1
|
Al Sari RR, Thalib HI, Imad SS, Khan S, Haidar S, Al Zoabi BMK, Fadda SH, Fuadah S, Alwan HA, Alghobaishi A. A comparative exploration of monoamine neurotransmitter transport disorders: mechanisms, clinical manifestations, and therapeutic approaches. J Med Life 2025; 18:188-195. [PMID: 40291937 PMCID: PMC12022732 DOI: 10.25122/jml-2024-0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 04/30/2025] Open
Abstract
Neurotransmitters play important roles in brain function, influencing cognition, movement, and behavior. Disruption in neurotransmitter biosynthesis, expression, transport, or function due to genetic mutations can lead to various neurological and psychiatric disorders with variable age of onset. Catecholamines like dopamine, norepinephrine, epinephrine, and serotonin are key monoamines transported by specific transporters, including the dopamine transporter (DAT) and the vesicular monoamine transporter 2 (VMAT2). Disorders that involve monoamine neurotransmitter transport include dopamine transporter deficiency syndrome (DTDS) and brain dopamine-serotonin vesicular disorders (PKDYS2). These rare syndromes manifest with movement disorders and neuropsychiatric symptoms. DTDS results from a mutation in the SLC6A3 gene affecting dopamine reuptake, while PKDYS2 involves a mutation in the SLC18A2 gene impairing the transport of dopamine and serotonin. This review provides a comparative analysis of the diagnostic approaches, the management strategies, and the outcomes for these distinct disorders.
Collapse
Key Words
- 5-HIAA, 5-Hydroxyindoleacetic Acid
- AADC, Aromatic L-Amino Acid Decarboxylase
- CSF, Cerebrospinal Fluid
- DA, Dopamine
- DAT, Dopamine Transporter
- DTDS
- DTDS, Dopamine Transporter Deficiency Syndrome
- EEG, Electroencephalography
- ENMG, Electroneuromyography and Nerve Conduction Studies
- GAT-1, Gamma-Aminobutyric Acid (GABA) Transporter 1
- HVA, Homovanillic Acid
- MAO-A, Monoamine Oxidase A
- MAO-B, Monoamine Oxidase B
- NE, Norepinephrine
- PKDYS1, Infantile-Onset Parkinsonism Dystonia 1
- PKDYS2
- PKDYS2, Infantile-Onset Parkinsonism Dystonia 2
- SNP, Single Nucleotide Polymorphism
- VMAT2, Vesicular Monoamine Transporter 2
- WES, Whole Exome Sequencing
- dopamine transporter
- monoamine neurotransmitter transporters
Collapse
Affiliation(s)
- Rand Redwan Al Sari
- Department of General Medicine and Surgery, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Husna Irfan Thalib
- Department of General Medicine and Surgery, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Syeda Sobiah Imad
- Department of Medicine and Surgery, AlFaisal University, Riyadh, Saudi Arabia
| | - Sariya Khan
- Department of General Medicine and Surgery, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Shyma Haidar
- Department of General Medicine and Surgery, Batterjee Medical College, Jeddah, Saudi Arabia
| | | | - Sahar Hamed Fadda
- Department of General Medicine and Surgery, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Samratul Fuadah
- Department of General Medicine and Surgery, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Hassan Abu Alwan
- Department of General Medicine Practice and Surgery, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
2
|
Makharia A, Garg D, Agarwal A, Radhakrishnan DM, Pandit AK, Srivastava AK. From writer's cramp to blepharoclonus: An atypical journey with a novel KMT2B variant. Parkinsonism Relat Disord 2024; 126:107076. [PMID: 39068760 DOI: 10.1016/j.parkreldis.2024.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Archita Makharia
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Divyani Garg
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - Ayush Agarwal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Awadh Kishor Pandit
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
3
|
Keller Sarmiento IJ, Bustos BI, Blackburn J, Hac NEF, Ruzhnikov M, Monroe M, Levy RJ, Kinsley L, Li M, Silani V, Lubbe SJ, Krainc D, Mencacci NE. De novo FRMD5 Missense Variants in Patients with Childhood-Onset Ataxia, Prominent Nystagmus, and Seizures. Mov Disord 2024; 39:1231-1236. [PMID: 38576116 DOI: 10.1002/mds.29791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND FRMD5 variants were recently identified in patients with developmental delay, ataxia, and eye movement abnormalities. OBJECTIVES We describe 2 patients presenting with childhood-onset ataxia, nystagmus, and seizures carrying pathogenic de novo FRMD5 variants. Weighted gene co-expression network analysis (WGCNA) was performed to gain insights into the function of FRMD5 in the brain. METHODS Trio-based whole-exome sequencing was performed in both patients, and CoExp web tool was used to conduct WGCNA. RESULTS Both patients presented with developmental delay, childhood-onset ataxia, nystagmus, and seizures. Previously unreported findings were diffuse choreoathetosis and dystonia of the hands (patient 1) and areas of abnormal magnetic resonance imaging signal in the white matter (patient 2). WGCNA showed that FRMD5 belongs to gene networks involved in neurodevelopment and oligodendrocyte function. CONCLUSIONS We expanded the phenotype of FRMD5-related disease and shed light on its role in brain function and development. We recommend including FRMD5 in the genetic workup of childhood-onset ataxia and nystagmus. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ignacio J Keller Sarmiento
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joanna Blackburn
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicholas E F Hac
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Maura Ruzhnikov
- Neurology and Neurological Sciences, Division of Child Neurology, Stanford University and Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Matthea Monroe
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Rebecca J Levy
- Neurology and Neurological Sciences, Division of Child Neurology, Stanford University and Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Lisa Kinsley
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Megan Li
- Invitae Corporation, San Francisco, California, USA
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Ludlam WG, Soliani L, Domínguez-Carral J, Cordelli DM, Marchiani V, Gorría-Redondo N, Aguilera-Albesa S, Martemyanov KA, Ortigoza-Escobar JD. Diverse faces of GNAO1: mild forms in epilepsy and autism. J Neurol 2024; 271:3777-3781. [PMID: 38724739 DOI: 10.1007/s00415-024-12418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 07/10/2024]
Affiliation(s)
- William Grant Ludlam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Luca Soliani
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna UOC Neuropsichiatria dell'età Pediatrica, Bologna, Italy
- Dipartimento Di Scienze Mediche E Chirurgiche (DIMEC), Università Di Bologna, Bologna, Italy
| | - Jana Domínguez-Carral
- Epilepsy Unit, Department of Child Neurology, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Duccio Maria Cordelli
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna UOC Neuropsichiatria dell'età Pediatrica, Bologna, Italy
- Dipartimento Di Scienze Mediche E Chirurgiche (DIMEC), Università Di Bologna, Bologna, Italy
| | - Valentina Marchiani
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna UOC Neuropsichiatria dell'età Pediatrica, Bologna, Italy
| | - Nerea Gorría-Redondo
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitario de Navarra, Pamplona, Spain
- Navarrabiomed Biomedical Research Center, Pamplona, Spain
| | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitario de Navarra, Pamplona, Spain
- Navarrabiomed Biomedical Research Center, Pamplona, Spain
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| | - Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Department of Child Neurology, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
- U-703 Center for Biomedical Research On Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain.
- European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain.
- Pediatric Neurology Department, Institut de Recerca, Hospital Sant Joan de Déu Barcelona, Passeig Sant Joan de Déu 2, 08950, Barcelona, Spain.
| |
Collapse
|
5
|
Sugeno N, Kumada S, Kashii H, Ikezawa J, Kawarai T, Nakamura T, Miyata A, Ishiyama S, Sato K, Yoshida S, Sekiguchi H, Hamanaka K, Miyatake S, Miyake N, Matsumoto N, Akagawa H, Kosaki K, Yoshihashi H, Hasegawa T, Aoki M. Reduced histone H3K4 trimethylation in oral mucosa of patients with DYT-KMT2B. Parkinsonism Relat Disord 2024; 124:107018. [PMID: 38810319 DOI: 10.1016/j.parkreldis.2024.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND DYT-KMT2B, also known as DYT28, is a childhood-onset hereditary dystonia caused by KMT2B mutation. The pathogenesis of DYT-KMT2B involves haploinsufficiency of KMT2B, an enzyme that catalyzes specific histone methylation (H3K4me3). Dysmorphic features in patients with DYT-KMT2B suggest that KMT2B dysfunction may extend beyond the neuronal system. Therefore, valuable diagnostic insights may be obtained from readily available tissue samples. OBJECTIVES To explore the altered H3K4me3 levels in non-neural tissue of DYT-KMT2B patients. METHODS A database analysis was performed to determine in which parts of the body and in which cells KMT2B is highly expressed. Twelve clinically and genetically diagnosed patients with DYT-KMT2B and 12 control subjects participated in this study. Oral mucosa-derived purified histone proteins were analyzed using Western blotting with anti-H3K4me3 and anti-H4 antibodies. RESULTS Higher expression of KMT2B was observed in oral keratinocytes and gingival fibroblasts, constituting the oral mucosa. In oral mucosa analyses, DYT-KMT2B cases exhibited markedly reduced H3K4me3 levels compared with the controls. Using a cutoff window of 0.90-0.98, the H3K4me3/H4 expression ratio was able to distinguish patient groups. CONCLUSIONS Oral mucosa H3K4me3 analysis is currently not sufficient as a diagnostic tool for DYT-KMT2B, but has the advantage for screening test since it is a non-invasive means.
Collapse
Affiliation(s)
- Naoto Sugeno
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan.
