spain
| | - Mario Ezquerra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Parkinson's Disease and Movement Disorders Unit, Institut de Neurociències Hospital Clínic, CIBERNED, Barcelona, Spain
| | - Maria J Martí
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Parkinson's Disease and Movement Disorders Unit, Institut de Neurociències Hospital Clínic, CIBERNED, Barcelona, Spain
| | - Elias Bechara
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | |
Collapse
|
20
|
Overk C, Rockenstein E, Valera E, Stefanova N, Wenning G, Masliah E. Multiple system atrophy: experimental models and reality. Acta Neuropathol 2018; 135:33-47. [PMID: 29058121 PMCID: PMC6156777 DOI: 10.1007/s00401-017-1772-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 01/08/2023]
Abstract
Multiple system atrophy (MSA) is a rapidly progressing fatal synucleinopathy of the aging population characterized by parkinsonism, dysautonomia, and in some cases ataxia. Unlike other synucleinopathies, in this disorder the synaptic protein, α-synuclein (α-syn), predominantly accumulates in oligodendroglial cells (and to some extent in neurons), leading to maturation defects of oligodendrocytes, demyelination, and neurodegeneration. The mechanisms through which α-syn deposits occur in oligodendrocytes and neurons in MSA are not completely clear. While some studies suggest that α-syn might transfer from neurons to glial cells, others propose that α-syn might be aberrantly overexpressed by oligodendroglial cells. A number of in vivo models have been developed, including transgenic mice overexpressing α-syn under oligodendroglial promoters (e.g.: MBP, PLP, and CNP). Other models have been recently developed either by injecting synthetic α-syn fibrils or brain homogenates from patients with MSA into wild-type mice or by using viral vectors expressing α-syn under the MBP promoter in rats and non-human primates. Each of these models reproduces some of the neuropathological and functional aspects of MSA; however, none of them fully replicate the spectrum of MSA. Understanding better the mechanisms of how α-syn accumulates in oligodendrocytes and neurons will help in developing better models that recapitulate various pathogenic aspects of MSA in combination with translatable biomarkers of early stages of the disease that are necessary to devise disease-modifying therapeutics for MSA.
Collapse
Affiliation(s)
- Cassia Overk
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093-0624, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093-0624, USA
| | - Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093-0624, USA
| | - Nadia Stefanova
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093-0624, USA.
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Translational therapies for multiple system atrophy: Bottlenecks and future directions. Auton Neurosci 2017; 211:7-14. [PMID: 29017831 DOI: 10.1016/j.autneu.2017.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 11/24/2022]
Abstract
Over the last decade a prominent amount of studies in preclinical transgenic models of multiple system atrophy (MSA) has been performed. These studies have helped understand mechanisms downstream to the α-synuclein oligodendroglial accumulation relevant to human MSA. However, the successful translation of the preclinical outcomes into a clinical trial has failed. Looking back, we can now identify possible confounders for the failure. Biomarkers of disease progression are mostly missing. Early diagnosis and initiation of therapeutic clinical trials is limited. The need of both proof-of-concept as well as clinically relevant preclinical study designs with clinically relevant timing and preclinical readouts is identified as a must in our translational efforts for MSA to date. Finally, improved clinical study designs with improved enrollment criteria, and measurement outcomes are warranted on the way to finding the successful therapeutic approach for MSA. This review provides an overview of experimental studies and clinical trials for MSA and the lessons learned over the last decade towards the identification of the cure for MSA.
Collapse
|
22
|
Curry-Hyde A, Chen BJ, Ueberham U, Arendt T, Janitz M. Multiple System Atrophy: Many Lessons from the Transcriptome. Neuroscientist 2017; 24:294-307. [PMID: 28770651 DOI: 10.1177/1073858417723915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multiple system atrophy (MSA) is a complex, multifactorial, debilitating neurodegenerative disease that is often misdiagnosed and misunderstood. MSA has two subclasses, MSA-P and MSA-C, defined by the dominance of parkinsonism or cerebellar dysfunction in the earlier stages of disease, coupled with dysautonomia. This distinction between subclasses becomes largely redundant as the disease progresses. Aggregation of α-synuclein is a clinical marker used to confirm MSA diagnoses, which can only be performed postmortem. Transcriptome profiling provides in-depth information about the diseased state and can contribute to further understanding of MSA, enabling easier and more rapid diagnosis as well as contributing to improving the quality of life of people with MSA. Currently, there is no method of diagnosing MSA with certainty, and there is no cure for this disease. This review provides an update on current advances in investigations of molecular pathology of MSA with particular focus on perturbation of individual gene expression and MSA transcriptome.
