1
|
Mercatelli D, Brugnoli A, Di Maio A, Albanese F, Shimshek DR, Usiello A, Morari M. Enhancement of D1 dopaminergic responses in aged LRRK2 G2019S knock-in mice. Neurobiol Dis 2025; 208:106881. [PMID: 40120831 DOI: 10.1016/j.nbd.2025.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
LRRK2 G2019S is associated with familial and sporadic Parkinson's disease and G2019S knock-in mice represent a valuable model to study early changes of basal ganglia transmission associated with Parkinson's disease. Here, we performed behavioral, biochemical and neurochemical analysis in 3-month-old and 12-month-old G2019S knock-in (KI) mice to investigate whether the G2019S mutation is associated with changes of D1 transmission during ageing. Behavioral analysis revealed no difference across genotypes at 3 months but elevated grooming activity in 12-month-old G2019S KI mice compared to wild-type and LRRK2 kinase-dead mice. Immunoblotting revealed a two-fold increase of the levels of phosphorylated GluA1 subunit of the AMPA receptor in 12-month-old G2019S KI mice challenged with the D1 receptor agonist SKF-81297 (5 mg/Kg), compared to wild-type mice. In vivo dual probe microdialysis revealed elevations of basal striatal and nigral extracellular glutamate levels and reduction of nigral GABA levels in 12-month-old G2019S KI mice. Systemic administration of the D1 receptor agonist SKF-81297 did not affect neurotransmitter release whereas reverse dialysis of the D1 receptor antagonist SCH-23390 (10-1000 nM) elevated striatal GABA release in 12-month-old G2019S KI but not wild-type mice. Intrastriatal SCH-233390 was also associated with a prolonged reduction of glutamate release in the substantia nigra reticulata in both genotypes. Finally, 12-month-old G2019S KI mice showed a more prolonged hypokinetic response to intraperitoneal administration of SCH-23390 (1 mg/Kg) compared to wild-type mice. We conclude that the LRRK2 G2019S mutation is associated with age-dependent enhancement of D1 dopaminergic responses, possibly due to elevated endogenous D1 transmission in striatum, that might be instrumental to sustain motor and cognitive function over ageing and help explain the slower and more benign course of G2019S-associated Parkinson's disease.
Collapse
Affiliation(s)
- Daniela Mercatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, 44121 Ferrara, Italy.
| | - Alberto Brugnoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Anna Di Maio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate "Franco Salvatore", Naples, Italy.
| | - Federica Albanese
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Derya R Shimshek
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland.
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; Laboratory of Translational Neuroscience, CEINGE Biotecnologie Avanzate "Franco Salvatore", Naples, Italy.
| | - Michele Morari
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
2
|
Wang S, Baumert R, Séjourné G, Sivadasan Bindu D, Dimond K, Sakers K, Vazquez L, Moore JL, Tan CX, Takano T, Rodriguez MP, Brose N, Bradley L, Lessing R, Soderling SH, La Spada AR, Eroglu C. PD-linked LRRK2 G2019S mutation impairs astrocyte morphology and synapse maintenance via ERM hyperphosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.04.09.536178. [PMID: 39253496 PMCID: PMC11383028 DOI: 10.1101/2023.04.09.536178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Astrocytes are highly complex cells that mediate critical roles in synapse formation and maintenance by establishing thousands of direct contacts with synapses through their perisynaptic processes. Here, we found that the most common Parkinsonism gene mutation, LRRK2 G2019S, enhances the phosphorylation of the ERM proteins (Ezrin, Radixin, and Moesin), components of the perisynaptic astrocyte processes in a subset of cortical astrocytes. The ERM hyperphosphorylation was accompanied by decreased astrocyte morphological complexity and reduced excitatory synapse density and function. Dampening ERM phosphorylation levels in LRRK2 G2019S mouse astrocytes restored both their morphology and the excitatory synapse density in the anterior cingulate cortex. To determine how LRRK2 mutation impacts Ezrin interactome, we used an in vivo BioID proteomic approach, and we found that astrocytic Ezrin interacts with Atg7, a master regulator of autophagy. The Ezrin/Atg7 interaction is inhibited by Ezrin phosphorylation, thus diminished in LRRK2 G2019S astrocytes. Importantly, the Atg7 function is required to maintain proper astrocyte morphology. Our data provide a molecular pathway through which the LRRK2 G2019S mutation alters astrocyte morphology and synaptic density in a brain-region-specific manner.