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, 183-0042, Japan
| | - Hirofumi Kashii
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, 183-0042, Japan
| | - Jun Ikezawa
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, 183-0042, Japan
| | - Toshitaka Kawarai
- Department of Clinical Neuroscience, Tokushima University, Tokushima, 770-0042, Japan; Department of Neurology, Harima-Himeji General Medical Center, Himeji, Hyogo, 670-8560, Japan
| | - Takaaki Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Ako Miyata
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Shun Ishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Kazuki Sato
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Shun Yoshida
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Hutoshi Sekiguchi
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Kanagawa, 236-0004, Japan
| | - Kohei Hamanaka
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Kanagawa, 236-0004, Japan
| | - Satoko Miyatake
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Kanagawa, 236-0004, Japan
| | - Noriko Miyake
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Kanagawa, 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Kanagawa, 236-0004, Japan
| | - Hiroyuki Akagawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroshi Yoshihashi
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo, 183-8561, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan; Department of Neurology, National Health Organization Sendai Nishitaga Hospital, Sendai, Miyagi, 982-8555, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
6
|
Duga V, Giossi R, Romito LM, Stanziano M, Levi V, Panteghini C, Zorzi G, Nardocci N. Long-Term Globus Pallidus Internus Deep Brain Stimulation in Pediatric Non-Degenerative Dystonia: A Cohort Study and a Meta-Analysis. Mov Disord 2024; 39:1131-1144. [PMID: 38646731 DOI: 10.1002/mds.29815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND The evidence in the effectiveness of deep brain stimulation in children with medication-refractory non-degenerative monogenic dystonia is heterogeneous and long-term results are sparse. OBJECTIVES The objective is to describe long-term outcomes in a single-center cohort and compare our results with a meta-analysis cohort form literature. METHODS We performed a retrospective single-center cohort study including consecutive pediatric patients with non-degenerative genetic or idiopathic dystonia treated with globus pallidus internus deep brain stimulation at our center and a systematic review and individual-patient data meta-analysis with the same inclusion criteria. The primary outcome was the change from baseline in the Burke-Fahn-Marsden Dystonia Rating Scale-movement (BFMDRS-M) score. RESULTS The clinical cohort included 25 patients with a mean study follow-up of 11.4 years. The meta-analysis cohort included 224 patients with a mean follow-up of 3 years. Overall, the BFMDRS-M mean improvements at 1 year and at last follow-up were 41% and 33% in the clinical cohort and 58.9% and 57.2% in the meta-analysis cohort, respectively. TOR1A-dystonia showed the greatest and most stable BFMDRS-M improvement in both cohorts at 1 year and at last follow-up (76.3% and 74.3% in the clinical cohort; 69.6% and 67.3% in the meta-analysis cohort), followed by SGCE-dystonia (63% and 63.9% in the meta-analysis cohort). THAP1-dystonia (70.1% and 29.8% in the clinical cohort; 52.3% and 42.0% in the meta-analysis cohort) and KMT2B-dystonia (33.3% and 41.3% in the clinical cohort; 38.0% and 26.7% in the meta-analysis cohort) showed a less pronounced or sustained response. CONCLUSION Globus pallidus deep brain stimulation long-term treatment seems effective with a possible gene-specific differential effect. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Valentina Duga
- Child Neuropsychiatry Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Child and Adolescent Neuropsychiatric Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Riccardo Giossi
- Poison Control Center and Clinical Pharmacology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Luigi Michele Romito
- Movement Disorders Unit, Neurology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Mario Stanziano
- Neuroradiology Unit, Department of Technology and Diagnosis, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Vincenzo Levi
- Functional Neurosurgery Unit, Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Celeste Panteghini
- Molecular Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giovanna Zorzi
- Child Neuropsychiatry Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Nardo Nardocci
- Child Neuropsychiatry Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
7
|
Bouhamdani N, McConkey H, Leblanc A, Sadikovic B, Amor MB. Diagnostic utility of DNA methylation episignature analysis for early diagnosis of KMT2B-related disorders: case report. Front Genet 2024; 15:1346044. [PMID: 38425714 PMCID: PMC10902455 DOI: 10.3389/fgene.2024.1346044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The lysine methyltransferase 2B (KMT2B) gene product is important for epigenetic modifications associated with active gene transcription in normal development and in maintaining proper neural function. Pathogenic variants in KMT2B have been associated with childhood-onset Dystonia-28 and Intellectual developmental disorder, autosomal dominant 68 (MRD 68) for cases of neurodevelopmental impairment without dystonia (DYT28; OMIM 617284 and MRD68; OMIM 619934, respectively). Since its first description in 2016, approximately one hundred KMT2B genetic variants have been reported with heterogeneous phenotypes, including atypical patterns of dystonia evolution and non-dystonic neurodevelopmental phenotypes. KMT2B-related disorders share many overlapping phenotypic characteristics with other neurodevelopmental disorders and delayed dystonia, that can appear later in childhood, often delaying clinical diagnosis. Furthermore, conventional genetic testing may not always provide actionable information (e.g., gene panel selection based on early clinical presentation or variants of uncertain significance), which prevents patients and families from obtaining early access to treatments and support. Herein, we describe the early diagnosis of KMT2B-related neurodevelopmental disorder by DNA methylation episignature testing in a 4-year-old patient without features of dystonia at diagnosis, which is reported to develop in more than 80% of KMT2B-related disorder cases. The proband, a 4-year-old female of Jewish-Israeli descent, presented with speech delay, microcephaly, poor weight gain, attention-deficit and hyperactivity disorder, dysmorphism, intellectual disabilities and joint hyperlaxity, but presented no signs of dystonia at initial evaluation. Episignature screening in this pre-symptomatic patient enabled accurate genetic diagnosis and timely and actionable intervention earlier in the natural history of Childhood-onset Dystonia-28.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - Amélie Leblanc
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - Mouna Ben Amor
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|
8
|
Dhar D, Holla VV, Kumari R, Sriram N, Saini J, Yadav R, Pandey A, Kamble N, Muthusamy B, Pal PK. KMT2B-Related Dystonia in Indian Patients With Literature Review and Emphasis on Asian Cohort. J Mov Disord 2023; 16:285-294. [PMID: 37309110 PMCID: PMC10548078 DOI: 10.14802/jmd.23035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023] Open
Abstract
OBJECTIVE aaMutations in the KMT2B gene have been identified in patients previously diagnosed with idiopathic dystonia. Literature on KMT2B-related dystonia is sparse in the Indian and Asian populations. METHODS aaWe report seven patients with KMT2B-related dystonia studied prospectively from May 2021 to September 2022. Patients underwent deep clinical phenotyping and genetic testing by whole-exome sequencing (WES). A systematic literature search was performed to identify the spectrum of previously published KMT2B-related disorders in the Asian subcontinent. RESULTS aaThe seven identified patients with KMT2B-related dystonia had a median age at onset of four years. The majority experienced onset in the lower limbs (n = 5, 71.4%), with generalization at a median duration of 2 years. All patients except one had complex phenotypes manifesting as facial dysmorphism (n = 4), microcephaly (n = 3), developmental delay (n = 3), and short stature (n = 1). Magnetic resonance imaging (MRI) abnormalities were present in four cases. WES revealed novel mutations in the KMT2B gene in all patients except one. Compared to the largest cohort of patients with KMT2B-related disorders, the Asian cohort, comprising 42 patients, had a lower prevalence of female patients, facial dysmorphism, microcephaly, intellectual disability, and MRI abnormalities. Protein-truncating variants were more prevalent than missense variants. While microcephaly and short stature were more common in patients with missense mutations, facial dysmorphism was more common in patients with truncating variants. Deep brain stimulation, performed in 17 patients, had satisfactory outcomes. CONCLUSION aaThis is the largest series of patients with KMT2B-related disorders from India, further expanding the clinico-genotypic spectrum. The extended Asian cohort emphasizes the unique attributes of this part of the world.
Collapse
Affiliation(s)
- Debjyoti Dhar
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Riyanka Kumari
- Institute of Bioinformatics, International Technology Park, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Neeharika Sriram
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Jitender Saini
- Department of Neuroimaging and Intervention Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
9
|
Nasca A, Mencacci NE, Invernizzi F, Zech M, Keller Sarmiento IJ, Legati A, Frascarelli C, Bustos BI, Romito LM, Krainc D, Winkelmann J, Carecchio M, Nardocci N, Zorzi G, Prokisch H, Lubbe SJ, Garavaglia B, Ghezzi D. Variants in ATP5F1B are associated with dominantly inherited dystonia. Brain 2023; 146:2730-2738. [PMID: 36860166 PMCID: PMC10316767 DOI: 10.1093/brain/awad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/31/2022] [Accepted: 02/05/2023] [Indexed: 03/03/2023] Open
Abstract
ATP5F1B is a subunit of the mitochondrial ATP synthase or complex V of the mitochondrial respiratory chain. Pathogenic variants in nuclear genes encoding assembly factors or structural subunits are associated with complex V deficiency, typically characterized by autosomal recessive inheritance and multisystem phenotypes. Movement disorders have been described in a subset of cases carrying autosomal dominant variants in structural subunits genes ATP5F1A and ATP5MC3. Here, we report the identification of two different ATP5F1B missense variants (c.1000A>C; p.Thr334Pro and c.1445T>C; p.Val482Ala) segregating with early-onset isolated dystonia in two families, both with autosomal dominant mode of inheritance and incomplete penetrance. Functional studies in mutant fibroblasts revealed no decrease of ATP5F1B protein amount but severe reduction of complex V activity and impaired mitochondrial membrane potential, suggesting a dominant-negative effect. In conclusion, our study describes a new candidate gene associated with isolated dystonia and confirms that heterozygous variants in genes encoding subunits of the mitochondrial ATP synthase may cause autosomal dominant isolated dystonia with incomplete penetrance, likely through a dominant-negative mechanism.
Collapse
Affiliation(s)
- Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Federica Invernizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Michael Zech
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Ignacio J Keller Sarmiento
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Chiara Frascarelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Luigi M Romito
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Juliane Winkelmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, 81675 Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, 81377 Munich, Germany
| | - Miryam Carecchio
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
- Department Neuroscience, University of Padua, 35128 Padua, Italy
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Nardo Nardocci
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Barbara Garavaglia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| |
Collapse
|
10
|
Stephen CD, Dy-Hollins M, Gusmao CMD, Qahtani XA, Sharma N. Dystonias: Clinical Recognition and the Role of Additional Diagnostic Testing. Semin Neurol 2023; 43:17-34. [PMID: 36972613 DOI: 10.1055/s-0043-1764292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Dystonia is the third most common movement disorder, characterized by abnormal, frequently twisting postures related to co-contraction of agonist and antagonist muscles. Diagnosis is challenging. We provide a comprehensive appraisal of the epidemiology and an approach to the phenomenology and classification of dystonia, based on the clinical characteristics and underlying etiology of dystonia syndromes. We discuss the features of common idiopathic and genetic forms of dystonia, diagnostic challenges, and dystonia mimics. Appropriate workup is based on the age of symptom onset, rate of progression, whether dystonia is isolated or combined with another movement disorder or complex neurological and other organ system eatures. Based on these features, we discuss when imaging and genetic should be considered. We discuss the multidisciplinary treatment of dystonia, including rehabilitation and treatment principles according to the etiology, including when pathogenesis-direct treatment is available, oral pharmacological therapy, chemodenervation with botulinum toxin injections, deep brain stimulation and other surgical therapies, and future directions.
Collapse
Affiliation(s)
| | - Marisela Dy-Hollins
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Xena Al Qahtani
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
11
|
Akter H, Rahman MM, Sarker S, Basiruzzaman M, Islam MM, Rahaman MA, Rahaman MA, Eshaque TB, Dity NJ, Sarker S, Amin MR, Hossain MM, Lopa M, Jahan N, Hossain S, Islam A, Mondol A, Faruk MO, Saha N, Kundu GK, Kanta SI, Kazal RK, Fatema K, Rahman MA, Hasan M, Hossain Mollah MA, Hosen MI, Karuvantevida N, Begum G, Zehra B, Nassir N, Nabi AHMN, Uddin KMF, Uddin M. Construction of copy number variation landscape and characterization of associated genes in a Bangladeshi cohort of neurodevelopmental disorders. Front Genet 2023; 14:955631. [PMID: 36959829 PMCID: PMC10028086 DOI: 10.3389/fgene.2023.955631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Copy number variations (CNVs) play a critical role in the pathogenesis of neurodevelopmental disorders (NDD) among children. In this study, we aim to identify clinically relevant CNVs, genes and their phenotypic characteristics in an ethnically underrepresented homogenous population of Bangladesh. Methods: We have conducted chromosomal microarray analysis (CMA) for 212 NDD patients with male to female ratio of 2.2:1.0 to identify rare CNVs. To identify candidate genes within the rare CNVs, gene constraint metrics [i.e., "Critical-Exon Genes (CEGs)"] were applied to the population data. Autism Diagnostic Observation Schedule-Second Edition (ADOS-2) was followed in a subset of 95 NDD patients to assess the severity of autism and all statistical tests were performed using the R package. Results: Of all the samples assayed, 12.26% (26/212) and 57.08% (121/212) patients carried pathogenic and variant of uncertain significance (VOUS) CNVs, respectively. While 2.83% (6/212) patients' pathogenic CNVs were found to be located in the subtelomeric regions. Further burden test identified females are significant carriers of pathogenic CNVs compared to males (OR = 4.2; p = 0.0007). We have observed an increased number of Loss of heterozygosity (LOH) within cases with 23.85% (26/109) consanguineous parents. Our analyses on imprinting genes show, 36 LOH variants disrupting 69 unique imprinted genes and classified these variants as VOUS. ADOS-2 subset shows severe social communication deficit (p = 0.014) and overall ASD symptoms severity (p = 0.026) among the patients carrying duplication CNV compared to the CNV negative group. Candidate gene analysis identified 153 unique CEGs in pathogenic CNVs and 31 in VOUS. Of the unique genes, 18 genes were found to be in smaller (<1 MB) focal CNVs in our NDD cohort and we identified PSMC3 gene as a strong candidate gene for Autism Spectrum Disorder (ASD). Moreover, we hypothesized that KMT2B gene duplication might be associated with intellectual disability. Conclusion: Our results show the utility of CMA for precise genetic diagnosis and its integration into the diagnosis, therapy and management of NDD patients.
Collapse
Affiliation(s)
- Hosneara Akter
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Muhammad Mizanur Rahman
- Department of Paediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shaoli Sarker
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Paediatric Neuroscience, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Mohammed Basiruzzaman
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Neurology, National Institute of Neurosciences and Hospital, Dhaka, Bangladesh
| | - Md. Mazharul Islam
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Neurology, National Institute of Neurosciences and Hospital, Dhaka, Bangladesh
| | - Md. Atikur Rahaman
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
| | | | | | - Nushrat Jahan Dity
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Shouvik Sarker
- Institute of Plant Genetics, Department of Plant Biotechnology, Leibniz University Hannover, Hanover, Germany
| | - Md. Robed Amin
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Mohammad Monir Hossain
- Department of Paediatric Neurology, National Institute of Neuroscience and Hospital, Dhaka, Bangladesh
| | - Maksuda Lopa
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Nargis Jahan
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Shafaat Hossain
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Amirul Islam
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Cellular Intelligence Lab, GenomeArc Inc, Toronto, ON, Canada
| | | | - Md Omar Faruk
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Narayan Saha
- Department of Paediatric Neurology, National Institute of Neuroscience and Hospital, Dhaka, Bangladesh
| | - Gopen kumar Kundu
- Department of Child Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shayla Imam Kanta
- Department of Paediatric Neuroscience, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Rezaul Karim Kazal
- Department of Obstetrics and Gynaecology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Kanij Fatema
- Department of Paediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md. Ashrafur Rahman
- Department of Pharmaceutical Sciences, Wilkes University, Pennsylvania, PA, United States
| | - Maruf Hasan
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | | | - Md. Ismail Hosen
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ghausia Begum
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Binte Zehra
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nasna Nassir
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - A. H. M. Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - K. M. Furkan Uddin
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Biochemistry, Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Cellular Intelligence (Ci) Lab, GenomeArc Inc, Toronto, ON, Canada
| |
Collapse
|
12
|
Closas AMFD, Lohmann K, Tan AH, Ibrahim NM, Lim JL, Tay YW, Muthusamy KA, Ahmad-Annuar AB, Klein C, Lim SY. A KMT2B Frameshift Variant Causing Focal Dystonia Restricted to the Oromandibular Region After Long-Term Follow-up. J Mov Disord 2023; 16:91-94. [PMID: 36537064 PMCID: PMC9978264 DOI: 10.14802/jmd.22109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 12/28/2022] Open
Abstract
KMT2B-linked dystonia (DYT-KMT2B) is a childhood-onset dystonia syndrome typically beginning in the lower limbs and progressing caudocranially to affect the upper limbs with eventual prominent craniocervical involvement. Despite its recent recognition, it now appears to be one of the more common monogenic causes of dystonia syndromes. Here, we present an atypical case of DYT-KMT2B with oromandibular dystonia as the presenting feature, which remained restricted to this region three decades after symptom onset. This appears to be the first reported case of DYT-KMT2B from Southeast Asia and provides further supporting evidence for the pathogenic impact of the KMT2B c.6210_6213delTGAG variant.