Collapse
Affiliation(s)
- Ashton Curry-Hyde
- 1 School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Bei Jun Chen
- 1 School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Uwe Ueberham
- 2 Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Thomas Arendt
- 2 Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Michael Janitz
- 1 School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.,2 Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
23
|
Mills J, Ward M, Kim W, Halliday G, Janitz M. Strand-specific RNA-sequencing analysis of multiple system atrophy brain transcriptome. Neuroscience 2016; 322:234-50. [DOI: 10.1016/j.neuroscience.2016.02.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 01/21/2023]
|
24
|
Scholz SW, Bras J. Genetics Underlying Atypical Parkinsonism and Related Neurodegenerative Disorders. Int J Mol Sci 2015; 16:24629-55. [PMID: 26501269 PMCID: PMC4632769 DOI: 10.3390/ijms161024629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/01/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022] Open
Abstract
Atypical parkinsonism syndromes, such as dementia with Lewy bodies, multiple system atrophy, progressive supranuclear palsy and corticobasal degeneration, are neurodegenerative diseases with complex clinical and pathological features. Heterogeneity in clinical presentations, possible secondary determinants as well as mimic syndromes pose a major challenge to accurately diagnose patients suffering from these devastating conditions. Over the last two decades, significant advancements in genomic technologies have provided us with increasing insights into the molecular pathogenesis of atypical parkinsonism and their intriguing relationships to related neurodegenerative diseases, fueling new hopes to incorporate molecular knowledge into our diagnostic, prognostic and therapeutic approaches towards managing these conditions. In this review article, we summarize the current understanding of genetic mechanisms implicated in atypical parkinsonism syndromes. We further highlight mimic syndromes relevant to differential considerations and possible future directions.
Collapse
Affiliation(s)
- Sonja W Scholz
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, USA.
| | - Jose Bras
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square House, London WC1N 3BG, UK.
| |
Collapse
|
25
|
Federoff M, Schottlaender LV, Houlden H, Singleton A. Multiple system atrophy: the application of genetics in understanding etiology. Clin Auton Res 2015; 25:19-36. [PMID: 25687905 PMCID: PMC5217460 DOI: 10.1007/s10286-014-0267-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022]
Abstract
Classically defined phenotypically by a triad of cerebellar ataxia, parkinsonism, and autonomic dysfunction in conjunction with pyramidal signs, multiple system atrophy (MSA) is a rare and progressive neurodegenerative disease affecting an estimated 3-4 per every 100,000 individuals among adults 50-99 years of age. With a pathological hallmark of alpha-synuclein-immunoreactive glial cytoplasmic inclusions (GCIs; Papp-Lantos inclusions), MSA patients exhibit marked neurodegenerative changes in the striatonigral and/or olivopontocerebellar structures of the brain. As a member of the alpha-synucleinopathy family, which is defined by its well-demarcated alpha-synuclein-immunoreactive inclusions and aggregation, MSA's clinical presentation exhibits several overlapping features with other members including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Given the extensive fund of knowledge regarding the genetic etiology of PD revealed within the past several years, a genetic investigation of MSA is warranted. While a current genome-wide association study is underway for MSA to further clarify the role of associated genetic loci and single-nucleotide polymorphisms, several cases have presented solid preliminary evidence of a genetic etiology. Naturally, genes and variants manifesting known associations with PD (and other phenotypically similar neurodegenerative disorders), including SNCA and MAPT, have been comprehensively investigated in MSA patient cohorts. More recently variants in COQ2 have been linked to MSA in the Japanese population although this finding awaits replication. Nonetheless, significant positive associations with subsequent independent replication studies have been scarce. With very limited information regarding genetic mutations or alterations in gene dosage as a cause of MSA, the search for novel risk genes, which may be in the form of common variants or rare variants, is the logical nexus for MSA research. We believe that the application of next generation genetic methods to MSA will provide valuable insight into the underlying causes of this disease, and will be central to the identification of etiologic-based therapies.
Collapse
Affiliation(s)
- Monica Federoff
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
26
|
Chen J, Mills JD, Halliday GM, Janitz M. The role of transcriptional control in multiple system atrophy. Neurobiol Aging 2015; 36:394-400. [DOI: 10.1016/j.neurobiolaging.2014.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/29/2014] [Accepted: 08/12/2014] [Indexed: 12/15/2022]
|
27
|
Krismer F, Kuzdas D, Colosimo C, Stefanova N, Wenning GK. Animal Models of Multiple-System Atrophy. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
28
|
Mills JD, Kim WS, Halliday GM, Janitz M. Transcriptome analysis of grey and white matter cortical tissue in multiple system atrophy. Neurogenetics 2014; 16:107-22. [PMID: 25370810 DOI: 10.1007/s10048-014-0430-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/20/2014] [Indexed: 01/02/2023]
Abstract
Multiple system atrophy (MSA) is a distinct member of a group of neurodegenerative diseases known as α-synucleinopathies, which are characterized by the presence of aggregated α-synuclein in the brain. MSA is unique in that the principal site for α-synuclein deposition is in the oligodendrocytes rather than neurons. The cause of MSA is unknown, and the pathogenesis of MSA is still largely speculative. Brain transcriptome perturbations during the onset and progression of MSA are mostly unknown. Using RNA sequencing, we performed a comparative transcriptome profiling analysis of the grey matter (GM) and white matter (WM) of the frontal cortex of MSA and control brains. The transcriptome sequencing revealed increased expression of the alpha and beta haemoglobin genes in MSA WM, decreased expression of the transthyretin (TTR) gene in MSA GM and numerous region-specific long intervening non-coding RNAs (lincRNAs). In contrast, we observed only moderate changes in the expression patterns of the α-synuclein (SNCA) gene, which confirmed previous observations by other research groups. Our study suggests that at the transcriptional level, MSA pathology may be related to increased iron levels in WM and perturbations of the non-coding fraction of the transcriptome.
