1
|
Kröger L, Borgert S, Lauwers M, Steinkrüger M, Jose J, Pietsch M, Wünsch B. Structure-Activity Relationship Studies of Tetracyclic Pyrrolocarbazoles Inhibiting Heterotetrameric Protein Kinase CK2. Molecules 2024; 30:63. [PMID: 39795120 PMCID: PMC11722180 DOI: 10.3390/molecules30010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer. Starting with the lead furocarbazole W16 (4) inhibiting the CK2α/CK2β interaction, analogous pyrrolocarbazoles were prepared and tested for their protein-protein interaction inhibition (PPII). The key step of the synthesis was a multicomponent Levy reaction of 2-(indolyl)acetate 6, benzaldehydes 7, and N-substituted maleimides 8. Targeted modifications were performed by the saponification of the tetracyclic ester 9a, followed by the coupling of the resulting acid 10 with diverse amines. The replacement of the O-atom of the lead furocarbazole 4 by an N-atom in pyrrolocarbazoles retained or even increased the inhibition of the CK2α/CK2β interaction. The large benzyloxazolidinyl moiety of 4 could be replaced by smaller N-substituents without the loss of the PPII. The introduction of larger substituents at the 2-position and/or at p-position of the phenyl moiety at the 10-position to increase the surface for the inhibition of the PPI did not enhance the inhibition of the CK2α/CK2β association. The strong inhibition of the CK2α/CK2β association by the histidine derivative (+)-20a (Ki = 6.1 µM) translated into a high inhibition of the kinase activity of the CK2 holoenzyme (CK2α2β2, IC50 = 2.5 µM). Thus, 20a represents a novel lead compound inhibiting CK2 via the inhibition of the association of the CK2α and Ck2β subunits.
Collapse
Affiliation(s)
- Lukas Kröger
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; (L.K.); (S.B.); (J.J.)
| | - Sebastian Borgert
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; (L.K.); (S.B.); (J.J.)
| | - Miriam Lauwers
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, D-50931 Cologne, Germany; (M.L.); (M.S.); (M.P.)
| | - Michaela Steinkrüger
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, D-50931 Cologne, Germany; (M.L.); (M.S.); (M.P.)
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; (L.K.); (S.B.); (J.J.)
| | - Markus Pietsch
- Institutes I & II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Gleueler Straße 24, D-50931 Cologne, Germany; (M.L.); (M.S.); (M.P.)
- Faculty of Applied Natural Sciences, TH Köln-University of Applied Sciences, Campus Leverkusen, Campusplatz 1, D-51379 Leverkusen, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany; (L.K.); (S.B.); (J.J.)
| |
Collapse
|
2
|
Rumler H, Schmithals C, Werner C, Bollacke A, Aichele D, Götz C, Niefind K, Wünsch B, Jose J. Discovery of 7,9-Dibromo-dihydrodibenzofuran as a Potent Casein Kinase 2 (CK2) Inhibitor: Synthesis, Biological Evaluation, and Structural Studies on E-/ Z-Isomers. ACS Pharmacol Transl Sci 2024; 7:3846-3866. [PMID: 39698287 PMCID: PMC11651316 DOI: 10.1021/acsptsci.4c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024]
Abstract
The human protein kinase CK2 is a promising target for cancer treatment. Only two CK2 inhibitors have reached clinical trials until today. Among others, a dibenzofuran scaffold has emerged as highly prospective for the development of new CK2 inhibitors. Thirty-three newly synthesized dibenzofuran-based compounds were tested on their inhibitory potential in vitro. 7,9-Dichloro-8-hydroxy-4-[(phenylamino)methylene]-1,2-dihydro-dibenzo[b,d]furan-3(4H)-one (12b) and 7,9-dibromo-8-hydroxy-4-[(phenylamino)methylene]-1,2-dihydro-dibenzo[b,d]furan-3(4H)-one (12c) showed the lowest IC50 values with 5.8 nM for both. The dibenzofuran-based CK2 inhibitors crossed the cell membrane of LNCaP human prostate carcinoma cells and reduced intracellular CK2 activity. Among 70 kinases from different representative subgroups of the human kinome, CK2 was most strongly inhibited by compound 12c. Co-crystallization of 12c together with CK2α indicated a π-halogen bond of the bromine at position C9 with the gatekeeper amino acid Phe113. CK2α could bind both the E- and Z-isomers of 12c. Our results provide new insights into the structure-activity relationships of dibenzofuran derivatives.