Collapse
Affiliation(s)
- Alfand Marl F. Dy Closas
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of Medicine, The National University of Malaysia, Kuala Lumpur, Malaysia
| | - Jia Lun Lim
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Wen Tay
- The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kalai Arasu Muthusamy
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, Luebeck, Germany
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,The Mah Pooi Soo and Tan Chin Nam Centre for Parkinson’s and Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,Corresponding author: Shen-Yang Lim, MD, FRACP, FASc Division of Neurology, Department of Medicine, Faculty of Medicine, Neurology Laboratory, Level 6 South Block, University of Malaya Medical Centre, Kuala Lumpur 50603, Malaysia / Tel: +603-7949-2891 / E-mail:
| |
Collapse
|
13
|
Chudy D, Raguž M, Vuletić V, Rački V, Papić E, Nenadić Baranašić N, Barišić N. GPi DBS treatment outcome in children with monogenic dystonia: a case series and review of the literature. Front Neurol 2023; 14:1151900. [PMID: 37168666 PMCID: PMC10166204 DOI: 10.3389/fneur.2023.1151900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Dystonia is the third most common pediatric movement disorder and is often difficult to treat. Deep brain stimulation (DBS) of the internal pallidum (GPi) has been demonstrated as a safe and effective treatment for genetic dystonia in adolescents and adults. The results of DBS in children are limited to individual cases or case series, although it has been proven to be an effective procedure in carefully selected pediatric cohorts. The aim of our study was to present the treatment outcome for 7- to 9-year-old pediatric patients with disabling monogenic isolated generalized DYT-THAP1 and DYT-KMT2B dystonia after bilateral GPi-DBS. Patients and results We present three boys aged <10 years; two siblings with disabling generalized DYT-THAP1 dystonia and a boy with monogenic-complex DYT-KMT2B. Dystonia onset occurred between the ages of 3 and 6. Significantly disabled children were mostly dependent on their parents. Pharmacotherapy was inefficient and patients underwent bilateral GPi-DBS. Clinical signs of dystonia improved significantly in the first month after the implantation and continued to maintain improved motor functions, which were found to have improved further at follow-up. These patients were ambulant without support and included in everyday activities. All patients had significantly lower Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) values, indicating >25% improvement over the first 15 months. However, there was a decline in speech and upper limb function, manifesting with bradylalia, bradykinesia, and dysphonia, which decreased after treatment with trihexyphenidyl. Conclusion Although reports of patients with monogenic dystonia, particularly DYT-THAP1, treated with DBS are still scarce, DBS should be considered as an efficient treatment approach in children with pharmacoresistent dystonia, especially with generalized monogenic dystonia and to prevent severe and disabling symptoms that reduce the quality of life, including emotional and social aspects. Patients require an individual approach and parents should be properly informed about expectations and possible outcomes, including relapses and impairments, in addition to DBS responsiveness and related improvements. Furthermore, early genetic diagnosis and the provision of appropriate treatments, including DBS, are mandatory for preventing severe neurologic impairments.
Collapse
Affiliation(s)
- Darko Chudy
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
- *Correspondence: Marina Raguž
| | - Vladimira Vuletić
- Department of Neurology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Valentino Rački
- Department of Neurology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Eliša Papić
- Department of Neurology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Nataša Nenadić Baranašić
- Department of Pediatrics, University Hospital Centre, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nina Barišić
- Department of Pediatrics, University Hospital Centre, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
14
|
Keller Sarmiento IJ, Fraint A, Kinsley L, Akhtar RS, Silani V, Lubbe SJ, Krainc D, Mencacci NE. Novel THAP1 missense variant with incomplete penetrance in a case of generalized young onset dystonia showing good response to deep brain stimulation. Parkinsonism Relat Disord 2022; 105:7-8. [PMID: 36323131 DOI: 10.1016/j.parkreldis.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
We describe a case of young onset generalized dystonia, harboring a previously unreported likely pathogenic THAP1 missense variant (c.109 G > A; p.Glu37Lys) that was inherited from her unaffected father. Moreover, we report a positive effect of deep brain stimulation, particularly on the cervical component of dystonia.
Collapse
Affiliation(s)
- Ignacio J Keller Sarmiento
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Avram Fraint
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Lisa Kinsley
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Rizwan S Akhtar
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; Dino Ferrari Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, 20122, Italy
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
15
|
Hara K, Ouchi H, Hamanaka K, Miyatake S, Matsumoto N. [A case of generalized dystonia DYT28 with a novel de novo mutation in the KMT2B gene]. Rinsho Shinkeigaku 2022; 62:856-859. [PMID: 36288966 DOI: 10.5692/clinicalneurol.cn-001773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The patient exhibited plantarflexion during walking at the age of five. He then developed writer's cramp at the age of six, dysphonia at 15 years, and action-induced dystonia with left knee elevation and trunk swinging when walking at 16 years, which subsequently spread to the right leg at 19 years. Levodopa therapy was ineffective for dystonia. Brain MRI showed no abnormalities. He was diagnosed with DYT28 after detecting a novel heterozygous mutation (c.433C>T, p.Arg145*) in the KMT2B gene using whole-exome sequencing at age 39. Furthermore, the patient's parents exhibited normal alleles, confirming the de novo status of KMT2B gene mutation. We should consider DYT28 in addition to DYT1 and DYT5 in patients who developed leg dystonia in childhood.
Collapse
Affiliation(s)
- Kenju Hara
- Department of Neurology, Akita Red Cross Hospital
| | - Haruka Ouchi
- Department of Neurology, Akita Red Cross Hospital
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine
- Clinical Genetics Department, Yokohama City University Hospital
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine
| |
Collapse
|
16
|
Monfrini E, Ciolfi A, Cavallieri F, Ferilli M, Soliveri P, Pedace L, Erro R, Del Sorbo F, Valzania F, Fioravanti V, Cossu G, Pellegrini M, Salviati L, Invernizzi F, Oppo V, Murgia D, Giometto B, Picillo M, Garavaglia B, Morgante F, Tartaglia M, Carecchio M, Di Fonzo A. Adult-onset KMT2B-related dystonia. Brain Commun 2022; 4:fcac276. [PMID: 36483457 PMCID: PMC9724767 DOI: 10.1093/braincomms/fcac276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
KMT2B-related dystonia (DYT-KMT2B, also known as DYT28) is an autosomal dominant neurological disorder characterized by varying combinations of generalized dystonia, psychomotor developmental delay, mild-to-moderate intellectual disability and short stature. Disease onset occurs typically before 10 years of age. We report the clinical and genetic findings of a series of subjects affected by adult-onset dystonia, hearing loss or intellectual disability carrying rare heterozygous KMT2B variants. Twelve cases from five unrelated families carrying four rare KMT2B missense variants predicted to impact protein function are described. Seven affected subjects presented with adult-onset focal or segmental dystonia, three developed isolated progressive hearing loss, and one displayed intellectual disability and short stature. Genome-wide DNA methylation profiling allowed to discriminate these adult-onset dystonia cases from controls and early-onset DYT-KMT2B patients. These findings document the relevance of KMT2B variants as a potential genetic determinant of adult-onset dystonia and prompt to further characterize KMT2B carriers investigating non-dystonic features.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan 20122, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42124, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Reggio Emilia 42124, Italy
| | - Marco Ferilli
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Paola Soliveri
- Parkinson Institute, ASST G. Pini-CTO, Milan 20126, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milan 20125, Italy
| | - Lucia Pedace
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00165, Italy
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, Neuroscience Section, University of Salerno, Baronissi, SA 84081, Italy
| | - Francesca Del Sorbo
- Parkinson Institute, ASST G. Pini-CTO, Milan 20126, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milan 20125, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42124, Italy
| | - Valentina Fioravanti
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42124, Italy
| | - Giovanni Cossu
- Department of Neuroscience, Brotzu Hospital, Cagliari 09047, Italy
| | - Maria Pellegrini
- Neurology Unit, Trento Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento 38122, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Padova 35131, Italy
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano 20126, Italy
| | - Valentina Oppo
- Department of Neuroscience, Brotzu Hospital, Cagliari 09047, Italy
| | - Daniela Murgia
- Department of Neuroscience, Brotzu Hospital, Cagliari 09047, Italy
| | - Bruno Giometto
- Neurology Unit, Trento Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento 38122, Italy
| | - Marina Picillo
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, Neuroscience Section, University of Salerno, Baronissi, SA 84081, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano 20126, Italy
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW170RE, United Kingdom
- Department of Experimental and Clinical Medicine, University of Messina, Messina 98122, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | | | - Alessio Di Fonzo
- Correspondence to: Alessio Di Fonzo, MD PhD Via Francesco Sforza 35, 20122, Milan, Italy E-mail:
| |
Collapse
|
17
|
Rangel YA, Espinosa E. Early-onset generalized dystonia caused by a new mutation in the KMT2B gene: Case report. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2022; 42:429-434. [PMID: 36122281 PMCID: PMC9528928 DOI: 10.7705/biomedica.6296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Introduction: KMT2B-related dystonia is a recently described subtype of focal-onset dystonia in the lower limbs, evolving into a generalized form with cervical, oropharyngeal involvement, dysarthria, swallowing disorder and intellectual disability. Clinical case: We describe the case of a 10-year-old female patient, without a history of consanguinity or neurological disease. She manifested abnormal gait and dystonia with focal onset and progressive course with evolution into generalized dystonia, affecting orofacial and bulbar muscles, significant alteration of language and swallowing. Metabolic and systemic studies, including neuroimaging, were found to be normal. A complete genomic sequencing study was performed identifying a new, probably pathogenic, heterozygous variant in the KMT2B gene, c.1205delC, p. (Pro402Hisfs*5), causing displacement in the reading frame, a finding that explains the patient’s phenotype and it is associated to autosomal dominant childhood-onset dystonia-28. Conclusion: We report a new heterozygous mutation in the KMT2B gene as a cause of generalized early-onset dystonia not reported in the literature until the date. The diagnosis of this pathology has implications for the treatment and prognosis of patients, given that therapeutic strategies implemented early can prevent the fast deterioration and severe course of this disease.
Collapse
Affiliation(s)
- Yully Andrea Rangel
- Servicio de Neurología Pediátrica, Hospital Militar Central, Universidad Militar Nueva Granada, Bogotá, D.C., Colombia.
| | - Eugenia Espinosa
- Servicio de Neurología Pediátrica, Hospital Militar Central, Universidad Militar Nueva Granada, Bogotá, D.C., Colombia.
| |
Collapse
|
18
|
Dzinovic I, Winkelmann J, Zech M. Genetic intersection between dystonia and neurodevelopmental disorders: Insights from genomic sequencing. Parkinsonism Relat Disord 2022; 102:131-140. [DOI: 10.1016/j.parkreldis.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
19
|
Shimazaki R, Ikezawa J, Okiyama R, Azuma K, Akagawa H, Takahashi K. Dystonic Tremor in Adult-onset DYT-KMT2B. Intern Med 2022; 61:2357-2360. [PMID: 35022352 PMCID: PMC9424094 DOI: 10.2169/internalmedicine.8700-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
KMT2B-related dystonia (DYT28, DYT-KMT2B) is an inherited dystonia that generally begins in the lower limbs during childhood and evolves into generalized dystonia. We herein report a case of adult-onset DYT28 with dystonic tremor. A 27-year-old woman initially displayed right upper limb and cervical tremors over the course of 1 year. A neurological examination also revealed cervical and lower limb dystonia. Although the disease generally develops during childhood, we diagnosed the woman with DYT28, as genetic testing revealed a mutation in KMT2B. Adult-onset patients with DYT28 might also show uncommon symptoms as well as DYT-TOR1A (DYT1).