Collapse
|
3
|
Carricarte Naranjo C, Marras C, Visanji NP, Cornforth DJ, Sanchez-Rodriguez L, Schüle B, Goldman SM, Estévez M, Stein PK, Jelinek HF, Lang AE, Machado A. Heartbeat signature for predicting motor and non-motor involvement among nonparkinsonian LRRK2 G2019S mutation carriers. Clin Auton Res 2025:10.1007/s10286-024-01104-6. [PMID: 39969690 DOI: 10.1007/s10286-024-01104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/23/2024] [Indexed: 02/20/2025]
Abstract
PURPOSE Increased beat-to-beat heart rate variability (HRV) is a feature of patients with Parkinson's disease (PD) who carry the G2019S mutation in the LRRK2 gene (LRRK2-PD). Since LRRK2 mutations have incomplete penetrance, HRV changes preceding PD conversion would likely be observed only in a subset of LRRK2 non-manifesting carriers (NMC). We aimed to assess HRV in a subgroup of NMC with distinctive characteristics of LRRK2-PD, identified through clustering analysis. METHODS HRV measures derived from 300 normal heartbeat intervals extracted from the electrocardiograms of 25 NMC, 32 related non-carriers (RNC), 27 unrelated healthy controls, and 14 patients with LRRK2-PD were analyzed. Clinical symptoms were evaluated using questionnaires and scales, and three NMC subgroups were identified using a k-means cluster analysis on the basis of the deceleration capacity of heart rate (DC) and Rényi entropy. Standard and advanced HRV measures were compared using multiple regression analysis, controlling for age, sex, and mean heart rate. RESULTS Beat-to-beat HRV markers were significantly increased in a subgroup of seven NMC (NMC2, 28%) compared with RNC and controls. Increased irregularity and DC were also verified in the NMC2 compared with controls, and were typical traits in both the NMC2 and RNC. Overall, the HRV profile of NMC2 was comparable to that of patients with LRRK2-PD. NMC2 further exhibited greater motor and non-motor traits than the other NMC, RNC, and controls. CONCLUSIONS Our results confirmed that HRV characteristics of LRRK2-PD are also found in a subset of NMC displaying clinical traits of LRRK2-PD. Further research is needed to clarify whether higher HRV represents a LRRK2-PD prodromal manifestation.
Collapse
Affiliation(s)
| | - Connie Marras
- Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Naomi P Visanji
- Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - David J Cornforth
- Member of the National Coalition of Independent Scholars (NCIS), Brattleboro, VT, USA
| | | | - Birgitt Schüle
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Samuel M Goldman
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Mario Estévez
- Departamento de Neurofisiología Clínica, Instituto de Neurología y Neurocirugía, La Habana, Cuba
| | - Phyllis K Stein
- School of Medicine, Washington University, St. Louis, MO, USA
| | - Herbert F Jelinek
- Department of Medical Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, UAE
| | - Anthony E Lang
- Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Andrés Machado
- Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| |
Collapse
|
4
|
Who is at Risk of Parkinson Disease? Refining the Preclinical Phase of GBA1 and LRRK2 Variant Carriers: a Clinical, Biochemical, and Imaging Approach. Curr Neurol Neurosci Rep 2023; 23:121-130. [PMID: 36881256 PMCID: PMC10119235 DOI: 10.1007/s11910-023-01259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Genetic variants in GBA1 and LRRK2 genes are the commonest genetic risk factor for Parkinson disease (PD); however, the preclinical profile of GBA1 and LRRK2 variant carriers who will develop PD is unclear. This review aims to highlight the more sensitive markers that can stratify PD risk in non-manifesting GBA1 and LRRK2 variant carriers. RECENT FINDINGS Several case-control and a few longitudinal studies evaluated clinical, biochemical, and neuroimaging markers within cohorts of non-manifesting carriers of GBA1 and LRRK2 variants. Despite similar levels of penetrance of PD in GBA1 and LRRK2 variant carriers (10-30%), these individuals have distinct preclinical profiles. GBA1 variant carriers at higher risk of PD can present with prodromal symptoms suggestive of PD (hyposmia), display increased α-synuclein levels in peripheral blood mononuclear cells, and show dopamine transporter abnormalities. LRRK2 variant carriers at higher risk of PD might show subtle motor abnormalities, but no prodromal symptoms, higher exposure to some environmental factors (non-steroid anti-inflammatory drugs), and peripheral inflammatory profile. This information will help clinicians tailor appropriate screening tests and counseling and facilitate researchers in the development of predictive markers, disease-modifying treatments, and selection of healthy individuals who might benefit from preventive interventions.