Collapse
Affiliation(s)
- Hendrik Rumler
- University
of Münster, Institute of Pharmaceutical and Medicinal Chemistry,
Pharmacampus, Münster 48149, Germany
| | - Claudia Schmithals
- University
of Münster, Institute of Pharmaceutical and Medicinal Chemistry,
Pharmacampus, Münster 48149, Germany
| | - Christian Werner
- Institute
of Biochemistry, University of Cologne, Cologne 50674, Germany
| | - Andre Bollacke
- University
of Münster, Institute of Pharmaceutical and Medicinal Chemistry,
Pharmacampus, Münster 48149, Germany
| | - Dagmar Aichele
- University
of Münster, Institute of Pharmaceutical and Medicinal Chemistry,
Pharmacampus, Münster 48149, Germany
| | - Claudia Götz
- Medical Biochemistry
and Molecular Biology, Saarland University, Homburg 66421, Germany
| | - Karsten Niefind
- Institute
of Biochemistry, University of Cologne, Cologne 50674, Germany
| | - Bernhard Wünsch
- University
of Münster, Institute of Pharmaceutical and Medicinal Chemistry,
Pharmacampus, Münster 48149, Germany
| | - Joachim Jose
- University
of Münster, Institute of Pharmaceutical and Medicinal Chemistry,
Pharmacampus, Münster 48149, Germany
| |
Collapse
|
3
|
Faquetti ML, Slappendel L, Bigonne H, Grisoni F, Schneider P, Aichinger G, Schneider G, Sturla SJ, Burden AM. Baricitinib and tofacitinib off-target profile, with a focus on Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12445. [PMID: 38528988 PMCID: PMC10962475 DOI: 10.1002/trc2.12445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 12/27/2023] [Indexed: 03/27/2024]
Abstract
INTRODUCTION Janus kinase (JAK) inhibitors were recently identified as promising drug candidates for repurposing in Alzheimer's disease (AD) due to their capacity to suppress inflammation via modulation of JAK/STAT signaling pathways. Besides interaction with primary therapeutic targets, JAK inhibitor drugs frequently interact with unintended, often unknown, biological off-targets, leading to associated effects. Nevertheless, the relevance of JAK inhibitors' off-target interactions in the context of AD remains unclear. METHODS Putative off-targets of baricitinib and tofacitinib were predicted using a machine learning (ML) approach. After screening scientific literature, off-targets were filtered based on their relevance to AD. Targets that had not been previously identified as off-targets of baricitinib or tofacitinib were subsequently tested using biochemical or cell-based assays. From those, active concentrations were compared to bioavailable concentrations in the brain predicted by physiologically based pharmacokinetic (PBPK) modeling. RESULTS With the aid of ML and in vitro activity assays, we identified two enzymes previously unknown to be inhibited by baricitinib, namely casein kinase 2 subunit alpha 2 (CK2-α2) and dual leucine zipper kinase (MAP3K12), both with binding constant (K d) values of 5.8 μM. Predicted maximum concentrations of baricitinib in brain tissue using PBPK modeling range from 1.3 to 23 nM, which is two to three orders of magnitude below the corresponding binding constant. CONCLUSION In this study, we extended the list of baricitinib off-targets that are potentially relevant for AD progression and predicted drug distribution in the brain. The results suggest a low likelihood of successful repurposing in AD due to low brain permeability, even at the maximum recommended daily dose. While additional research is needed to evaluate the potential impact of the off-target interaction on AD, the combined approach of ML-based target prediction, in vitro confirmation, and PBPK modeling may help prioritize drugs with a high likelihood of being effectively repurposed for AD. Highlights This study explored JAK inhibitors' off-targets in AD using a multidisciplinary approach.We combined machine learning, in vitro tests, and PBPK modelling to predict and validate new off-target interactions of tofacitinib and baricitinib in AD.Previously unknown inhibition of two enzymes (CK2-a2 and MAP3K12) by baricitinib were confirmed using in vitro experiments.Our PBPK model indicates that baricitinib low brain permeability limits AD repurposing.The proposed multidisciplinary approach optimizes drug repurposing efforts in AD research.