Collapse
Affiliation(s)
- Rui Shimazaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Jun Ikezawa
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Ryoichi Okiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Kenko Azuma
- Tokyo Women's Medical University, Institute for Integrated Medical Sciences, Japan
| | - Hiroyuki Akagawa
- Tokyo Women's Medical University, Institute for Integrated Medical Sciences, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| |
Collapse
|
20
|
Cif L, Demailly D, Vasques X, Verbizier DD, Coubes P, Gorman K, Kurian MA. Freezing of gait as a complication of pallidal deep brain stimulation in
DYT‐
KMT2B
patients with evidence of striatonigral degeneration. Mov Disord Clin Pract 2022; 9:992-996. [PMID: 36247903 PMCID: PMC9547127 DOI: 10.1002/mdc3.13519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/18/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac Centre Hospitalier Universitaire Montpellier Montpellier France
| | - Diane Demailly
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac Centre Hospitalier Universitaire Montpellier Montpellier France
| | - Xavier Vasques
- Laboratoire de Recherche en Neurosciences Cliniques Montpellier France
- IBM Technology France
| | - Delphine de Verbizier
- Département de Médecine Nucléaire Hôpital Gui de Chauliac, Centre Hospitalier Universitaire Montpellier Montpellier France
| | - Philippe Coubes
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac Centre Hospitalier Universitaire Montpellier Montpellier France
| | - Kathleen Gorman
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children London WC1N 1DZ UK
- Department of Neurology Great Ormond Street Hospital London UK
| | - Manju A. Kurian
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children London WC1N 1DZ UK
- Department of Neurology Great Ormond Street Hospital London UK
| |
Collapse
|
21
|
Buzo EL, De la Casa-Fages B, Sánchez MG, Sánchez JP, Carballal CF, Vidorreta JG, Sierra OM, Chicote AC, Grandas F. Pallidal deep brain stimulation response in two siblings with atypical adult-onset dystonia related to a KMT2B variant. J Neurol Sci 2022; 438:120295. [DOI: 10.1016/j.jns.2022.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/05/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
|
22
|
Wirth T, Garone G, Kurian MA, Piton A, Millan F, Telegrafi A, Drouot N, Rudolf G, Chelly J, Marks W, Burglen L, Demailly D, Coubes P, Castro‐Jimenez M, Joriot S, Ghoumid J, Belin J, Faucheux J, Blumkin L, Hull M, Parnes M, Ravelli C, Poulen G, Calmels N, Nemeth AH, Smith M, Barnicoat A, Ewenczyk C, Méneret A, Roze E, Keren B, Mignot C, Beroud C, Acosta F, Nowak C, Wilson WG, Steel D, Capuano A, Vidailhet M, Lin J, Tranchant C, Cif L, Doummar D, Anheim M. Highlighting the Dystonic Phenotype Related to GNAO1. Mov Disord 2022; 37:1547-1554. [PMID: 35722775 PMCID: PMC9545634 DOI: 10.1002/mds.29074] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Most reported patients carrying GNAO1 mutations showed a severe phenotype characterized by early-onset epileptic encephalopathy and/or chorea. OBJECTIVE The aim was to characterize the clinical and genetic features of patients with mild GNAO1-related phenotype with prominent movement disorders. METHODS We included patients diagnosed with GNAO1-related movement disorders of delayed onset (>2 years). Patients experiencing either severe or profound intellectual disability or early-onset epileptic encephalopathy were excluded. RESULTS Twenty-four patients and 1 asymptomatic subject were included. All patients showed dystonia as prominent movement disorder. Dystonia was focal in 1, segmental in 6, multifocal in 4, and generalized in 13. Six patients showed adolescence or adulthood-onset dystonia. Seven patients presented with parkinsonism and 3 with myoclonus. Dysarthria was observed in 19 patients. Mild and moderate ID were present in 10 and 2 patients, respectively. CONCLUSION We highlighted a mild GNAO1-related phenotype, including adolescent-onset dystonia, broadening the clinical spectrum of this condition. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Wirth
- Département de Neurologie, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg,Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Giacomo Garone
- University Hospital Pediatric Department, IRCCS Bambino Gesù Children's HospitalUniversity of Rome Tor VergataRomeItaly,Movement Disorders Clinic, Department of NeurosciencesBambino Gesù Children's HospitalRomeItaly
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental NeurosciencesUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Amélie Piton
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance,Laboratoire de diagnostic génétique, Nouvel Hôpital CivilHôpitaux universitaires de StrasbourgStrasbourgFrance
| | | | | | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Gabrielle Rudolf
- Département de Neurologie, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg,Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Jamel Chelly
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance,Laboratoire de diagnostic génétique, Nouvel Hôpital CivilHôpitaux universitaires de StrasbourgStrasbourgFrance
| | - Warren Marks
- Cook Children's Medical CentreFort WorthTexasUSA
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique et Embryologie MédicaleAPHP, Hôpital TrousseauParisFrance
| | - Diane Demailly
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements AnormauxHôpital Gui de Chauliac, Centre Hospitalier Régional MontpellierMontpellierFrance
| | - Phillipe Coubes
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements AnormauxHôpital Gui de Chauliac, Centre Hospitalier Régional MontpellierMontpellierFrance
| | - Mayte Castro‐Jimenez
- Service de Neurologie, Department of Clinical NeurosciencesLausanne University Hospital (CHUV) and University of Lausanne (UNIL)LausanneSwitzerland
| | - Sylvie Joriot
- Department of Paediatric NeurologyUniversity Hospital of LilleLilleFrance
| | - Jamal Ghoumid
- Univ. Lille, ULR7364 RADEME, CHU Lille, Clinique de Génétique Guy FontaineLilleFrance
| | | | | | - Lubov Blumkin
- Pediatric Movement Disorders Clinic, Pediatric Neurology Unit, Wolfson Medical Center, Holon, Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Mariam Hull
- Pediatric Movement Disorders Clinic, Blue Bird Circle Clinic for Pediatric Neurology, Section of Pediatric Neurology and Developmental NeuroscienceTexas Children's HospitalHoustonTexasUSA
| | - Mered Parnes
- Pediatric Movement Disorders Clinic, Blue Bird Circle Clinic for Pediatric Neurology, Section of Pediatric Neurology and Developmental NeuroscienceTexas Children's HospitalHoustonTexasUSA
| | - Claudia Ravelli
- Sorbonne Université, Service de Neuropédiatrie‐Pathologie du développement, centre de référence neurogénétiqueHôpital Trousseau AP‐HP.SU, FHU I2D2ParisFrance
| | - Gaëtan Poulen
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements AnormauxHôpital Gui de Chauliac, Centre Hospitalier Régional MontpellierMontpellierFrance
| | - Nadège Calmels
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance,Laboratoire de diagnostic génétique, Nouvel Hôpital CivilHôpitaux universitaires de StrasbourgStrasbourgFrance
| | - Andrea H. Nemeth
- Oxford University Hospitals National Health Service Foundation Trust and University of OxfordOxfordUnited Kingdom
| | - Martin Smith
- Oxford University Hospitals National Health Service Foundation Trust and University of OxfordOxfordUnited Kingdom
| | - Angela Barnicoat
- Department of Clinical GeneticsGreat Ormond Street HospitalLondonUnited Kingdom
| | - Claire Ewenczyk
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Aurélie Méneret
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Emmanuel Roze
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Boris Keren
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Cyril Mignot
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Christophe Beroud
- Aix Marseille Université, INSERM, MMG, Bioinformatics & GeneticsMarseilleFrance
| | | | - Catherine Nowak
- The Feingold Center for Children, Division of Genetics and GenomicsBoston Children's HospitalBostonMassachusettsUSA
| | - William G. Wilson
- Department of PediatricsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Dora Steel
- Molecular Neurosciences, Developmental NeurosciencesUCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Alessandro Capuano
- Movement Disorders Clinic, Department of NeurosciencesBambino Gesù Children's HospitalRomeItaly
| | - Marie Vidailhet
- Sorbonne Université/Inserm U1127/CNRS UMR 7225/Institut du CerveauParisFrance,Service de neurologie, Hôpital la Pitié SalpêtrièreSorbonne UniversitéParisFrance
| | - Jean‐Pierre Lin
- Children's Neurosciences Department, Evelina London Children's HospitalGuy's and St Thomas NHS Foundation TrustLondonUnited Kingdom
| | - Christine Tranchant
- Département de Neurologie, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg,Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| | - Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements AnormauxHôpital Gui de Chauliac, Centre Hospitalier Régional MontpellierMontpellierFrance
| | - Diane Doummar
- Sorbonne Université, Service de Neuropédiatrie‐Pathologie du développement, centre de référence neurogénétiqueHôpital Trousseau AP‐HP.SU, FHU I2D2ParisFrance
| | - Mathieu Anheim
- Département de Neurologie, Hôpital de HautepierreHôpitaux Universitaires de StrasbourgStrasbourg,Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance,Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
| |
Collapse
|
23
|
The Patho-Neurophysiological Basis and Treatment of Focal Laryngeal Dystonia: A Narrative Review and Two Case Reports Applying TMS over the Laryngeal Motor Cortex. J Clin Med 2022; 11:jcm11123453. [PMID: 35743523 PMCID: PMC9224879 DOI: 10.3390/jcm11123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Focal laryngeal dystonia (LD) is a rare, idiopathic disease affecting the laryngeal musculature with an unknown cause and clinically presented as adductor LD or rarely as abductor LD. The most effective treatment options include the injection of botulinum toxin (BoNT) into the affected laryngeal muscle. The aim of this narrative review is to summarize the patho-neuro-physiological and genetic background of LD, as well as the standard recommended therapy (BoNT) and pharmacological treatment options, and to discuss possible treatment perspectives using neuro-modulation techniques such as repetitive transcranial magnetic stimulation (rTMS) and vibrotactile stimulation. The review will present two LD cases, patients with adductor and abductor LD, standard diagnostic procedure, treatments and achievement, and the results of cortical excitability mapping the primary motor cortex for the representation of the laryngeal muscles in the assessment of corticospinal and corticobulbar excitability.
Collapse
|
24
|
Lee S, Ochoa E, Barwick K, Cif L, Rodger F, Docquier F, Pérez-Dueñas B, Clark G, Martin E, Banka S, Kurian MA, Maher ER. Comparison of methylation episignatures in KMT2B- and KMT2D-related human disorders. Epigenomics 2022; 14:537-547. [PMID: 35506254 DOI: 10.2217/epi-2021-0521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim & methods: To investigate peripheral blood methylation episignatures in KMT2B-related dystonia (DYT-KMT2B), the authors undertook genome-wide methylation profiling of ∼2 M CpGs using a next-generation sequencing-based assay and compared the findings with those in controls and patients with KMT2D-related Kabuki syndrome type 1 (KS1). Results: A total of 1812 significantly differentially methylated CpG positions (false discovery rate < 0.05) were detected in DYT-KMT2B samples compared with controls. Multi-dimensional scaling analysis showed that the 10 DYT-KMT2B samples clustered together and separately from 29 controls and 10 with pathogenic variants in KMT2D. The authors found that most differentially methylated CpG positions were specific to one disorder and that all (DYT-KMT2B) and most (Kabuki syndrome type 1) methylation alterations in CpG islands were gain of methylation events. Conclusion: Using sensitive methylation profiling methodology, the authors replicated recent reports of a methylation episignature for DYT-KMT2B. These findings will facilitate the development of episignature-based assays to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Sunwoo Lee
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Katy Barwick
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London, WC1N 1DZ, UK
| | - Laura Cif
- Departement de Neurochirurgie, Unite des Pathologies Cerebrales Resistantes, Unite de Recherche sur les Comportements et Mouvements Anormaux, Hopital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France, & Faculte de Medecine, Universite de Montpellier, France
| | - Fay Rodger
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.,Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - France Docquier
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.,Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Belén Pérez-Dueñas
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London, WC1N 1DZ, UK
| | - Graeme Clark
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.,Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ezequiel Martin
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.,Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Siddharth Banka
- Division of Evolution, Infection & Genomics, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK, & Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust, Health Innovation Manchester, Manchester, M13 9WL, UK
| | - Manju A Kurian
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London, WC1N 1DZ, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
25
|
Silachev D, Koval A, Savitsky M, Padmasola G, Quairiaux C, Thorel F, Katanaev VL. Mouse models characterize GNAO1 encephalopathy as a neurodevelopmental disorder leading to motor anomalies: from a severe G203R to a milder C215Y mutation. Acta Neuropathol Commun 2022; 10:9. [PMID: 35090564 PMCID: PMC8796625 DOI: 10.1186/s40478-022-01312-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
GNAO1 encephalopathy characterized by a wide spectrum of neurological deficiencies in pediatric patients originates from de novo heterozygous mutations in the gene encoding Gαo, the major neuronal G protein. Efficient treatments and even the proper understanding of the underlying etiology are currently lacking for this dominant disease. Adequate animal models of GNAO1 encephalopathy are urgently needed. Here we describe establishment and characterization of mouse models of the disease based on two point mutations in GNAO1 with different clinical manifestations. One of them is G203R leading to the early-onset epileptic seizures, motor dysfunction, developmental delay and intellectual disability. The other is C215Y producing much milder clinical outcomes, mostly-late-onset hyperkinetic movement disorder. The resultant mouse models show distinct phenotypes: severe neonatal lethality in GNAO1[G203R]/ + mice vs. normal vitality in GNAO1[C215Y]/ + . The latter model further revealed strong hyperactivity and hyperlocomotion in a panel of behavioral assays, without signs of epilepsy, recapitulating the patients' manifestations. Importantly, despite these differences the two models similarly revealed prenatal brain developmental anomalies, such as enlarged lateral ventricles and decreased numbers of neuronal precursor cells in the cortex. Thus, our work unveils GNAO1 encephalopathy as to a large extent neurodevelopmental malady. We expect that this understanding and the tools we established will be instrumental for future therapeutic developments.
Collapse
Affiliation(s)
- Denis Silachev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
- School of Biomedicine, Far Eastern Federal University, 690090, Vladivostok, Russia
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | - Mikhail Savitsky
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland
| | - Guru Padmasola
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Charles Quairiaux
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Fabrizio Thorel
- Transgenesis Core Facility, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva, 1211, Geneva, Switzerland.