Collapse
Affiliation(s)
- James D Mills
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | | | |
Collapse
|
29
|
Jellinger KA. Neuropathology of multiple system atrophy: New thoughts about pathogenesis. Mov Disord 2014; 29:1720-41. [DOI: 10.1002/mds.26052] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/29/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022] Open
|
30
|
Asi YT, Simpson JE, Heath PR, Wharton SB, Lees AJ, Revesz T, Houlden H, Holton JL. Alpha-synuclein mRNA expression in oligodendrocytes in MSA. Glia 2014; 62:964-70. [PMID: 24590631 PMCID: PMC4238782 DOI: 10.1002/glia.22653] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/25/2014] [Accepted: 02/10/2014] [Indexed: 01/14/2023]
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disease presenting clinically with parkinsonian, cerebellar, and autonomic features. α-Synuclein (αsyn), encoded by the gene SNCA, is the main constituent of glial cytoplasmic inclusion (GCI) found in oligodendrocytes in MSA, but the methods of its accumulation have not been established. The aim of this study is to investigate alterations in regional and cellular SNCA mRNA expression in MSA as a possible substrate for GCI formation. Quantitative reverse transcription polymerase chain reaction (qPCR) was performed on postmortem brain samples from 15 MSA, 5 IPD, and 5 control cases to investigate regional expression in the frontal and occipital regions, dorsal putamen, pontine base, and cerebellum. For cellular expression analysis, neurons and oligodendrocytes were isolated by laser-capture microdissection from five MSA and five control cases. SNCA mRNA expression was not significantly different between the MSA, IPD and control cases in all regions (multilevel model, P = 0.14). After adjusting for group effect, the highest expression was found in the occipital cortex while the lowest was in the putamen (multilevel model, P < 0.0001). At the cellular level, MSA oligodendrocytes expressed more SNCA than control oligodendrocytes and expression in MSA neurons was slightly lower than that in controls, however, these results did not reach statistical significance. We have demonstrated regional variations in SNCA expression, which is higher in cortical than subcortical regions. This study is the first to demonstrate SNCA mRNA expression by oligodendrocytes in human postmortem tissue using qPCR and, although not statistically significant, could suggest that this may be increased in MSA compared to controls.
Collapse
Affiliation(s)
- Yasmine T Asi
- Queen Square Brain Bank, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kuzdas-Wood D, Stefanova N, Jellinger KA, Seppi K, Schlossmacher MG, Poewe W, Wenning GK. Towards translational therapies for multiple system atrophy. Prog Neurobiol 2014; 118:19-35. [PMID: 24598411 PMCID: PMC4068324 DOI: 10.1016/j.pneurobio.2014.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/28/2022]
Abstract
Multiple system atrophy (MSA) is a fatal adult-onset neurodegenerative disorder of uncertain etiopathogenesis manifesting with autonomic failure, parkinsonism, and ataxia in any combination. The underlying neuropathology affects central autonomic, striatonigral and olivopontocerebellar pathways and it is associated with distinctive glial cytoplasmic inclusions (GCIs, Papp-Lantos bodies) that contain aggregates of α-synuclein. Current treatment options are very limited and mainly focused on symptomatic relief, whereas disease modifying options are lacking. Despite extensive testing, no neuroprotective drug treatment has been identified up to now; however, a neurorestorative approach utilizing autologous mesenchymal stem cells has shown remarkable beneficial effects in the cerebellar variant of MSA. Here, we review the progress made over the last decade in defining pathogenic targets in MSA and summarize insights gained from candidate disease-modifying interventions that have utilized a variety of well-established preclinical MSA models. We also discuss the current limitations that our field faces and suggest solutions for possible approaches in cause-directed therapies of MSA.
Collapse
Affiliation(s)
- Daniela Kuzdas-Wood
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Nadia Stefanova
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | | | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Michael G Schlossmacher
- Divisions of Neuroscience and Neurology, The Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, RGH #1412, Ottawa, ON, K1H 8M5, Canada
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria.