Collapse
Affiliation(s)
- Maria L. Faquetti
- Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| | - Laura Slappendel
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and Health, ETH ZurichZurichSwitzerland
| | - Hélène Bigonne
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and Health, ETH ZurichZurichSwitzerland
| | - Francesca Grisoni
- Department of Biomedical EngineeringInstitute for Complex Molecular SystemsEindhoven University of TechnologyEindhoventhe Netherlands
- Centre for Living TechnologiesAlliance TU/e, WUR, UU, UMC UtrechtUtrechtthe Netherlands
| | - Petra Schneider
- Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
- inSili.com LLCZurichSwitzerland
| | - Georg Aichinger
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and Health, ETH ZurichZurichSwitzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
- ETH Singapore SEC LtdSingaporeSingapore
| | - Shana J. Sturla
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and Health, ETH ZurichZurichSwitzerland
| | - Andrea M. Burden
- Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesETH ZurichZurichSwitzerland
| |
Collapse
|
4
|
Coste K, Bruet S, Chollat-Namy C, Filhol O, Cochet C, Gallot D, Marceau G, Blanchon L, Sapin V, Belville C. Characterization of RAGE and CK2 Expressions in Human Fetal Membranes. Int J Mol Sci 2023; 24:ijms24044074. [PMID: 36835482 PMCID: PMC9966553 DOI: 10.3390/ijms24044074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
At the feto-maternal interface, fetal membranes (FM) play a crucial role throughout pregnancy. FM rupture at term implicates different sterile inflammation mechanisms including pathways activated by the transmembrane glycoprotein receptor for advanced glycation end-products (RAGE) belonging to the immunoglobulin superfamily. As the protein kinase CK2 is also implicated in the inflammation process, we aimed to characterize the expressions of RAGE and the protein kinase CK2 as a candidate regulator of RAGE expression. The amnion and choriodecidua were collected from FM explants and/or primary amniotic epithelial cells throughout pregnancy and at term in spontaneous labor (TIL) or term without labor (TNL). The mRNA and protein expressions of RAGE and the CK2α, CK2α', and CK2β subunits were investigated using reverse transcription quantitative polymerase chain reaction and Western blot assays. Their cellular localizations were determined with microscopic analyses, and the CK2 activity level was measured. RAGE and the CK2α, CK2α', and CK2β subunits were expressed in both FM layers throughout pregnancy. At term, RAGE was overexpressed in the amnion from the TNL samples, whereas the CK2 subunits were expressed at the same level in the different groups (amnion/choriodecidua/amniocytes, TIL/TNL), without modification of the CK2 activity level and immunolocalization. This work paves the way for future experiments regarding the regulation of RAGE expression by CK2 phosphorylation.
Collapse
Affiliation(s)
- Karen Coste
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Neonatal Intensive Care Department, F-63000 Clermont-Ferrand, France
| | - Shaam Bruet
- CHU Clermont-Ferrand, Neonatal Intensive Care Department, F-63000 Clermont-Ferrand, France
| | - Caroline Chollat-Namy
- CHU Clermont-Ferrand, Neonatal Intensive Care Department, F-63000 Clermont-Ferrand, France
| | - Odile Filhol
- INSERM, CEA, UMR Biosanté, U1292, University Grenoble Alpes, F-38000 Grenoble, France
| | - Claude Cochet
- INSERM, CEA, UMR Biosanté, U1292, University Grenoble Alpes, F-38000 Grenoble, France
| | - Denis Gallot
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Obstetrics and Gynecology Department, F-63000 Clermont-Ferrand, France
| | - Geoffroy Marceau
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Biochemistry and Molecular Genetic Department, F-63000 Clermont-Ferrand, France
| | - Loïc Blanchon
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Vincent Sapin
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Biochemistry and Molecular Genetic Department, F-63000 Clermont-Ferrand, France
| | - Corinne Belville
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-4-7317-8174
| |
Collapse
|
5
|
Atkinson EL, Iegre J, Brear PD, Zhabina EA, Hyvönen M, Spring DR. Downfalls of Chemical Probes Acting at the Kinase ATP-Site: CK2 as a Case Study. Molecules 2021; 26:1977. [PMID: 33807474 PMCID: PMC8037657 DOI: 10.3390/molecules26071977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Protein kinases are a large class of enzymes with numerous biological roles and many have been implicated in a vast array of diseases, including cancer and the novel coronavirus infection COVID-19. Thus, the development of chemical probes to selectively target each kinase is of great interest. Inhibition of protein kinases with ATP-competitive inhibitors has historically been the most widely used method. However, due to the highly conserved structures of ATP-sites, the identification of truly selective chemical probes is challenging. In this review, we use the Ser/Thr kinase CK2 as an example to highlight the historical challenges in effective and selective chemical probe development, alongside recent advances in the field and alternative strategies aiming to overcome these problems. The methods utilised for CK2 can be applied to an array of protein kinases to aid in the discovery of chemical probes to further understand each kinase's biology, with wide-reaching implications for drug development.