- School of Biomedicine, Far Eastern Federal University, 690090, Vladivostok, Russia.
| |
Collapse
|
26
|
Rajan R, Garg K, Saini A, Radhakrishnan DM, Carecchio M, Bk B, Singh M, Srivastava AK. GPi-DBS for KMT2B-Associated Dystonia: Systematic Review and Meta-Analysis. Mov Disord Clin Pract 2022; 9:31-37. [PMID: 35005062 DOI: 10.1002/mdc3.13374] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/11/2021] [Accepted: 10/30/2021] [Indexed: 12/26/2022] Open
Abstract
Background Early evidence suggests good response to pallidal deep brain stimulation (DBS) in DYT-KMT2B. Objectives We aimed to conduct a systematic review and meta-analysis to assess outcomes and identify predictors of good outcome following GPi-DBS in DYT-KMT2B. Methods We searched MEDLINE, Cochrane and MDS-abstracts databases using the MeSH terms "KMT2B and DYT28". We included studies that reported objective outcomes following GPi-DBS in DYT-KMT2B. The BFMDRS-M (Burke-Fahn-Marsden Dystonia Rating Scale- Movement) total scores pre- and post-surgery were used to quantify outcomes. We calculated pooled effects using a random effects meta-analysis and used meta-regression to identify potential effect modifiers. Multiple linear regression using individual patient data was used to identify predictors of good outcome (>50% improvement from baseline on BFMDRS-M). Results Initial searches screened 132 abstracts of which 34 full-text articles were identified to be of potential interest. Ten studies reporting 42 individual patients, met the inclusion/exclusion criteria and were included in the final review. The mean age at onset was 6.4 ± 5.7 years and 40% were male. The median follow-up was 12 months (range: 1-264 months). GPi-DBS resulted in median BFMDRS-M improvement of 42.7% (range: -103.5% to 95.9%) postoperatively. Pooled proportion of patients experiencing clinical improvement >50% on BFMDRS-M was 41% (95% CI: 27%-57%). Male gender [β: 22.6, 95% CI: 8.0-37.3, P = 0.004), and higher pre-operative BFMDRS-M score [β: 0.62, 95% CI: 0.36-0.87, P < 0.001) were independently associated with better outcome. Conclusion KMT2B-associated dystonia responds effectively to pallidal stimulation. The outcome is better in males and those with more severe dystonia at baseline.
Collapse
Affiliation(s)
- Roopa Rajan
- Department of Neurology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Kanwaljeet Garg
- Department of Neurosurgery All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Arti Saini
- Department of Neurology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Divya M Radhakrishnan
- Department of Neurology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Miryam Carecchio
- Movement Disorders Unit, Department of Neuroscience University of Padua Padua Italy
| | - Binukumar Bk
- CSIR-Institute of Genomics and Integrative Biology New Delhi India
| | - Manmohan Singh
- Department of Neurosurgery All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Achal K Srivastava
- Department of Neurology All India Institute of Medical Sciences (AIIMS) New Delhi India
| |
Collapse
|
27
|
Van Der Heijden ME, Gill JS, Rey Hipolito AG, Salazar Leon LE, Sillitoe RV. Quantification of Behavioral Deficits in Developing Mice With Dystonic Behaviors. DYSTONIA 2022; 1:10494. [PMID: 36960404 PMCID: PMC10032351 DOI: 10.3389/dyst.2022.10494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Converging evidence from structural imaging studies in patients, the function of dystonia-causing genes, and the comorbidity of neuronal and behavioral defects all suggest that pediatric-onset dystonia is a neurodevelopmental disorder. However, to fully appreciate the contribution of altered development to dystonia, a mechanistic understanding of how networks become dysfunctional is required for early-onset dystonia. One current hurdle is that many dystonia animal models are ideally suited for studying adult phenotypes, as the neurodevelopmental features can be subtle or are complicated by broad developmental deficits. Furthermore, most assays that are used to measure dystonia are not suited for developing postnatal mice. Here, we characterize the early-onset dystonia in Ptf1a Cre ;Vglut2 fl/fl mice, which is caused by the absence of neurotransmission from inferior olive neurons onto cerebellar Purkinje cells. We investigate motor control with two paradigms that examine how altered neural function impacts key neurodevelopmental milestones seen in postnatal pups (postnatal day 7-11). We find that Ptf1a Cre ;Vglut2 fl/fl mice have poor performance on the negative geotaxis assay and the surface righting reflex. Interestingly, we also find that Ptf1a Cre ;Vglut2 fl/fl mice make fewer ultrasonic calls when socially isolated from their nests. Ultrasonic calls are often impaired in rodent models of autism spectrum disorders, a condition that can be comorbid with dystonia. Together, we show that these assays can serve as useful quantitative tools for investigating how neural dysfunction during development influences neonatal behaviors in a dystonia mouse model. Our data implicate a shared cerebellar circuit mechanism underlying dystonia-related motor signs and social impairments in mice.
Collapse
Affiliation(s)
- Meike E. Van Der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Jason S. Gill
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Alejandro G. Rey Hipolito
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Luis E. Salazar Leon
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Correspondence: Roy V. Sillitoe,
| |
Collapse
|
28
|
Aksoy A, Yayıcı Köken Ö, Ceylan AC, Toptaş Dedeoğlu Ö. KMT2B-Related Dystonia: Challenges in Diagnosis and Treatment. Mol Syndromol 2021; 13:159-164. [DOI: 10.1159/000518974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, we report the first known Turkish case of a novel nonsense mutation c.2453dupT (p.M818fs*28) in the <i>KMT2B</i> (NM_014727.2) gene diagnosed in a male patient with <i>KMT2B</i>-related dystonia (DYT-<i>KMT2B</i>, DYT-28, Dystonia*-28), which is a complex, childhood-onset, progressive, hereditary dystonia. The patient, who is followed up from 9 to 13 years of age, had dysmorphic features, developmental delay, short stature, and microcephaly, in addition to focal dystonia and hemichorea (in the right and left lower extremities). Generalized dystonia involving bulbar and cervical muscles, in addition to dystonic cramps, myoclonus, and hemiballismus, were also observed during the course of the follow-up. While he was able to perform basic functions like eating, climbing stairs, walking, and writing with the aid of levodopa and trihexyphenidyl treatment, his clinical status gradually deteriorated secondary to progressive generalized dystonia in the 4-year follow-up. Deep brain stimulation has been shown to be effective in several patients which could be the next preferred treatment for the patient.
Collapse
|
29
|
Morales-Briceno H, Fung VSC, Bhatia KP, Balint B. Parkinsonism and dystonia: Clinical spectrum and diagnostic clues. J Neurol Sci 2021; 433:120016. [PMID: 34642024 DOI: 10.1016/j.jns.2021.120016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/20/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
The links between the two archetypical basal ganglia disorders, dystonia and parkinsonism, are manifold and stem from clinical observations, imaging studies, animal models and genetics. The combination of both, i.e. the syndrome of dystonia-parkinsonism, is not uncommonly seen in movement disorders clinics and has a myriad of different underlying aetiologies, upon which treatment and prognosis depend. Based on a comprehensive literature review, we delineate the clinical spectrum of disorders presenting with dystonia-parkinsonism. The clinical approach depends primarily on the age at onset, associated neurological or systemic symptoms and neuroimaging. The tempo of disease progression, and the response to L-dopa are further important clues to tailor diagnostic approaches that may encompass dopamine transporter imaging, CSF analysis and, last but not least, genetic testing. Later in life, sporadic neurodegenerative conditions are the most frequent cause, but the younger the patient, the more likely the cause is unravelled by the recent advances of molecular genetics that are focus of this review. Here, knowledge of the associated phenotypic spectrum is key to guide genetic testing and interpretation of test results. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Hugo Morales-Briceno
- Neurology Department, Movement Disorders Unit, Westmead Hospital, NSW, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Victor S C Fung
- Neurology Department, Movement Disorders Unit, Westmead Hospital, NSW, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Kailash P Bhatia
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London WC1N 3BG, United Kingdom
| | - Bettina Balint
- Department of Neurology, University Hospital Heidelberg, Germany.
| |
Collapse
|
30
|
Damásio J, Santos M, Samões R, Araújo M, Macedo M, Sardoeira A, Cavaco S, Freitas J, Barros J, Oliveira J, Sequeiros J. Novel KMT2B mutation causes cerebellar ataxia: Expanding the clinical phenotype. Clin Genet 2021; 100:743-747. [PMID: 34477219 DOI: 10.1111/cge.14055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023]
Abstract
Hereditary cerebellar ataxias comprise a heterogeneous group of neurodegenerative disorders affecting the cerebellum and/or cerebellar pathways. Next-generation sequencing techniques have contributed substantially to the expansion of ataxia-causing genes, including genes classically described in alternative phenotypes. Herein, we describe a patient with adult-onset cerebellar ataxia, minor dystonia, neuropathy, seizure and ophthalmological pathology, who bears a novel variant in KMT2B (NM_014727.2:c.3334 + 1G > A). Bioinformatic analysis suggested this variant completely abolished the splice-site at exon 8/intron 8, which was confirmed through analysis of mRNA extracted from fibroblasts. Exon 8 skipping would ultimately translate as an in-frame deletion at the protein level, corresponding to the loss of 91 aminoacids [p.(Gly1020_Asn1111del)]. So far, KMT2B disease causing variants have been described in patients with dystonia or neurodevelopmental delay, with no reports of a cerebellar predominant phenotype. Our findings highlight the possible role of KMT2B as a gene involved in hereditary cerebellar ataxias.
Collapse
Affiliation(s)
- Joana Damásio
- Neurology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal.,UnIGENe, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,CGPP - Centro de Genética Preditiva e Preventiva, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Mariana Santos
- UnIGENe, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Raquel Samões
- Neurology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Maria Araújo
- Ophtalmology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Mafalda Macedo
- Ophtalmology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Ana Sardoeira
- Neurology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sara Cavaco
- Neuropsychology Unit, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Joel Freitas
- Neurophysiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - José Barros
- Neurology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal.,ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| | - Jorge Oliveira
- UnIGENe, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,CGPP - Centro de Genética Preditiva e Preventiva, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,CGPP - Centro de Genética Preditiva e Preventiva, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,ICBAS School of Medicine and Biomedical Sciences, Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Ciolfi A, Foroutan A, Capuano A, Pedace L, Travaglini L, Pizzi S, Andreani M, Miele E, Invernizzi F, Reale C, Panteghini C, Iascone M, Niceta M, Gavrilova RH, Schultz-Rogers L, Agolini E, Bedeschi MF, Prontera P, Garibaldi M, Galosi S, Leuzzi V, Soliveri P, Olson RJ, Zorzi GS, Garavaglia BM, Tartaglia M, Sadikovic B. Childhood-onset dystonia-causing KMT2B variants result in a distinctive genomic hypermethylation profile. Clin Epigenetics 2021; 13:157. [PMID: 34380541 PMCID: PMC8359374 DOI: 10.1186/s13148-021-01145-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background Dystonia is a clinically and genetically heterogeneous movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements and/or postures. Heterozygous variants in lysine methyltransferase 2B (KMT2B), encoding a histone H3 methyltransferase, have been associated with a childhood-onset, progressive and complex form of dystonia (dystonia 28, DYT28). Since 2016, more than one hundred rare KMT2B variants have been reported, including frameshift, nonsense, splice site, missense and other in-frame changes, many having an uncertain clinical impact. Results We characterize the genome-wide peripheral blood DNA methylation profiles of a cohort of 18 patients with pathogenic and unclassified KMT2B variants. We resolve the “episignature” associated with KMT2B haploinsufficiency, proving that this approach is robust in diagnosing clinically unsolved cases, properly classifying them with respect to other partially overlapping dystonic phenotypes, other rare neurodevelopmental disorders and healthy controls. Notably, defective KMT2B function in DYT28 causes a non-random DNA hypermethylation across the genome, selectively involving promoters and other regulatory regions positively controlling gene expression. Conclusions We demonstrate a distinctive DNA hypermethylation pattern associated with DYT28, provide an epigenetic signature for this disorder enabling accurate diagnosis and reclassification of ambiguous genetic findings and suggest potential therapeutic approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01145-y.
Collapse
Affiliation(s)
- Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada
| | - Alessandro Capuano
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Lucia Pedace
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Lorena Travaglini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Marco Andreani
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Maria Iascone
- Medical Genetics Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | | | - Emanuele Agolini
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Paolo Prontera
- Maternal-Infantile Department, University Hospital of Perugia, Perugia, Italy
| | - Matteo Garibaldi
- Department of Neuroscience, NESMOS, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Child Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Child Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - Paola Soliveri
- Department of Neurology, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Rory J Olson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Giovanna S Zorzi
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Barbara M Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy.
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada. .,Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Canada. .,Molecular Diagnostics Division, London Health Sciences Centre, London, Canada.
| |
Collapse
|
32
|
Rajan R, Garg K, Saini A, Kumar M, Binukumar BK, Scaria V, Aggarwal R, Gupta A, Vishnu VY, Garg A, Singh MB, Bhatia R, Srivastava AK, Padma Srivastava M, Singh M. Pallidal Deep Brain Stimulation for KMT2B Related Dystonia in An Indian Patient. Ann Indian Acad Neurol 2021; 24:586-588. [PMID: 34728955 PMCID: PMC8513985 DOI: 10.4103/aian.aian_1316_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/01/2022] Open
Abstract
Outcomes of pallidal stimulation in KMT2B dystonia have been infrequently reported prospectively. We report the six-month outcomes of bilateral GPi DBS in an Asian Indian patient with early-onset generalized dystonia associated with a novel heterozygous variant in the KMT2B gene.