| |
Collapse
|
32
|
Bleasel JM, Wong JH, Halliday GM, Kim WS. Lipid dysfunction and pathogenesis of multiple system atrophy. Acta Neuropathol Commun 2014; 2:15. [PMID: 24502382 PMCID: PMC3922275 DOI: 10.1186/2051-5960-2-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 12/24/2022] Open
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative disease characterized by the accumulation of α-synuclein protein in the cytoplasm of oligodendrocytes, the myelin-producing support cells of the central nervous system (CNS). The brain is the most lipid-rich organ in the body and disordered metabolism of various lipid constituents is increasingly recognized as an important factor in the pathogenesis of several neurodegenerative diseases. α-Synuclein is a 17 kDa protein with a close association to lipid membranes and biosynthetic processes in the CNS, yet its precise function is a matter of speculation, particularly in oligodendrocytes. α-Synuclein aggregation in neurons is a well-characterized feature of Parkinson’s disease and dementia with Lewy bodies. Epidemiological evidence and in vitro studies of α-synuclein molecular dynamics suggest that disordered lipid homeostasis may play a role in the pathogenesis of α-synuclein aggregation. However, MSA is distinct from other α-synucleinopathies in a number of respects, not least the disparate cellular focus of α-synuclein pathology. The recent identification of causal mutations and polymorphisms in COQ2, a gene encoding a biosynthetic enzyme for the production of the lipid-soluble electron carrier coenzyme Q10 (ubiquinone), puts membrane transporters as central to MSA pathogenesis, although how such transporters are involved in the early myelin degeneration observed in MSA remains unclear. The purpose of this review is to bring together available evidence to explore the potential role of membrane transporters and lipid dyshomeostasis in the pathogenesis of α-synuclein aggregation in MSA. We hypothesize that dysregulation of the specialized lipid metabolism involved in myelin synthesis and maintenance by oligodendrocytes underlies the unique neuropathology of MSA.
Collapse
|
33
|
Katbamna B, Klutz N, Pudrith C, Lavery JP, Ide CF. Prenatal smoke exposure: effects on infant auditory system and placental gene expression. Neurotoxicol Teratol 2013; 38:61-71. [PMID: 23665419 DOI: 10.1016/j.ntt.2013.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 11/29/2022]
Abstract
Prenatal smoke exposure has been shown to change cochlear echo response amplitudes and auditory brainstem response (ABR) wave latencies in newborns. Since gene expression changes are often synchronized in different tissue types, the goal of the present work was to determine the relationships between prenatal smoke exposure induced changes in hearing responses with changes in placental gene expression. Results showed significant cotinine level elevations in mothers who smoked ≥10cigarettes/day during their pregnancy compared to no detectable cotinine in nonsmoking mothers. Cochlear echo response amplitudes in the 2-8kHz range and ABR wave latencies, specifically wave V and interpeak interval I-V, were also significantly reduced in newborns of smoking mothers. Functional pathway analysis of upregulated placental genes using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online software showed significant enrichment of terms associated with neurodevelopmental processes including glutamatergic and cholinergic systems and a number of wingless type proteins in the top two tiers with corrected enrichment p-values of ≤0.05. Other relevant functional pathways were significant at unadjusted enrichment p-values of 0.001-0.11 and included calcium signaling, neurotransmission/neurological processes and oxidative stress. The neurological process clusters included 7 genes (EML2, OTOR, SLC26A5, TBL1X, TECTA, USH1C and USH1G) known to modulate cochlear outer hair cell motility. We localized proteins encoded by the top two regulated genes, TBL1X and USH1C, using immunohistochemistry to placental stem and anchoring villi associated with active contractile function. These placental genes may mediate active contraction and relaxation in the placental villi, for example, during maternal-fetal perfusion matching, similar to the active lengthening and shortening of the cochlear outer hair cells during sensory transduction. Thus, the functional consequence of their alteration in the cochlea would be reflected as a decline in cochlear echoes as shown in this study. Such parallel changes suggest the potential utility of placental gene expression as a surrogate for evaluating changes in the developing cochlea related to potential aberrant cochlear function in newborns with prenatal smoke exposure.
Collapse
Affiliation(s)
- Bharti Katbamna
- Department of Speech Pathology and Audiology, Western Michigan University, Kalamazoo, MI 49008-5355, United States.