Collapse
Affiliation(s)
- Eleanor L. Atkinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| | - Jessica Iegre
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| | - Paul D. Brear
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - Elizabeth A. Zhabina
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - David R. Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| |
Collapse
|
6
|
Li C, Zhang X, Zhang N, Zhou Y, Sun G, Zhao L, Zhong R. Identification and Biological Evaluation of CK2 Allosteric Fragments through Structure-Based Virtual Screening. Molecules 2020; 25:237. [PMID: 31935979 PMCID: PMC6983002 DOI: 10.3390/molecules25010237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/19/2022] Open
Abstract
Casein kinase II (CK2) is considered as an attractive cancer therapeutic target, and recent efforts have been made to develop its ATP-competitive inhibitors. However, achieving selectivity with respect to related kinases remains challenging due to the highly conserved ATP-binding pocket of kinases. Allosteric inhibitors, by targeting the much more diversified allosteric site relative to the highly conserved ATP-binding pocket, might be a promising strategy with the enhanced selectivity and reduced toxicity than ATP-competitive inhibitors. The previous studies have highlighted the traditional serendipitousity of discovering allosteric inhibitors owing to the complicate allosteric modulation. In this current study, we identified the novel allosteric inhibitors of CK2α by combing structure-based virtual screening and biological evaluation methods. The structure-based pharmacophore model was built based on the crystal structure of CK2α-compound 15 complex. The ChemBridge fragment library was searched by evaluating the fit values of these molecules with the optimized pharmacophore model, as well as the binding affinity of the CK2α-ligand complexes predicted by Alloscore web server. Six hits forming the holistic interaction mechanism with the αD pocket were retained after pharmacophore- and Alloscore-based screening for biological test. Compound 3 was found to be the most potent non-ATP competitive CK2α inhibitor (IC50 = 13.0 μM) with the anti-proliferative activity on A549 cancer cells (IC50 = 23.1 μM). Our results provide new clues for further development of CK2 allosteric inhibitors as anti-cancer hits.
Collapse
Affiliation(s)
- Chunqiong Li
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (C.L.); (X.Z.); (G.S.); (L.Z.); (R.Z.)
| | - Xuewen Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (C.L.); (X.Z.); (G.S.); (L.Z.); (R.Z.)
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (C.L.); (X.Z.); (G.S.); (L.Z.); (R.Z.)
| | - Yue Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China;
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (C.L.); (X.Z.); (G.S.); (L.Z.); (R.Z.)
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (C.L.); (X.Z.); (G.S.); (L.Z.); (R.Z.)
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (C.L.); (X.Z.); (G.S.); (L.Z.); (R.Z.)
| |
Collapse
|
7
|
Small molecule modulators targeting protein kinase CK1 and CK2. Eur J Med Chem 2019; 181:111581. [DOI: 10.1016/j.ejmech.2019.111581] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
|
8
|
Panday SK, Sturlese M, Salmaso V, Ghosh I, Moro S. Coupling Supervised Molecular Dynamics (SuMD) with Entropy Estimations To Shine Light on the Stability of Multiple Binding Sites. ACS Med Chem Lett 2019; 10:444-449. [PMID: 30996777 DOI: 10.1021/acsmedchemlett.8b00490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/15/2019] [Indexed: 11/30/2022] Open
Abstract
Exploring at the molecular level, all possible ligand-protein approaching pathways and, consequently, identifying the energetically favorable binding sites is considered crucial to depict a clear picture of the whole scenario of ligand-protein binding. In fact, a ligand can recognize a protein in multiple binding sites, adopting multiple conformations in every single binding site and inducing protein modifications upon binding. In the present work, we would like to present how it is possible to couple a supervised molecular dynamics (SuMD) approach to explore, from an unbound state, the most energetically favorable recognition pathways of the ligand to its protein, with an enthalpic and entropic characterization of the most stable ligand-protein bound states, using the protein kinase CK2α as a prototype study. We identified two accessory binding pockets surrounding the ATP-binding site having a strong enthalpic contribution but a different configurational entropy contribution, suggesting that they play a different role.