Collapse
|
5
|
Moreira-Júnior RE, Souza RM, de Carvalho JG, Bergamini JP, Brunialti-Godard AL. Possible association between the lrrk2 gene and anxiety behavior: a systematic literature review. J Neurogenet 2022; 36:98-107. [PMID: 36415932 DOI: 10.1080/01677063.2022.2144293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alterations to the LRRK2 gene have been associated with Parkinson's disease and alcohol consumption in animals and humans. Furthermore, these disorders are strongly related to anxiety disorders (ADs). Thus, we investigated how the LRRK2 gene might influence anxiety in humans and mice. We elaborated a systematic review based on the PRISMA Statement of studies that investigated levels of anxiety in animal or human models with alterations in the LRRK2 gene. The search was conducted in the PubMed, Scopus, and Web of Science databases, and in reference lists with descriptors related to ADs and the LRRK2. From the 62 articles assessed for eligibility, 16 were included: 11 conducted in humans and seven, in mice. Lrrk2 KO mice and the LRRK2 G2019S, LRRK2 R1441G, and LRRK2 R1441C variants were addressed. Five articles reported an increase in anxiety levels concerning the LRRK2 variants. Decreased anxiety levels were observed in two articles, one focusing on the LRRK2 G2019S and the other, on the Lrrk2 KO mice. Eight other articles reported no differences in anxiety levels in individuals with Lrrk2 alterations compared to their healthy controls. This study discusses a possible influence between the LRRK2 gene and anxiety, adding information to the existing knowledge respecting the influence of genetics on anxiety.
Collapse
Affiliation(s)
- R E Moreira-Júnior
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - R M Souza
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - J G de Carvalho
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - J P Bergamini
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - A L Brunialti-Godard
- Department of Genetics, Ecology and Evolution, Laboratory of Animal and Human Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Huang J, Cheng Y, Li C, Shang H. Genetic heterogeneity on sleep disorders in Parkinson's disease: a systematic review and meta-analysis. Transl Neurodegener 2022; 11:21. [PMID: 35395825 PMCID: PMC8991652 DOI: 10.1186/s40035-022-00294-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
A growing amount of evidence has indicated contributions of variants in causative genes of Parkinson’s disease (PD) to the development of sleep disturbance in PD and prodromal PD stages. In this article, we aimed to investigate the role of genetics in sleep disorders in PD patients and asymptomatic carriers at prodromal stage of PD. A systematic review and meta-analysis of observational studies was conducted based on the MEDLINE, EMBASE and PsychINFO databases. A pooled effect size was calculated by odds ratio (OR) and standard mean difference (SMD). Forty studies were selected for quantitative analysis, including 17 studies on glucocerebrosidase (GBA), 25 studies on Leucine-rich repeat kinase 2 (LRRK2) and 7 on parkin (PRKN) genes, and 3 studies on alpha-synuclein gene (SNCA) were used for qualitative analysis. Patients with PD carrying GBA variants had a significantly higher risk for rapid-eye-movement behavior disorders (RBD) (OR, 1.82) and higher RBD Screening Questionnaire scores (SMD, 0.33). Asymptomatic carriers of GBA variants had higher severity of RBD during follow-up. Patients with PD carrying the LRRK2 G2019S variant had lower risk and severity of RBD compared with those without LRRK2 G2019S. Variants of GBA, LRRK2 and PRKN did not increase or decrease the risk and severity of excessive daytime sleepiness and restless legs syndrome in PD. Our findings suggest that the genetic heterogeneity plays a role in the development of sleep disorders, mainly RBD, in PD and the prodromal stage of PD.