| | | | | | | | | |
Collapse
|
34
|
Chiba Y, Takei S, Kawamura N, Kawaguchi Y, Sasaki K, Hasegawa-Ishii S, Furukawa A, Hosokawa M, Shimada A. Immunohistochemical localization of aggresomal proteins in glial cytoplasmic inclusions in multiple system atrophy. Neuropathol Appl Neurobiol 2013; 38:559-71. [PMID: 22013984 DOI: 10.1111/j.1365-2990.2011.01229.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Multiple system atrophy (MSA) is pathologically characterized by the formation of α-synuclein-containing glial cytoplasmic inclusions (GCIs) in oligodendrocytes. However, the mechanisms of GCI formation are not fully understood. Cellular machinery for the formation of aggresomes has been linked to the biogenesis of the Lewy body, a characteristic α-synuclein-containing inclusion of Parkinson's disease and dementia with Lewy bodies. Here, we examined whether GCIs contain the components of aggresomes by immunohistochemistry. METHODS Sections from five patients with MSA were stained immunohistochemically with antibodies against aggresome-related proteins and analysed in comparison with sections from five patients with no neurological disease. We evaluated the presence or absence of aggresome-related proteins in GCIs by double immunofluorescence and immunoelectron microscopy. RESULTS GCIs were clearly immunolabelled with antibodies against aggresome-related proteins, such as γ-tubulin, histone deacetylase 6 (HDAC6) and 20S proteasome subunits. Neuronal cytoplasmic inclusions (NCIs) were also immunopositive for these aggresome-related proteins. Double immunofluorescence staining and quantitative analysis demonstrated that the majority of GCIs contained these proteins, as well as other aggresome-related proteins, such as Hsp70, Hsp90 and 62-kDa protein/sequestosome 1 (p62/SQSTM1). Immunoelectron microscopy demonstrated immunoreactivities for γ-tubulin and HDAC6 along the fibrils comprising GCIs. CONCLUSIONS Our results indicate that GCIs, and probably NCIs, share at least some characteristics with aggresomes in terms of their protein components. Therefore, GCIs and NCIs may be another manifestation of aggresome-related inclusion bodies observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Y Chiba
- Department of Pathology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Novak P, Williams A, Ravin P, Zurkiya O, Abduljalil A, Novak V. Treatment of multiple system atrophy using intravenous immunoglobulin. BMC Neurol 2012; 12:131. [PMID: 23116538 PMCID: PMC3551813 DOI: 10.1186/1471-2377-12-131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
Background Multiple system atrophy (MSA) is a progressive neurodegenerative disorder of unknown etiology, manifesting as combination of parkinsonism, cerebellar syndrome and dysautonomia. Disease-modifying therapies are unavailable. Activation of microglia and production of toxic cytokines suggest a role of neuroinflammation in MSA pathogenesis. This pilot clinical trial evaluated safety and tolerability of intravenous immunoglobulin (IVIG) in MSA. Methods This was a single-arm interventional, single-center, open-label pilot study. Interventions included monthly infusions of the IVIG preparation Privigen®, dose 0.4 gram/kg, for 6 months. Primary outcome measures evaluated safety and secondary outcome measures evaluated preliminary efficacy of IVIG. Unified MSA Rating Scale (UMSARS) was measured monthly. Quantitative brain imaging using 3T MRI was performed before and after treatment. Results Nine subjects were enrolled, and seven (2 women and 5 men, age range 55–64 years) completed the protocol. There were no serious adverse events. Systolic blood pressure increased during IVIG infusions (p<0.05). Two participants dropped out from the study because of a non-threatening skin rash. The UMSARS-I (activities of daily living) and USMARS-II (motor functions) improved significantly post-treatment. UMSARS-I improved in all subjects (pre-treatment 23.9 ± 6.0 vs. post-treatment 19.0±5.9 (p=0.01). UMSARS-II improved in 5 subjects, was unchanged in 1 and worsened in 1 (pre-treatment 26.1±7.5 vs. post-treatment 23.3±7.3 (p=0.025). The MR imaging results were not different comparing pre- to post-treatment. Conclusions Treatment with IVIG appears to be safe, feasible and well tolerated and may improve functionality in MSA. A larger, placebo-controlled study is needed.
Collapse
Affiliation(s)
- Peter Novak
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Tanji K, Odagiri S, Maruyama A, Mori F, Kakita A, Takahashi H, Wakabayashi K. Alteration of autophagosomal proteins in the brain of multiple system atrophy. Neurobiol Dis 2012; 49:190-8. [PMID: 22959883 DOI: 10.1016/j.nbd.2012.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/28/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022] Open
Abstract
Autophagosomal formation is an initial step for macroautophagy. Similar to the yeast autophagy-related gene 8 (ATG8), mammalian ATG8 is responsible for autophagosomal formation, and categorized into LC3 and GABARAPs/GATE-16. Recent studies have shown that impairment of the autophagy-lysosome system is associated with formation of cytoplasmic inclusions observed in various neurodegenerative disorders including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Although abnormal α-synuclein accumulation is a cardinal neuropathological feature in PD, DLB and multiple system atrophy (MSA), it is unclear whether autophagy is altered in MSA. We here demonstrated that the level of matured GABARAPs was significantly decreased in the cerebellum of MSA relative to controls, and that the higher levels of matured and lipidated LC3 were detected in detergent-insoluble fraction of MSA. Immunohistochemical analysis showed that the vast majority of glial cytoplasmic inclusions, a hallmark of MSA, were positive for LC3, whereas they were unstained or barely stained with anti-GABARAPs or anti-GATE-16 antibodies. Our data suggest that autophagy maturation is impaired through the repressed levels of autophagosomal proteins in MSA.