Collapse
Affiliation(s)
- Shailesh Kumar Panday
- School of Computational and Integrative Sciences (SCIS), Jawaharlal Nehru University, New Delhi 110067, India
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35122 Padova, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35122 Padova, Italy
| | - Veronica Salmaso
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35122 Padova, Italy
| | - Indira Ghosh
- School of Computational and Integrative Sciences (SCIS), Jawaharlal Nehru University, New Delhi 110067, India
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35122 Padova, Italy
| |
Collapse
|
9
|
Qi X, Zhang N, Zhao L, Hu L, Cortopassi WA, Jacobson MP, Li X, Zhong R. Structure-based identification of novel CK2 inhibitors with a linear 2-propenone scaffold as anti-cancer agents. Biochem Biophys Res Commun 2019; 512:208-212. [PMID: 30878184 DOI: 10.1016/j.bbrc.2019.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 11/15/2022]
Abstract
Protein kinase CK2 has emerged as an attractive cancer therapeutic target. Previous studies have highlighted the challenge of optimizing CK2 ATP-competitive inhibitors that have low druggability due to their polycyclic ring scaffolds. Therefore the development of novel inhibitors with non-polycyclic scaffolds emerges as a promising strategy for drug discovery targeting CK2. In this current study, based on the similar predicted binding poses of the linear 2-propenone scaffold of isoliquiritigenin with that of the polycyclic inhibitor CX-4945, a series of 2-propenone derivatives containing an amine-substituted five-membered heterocycle and a benzoic acid were designed, synthesized and evaluated for their in vitro CK2 inhibition and anti-cancer activity. Compound 8b was found to be the most potent CK2 inhibitor (IC50 = 0.6 μM) with the anti-proliferative activity on HepG2 cancer cells (IC50 = 14 μM), compared to the activity of isoliquiritigenin (IC50 = 17 μM and 51 μM, respectively). Molecular docking was performed to understand the binding modes of the newly designed 2-propenone derivatives with CK2. Compound 8b formed the most favorable network of hydrogen bonds with both the hinge region and positive area. Our results indicate that CK2 derivatives with a linear 2-propenone scaffold are promising candidates for anti-cancer drug discovery.
Collapse
Affiliation(s)
- Xiaoqian Qi
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Liming Hu
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | - Wilian A Cortopassi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94143, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94143, United States
| | - Xitao Li
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
10
|
Shahraki A, Ebrahimi A. Binding of ellagic acid and urolithin metabolites to the CK2 protein, based on the ONIOM method and molecular docking calculations. NEW J CHEM 2019. [DOI: 10.1039/c9nj03508g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using three-layer ONIOM and molecular docking calculations to investigate the binding of urolithins to the active site of the CK2 protein.
Collapse
Affiliation(s)
- Asiyeh Shahraki
- Department of Chemistry
- Computational Quantum Chemistry Laboratory
- University of Sistan and Baluchestan
- Zahedan
- Iran
| | - Ali Ebrahimi
- Department of Chemistry
- Computational Quantum Chemistry Laboratory
- University of Sistan and Baluchestan
- Zahedan
- Iran
| |
Collapse
|
11
|
Schnitzler A, Gratz A, Bollacke A, Weyrich M, Kuckländer U, Wünsch B, Götz C, Niefind K, Jose J. A π-Halogen Bond of Dibenzofuranones with the Gatekeeper Phe113 in Human Protein Kinase CK2 Leads to Potent Tight Binding Inhibitors. Pharmaceuticals (Basel) 2018; 11:ph11010023. [PMID: 29462988 PMCID: PMC5874719 DOI: 10.3390/ph11010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/05/2023] Open
Abstract
Human protein kinase CK2 is an emerging target for neoplastic diseases. Potent lead structures for human CK2 inhibitors are derived from dibenzofuranones. Two new derivatives, 7,9-dichloro-1,2-dihydro-8-hydroxy-4-[(4-methoxyphenylamino)-methylene]dibenzo[b,d]furan-3(2H)-one (4a) and (E)-1,3-dichloro-6-[(4-methoxyphenylimino)-methyl]dibenzo[b,d]furan-2,7-diol (5) were tested for inhibition of CK2 and induction of apoptosis in LNCaP cells. Both turned out to be tight binding inhibitors, with IC50 values of 7 nM (4a) and 5 nM (5) and an apparent Ki value of 0.4 nM for both. Compounds 4a and 5 reduced cellular CK2 activity, indicating cell permeability. Cell viability was substantially impaired in LNCaP cells, as well as apoptosis was induced, which was not appearing in non-neoplastic ARPE-19 cells. Co-crystallization of 4a and 5 revealed an unexpected π-halogen bond of the chloro substituent at C9 with the gatekeeper amino acid Phe113, leading to an inverted binding mode in comparison to parent compound 4b, with the Cl at C6 instead, which was co-crystallized as a control. This indicates that the position of the chloro substituent on ring A of the dibenzofuran scaffold is responsible for an inversion of the binding mode that enhances potency.