Collapse
Affiliation(s)
- Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Kanwaljeet Garg
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Arti Saini
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - BK Binukumar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Rajeev Aggarwal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Anu Gupta
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - VY Vishnu
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Garg
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - Mamta Bhushan Singh
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Bhatia
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Achal K. Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Manmohan Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
33
|
Abel M, Pfister R, Hussein I, Alsalloum F, Onyinzo C, Kappl S, Zech M, Demmel W, Staudt M, Kudernatsch M, Berweck S. Deep Brain Stimulation in KMT2B-Related Dystonia: Case Report and Review of the Literature With Special Emphasis on Dysarthria and Speech. Front Neurol 2021; 12:662910. [PMID: 34054706 PMCID: PMC8160374 DOI: 10.3389/fneur.2021.662910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: KMT2B-related dystonia is a progressive childhood-onset movement disorder, evolving from lower-limb focal dystonia into generalized dystonia. With increasing age, children frequently show prominent laryngeal or facial dystonia manifesting in dysarthria. Bilateral deep brain stimulation of the globus pallidus internus (GPi-DBS) is reported to be an efficient therapeutic option. Especially improvement of dystonia and regaining of independent mobility is commonly described, but detailed information about the impact of GPi-DBS on dysarthria and speech is scarce. Methods: We report the 16-months outcome after bilateral GPi-DBS in an 8-year-old child with KMT2B-related dystonia caused by a de-novo c.3043C>T (p.Arg1015*) non-sense variant with special emphasis on dysarthria and speech. We compare the outcome of our patient with 59 patients identified through a PubMed literature search. Results: A remarkable improvement of voice, articulation, respiration and prosodic characteristics was seen 16 months after GPi-DBS. The patients' speech intelligibility improved. His speech became much more comprehensible not only for his parents, but also for others. Furthermore, his vocabulary and the possibility to express his feelings and wants expanded considerably. Conclusion: A positive outcome of GPi-DBS on speech and dysarthria is rarely described in the literature. This might be due to disease progression, non-effectiveness of DBS or due to inadvertent spreading of the electrical current to the corticobulbar tract causing stimulation induced dysarthria. This highlights the importance of optimal lead placement, the possibility of horizontal steering of the electrical field by applying directional stimulation with segmented leads as well as the use of the lowest possible effective stimulation intensity.
Collapse
Affiliation(s)
- Maria Abel
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Robert Pfister
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Iman Hussein
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Fahd Alsalloum
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Christina Onyinzo
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Simon Kappl
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Michael Zech
- Helmholtz Centre Munich, Institute of Neurogenomics, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Walter Demmel
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Martin Staudt
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Manfred Kudernatsch
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany.,Research Institute Rehabilitation, Transition, Palliation, Paracelsus Medical University, Salzburg, Austria
| | - Steffen Berweck
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany.,Dr. Von Hauner Children's Hospital, Ludwig-Maximilians- University Munich, Munich, Germany
| |
Collapse
|
34
|
Lange LM, Junker J, Loens S, Baumann H, Olschewski L, Schaake S, Madoev H, Petkovic S, Kuhnke N, Kasten M, Westenberger A, Domingo A, Marras C, König IR, Camargos S, Ozelius LJ, Klein C, Lohmann K. Genotype-Phenotype Relations for Isolated Dystonia Genes: MDSGene Systematic Review. Mov Disord 2021; 36:1086-1103. [PMID: 33502045 DOI: 10.1002/mds.28485] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
This comprehensive MDSGene review is devoted to 7 genes - TOR1A, THAP1, GNAL, ANO3, PRKRA, KMT2B, and HPCA - mutations in which may cause isolated dystonia. It followed MDSGene's standardized data extraction protocol and screened a total of ~1200 citations. Phenotypic and genotypic data on ~1200 patients with 254 different mutations were curated and analyzed. There were differences regarding age at onset, site of onset, and distribution of symptoms across mutation carriers in all 7 genes. Although carriers of TOR1A, THAP1, PRKRA, KMT2B, or HPCA mutations mostly showed childhood and adolescent onset, patients with GNAL and ANO3 mutations often developed first symptoms in adulthood. GNAL and KMT2B mutation carriers frequently have 1 predominant site of onset, that is, the neck (GNAL) or the lower limbs (KMT2B), whereas site of onset in DYT-TOR1A, DYT-THAP1, DYT-ANO3, DYT-PRKRA, and DYT-HPCA was broader. However, in most DYT-THAP1 and DYT-ANO3 patients, dystonia first manifested in the upper half of the body (upper limb, neck, and craniofacial/laryngeal), whereas onset in DYT-TOR1A, DYT-PRKRA and DYT-HPCA was frequently observed in an extremity, including both upper and lower ones. For ANO3, a segmental/multifocal distribution was typical, whereas TOR1A, PRKRA, KMT2B, and HPCA mutation carriers commonly developed generalized dystonia. THAP1 mutation carriers presented with focal, segmental/multifocal, or generalized dystonia in almost equal proportions. GNAL mutation carriers rarely showed generalization. This review provides a comprehensive overview of the current knowledge of hereditary isolated dystonia. The data are also available in an online database (http://www.mdsgene.org), which additionally offers descriptive summary statistics. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Johanna Junker
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Sebastian Loens
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Hauke Baumann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Luisa Olschewski
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Harutyun Madoev
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Sonja Petkovic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Neele Kuhnke
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Aloysius Domingo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Connie Marras
- The Morton and Gloria Shulman Movement Disorders Centre and the Edmond J Safra Program in Parkinson's Disease, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Sarah Camargos
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital das Clínicas, The Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laurie J Ozelius
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
35
|
Feuerstein JS, Taylor M, Kwak JJ, Berman BD. Parkinsonism and Positive Dopamine Transporter Imaging in a Patient with a Novel KMT2B Variant. Mov Disord Clin Pract 2021; 8:279-281. [PMID: 33816656 DOI: 10.1002/mdc3.13140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jeanne S Feuerstein
- Department of Neurology University of Colorado School of Medicine Aurora Colorado USA.,Department of Neurology Rocky Mountain Regional VA Medical Center Aurora Colorado USA
| | - Matthew Taylor
- Department of Medicine Adult Medical Genetics Program, University of Colorado School of Medicine Aurora Colorado USA
| | - Jennifer J Kwak
- Department of Radiology Nuclear Medicine Division, University of Colorado School of Medicine Aurora Colorado USA
| | - Brian D Berman
- Department of Neurology University of Colorado School of Medicine Aurora Colorado USA.,Department of Neurology Virginia Commonwealth University Richmond Virginia USA
| |
Collapse
|
36
|
Mencacci NE, Brockmann MM, Dai J, Pajusalu S, Atasu B, Campos J, Pino G, Gonzalez-Latapi P, Patzke C, Schwake M, Tucci A, Pittman A, Simon-Sanchez J, Carvill GL, Balint B, Wiethoff S, Warner TT, Papandreou A, Soo A, Rein R, Kadastik-Eerme L, Puusepp S, Reinson K, Tomberg T, Hanagasi H, Gasser T, Bhatia KP, Kurian MA, Lohmann E, Õunap K, Rosenmund C, Südhof TC, Wood NW, Krainc D, Acuna C. Biallelic variants in TSPOAP1, encoding the active-zone protein RIMBP1, cause autosomal recessive dystonia. J Clin Invest 2021; 131:140625. [PMID: 33539324 DOI: 10.1172/jci140625] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense, and missense variants in TSPOAP1, which encodes the active-zone RIM-binding protein 1 (RIMBP1), as a genetic cause of autosomal recessive dystonia in 7 subjects from 3 unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis.
Collapse
Affiliation(s)
- Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Marisa M Brockmann
- Institute of Neurophysiology, Charité Universitätsmedizin, Berlin, Germany
| | - Jinye Dai
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia.,Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Burcu Atasu
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Joaquin Campos
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| | - Gabriela Pino
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| | - Paulina Gonzalez-Latapi
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christopher Patzke
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Schwake
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arianna Tucci
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alan Pittman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Javier Simon-Sanchez
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Wiethoff
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Klinik für Neurologie mit Institut für Translationale Neurologie, Albert Schweitzer Campus 1, Gebäude A1, Münster, Germany
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Audrey Soo
- Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | | | | | - Sanna Puusepp
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Tiiu Tomberg
- Radiology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Manju A Kurian
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, United Kingdom.,Molecular Neurosciences, Developmental Neurosciences, UCL Institute of Child Health, London, United Kingdom
| | - Ebba Lohmann
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany.,Center of Neurology, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | | | - Thomas C Südhof
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Nicholas W Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Claudio Acuna
- Department of Cellular and Molecular Physiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA.,Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, and
| |
Collapse
|
37
|
Forman EB, King MD, Gorman KM. Fifteen-minute consultation: Approach to investigation and management of childhood dystonia. Arch Dis Child Educ Pract Ed 2021; 106:71-77. [PMID: 32928841 DOI: 10.1136/archdischild-2019-318131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/09/2020] [Accepted: 05/30/2020] [Indexed: 11/03/2022]
Abstract
Dystonia is a hyperkinetic movement disorder characterised by sustained or intermittent muscle contractions causing abnormal movements, postures or both. Dystonia is a challenging condition to diagnose and treat. Dystonia is often under-recognised in children, particularly in cerebral palsy, and frequently coexists with spasticity. This guide aims to simplify the approach to diagnosis, investigation and treatment of childhood-onset dystonia. The principle of treatment is similar regardless of the underlying aetiology: identification of potential triggers and consideration of both pharmacological and surgical options.
Collapse
Affiliation(s)
- Eva Bridget Forman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Mary D King
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Kathleen M Gorman
- Department of Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Zorzi G, Keller Sarmiento IJ, Danti FR, Bustos BI, Invernizzi F, Panteghini C, Reale C, Garavaglia B, Chiapparini L, Lubbe SJ, Nardocci N, Mencacci NE. YY1-Related Dystonia: Clinical Aspects and Long-Term Response to Deep Brain Stimulation. Mov Disord 2021; 36:1461-1462. [PMID: 33638881 DOI: 10.1002/mds.28547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Giovanna Zorzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Ignacio Juan Keller Sarmiento
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Federica Rachele Danti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Luisa Chiapparini
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nardo Nardocci
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
39
|
Keller Sarmiento IJ, Mencacci NE. Genetic Dystonias: Update on Classification and New Genetic Discoveries. Curr Neurol Neurosci Rep 2021; 21:8. [PMID: 33564903 DOI: 10.1007/s11910-021-01095-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Since the advent of next-generation sequencing, the number of genes associated with dystonia has been growing exponentially. We provide here a comprehensive review of the latest genetic discoveries in the field of dystonia and discuss how the growing knowledge of biology underlying monogenic dystonias may influence and challenge current classification systems. RECENT FINDINGS Pathogenic variants in genes without previously confirmed roles in human disease have been identified in subjects affected by isolated or combined dystonia (KMT2B, VPS16, HPCA, KCTD17, DNAJC12, SLC18A2) and complex dystonia (SQSTM1, IRF2BPL, YY1, VPS41). Importantly, the classical distinction between isolated and combined dystonias has become harder to sustain since many genes have been shown to determine multiple dystonic presentations (e.g., ANO3, GNAL, ADCY5, and ATP1A3). In addition, a growing number of genes initially linked to other neurological phenotypes, such as developmental delay, epilepsy, or ataxia, are now recognized to cause prominent dystonia, occasionally in an isolated fashion (e.g., GNAO1, GNB1, SCN8A, RHOBTB2, and COQ8A). Finally, emerging analyses suggest biological convergence of genes linked to different dystonic phenotypes. While our knowledge on the genetic basis of monogenic dystonias has tremendously grown, their clinical boundaries are becoming increasingly blurry. The current phenotype-based classification may not reflect the molecular structure of the disease, urging the need for new systems based on shared biological pathways among dystonia-linked genes.
Collapse
Affiliation(s)
| | - Niccolò Emanuele Mencacci
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
40
|
Tisch S, Kumar KR. Pallidal Deep Brain Stimulation for Monogenic Dystonia: The Effect of Gene on Outcome. Front Neurol 2021; 11:630391. [PMID: 33488508 PMCID: PMC7820073 DOI: 10.3389/fneur.2020.630391] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Globus pallidus internus deep brain stimulation (GPi DBS) is the most effective intervention for medically refractory segmental and generalized dystonia in both children and adults. Predictive factors for the degree of improvement after GPi DBS include shorter disease duration and dystonia subtype with idiopathic isolated dystonia usually responding better than acquired combined dystonias. Other factors contributing to variability in outcome may include body distribution, pattern of dystonia and DBS related factors such as lead placement and stimulation parameters. The responsiveness to DBS appears to vary between different monogenic forms of dystonia, with some improving more than others. The first observation in this regard was reports of superior DBS outcomes in DYT-TOR1A (DYT1) dystonia, although other studies have found no difference. Recently a subgroup with young onset DYT-TOR1A, more rapid progression and secondary worsening after effective GPi DBS, has been described. Myoclonus dystonia due to DYT-SCGE (DYT11) usually responds well to GPi DBS. Good outcomes following GPi DBS have also been documented in X-linked dystonia Parkinsonism (DYT3). In contrast, poorer, more variable DBS outcomes have been reported in DYT-THAP1 (DYT6) including a recent larger series. The outcome of GPi DBS in other monogenic isolated and combined dystonias including DYT-GNAL (DYT25), DYT-KMT2B (DYT28), DYT-ATP1A3 (DYT12), and DYT-ANO3 (DYT24) have been reported with varying results in smaller numbers of patients. In this article the available evidence for long term GPi DBS outcome between different genetic dystonias is reviewed to reappraise popular perceptions of expected outcomes and revisit whether genetic diagnosis may assist in predicting DBS outcome.