Collapse
Affiliation(s)
- Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Saori Odagiri
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan; Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Atsushi Maruyama
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Akiyoshi Kakita
- Department of Pathological Neuroscience, Center for Bioresource-based Researches, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata 951-8585, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
37
|
Stefanova N, Kaufmann WA, Humpel C, Poewe W, Wenning GK. Systemic proteasome inhibition triggers neurodegeneration in a transgenic mouse model expressing human α-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. Acta Neuropathol 2012; 124:51-65. [PMID: 22491959 PMCID: PMC3377902 DOI: 10.1007/s00401-012-0977-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 03/23/2012] [Accepted: 03/25/2012] [Indexed: 12/24/2022]
Abstract
Multiple system atrophy (MSA) is a progressive late onset neurodegenerative α-synucleinopathy with unclear pathogenesis. Recent genetic and pathological studies support a central role of α-synuclein (αSYN) in MSA pathogenesis. Oligodendroglial cytoplasmic inclusions of fibrillar αSYN and dysfunction of the ubiquitin–proteasome system are suggestive of proteolytic stress in this disorder. To address the possible pathogenic role of oligodendroglial αSYN accumulation and proteolytic failure in MSA we applied systemic proteasome inhibition (PSI) in transgenic mice with oligodendroglial human αSYN expression and determined the presence of MSA-like neurodegeneration in this model as compared to wild-type mice. PSI induced open field motor disability in transgenic αSYN mice but not in wild-type mice. The motor phenotype corresponded to progressive and selective neuronal loss in the striatonigral and olivopontocerebellar systems of PSI-treated transgenic αSYN mice. In contrast no neurodegeneration was detected in PSI-treated wild-type controls. PSI treatment of transgenic αSYN mice was associated with significant ultrastructural alterations including accumulation of fibrillar human αSYN in the cytoplasm of oligodendroglia, which resulted in myelin disruption and demyelination characterized by increased g-ratio. The oligodendroglial and myelin pathology was accompanied by axonal degeneration evidenced by signs of mitochondrial stress and dysfunctional axonal transport in the affected neurites. In summary, we provide new evidence supporting a primary role of proteolytic failure and suggesting a neurodegenerative pathomechanism related to disturbed oligodendroglial/myelin trophic support in the pathogenesis of MSA.
Collapse
Affiliation(s)
- Nadia Stefanova
- Division of Neurobiology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
38
|
Ahmed Z, Asi YT, Sailer A, Lees AJ, Houlden H, Revesz T, Holton JL. The neuropathology, pathophysiology and genetics of multiple system atrophy. Neuropathol Appl Neurobiol 2012; 38:4-24. [PMID: 22074330 DOI: 10.1111/j.1365-2990.2011.01234.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiple system atrophy (MSA) is an unrelenting, sporadic, adult-onset, neurodegenerative disease of unknown aetiology. Its clinically progressive course is characterized by a variable combination of parkinsonism, cerebellar ataxia and/or autonomic dysfunction. Neuropathological examination often reveals gross abnormalities of the striatonigral and/or olivopontocerebellar systems, which upon microscopic examination are associated with severe neuronal loss, gliosis, myelin pallor and axonal degeneration. MSA is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies, due to the presence of abnormal α-synuclein positive cytoplasmic inclusions in oligodendrocytes, termed glial cytoplasmic inclusions. These are the hallmark neuropathological lesion of MSA and are thought to play a central role in the pathogenesis of the disease. In this review, neuropathological features of MSA are described in detail, along with recent advances in the pathophysiology and genetics of the disease. Our current knowledge of the expression and accumulation of α-synuclein, and efforts to model the disease in vitro and in vivo, are emphasized in this paper and have helped formulate a working hypothesis for the pathogenesis of MSA.
Collapse
Affiliation(s)
- Z Ahmed
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Lewis PA, Cookson MR. Gene expression in the Parkinson's disease brain. Brain Res Bull 2011; 88:302-12. [PMID: 22173063 PMCID: PMC3387376 DOI: 10.1016/j.brainresbull.2011.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 10/18/2011] [Accepted: 11/14/2011] [Indexed: 01/01/2023]
Abstract
The study of gene expression has undergone a transformation in the past decade as the benefits of the sequencing of the human genome have made themselves felt. Increasingly, genome wide approaches are being applied to the analysis of gene expression in human disease as a route to understanding the underlying pathogenic mechanisms. In this review, we will summarise current state of gene expression studies of the brain in Parkinson's disease, and examine how these techniques can be used to gain an insight into aetiology of this devastating disorder.
Collapse
Affiliation(s)
- Patrick A Lewis
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom.
| | | |
Collapse
|
40
|
Papp-Lantos inclusions and the pathogenesis of multiple system atrophy: an update. Acta Neuropathol 2010; 119:657-67. [PMID: 20309568 DOI: 10.1007/s00401-010-0672-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 12/20/2022]
Abstract
Multiple systemic atrophy (MSA) is a progressive, adult-onset neurodegenerative disorder of undetermined aetiology characterized by a distinctive oligodendrogliopathy with argyrophilic glial cytoplasmic inclusions (GCIs) and selective neurodegeneration. GCIs or Papp-Lantos inclusions, described more than 20 years ago, are now accepted as the hallmarks for the definite neuropathological diagnosis of MSA and suggested to play a central role in the pathogenesis of this disorder. GCIs are composed of hyperphosphorylated alpha-synuclein (alphaSyn), ubiquitin, LRRK2 (leucin-rich repeat serine/threonine-protein) and many other proteins, suggesting that MSA represents an invariable synucleinopathy of non-neuronal type, a specific form of proteinopathies. The origin of alphaSyn deposition in GCIs is not yet fully understood, but recent findings of dysregulation in the metabolism of myelin basic protein (MBP) and p25alpha, a central nervous system-specific protein, also called TPPP (tubulin polymerization promoting protein), strengthened the working model of MSA as a primary glial disorder and may explain frequent alterations of myelin in MSA. However, it is unknown whether these changes represent an early event or myelin dysregulation occurs further downstream in MSA pathogenesis. The association between polymorphisms at the SNCA gene locus and the risk for developing MSA also points to a primary role of alphaSyn in its pathogenesis, while in a MBP promoter-driven alphaSyn transgenic mouse model gliosis accompanied the neurodegenerative process originating in oligodendrocytes. Because alphaSyn represents a major component in both oligodendroglial and neuronal inclusions in MSA, some authors suggested both a primary oligodendrogliopathy and a neuronal synucleinopathy, but current biomolecular data and animal models support a crucial role of the Papp-Lantos inclusions and of aberrant alphaSyn accumulation as their main constituent, causing oligodendroglial pathology, myelin disruption and, finally, neuronal degeneration in MSA. The relationship between oligodendrocytes involved by Papp-Lantos inclusions and those in degenerating neurons in the course of MSA needs further elucidation.