Collapse
Affiliation(s)
- Alexander Schnitzler
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Andreas Gratz
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Andre Bollacke
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Michael Weyrich
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Kirrberger Str., Geb. 44, D-66421 Homburg, Germany.
| | - Uwe Kuckländer
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Claudia Götz
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Kirrberger Str., Geb. 44, D-66421 Homburg, Germany.
| | - Karsten Niefind
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| |
Collapse
|
12
|
Cuzzolin A, Deganutti G, Salmaso V, Sturlese M, Moro S. AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein-Ligand Association. ChemMedChem 2018; 13:522-531. [DOI: 10.1002/cmdc.201700564] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Alberto Cuzzolin
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| | - Giuseppe Deganutti
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| | - Veronica Salmaso
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| | - Mattia Sturlese
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| | - Stefano Moro
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| |
Collapse
|
13
|
Zhou Y, Zhang N, Qi X, Tang S, Sun G, Zhao L, Zhong R, Peng Y. Insights into the Impact of Linker Flexibility and Fragment Ionization on the Design of CK2 Allosteric Inhibitors: Comparative Molecular Dynamics Simulation Studies. Int J Mol Sci 2018; 19:111. [PMID: 29301250 PMCID: PMC5796060 DOI: 10.3390/ijms19010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/20/2017] [Accepted: 12/29/2017] [Indexed: 11/17/2022] Open
Abstract
Protein kinase is a novel therapeutic target for human diseases. The off-target and side effects of ATP-competitive inhibitors preclude them from the clinically relevant drugs. The compounds targeting the druggable allosteric sites outside the highly conversed ATP binding pocket have been identified as promising alternatives to overcome current barriers of ATP-competitive inhibitors. By simultaneously interacting with the αD region (new allosteric site) and sub-ATP binding pocket, the attractive compound CAM4066 was named as allosteric inhibitor of CK2α. It has been demonstrated that the rigid linker and non-ionizable substituted fragment resulted in significant decreased inhibitory activities of compounds. The molecular dynamics simulations and energy analysis revealed that the appropriate coupling between the linker and pharmacophore fragments were essential for binding of CAM4066 with CK2α. The lower flexible linker of compound 21 lost the capability of coupling fragments A and B to αD region and positive area, respectively, whereas the methyl benzoate of fragment B induced the re-orientated Pre-CAM4066 with the inappropriate polar interactions. Most importantly, the match between the optimized linker and pharmacophore fragments is the challenging work of fragment-linking based drug design. These results provide rational clues to further structural modification and development of highly potent allosteric inhibitors of CK2.
Collapse
Affiliation(s)
- Yue Zhou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoqian Qi
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Shan Tang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
14
|
Exploring the Pivotal Role of the CK2 Hinge Region Sub-Pocket in Binding with Tricyclic Quinolone Analogues by Computational Analysis. Molecules 2017; 22:molecules22050840. [PMID: 28534839 PMCID: PMC6154313 DOI: 10.3390/molecules22050840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 11/21/2022] Open
Abstract
Protein kinase CK2 has been considered as an attractive therapeutic target of cancer therapy. The tricyclic quinoline compound CX-4945 is the first representative of CK2 inhibitors used in human clinical trials. The binding of non-2,6-naphtyridine substituted compounds 27e (IC50 > 500 nM) and 27h (IC50 > 1000 nM) to CK2 is abolished. However, the unbinding mechanisms due to the key pharmacophore group replacement of compounds 27e and 27h are unveiled. In the present work, combined computational analysis was performed to investigate the underlying structural basis of the low-affinity of two systems. As indicated in the results, the loss of hydrogen bonds between the non-2,6-naphtyridine and the hinge region destroyed the proper recognition of the two complexes. Besides, the allosteric mechanisms between the deviated ligands and the changed regions (G-loop, C-loop and β4/β5 loop) are proposed. Furthermore, energetic analysis was evaluated by detailed energy calculation and residue-based energy decomposition. More importantly, the summary of known polar pharmacophore groups elucidates the pivotal roles of hinge region sub-pocket in the binding of CK2 inhibitors. These results provide rational clues to the fragment-based design of more potent CK2 inhibitors.
Collapse
|
15
|
Baier A, Galicka A, Nazaruk J, Szyszka R. Selected flavonoid compounds as promising inhibitors of protein kinase CK2α and CK2α', the catalytic subunits of CK2. PHYTOCHEMISTRY 2017; 136:39-45. [PMID: 28043654 DOI: 10.1016/j.phytochem.2016.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
CK2 is a ubiquitous protein kinase involved in many cell functions. During the last years it became an interesting target in cancer research. A series of flavonoid compounds was tested as inhibitors of protein kinase CK2. Several substances were found to be highly active against both catalytic subunits with IC50 values below 1 μM in case of CK2α'. The most promising inhibitor we identified is chrysoeriol with IC50 values of 250 and 34 nM for CK2α and CK2α', respectively.