Collapse
Affiliation(s)
- Jingxuan Huang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfan Cheng
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunyu Li
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huifang Shang
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Novello S, Mercatelli D, Albanese F, Domenicale C, Brugnoli A, D'Aversa E, Vantaggiato S, Dovero S, Murtaj V, Presotto L, Borgatti M, Shimshek DR, Bezard E, Moresco RM, Belloli S, Morari M. In vivo susceptibility to energy failure parkinsonism and LRRK2 kinase activity. Neurobiol Dis 2021; 162:105579. [PMID: 34871735 DOI: 10.1016/j.nbd.2021.105579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/08/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022] Open
Abstract
The G2019S mutation of LRRK2 represents a risk factor for idiopathic Parkinson's disease. Here, we investigate whether LRRK2 kinase activity regulates susceptibility to the environmental toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). G2019S knock-in mice (bearing enhanced kinase activity) showed greater nigro-striatal degeneration compared to LRRK2 knock-out, LRRK2 kinase-dead and wild-type mice following subacute MPTP treatment. LRRK2 kinase inhibitors PF-06447475 and MLi-2, tested under preventive or therapeutic treatments, protected against nigral dopamine cell loss in G2019S knock-in mice. MLi-2 also rescued striatal dopaminergic terminal degeneration in both G2019S knock-in and wild-type mice. Immunoblot analysis of LRRK2 Serine935 phosphorylation levels confirmed target engagement of LRRK2 inhibitors. However, MLi-2 abolished phosphoSerine935 levels in the striatum and midbrain of both wild-type and G2019S knock-in mice whereas PF-06447475 partly reduced phosphoSerine935 levels in the midbrain of both genotypes. In vivo and ex vivo uptake of the 18-kDa translocator protein (TSPO) ligand [18F]-VC701 revealed a similar TSPO binding in MPTP-treated wild-type and G2019S knock-in mice which was consistent with an increased GFAP striatal expression as revealed by Real Time PCR. We conclude that LRRK2 G2019S, likely through enhanced kinase activity, confers greater susceptibility to mitochondrial toxin-induced parkinsonism. LRRK2 kinase inhibitors are neuroprotective in this model.
Collapse
Affiliation(s)
- Salvatore Novello
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Daniela Mercatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, 44121 Ferrara, Italy.
| | - Federica Albanese
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Chiara Domenicale
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Alberto Brugnoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| | - Elisabetta D'Aversa
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Silvia Vantaggiato
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Sandra Dovero
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| | - Valentina Murtaj
- Nuclear Medicine Department, San Raffaele Scientific Institute, Milan, Italy; PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy; Medicine and Surgery Department, University of Milano Bicocca, Monza, Italy.
| | - Luca Presotto
- Nuclear Medicine Department, San Raffaele Scientific Institute, Milan, Italy.
| | - Monica Borgatti
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Derya R Shimshek
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland.
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| | - Rosa Maria Moresco
- Nuclear Medicine Department, San Raffaele Scientific Institute, Milan, Italy; Medicine and Surgery Department, University of Milano Bicocca, Monza, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.
| | - Sara Belloli
- Nuclear Medicine Department, San Raffaele Scientific Institute, Milan, Italy; Medicine and Surgery Department, University of Milano Bicocca, Monza, Italy; Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy.