Collapse
|
41
|
Bukhatwa S, Zeng BY, Rose S, Jenner P. A comparison of changes in proteasomal subunit expression in the substantia nigra in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. Brain Res 2010; 1326:174-83. [PMID: 20176003 DOI: 10.1016/j.brainres.2010.02.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/10/2010] [Accepted: 02/11/2010] [Indexed: 11/29/2022]
Abstract
Dysfunction of the ubiquitin-proteasome system (UPS) occurs in dopaminergic neurones in the SN in PD and it is associated with Lewy body formation. However, it remains unknown whether this is specific to PD or whether it also occurs in multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) where nigral dopaminergic neurones also degenerate. In the present study, we investigated changes in the expression of proteasomal subunits in the SN in PD, MSA and PSP. Immunohistochemistry double staining showed that proteasome 20S-alpha4 and -alpha6, and 20S-beta3 and -beta5i subunits are colocalized with tyrosine hydroxylase (TH)-positive cells in the SN of control, PD, MSA and PSP brain. Semi-quantitative analysis showed a significant loss of 20S-alpha4 and -alpha6 subunits TH-positive cells in PD, MSA and PSP compared to control tissue. There was no change in the expression of 20S-beta3 and -beta5i subunits in any of the disease states. The expression of PA700-Rpt5 subunits was not changed in PSP or PD but was significantly increased in MSA compared to control SN. PA700-Rpn10 subunit was not colocalized with TH within dopamine cells but was co-expressed with glial fibrillary acid protein (GFAP) positive astrocytes in the SN of all groups. PA28-alpha immunoreactivity was low in TH positive neurones in control tissue and quantification was not possible. Qualitative analysis suggested a decrease in PD and no immunoreactivity was detected in MSA or PSP. The results show that changes in proteasomal structure occur in the SN in PD, MSA and PSP and that these are similar in nature suggesting that dysfunction of UPS is not specific to PD or to Lewy body formation.
Collapse
Affiliation(s)
- Salma Bukhatwa
- School of Health and Biomedical Sciences, King's College, London, UK
| | | | | | | |
Collapse
|
42
|
Langerveld AJ, Celestine R, Zaya R, Mihalko D, Ide CF. Chronic exposure to high levels of atrazine alters expression of genes that regulate immune and growth-related functions in developing Xenopus laevis tadpoles. ENVIRONMENTAL RESEARCH 2009; 109:379-389. [PMID: 19272595 DOI: 10.1016/j.envres.2009.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 01/15/2009] [Accepted: 01/23/2009] [Indexed: 05/27/2023]
Abstract
Atrazine is the most commonly detected pesticide in ground and surface waters, with seasonal spikes that often exceed the Environmental Protection Agency's "Recommended Water Quality Criterion" of 350 parts per billion (ppb). Although numerous studies have shown atrazine produces adverse effects on growth, development, immune and endocrine system functions in a wide range of species, few describe gene expression changes concurrent with atrazine-induced changes in phenotype during development. In this report, developing Xenopus laevis tadpoles were chronically exposed to 400 ppb atrazine, an environmentally relevant concentration. Affymetrix microarrays and Taqman qRT-PCR were used to define gene expression changes that underlie atrazine-induced phenotypic alterations. Atrazine significantly reduced survival and growth (weight, length and fat body size) in male and female tadpoles. Microarray analysis showed atrazine altered expression of 44 genes in male tadpoles (18 upregulated, 26 downregulated) and 77 genes in female tadpoles (23 upregulated, 54 downregulated). Classification of the genes into functional groups showed the majority of genes were associated with the following biological functions: growth and metabolism, proteolysis, fibrinogen complex formation and immune regulation. Seven genes associated with immune system function, specifically defense molecules present in the skin (e.g. magainin II, levitide A, preprocarulein, skin granule protein), were significantly downregulated in female tadpoles. These results support the idea that environmental contaminants such as atrazine compromise important gene pathways during frog development that may, ultimately, be relevant to global amphibian decline.