Collapse
Affiliation(s)
- Andrea Baier
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland.
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-089 Białystok, Poland
| | - Jolanta Nazaruk
- Department of Pharmacognosy, Medical University of Białystok, ul. Mickiewicza 2a, 15-089 Białystok, Poland
| | - Ryszard Szyszka
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| |
Collapse
|
16
|
Figliozzi RW, Chen F, Hsia SV. New insights on thyroid hormone mediated regulation of herpesvirus infections. Cell Biosci 2017; 7:13. [PMID: 28344765 PMCID: PMC5360088 DOI: 10.1186/s13578-017-0140-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/14/2017] [Indexed: 12/22/2022] Open
Abstract
Thyroid hormone (T3) has been suggested to participate in the regulation of herpesvirus replication during reactivation. Clinical observations and in vivo experiments suggest that T3 are involved in the suppression of herpes virus replication. In vitro, differentiated LNCaP cells, a human neuron-like cells, further resisted HSV-1 replication upon addition of T3. Previous studies indicate that T3 controlled the expression of several key viral genes via its nuclear receptors in differentiated LNCaP cells. Additional observation showed that differentiated LNCaP cells have active PI3K signaling and inhibitor LY294002 can reverse T3-mediated repression of viral replication. Active PI3K signaling has been linked to HSV-1 latency in neurons. The hypothesis is that, in addition to repressing viral gene transcription at the nuclear level, T3 may influence PI3K signaling to control HSV-1 replication in human neuron-like cells. We review the genomic and non-genomic regulatory roles of T3 by examining the phosphoinositide 3-kinase (PI3K) pathway gene expression profile changes in differentiated LNCaP cells under the influence of hormone. The results indicated that 15 genes were down-regulated and 22 genes were up-regulated in T3-treated differentiated LNCaP cells in comparison to undifferentiated state. Of all these genes, casein kinase 2 (CK2), a key component to enhance PI3K signaling pathway, was significantly increased upon T3 treatment only while the cells were differentiated. Further studies revealed that CK2 inhibitors tetrabrominated cinnamic acid (TBCA) and 4, 5, 6, 7-tetrabromo-2H-benzotriazole (TBB) both reversed the T3-mediated repression of viral replication. Together these observations suggested a new approach to understanding the roles of T3 in the complicated regulation of HSV-1 replication during latency and reactivation.
Collapse
Affiliation(s)
- Robert W Figliozzi
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, USA.,Department of Natural Sciences, School of Agriculture and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, USA
| | - Feng Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, USA
| | - S Victor Hsia
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, USA.,Department of Natural Sciences, School of Agriculture and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, USA
| |
Collapse
|
17
|
Chojnacki K, Wińska P, Skierka K, Wielechowska M, Bretner M. Synthesis, in vitro antiproliferative activity and kinase profile of new benzimidazole and benzotriazole derivatives. Bioorg Chem 2017; 72:1-10. [PMID: 28340404 DOI: 10.1016/j.bioorg.2017.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/10/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
Protein kinase 2 (CK2), a member of the serine/threonine kinase family, has been established as a promising target in anticancer therapy. New derivatives of known CK2 inhibitors 4,5,6,7-tetrabromo-1H-benzimidazole (TBBi) and 4,5,6,7-tetrabromo-1H-benzotriazole (TBBt) bearing azide or substituted triazole groups were synthesized. Their influence on the activity of human recombinant CK2α and cytotoxicity against normal and cancer cell lines were evaluated. TBBi derivatives with triazole substituted with carboxyl substituent (7 and 10) exhibited the most potent inhibitory activity against CK2 with Ki value in the range of 1.96-0.91μM, respectively. New TBBi derivatives 2, 3, 5 and 9 have demonstrated the EC50, in the range of 12-25μM and 13-29μM respectively towards CCRF-CEM and MCF-7 cells. Derivatives TBBi decreased viability of cancer cells more efficiently than BALB cells and the biggest differences were observed for the azide substituted compounds 3 and 5. The effect of the most active compounds on the activity of eight off-target kinases was evaluated. Inhibitory efficiency of CK2-mediated p65 phosphorylation was demonstrated for the TBBi and compound 12.