Collapse
Affiliation(s)
- Stephen Tisch
- Department of Neurology, St Vincent's Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney, Sydney, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
41
|
Gonzalez-Latapi P, Marotta N, Mencacci NE. Emerging and converging molecular mechanisms in dystonia. J Neural Transm (Vienna) 2021; 128:483-498. [DOI: 10.1007/s00702-020-02290-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
|
42
|
Kuipers DJS, Mandemakers W, Lu CS, Olgiati S, Breedveld GJ, Fevga C, Tadic V, Carecchio M, Osterman B, Sagi-Dain L, Wu-Chou YH, Chen CC, Chang HC, Wu SL, Yeh TH, Weng YH, Elia AE, Panteghini C, Marotta N, Pauly MG, Kühn AA, Volkmann J, Lace B, Meijer IA, Kandaswamy K, Quadri M, Garavaglia B, Lohmann K, Bauer P, Mencacci NE, Lubbe SJ, Klein C, Bertoli-Avella AM, Bonifati V. EIF2AK2 Missense Variants Associated with Early Onset Generalized Dystonia. Ann Neurol 2020; 89:485-497. [PMID: 33236446 PMCID: PMC7986743 DOI: 10.1002/ana.25973] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/05/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Objective The study was undertaken to identify a monogenic cause of early onset, generalized dystonia. Methods Methods consisted of genome‐wide linkage analysis, exome and Sanger sequencing, clinical neurological examination, brain magnetic resonance imaging, and protein expression studies in skin fibroblasts from patients. Results We identified a heterozygous variant, c.388G>A, p.Gly130Arg, in the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) gene, segregating with early onset isolated generalized dystonia in 5 patients of a Taiwanese family. EIF2AK2 sequencing in 191 unrelated patients with unexplained dystonia yielded 2 unrelated Caucasian patients with an identical heterozygous c.388G>A, p.Gly130Arg variant, occurring de novo in one case, another patient carrying a different heterozygous variant, c.413G>C, p.Gly138Ala, and one last patient, born from consanguineous parents, carrying a third, homozygous variant c.95A>C, p.Asn32Thr. These 3 missense variants are absent from gnomAD, and are located in functional domains of the encoded protein. In 3 patients, additional neurological manifestations were present, including intellectual disability and spasticity. EIF2AK2 encodes a kinase (protein kinase R [PKR]) that phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), which orchestrates the cellular stress response. Our expression studies showed abnormally enhanced activation of the cellular stress response, monitored by PKR‐mediated phosphorylation of eIF2α, in fibroblasts from patients with EIF2AK2 variants. Intriguingly, PKR can also be regulated by PRKRA (protein interferon‐inducible double‐stranded RNA‐dependent protein kinase activator A), the product of another gene causing monogenic dystonia. Interpretation We identified EIF2AK2 variants implicated in early onset generalized dystonia, which can be dominantly or recessively inherited, or occur de novo. Our findings provide direct evidence for a key role of a dysfunctional eIF2α pathway in the pathogenesis of dystonia. ANN NEUROL 2021;89:485–497
Collapse
Affiliation(s)
- Demy J S Kuipers
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Chin-Song Lu
- Professor Lu Neurological Clinic, Taoyuan, Taiwan.,Section of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Simone Olgiati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Christina Fevga
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vera Tadic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Miryam Carecchio
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy.,Department of Neuroscience, University of Padua, Padua, Italy
| | - Bradley Osterman
- Division of Child Neurology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yah-Huei Wu-Chou
- Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chiung C Chen
- Section of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu-Chen Chang
- Professor Lu Neurological Clinic, Taoyuan, Taiwan.,Section of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shey-Lin Wu
- Department Neurology, Changhua Christian Hospital, Chunghua, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan.,School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsin Weng
- Section of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Antonio E Elia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Nicolas Marotta
- Ken and Ruth Davee Department of Neurology and Simpson Querry Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Martje G Pauly
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität of Berlin and Humboldt, Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Baiba Lace
- Centre Hospitalier Universitaire de Québec, Quebec City, Quebec, Canada
| | - Inge A Meijer
- Department of Neurosciences and Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | | | - Marialuisa Quadri
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.,Janssen Vaccines and Prevention, Leiden, the Netherlands
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querry Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querry Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | | | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
43
|
Cif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L, Malhotra S, Chong WK, Steel D, Sanchis-Juan A, Ngoh A, Trump N, Meyer E, Vasques X, Rankin J, Allain MW, Applegate CD, Attaripour Isfahani S, Baleine J, Balint B, Bassetti JA, Baple EL, Bhatia KP, Blanchet C, Burglen L, Cambonie G, Seng EC, Bastaraud SC, Cyprien F, Coubes C, d’Hardemare V, Deciphering Developmental Disorders Study, Doja A, Dorison N, Doummar D, Dy-Hollins ME, Farrelly E, Fitzpatrick DR, Fearon C, Fieg EL, Fogel BL, Forman EB, Fox RG, Genomics England Research Consortium, Gahl WA, Galosi S, Gonzalez V, Graves TD, Gregory A, Hallett M, Hasegawa H, Hayflick SJ, Hamosh A, Hully M, Jansen S, Jeong SY, Krier JB, Krystal S, Kumar KR, Laurencin C, Lee H, Lesca G, François LL, Lynch T, Mahant N, Martinez-Agosto JA, Milesi C, Mills KA, Mondain M, Morales-Briceno H, NIHR BioResource, Ostergaard JR, Pal S, Pallais JC, Pavillard F, Perrigault PF, Petersen AK, Polo G, Poulen G, Rinne T, Roujeau T, Rogers C, Roubertie A, Sahagian M, Schaefer E, Selim L, Selway R, Sharma N, Signer R, Soldatos AG, Stevenson DA, Stewart F, Tchan M, Undiagnosed Diseases Network, Verma IC, de Vries BBA, Wilson JL, Wong DA, Zaitoun R, Zhen D, et alCif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L, Malhotra S, Chong WK, Steel D, Sanchis-Juan A, Ngoh A, Trump N, Meyer E, Vasques X, Rankin J, Allain MW, Applegate CD, Attaripour Isfahani S, Baleine J, Balint B, Bassetti JA, Baple EL, Bhatia KP, Blanchet C, Burglen L, Cambonie G, Seng EC, Bastaraud SC, Cyprien F, Coubes C, d’Hardemare V, Deciphering Developmental Disorders Study, Doja A, Dorison N, Doummar D, Dy-Hollins ME, Farrelly E, Fitzpatrick DR, Fearon C, Fieg EL, Fogel BL, Forman EB, Fox RG, Genomics England Research Consortium, Gahl WA, Galosi S, Gonzalez V, Graves TD, Gregory A, Hallett M, Hasegawa H, Hayflick SJ, Hamosh A, Hully M, Jansen S, Jeong SY, Krier JB, Krystal S, Kumar KR, Laurencin C, Lee H, Lesca G, François LL, Lynch T, Mahant N, Martinez-Agosto JA, Milesi C, Mills KA, Mondain M, Morales-Briceno H, NIHR BioResource, Ostergaard JR, Pal S, Pallais JC, Pavillard F, Perrigault PF, Petersen AK, Polo G, Poulen G, Rinne T, Roujeau T, Rogers C, Roubertie A, Sahagian M, Schaefer E, Selim L, Selway R, Sharma N, Signer R, Soldatos AG, Stevenson DA, Stewart F, Tchan M, Undiagnosed Diseases Network, Verma IC, de Vries BBA, Wilson JL, Wong DA, Zaitoun R, Zhen D, Znaczko A, Dale RC, de Gusmão CM, Friedman J, Fung VSC, King MD, Mohammad SS, Rohena L, Waugh JL, Toro C, Raymond FL, Topf M, Coubes P, Gorman KM, Kurian MA. KMT2B-related disorders: expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. Brain 2020; 143:3242-3261. [PMID: 33150406 PMCID: PMC7719027 DOI: 10.1093/brain/awaa304] [Show More Authors] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022] Open
Abstract
Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at 6 months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 16.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.
Collapse
Affiliation(s)
- Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Diane Demailly
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Jean-Pierre Lin
- Complex Motor Disorder Service, Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Children’s Neuromodulation Group, Women and Children’s Health Institute, Faculty of life Sciences and Medicine (FOLSM), King’s Health Partners, London, UK
| | - Katy E Barwick
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mario Sa
- Complex Motor Disorder Service, Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Lucia Abela
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Wui K Chong
- Developmental Imaging and Biophysics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dora Steel
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Alba Sanchis-Juan
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, UK
| | - Adeline Ngoh
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Natalie Trump
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Julia Rankin
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Meredith W Allain
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Carolyn D Applegate
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanaz Attaripour Isfahani
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Julien Baleine
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jennifer A Bassetti
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Emma L Baple
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical and Clinical Science RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine Blanchet
- Département d’Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Lydie Burglen
- Département de génétique médicale, APHP Hôpital Armand Trousseau, Paris, France
| | - Gilles Cambonie
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Emilie Chan Seng
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | | | - Fabienne Cyprien
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Christine Coubes
- Département de Génétique médicale, Maladies rares et médecine personnalisée, CHU Montpellier, Montpellier, France
| | - Vincent d’Hardemare
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | | | - Asif Doja
- Division of Neurology, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Nathalie Dorison
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | - Diane Doummar
- Neuropédiatrie, Centre de référence neurogénétique mouvement anormaux de l’enfant, Hôpital Armand Trousseau, AP-HP, Sorbonne Université, France
| | - Marisela E Dy-Hollins
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ellyn Farrelly
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Lucile Packard Children’s Hospital at Stanford, CA, USA
| | - David R Fitzpatrick
- Human Genetics Unit, Medical and Developmental Genetics, University of Edinburgh Western General Hospital, Edinburgh, Scotland, UK
| | - Conor Fearon
- Department of Neurology, The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
| | - Elizabeth L Fieg
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eva B Forman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Rachel G Fox
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | | | - William A Gahl
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Victoria Gonzalez
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Tracey D Graves
- Department of Neurology, Hinchingbrooke Hospital, North West Anglia NHS Foundation Trust, Huntingdon, UK
| | - Allison Gregory
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Harutomo Hasegawa
- Complex Motor Disorder Service, Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Children’s Neuromodulation Group, Women and Children’s Health Institute, Faculty of life Sciences and Medicine (FOLSM), King’s Health Partners, London, UK
| | - Susan J Hayflick
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Department of Paediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie Hully
- Département de Neurologie, APHP-Necker-Enfants Malades, Paris, France
| | - Sandra Jansen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Suh Young Jeong
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Joel B Krier
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sidney Krystal
- Département de Neuroradiologie, Hôpital Fondation Rothschild, Paris
| | - Kishore R Kumar
- Translational Genomics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Chloé Laurencin
- Département de Neurologie, Hôpital Neurologique Pierre Wertheimer, Lyon, France
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gaetan Lesca
- Département de Génétique, Hôpital Universitaire de Lyon, Lyon, France
| | | | - Timothy Lynch
- Department of Neurology, The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Neil Mahant
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christophe Milesi
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Kelly A Mills
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Mondain
- Département d’Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Hugo Morales-Briceno
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - NIHR BioResource
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John R Ostergaard
- Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Swasti Pal
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Juan C Pallais
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frédérique Pavillard
- Département d’Anesthésie-Réanimation Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Pierre-Francois Perrigault
- Département d’Anesthésie-Réanimation Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Gustavo Polo
- Département de Neurochirurgie Fonctionnelle, Hôpital Neurologique et Neurochirurgical, Pierre Wertheimer, Lyon, France
| | - Gaetan Poulen
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Tuula Rinne
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Roujeau
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
| | - Caleb Rogers
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Agathe Roubertie
- Département de Neuropédiatrie, Hôpital Universitaire de Montpellier, Montpellier, France
- INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Michelle Sahagian
- Division of Neurology, Rady Children's Hospital San Diego, CA, USA
- Department of Neuroscience, University of California San Diego, CA, USA
| | - Elise Schaefer
- Medical Genetics, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laila Selim
- Cairo University Children Hospital, Pediatric Neurology and Metabolic division, Cairo, Egypt
| | - Richard Selway
- Department of Neurosurgery, King's College Hospital, London, UK
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Rebecca Signer
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ariane G Soldatos
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David A Stevenson
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Fiona Stewart
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, UK
| | - Michel Tchan
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Department of Genetics, Westmead Hospital, Westmead, NSW, Australia
| | - Undiagnosed Diseases Network
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ishwar C Verma
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny L Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Derek A Wong
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Raghda Zaitoun
- Department of Paediatrics, Neurology Division, Ain Shams University Hospital, Cairo, Egypt
| | - Dolly Zhen
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Anna Znaczko
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, UK
| | - Russell C Dale
- Department of Paediatric Neurology, The Children's Hospital at Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Claudio M de Gusmão
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Jennifer Friedman
- Division of Neurology, Rady Children's Hospital San Diego, CA, USA
- Department of Neuroscience, University of California San Diego, CA, USA
- Departments of Paediatrics, University of California, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Shekeeb S Mohammad
- Department of Paediatric Neurology, The Children's Hospital at Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX, USA
- Department of Pediatrics, Long School of Medicine, UT Health, San Antonio, TX, USA
| | - Jeff L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - F Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Philippe Coubes
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Kathleen M Gorman
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
44
|
Horisawa S, Azuma K, Akagawa H, Nonaka T, Kawamata T, Taira T. Radiofrequency ablation for DYT-28 dystonia: short term follow-up of three adult cases. Ann Clin Transl Neurol 2020; 7:2047-2051. [PMID: 32886413 PMCID: PMC7545596 DOI: 10.1002/acn3.51170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Mutations in the lysine methyltransferase 2B (KMT2B) gene have recently been reported to be associated with childhood‐onset generalized dystonia. There have been no studies investigating ablative treatments for the management of this disorder. Three patients underwent either a staged unilateral pallidotomy and contralateral pallidothalamic tractotomy (19‐year‐old man, 2‐year follow‐up), a unilateral pallidothalamic tractotomy (34‐year‐old man, 6‐month follow‐up) or a simultaneous unilateral pallidothalamic tractotomy and ventro‐oral thalamotomy (29‐year‐old man, 6‐month follow‐up). The average total patient score on the Burke‐Fahn‐Marsden Dystonia Rating Scale‐Movement Scale improved from 39.5 to 13.2 (66.6%) after the procedures. No significant complications were identified. Ablative treatments appear to be a promising alternative surgical option for generalized dystonia with KMT2B mutation.