Collapse
Affiliation(s)
- Anna Jelaso Langerveld
- Environmental Institute, Western Michigan University, 1903 West Michigan Avenue, Room 3924 Wood Hall, Kalamazoo, MI 49008, USA.
| | | | | | | | | |
Collapse
|
43
|
Scholz SW, Houlden H, Schulte C, Sharma M, Li A, Berg D, Melchers A, Paudel R, Gibbs JR, Simon-Sanchez J, Paisan-Ruiz C, Bras J, Ding J, Chen H, Traynor BJ, Arepalli S, Zonozi RR, Revesz T, Holton J, Wood N, Lees A, Oertel W, Wüllner U, Goldwurm S, Pellecchia MT, Illig T, Riess O, Fernandez HH, Rodriguez RL, Okun MS, Poewe W, Wenning GK, Hardy JA, Singleton AB, Del Sorbo F, Schneider S, Bhatia KP, Gasser T. SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol 2009; 65:610-4. [PMID: 19475667 PMCID: PMC3520128 DOI: 10.1002/ana.21685] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To test whether the synucleinopathies Parkinson's disease and multiple system atrophy (MSA) share a common genetic etiology, we performed a candidate single nucleotide polymorphism (SNP) association study of the 384 most associated SNPs in a genome-wide association study of Parkinson's disease in 413 MSA cases and 3,974 control subjects. The 10 most significant SNPs were then replicated in additional 108 MSA cases and 537 controls. SNPs at the SNCA locus were significantly associated with risk for increased risk for the development of MSA (combined p = 5.5 x 10(-12); odds ratio 6.2) [corrected].
Collapse
Affiliation(s)
- Sonja W Scholz
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wenning GK, Stefanova N, Jellinger KA, Poewe W, Schlossmacher MG. Multiple system atrophy: a primary oligodendrogliopathy. Ann Neurol 2008; 64:239-46. [PMID: 18825660 DOI: 10.1002/ana.21465] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To this day, the cause of multiple system atrophy (MSA) remains stubbornly enigmatic. A growing body of observations regarding the clinical, morphological, and biochemical phenotypes of MSA has been published, but the interested student is still left without a clue as to its underlying cause. MSA has long been considered a rare cousin of Parkinson's disease and cerebellar degeneration; it is rich in acronyms but poor in genetic and environmental leads. Because of the worldwide research efforts conducted over the last two decades and the discovery of the alpha-synuclein-encoding SNCA gene as a cause of rare familial Parkinson's disease, the MSA field has seen advances on three fronts: the identification of its principal cellular target, that is, oligodendrocytes; the characterization of alpha-synuclein-rich glial cytoplasmic inclusions as a suitable marker at autopsy; and improved diagnostic accuracy in living patients resulting from detailed clinicopathological studies. The working model of MSA as a primary glial disorder was recently strengthened by the finding of dysregulation in the metabolism of myelin basic protein and p25alpha, a central nervous system-specific phosphoprotein (also called tubulin polymerization promoting protein, TPPP). Intriguingly, in early cases of MSA, the oligodendrocytic changes in myelin basic protein and p25alpha processing were recorded even before formation of glial cytoplasmic inclusions became detectable. Here, we review the evolving concept that MSA may not just be related to Parkinson's disease but also share traits with the family of demyelinating disorders. Although these syndromes vary in their respective cause of oligodendrogliopathy, they have in common myelin disruption that is often followed by axonal dysfunction.
Collapse
Affiliation(s)
- Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
45
|
Song YJC, Lundvig DMS, Huang Y, Gai WP, Blumbergs PC, Højrup P, Otzen D, Halliday GM, Jensen PH. p25alpha relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1291-303. [PMID: 17823288 PMCID: PMC1988878 DOI: 10.2353/ajpath.2007.070201] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
p25alpha is an oligodendroglial protein that can induce aggregation of alpha-synuclein and accumulates in oligodendroglial cell bodies containing fibrillized alpha-synuclein in the neurodegenerative disease multiple system atrophy (MSA). We demonstrate biochemically that p25alpha is a constituent of myelin and a high-affinity ligand for myelin basic protein (MBP), and in situ immunohistochemistry revealed that MBP and p25alpha colocalize in myelin in normal human brains. Analysis of MSA cases reveals dramatic changes in p25alpha and MBP throughout the course of the disease. In situ immunohistochemistry revealed a cellular redistribution of p25alpha immunoreactivity from the myelin to the oligodendroglial cell soma, with no overall change in p25alpha protein concentration using immunoblotting. Concomitantly, an approximately 80% reduction in the concentration of full-length MBP protein was revealed by immunoblotting along with the presence of immunoreactivity for MBP degradation products in oligodendroglia. The oligodendroglial cell bodies in MSA displayed an enlargement along with the relocalization of p25alpha, and this was enhanced after the deposition of alpha-synuclein in the glial cytoplasmic inclusions. Overall, the data indicate that changes in the cellular interactions between MBP and p25alpha occur early in MSA and contribute to abnormalities in myelin and subsequent alpha-synuclein aggregation and the ensuing neuronal degeneration that characterizes this disease.
Collapse
Affiliation(s)
- Yun Ju C Song
- Prince of Wales Medical Research Institute, Randwick, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|