| | - Michele Morari
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
8
|
Pachi I, Koros C, Simitsi AM, Papadimitriou D, Bougea A, Prentakis A, Papagiannakis N, Bozi M, Antonelou R, Angelopoulou E, Beratis I, Stamelou M, Trapali XG, Papageorgiou SG, Stefanis L. Apathy: An underestimated feature in GBA and LRRK2 non-manifesting mutation carriers. Parkinsonism Relat Disord 2021; 91:1-8. [PMID: 34425330 DOI: 10.1016/j.parkreldis.2021.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Higher prevalence of motor and non-motor features has been observed in non-manifesting mutation carriers of Parkinson's Disease (PD) compared to Healthy Controls (HC). The aim was to detect the differences between GBA and LRRK2 mutation carriers without PD and HC on neuropsychiatric symptoms. METHODS This is a cross-sectional retrospective study of non-manifesting GBA and LRRK2 mutation carriers and HC enrolled into Parkinson's Progression Markers Initiative (PPMI). Data extracted from the PPMI database contained: demographics and performance in MoCA scale and MDS-UPDRS scale part 1A (neuropsychiatric symptoms). All six features were treated as both continuous (MDS-UPDRS individual scores) and categorical variables (MDS-UPDRS individual score>0 and MDS-UPDRS individual score = 0). Logistic regression analyses were applied to evaluate the association between mutation carrying status and neuropsychiatric symptoms. RESULTS In this study, the neuropsychiatric evaluation was performed in 285 GBA non-manifesting carriers, 369 LRRK2 non-manifesting carriers and 195 HC. We found that GBA non-manifesting mutation carriers were 2.6 times more likely to present apathy compared to HC, even after adjustment for covariates (adjusted OR = 2.6, 95% CI = 1.1-6.3, p = 0.031). The higher percentage of apathy for LRRK2 carriers compared to HC was marginally non-significant. GBA carriers were 1.5 times more likely to develop features of anxiety compared to LRRK2 carriers (adjusted OR = 1.5, 95% CI = 1.1-2.2, p = 0.015). Other neuropsychiatric symptoms, such as psychotic or depressive manifestations, did not differ between groups. CONCLUSION Symptoms of apathy could be present in the prediagnostic period of non-manifesting mutation carriers, especially, GBA. Longitudinal data, including detailed neuropsychiatric evaluation and neuroimaging, would be essential to further investigate the pathophysiological basis of this finding.
Collapse
Affiliation(s)
- Ioanna Pachi
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Koros
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina M Simitsi
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Bozi
- 2nd Department of Neurology, "Attikon" University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roubina Antonelou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ion Beratis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Stamelou
- Parkinson's Disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece; School of Medicine, European University of Cyprus, Nicosia, Cyprus
| | | | - Sokratis G Papageorgiou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
9
|
Chittoor-Vinod VG, Nichols RJ, Schüle B. Genetic and Environmental Factors Influence the Pleomorphy of LRRK2 Parkinsonism. Int J Mol Sci 2021; 22:1045. [PMID: 33494262 PMCID: PMC7864502 DOI: 10.3390/ijms22031045] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/25/2022] Open
Abstract
Missense mutations in the LRRK2 gene were first identified as a pathogenic cause of Parkinson's disease (PD) in 2004. Soon thereafter, a founder mutation in LRRK2, p.G2019S (rs34637584), was described, and it is now estimated that there are approximately 100,000 people worldwide carrying this risk variant. While the clinical presentation of LRRK2 parkinsonism has been largely indistinguishable from sporadic PD, disease penetrance and age at onset can be quite variable. In addition, its neuropathological features span a wide range from nigrostriatal loss with Lewy body pathology, lack thereof, or atypical neuropathology, including a large proportion of cases with concomitant Alzheimer's pathology, hailing LRRK2 parkinsonism as the "Rosetta stone" of parkinsonian disorders, which provides clues to an understanding of the different neuropathological trajectories. These differences may result from interactions between the LRRK2 mutant protein and other proteins or environmental factors that modify LRRK2 function and, thereby, influence pathobiology. This review explores how potential genetic and biochemical modifiers of LRRK2 function may contribute to the onset and clinical presentation of LRRK2 parkinsonism. We review which genetic modifiers of LRRK2 influence clinical symptoms, age at onset, and penetrance, what LRRK2 mutations are associated with pleomorphic LRRK2 neuropathology, and which environmental modifiers can augment LRRK2 mutant pathophysiology. Understanding how LRRK2 function is influenced and modulated by other interactors and environmental factors-either increasing toxicity or providing resilience-will inform targeted therapeutic development in the years to come. This will allow the development of disease-modifying therapies for PD- and LRRK2-related neurodegeneration.