Collapse
Affiliation(s)
- Shiro Horisawa
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenkou Azuma
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Hiroyuki Akagawa
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Taku Nonaka
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
45
|
Ng A, Galosi S, Salz L, Wong T, Schwager C, Amudhavalli S, Gelineau-Morel R, Chowdhury S, Friedman J. Failure to thrive - an overlooked manifestation of KMT2B-related dystonia: a case presentation. BMC Neurol 2020; 20:246. [PMID: 32546208 PMCID: PMC7296679 DOI: 10.1186/s12883-020-01798-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background KMT2B-related dystonia is a recently described form of childhood onset dystonia that may improve with deep brain stimulation. Prior reports have focused on neurologic features including prominent bulbar involvement without detailing general health consequences that may result from orolingual dysfunction. We describe a family with novel KMT2B mutation with several members with failure to thrive to highlight this non-neurologic, but consequential impact of mutation in this gene. Case presentation We present a case of a 15-year old female who was admitted and evaluated for failure to thrive. On exam, she had severe speech dysfluency, limited ability to protrude the tongue, and generalized dystonia involving the oromandibular region, right upper and left lower extremity with left foot inversion contracture. The proband and her parents underwent whole genome sequencing. A previously undescribed variant, c.4960 T > C (p.Cys1654Arg), was identified in the KMT2B gene in the proband and mother, and this variant was subsequently confirmed in two maternal cousins, one with failure to thrive. Literature review identified frequent reports of prominent bulbar involvement but failure to thrive is rarely mentioned. Conclusion Failure to thrive is a common pediatric clinical condition that has consequences for growth and development. In the presence of an abnormal neurologic exam, a search for a specific underlying genetic etiology should be pursued. With this case series, we highlight an unusual potentially treatable cause of failure to thrive, reinforce the importance of precise molecular diagnosis for patients with failure to thrive and an abnormal neurologic exam, and underscore the importance of cascade screening of family members.
Collapse
Affiliation(s)
- Andrew Ng
- University of California San Diego, San Diego, CA, USA.,Rady Children's Hospital, San Diego, CA, USA
| | | | - Lisa Salz
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Terence Wong
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | | | | | | | - Shimul Chowdhury
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | | | - Jennifer Friedman
- University of California San Diego, San Diego, CA, USA. .,Rady Children's Hospital, San Diego, CA, USA. .,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.
| |
Collapse
|
46
|
Li XY, Dai LF, Wan XH, Guo Y, Dai Y, Li SL, Fang F, Wang XH, Zhang WH, Liu TH, Xie ZH, Fang T, Wang L, Ding CH. Clinical phenotypes, genotypes and treatment in Chinese dystonia patients with KMT2B variants. Parkinsonism Relat Disord 2020; 77:76-82. [PMID: 32634684 DOI: 10.1016/j.parkreldis.2020.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND KMT2B-related dystonia is a recently discovered hereditary dystonia that mostly occurs in childhood. This dystonia usually progresses to generalized dystonia with cervical, cranial, pharynx and larynx involvement. Our study summarizes genotype-phenotype features and deep brain stimulation (DBS) efficacy observed with KMT2B-related dystonia patients in China. METHODS We identified 20 patients with KMT2B variations from dystonia samples with a gene panel and whole exome sequencing. Genetic, clinical and treatment analyses of these patients with KMT2B mutations were further conducted. RESULTS We summarized the genotype and phenotypic characteristics of KMT2B-related patients in China, including 16 sporadic patients and 3 pedigrees (including 4 patients). Thirty-five percent (7/20) of patients had been published previously. The age of onset was between 1 month and 24 years (average 6.90 ± 5.72 years). Sixty-five percent (13/20) of patients had onset from lower limbs. Upper limbs or larynx accounted for 15% (3/20) and 20% (4/20) of patients, respectively. In the same family, male patients tended to have more severe symptoms than female patients. Carriers of KMT2B variants may present with nonmotor symptoms without dystonia. Abnormal endocrine metabolism could also be seen in our patients, including advanced bone age that had never been reported previously. Nine of our patients underwent DBS surgery. The mean follow-up time was 4.9 (range 1.3-16) months after DBS, and perceptible improvement of clinical symptoms were observed. CONCLUSIONS The genotypic and phenotypic spectra of Chinese KMT2B-related dystonia patients were further expanded. DBS surgery might be the preferred option for severe KMT2B-related dystonia patients till now.
Collapse
Affiliation(s)
- Xin-Yao Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, China
| | - Li-Fang Dai
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xin-Hua Wan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, China
| | - Yi Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, China
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, China
| | - Shang-Lin Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xiao-Hui Wang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Wei-Hua Zhang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Ting-Hong Liu
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Zi-Hang Xie
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Tie Fang
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Lin Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 100730, China.
| | - Chang-Hong Ding
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China.
| |
Collapse
|
47
|
Garone G, Graziola F, Nicita F, Frascarelli F, Randi F, Zazza M, Cantonetti L, Cossu S, Marras CE, Capuano A. Prestatus and status dystonicus in children and adolescents. Dev Med Child Neurol 2020; 62:742-749. [PMID: 31837011 DOI: 10.1111/dmcn.14425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2019] [Indexed: 11/26/2022]
Abstract
AIM To critically analyse the management of status dystonicus and prestatus dystonicus in children and adolescents, in order to examine clinical features, acute management, and risk of relapse in a paediatric cohort. METHOD Clinical, demographic, and therapeutic features were analysed according to disease severity. Risk of subsequent relapse was estimated through Kaplan-Meier curves. RESULTS Thirty-four patients (eight females, 26 males) experiencing 63 episodes of acute dystonia exacerbations at a tertiary referral Italian hospital were identified. Mean age at status dystonicus presentation was 9 years 11 months (11y at inclusion in the study). Onset of dystonia dated back to infancy in most cases. Fourteen patients experienced two or more episodes. Infections were the most common trigger (48%). Benzodiazepines were the most commonly used drugs for acute management. Stereotactic pallidotomy was performed in six cases during status dystonicus, and in two additional patients it was electively performed after medical management. The probability of survival free from status dystonicus relapses was 78% after 4 months and 61% after 27 months. INTERPRETATION Dystonia exacerbations are potentially life-threating emergencies, with a considerable risk of relapse. Nevertheless, no obvious factors for relapse risk stratification exist. Pallidotomy is a feasible option in medical refractory status dystonicus for patients with limited deep brain stimulation applicability, but the risk of recurrence is elevated. WHAT THIS PAPER ADDS Acute exacerbations may affect up to 10% of children with dystonia. Infections are the most common precipitant factor. In about 30% of the cases, intensive care unit admission is needed. Subsequent relapses are common, reaching 25% risk at 1 year. Pallidotomy can be considered in medical-refractory cases with no deep brain stimulation applicability.
Collapse
Affiliation(s)
- Giacomo Garone
- Movement Disorders Clinic, Division of Neurology, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,University Hospital Paediatric Department, IRCCS Bambino Gesù Children's Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Federica Graziola
- Movement Disorders Clinic, Division of Neurology, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Flaminia Frascarelli
- Unit of Neurorehabilitation, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Randi
- Unit of Neurosurgery, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Marco Zazza
- Movement Disorders Clinic, Division of Neurology, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Laura Cantonetti
- Unit of Neurorehabilitation, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Silvia Cossu
- Unit of Neurosurgery, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Neurology Unit, Paediatric Hospital Antonio Cao, Brotzu Hospital Trust, Cagliari, Italy
| | - Carlo Efisio Marras
- Unit of Neurosurgery, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandro Capuano
- Movement Disorders Clinic, Division of Neurology, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
48
|
Pandey S, Bhattad S, Panda AK, Mahadevan L. Late-onset KMT2B-related dystonia in an Indian patient with normal cognition, dystonic opisthotonus and lack of oromandibular and laryngeal involvement. Parkinsonism Relat Disord 2020; 74:33-35. [PMID: 32305686 DOI: 10.1016/j.parkreldis.2020.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Sanjay Pandey
- Department of Neurology, Govind Ballabh Pant Postgraduate Institute of Medical Education and Research, New Delhi, 110002, India.
| | - Sonali Bhattad
- Department of Neurology, Govind Ballabh Pant Postgraduate Institute of Medical Education and Research, New Delhi, 110002, India
| | - Ashwin Kumar Panda
- Department of Neurology, Govind Ballabh Pant Postgraduate Institute of Medical Education and Research, New Delhi, 110002, India
| | | |
Collapse
|
49
|
Mun JK, Kim AR, Ahn JH, Kim M, Cho JW, Lee JI, Cho KR, Youn J. Successful Pallidal Stimulation in a Patient with KMT2B-Related Dystonia. J Mov Disord 2020; 13:154-158. [PMID: 32241076 PMCID: PMC7280936 DOI: 10.14802/jmd.19087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
Although the KMT2B gene was identified as a causative gene for early-onset generalized dystonia, the efficacy of deep brain stimulation (DBS) in KMT2B-related dystonia has not been clearly elucidated. Here, we describe a 28-year-old woman who developed generalized dystonia with developmental delay, microcephaly, short stature, and cognitive decline. She was diagnosed with KMT2B- related dystonia using whole-exome sequencing with a heterozygous frameshift insertion of c.515dupC (p.T172fs) in the KMT2B gene. Oral medications and botulinum toxin injection were not effective. The dystonia markedly improved with bilateral pallidal DBS (the Burke-Fahn-Marsden Dystonia Rating Scale score was reduced from 30 to 5 on the dystonia movement scale and from 11 to 1 on the disability scale), and she could walk independently. From this case, we suggest that bilateral globus pallidus internus DBS can be an effective treatment option for patients with KMT2B-related generalized dystonia.
Collapse
Affiliation(s)
- Jun Kyu Mun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Ah Reum Kim
- Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jong Hyeon Ahn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Minkyeong Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Rae Cho
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
50
|
Predictive factors of outcome in cervical dystonia following deep brain stimulation: an individual patient data meta-analysis. J Neurol 2020; 267:1780-1792. [PMID: 32140866 DOI: 10.1007/s00415-020-09765-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) therapy has been suggested to be a beneficial alternative in cervical dystonia (CD) for patients who failed nonsurgical treatments. This individual patient data meta-analysis compared the efficacy of DBS in the globus pallidus internus (GPi) versus subthalamic nucleus (STN) and identified possible predictive factors for CD. METHODS Three electronic databases (PubMed, Embase and Web of Science) were searched for studies with no publication date restrictions. The primary outcomes were normalized by calculating the relative change in TWSTRS total scores and subscale scores at the last follow-up. Data were analyzed mainly using Pearson's correlation coefficients and a stepwise multivariate regression analysis. RESULTS Thirteen studies (86 patients, 58 with GPi-DBS and 28 with STN-DBS) were eligible. Patients showed significant improvement in the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) (52.5 ± 11.6 vs 21.9 ± 14.9, P < 0.001) scores at the last follow-up (22.0 ± 14.3 months), compared with scores at baseline, with a mean improvement of 56.6% (P < 0.001) (54.9% in severity, 63.2% in disability, 41.7% in pain). There was no significant difference in the improvement (%) of the total TWSTRS scores in 3 years for the GPI and STN groups (58.1 ± 22.6 vs 47.5 ± 39.2, P > 0.05). Age at surgery and age at symptom onset were negatively correlated with the relative changes in TWSTRS scores at the last follow-up, while there was a positive correlation with preoperative TWSTRS scores. On the stepwise multivariate regression, only the age at surgery remained significant in the best predictive model. CONCLUSIONS GPi-DBS and STN-DBS both provided a common great improvement in the symptoms of CD patients in 3 years. Earlier age at surgery may probably indicate larger improvement. More randomized large-scale clinical trials are warranted in the future.
Collapse
|