Collapse
Affiliation(s)
| | - R. Jeremy Nichols
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Birgitt Schüle
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| |
Collapse
|
10
|
Chase BA, Markopoulou K. Olfactory Dysfunction in Familial and Sporadic Parkinson's Disease. Front Neurol 2020; 11:447. [PMID: 32547477 PMCID: PMC7273509 DOI: 10.3389/fneur.2020.00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022] Open
Abstract
This minireview discusses our current understanding of the olfactory dysfunction that is frequently observed in sporadic and familial forms of Parkinson's disease and parkinsonian syndromes. We review the salient characteristics of olfactory dysfunction in these conditions, discussing its prevalence and characteristics, how neuronal processes and circuits are altered in Parkinson's disease, and what is assessed by clinically used measures of olfactory function. We highlight how studies of monogenic Parkinson's disease and investigations in ethnically diverse populations have contributed to understanding the mechanisms underlying olfactory dysfunction. Furthermore, we discuss how imaging and system-level approaches have been used to understand the pathogenesis of olfactory dysfunction. We discuss the challenging, remaining gaps in understanding the basis of olfactory dysfunction in neurodegeneration. We propose that insights could be obtained by following longitudinal cohorts with familial forms of Parkinson's disease using a combination of approaches: a multifaceted longitudinal assessment of olfactory function during disease progression is essential to identify not only how dysfunction arises, but also to address its relationship to motor and non-motor Parkinson's disease symptoms. An assessment of cohorts having monogenic forms of Parkinson's disease, available within the Genetic Epidemiology of Parkinson's Disease (GEoPD), as well as other international consortia, will have heuristic value in addressing the complexity of olfactory dysfunction in the context of the neurodegenerative process. This will inform our understanding of Parkinson's disease as a multisystem disorder and facilitate the more effective use of olfactory dysfunction assessment in identifying prodromal Parkinson's disease and understanding disease progression.
Collapse
Affiliation(s)
- Bruce A. Chase
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Neurology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
Simonet C, Schrag A, Lees AJ, Noyce AJ. The motor prodromes of parkinson's disease: from bedside observation to large-scale application. J Neurol 2019; 268:2099-2108. [PMID: 31802219 PMCID: PMC8179909 DOI: 10.1007/s00415-019-09642-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
There is sufficient evidence that the pathological process that causes Parkinson's disease begins years before the clinical diagnosis is made. Over the last 15 years, there has been much interest in the existence of a prodrome in some patients, with a particular focus on non-motor symptoms such as reduced sense of smell, REM-sleep disorder, depression, and constipation. Given that the diagnostic criteria for Parkinson's disease depends on the presence of bradykinesia, it is somewhat surprising that there has been much less research into the possibility of subtle motor dysfunction as a pre-diagnostic pointer. This review will focus on early motor features and provide some advice on how to detect and measure them.
Collapse
Affiliation(s)
- C Simonet
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - A Schrag
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - A J Lees
- Reta Lila Weston Institute of Neurological Studies, University College London, London, UK
| | - A J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK. .,Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
12
|
Ren C, Ding Y, Wei S, Guan L, Zhang C, Ji Y, Wang F, Yin S, Yin P. G2019S Variation in LRRK2: An Ideal Model for the Study of Parkinson's Disease? Front Hum Neurosci 2019; 13:306. [PMID: 31551736 PMCID: PMC6738350 DOI: 10.3389/fnhum.2019.00306] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and has plagued humans for more than 200 years. The etiology and detailed pathogenesis of PD is unclear, but is currently believed to be the result of the interaction between genetic and environmental factors. Studies have found that PD patients with the LRRK2:G2019S variation have the typical clinical manifestations of PD, which may be familial or sporadic, and have age-dependent pathogenic characteristics. Therefore, the LRRK2:G2019S variation may be an ideal model to study the interaction of multiple factors such as genetic, environmental and natural aging factors in PD in the future. This article reviewed the progress of LRRK2:G2019S studies in PD research in order to provide new research ideas and directions for the pathogenesis and treatment of PD.
Collapse
Affiliation(s)
- Chao Ren
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu Ding
- Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shizhuang Wei
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Lina Guan
- Department of Neurosurgical Intensive Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Caiyi Zhang
- Department of Emergency and Rescue Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yongqiang Ji
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Shaohua Yin
- Department of Nursing, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Peiyuan Yin
- Department of Blood Supply, Yantai Center Blood Station, Yantai, China
| |
Collapse
|
13
|
Jacob Y, Rosenberg-Katz K, Gurevich T, Helmich RC, Bloem BR, Orr-Urtreger A, Giladi N, Mirelman A, Hendler T, Thaler A. Network abnormalities among non-manifesting Parkinson disease related LRRK2 mutation carriers. Hum Brain Mapp 2019; 40:2546-2555. [PMID: 30793410 DOI: 10.1002/hbm.24543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/13/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Non-manifesting carriers (NMC) of the G2019S mutation in the LRRK2 gene represent an "at risk" group for future development of Parkinson's disease (PD) and have demonstrated task related fMRI changes. However, resting-state networks have received less research focus, thus this study aimed to assess the integrity of the motor, default mode (DMN), salience (SAL), and dorsal attention (DAN) networks among this unique population by using two different connectivity measures: interregional functional connectivity analysis and Dependency network analysis (DEP NA). Machine learning classification methods were used to distinguish connectivity between the two groups of participants. Forty-four NMC and 41 non-manifesting non-carriers (NMNC) participated in this study; while no behavioral differences on standard questionnaires could be detected, NMC demonstrated lower connectivity measures in the DMN, SAL, and DAN compared to NMNC but not in the motor network. Significant correlations between NMC connectivity measures in the SAL and attention were identified. Machine learning classification separated NMC from NMNC with an accuracy rate above 0.8. Reduced integrity of non-motor networks was detected among NMC of the G2019S mutation in the LRRK2 gene prior to identifiable changes in connectivity of the motor network, indicating significant non-motor cerebral changes among populations "at risk" for future development of PD.
Collapse
Affiliation(s)
- Yael Jacob
- Translational and Molecular Imaging Institute, Icahn School of Medicine, Mount Sinai Medical Center, New York, New York.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel
| | | | - Tanya Gurevich
- Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.,Department of Neurology and Parkinson Centre, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands.,Department of Neurology and Parkinson Centre, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Avi Orr-Urtreger
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Tel-Aviv Medical Center, Genetic Institute, Tel-Aviv, Israel
| | - Nir Giladi
- Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Mirelman
- Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Talma Hendler
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Avner Thaler
- Sagol Brain Institute Tel-Aviv Medical Center, Tel-Aviv, Israel.,Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
14
|
Rees RN, Noyce AJ, Schrag A. The prodromes of Parkinson's disease. Eur J Neurosci 2018; 49:320-327. [PMID: 30447019 PMCID: PMC6492156 DOI: 10.1111/ejn.14269] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/26/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Whilst the diagnosis of Parkinson's disease (PD) relies on the motor triad of bradykinesia, rigidity and tremor, the underlying pathological process starts many years before these signs are overt. In this prodromal phase of PD, a diverse range of non‐motor and motor features can occur. Individually they do not allow a diagnosis of PD, but when considered together, they reflect the gradual development of the clinical syndrome. Different subgroups within the prodromal phase may exist and reflect different underlying pathology. Here, we summarise the evidence on the prodromal phase of PD in patient groups at increased risk of PD with well described prodromal features: patients with idiopathic rapid eye movement sleep behaviour disorder, patients with idiopathic anosmia and families with monogenic mutations that are closely linked to PD pathology. In addition, we discuss the information on prodromal features from ongoing studies aimed at detecting prodromal PD in the general population. It is likely that better delineation of the clinical prodromes of PD and their progression in these high‐risk groups will improve understanding of the underlying pathophysiology.
Collapse
Affiliation(s)
- Richard Nathaniel Rees
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Alastair John Noyce
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK.,Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Anette Schrag
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| |
Collapse
|