Collapse
Affiliation(s)
- Konrad Chojnacki
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland.
| | - Katarzyna Skierka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Maria Bretner
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| |
Collapse
|
18
|
Borgo C, Franchin C, Scalco S, Bosello-Travain V, Donella-Deana A, Arrigoni G, Salvi M, Pinna LA. Generation and quantitative proteomics analysis of CK2α/α' (-/-) cells. Sci Rep 2017; 7:42409. [PMID: 28209983 PMCID: PMC5314375 DOI: 10.1038/srep42409] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/10/2017] [Indexed: 01/23/2023] Open
Abstract
CK2 is a ubiquitous, constitutively active, highly pleiotropic, acidophilic Ser/Thr protein kinase whose holoenzyme is composed of two catalytic (α and/or α’) subunits and a dimer of a non-catalytic β subunit. Abnormally high CK2 level/activity is often associated with malignancy and a variety of cancer cells have been shown to rely on it to escape apoptosis. To gain information about the actual “druggability” of CK2 and to dissect CK2 dependent cellular processes that are instrumental to the establishment and progression of neoplasia we have exploited the CRISPR/Cas9 genome editing technology to generate viable clones of C2C12 myoblasts devoid of either both the CK2 catalytic subunits or its regulatory β-subunit. Suppression of both CK2 catalytic subunits promotes the disappearance of the β-subunit as well, through its accelerated proteasomal degradation. A quantitative proteomics analysis of CK2α/α’(−/−) versus wild type cells shows that knocking out both CK2 catalytic subunits causes a rearrangement of the proteomics profile, with substantially altered level ( > 50%) of 240 proteins, 126 of which are up-regulated, while the other are down-regulated. A functional analysis reveals that up- and down-regulated proteins tend to be segregated into distinct sub-cellular compartments and play different biological roles, consistent with a global rewiring underwent by the cell to cope with the lack of CK2.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy.,Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, Padova, Italy
| | - Stefano Scalco
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, Padova, Italy
| | | | - Arianna Donella-Deana
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy.,Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy.,CNR Institute of Neurosciences, Via U. Bassi 58/B, Padova, Italy
| |
Collapse
|
19
|
Inhibition of Protein Kinase CK2 Prevents Adipogenic Differentiation of Mesenchymal Stem Cells Like C3H/10T1/2 Cells. Pharmaceuticals (Basel) 2017; 10:ph10010022. [PMID: 28208768 PMCID: PMC5374426 DOI: 10.3390/ph10010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/20/2017] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
Protein kinase CK2 as a holoenzyme is composed of two catalytic α- or α'-subunits and two non-catalytic β-subunits. Knock-out experiments revealed that CK2α and CK2β are required for embryonic development. Little is known about the role of CK2 during differentiation of stem cells. Mesenchymal stem cells (MSCs) are multipotent cells which can be differentiated into adipocytes in vitro. Thus, MSCs and in particular C3H/10T1/2 cells are excellent tools to study a possible role of CK2 in adipogenesis. We found downregulation of the CK2 catalytic subunits as well as a decrease in CK2 kinase activity with progression of differentiation. Inhibition of CK2 using the potent inhibitor CX-4945 impeded differentiation of C3H/10T1/2 cells into adipocytes. The inhibited cells lacked the observed decrease in CK2 expression, but showed a constant expression of all three CK2 subunits. Furthermore, inhibition of CK2 resulted in decreased cell proliferation in the early differentiation phase. Analysis of the main signaling cascade revealed an elevated expression of C/EBPβ and C/EBPδ and reduced expression of the adipogenic master regulators C/EBPα and PPARγ2. Thus, CK2 seems to be implicated in the regulation of different steps early in the adipogenic differentiation of MSC.
Collapse
|
20
|
Zhou Y, Zhang N, Chen W, Zhao L, Zhong R. Underlying mechanisms of cyclic peptide inhibitors interrupting the interaction of CK2α/CK2β: comparative molecular dynamics simulation studies. Phys Chem Chem Phys 2017; 18:9202-10. [PMID: 26974875 DOI: 10.1039/c5cp06276d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Protein-protein interactions (PPIs) are fundamental to all biological processes. Recently, the CK2β-derived cyclic peptide Pc has been demonstrated to efficiently antagonize the CK2α/CK2β interaction and strongly affect the phosphorylation of CK2β-dependent CK2 substrate specificity. The binding affinity of Pc to CK2α is destroyed to different extents by two single-point mutations of Tyr188 to Ala (Y188A) and Phe190 to Ala (F190A), which exert negative effects on the inhibitory activity (IC50) of Pc against the CK2α/CK2β interaction from 3.0 μM to 54.0 μM and ≫100 μM, respectively. However, the structural influences of Y188A and F190A mutations on the CK2α-Pc complex remain unclear. In this study, comparative molecular dynamics (MD) simulations, principal component analysis (PCA), domain cross-correlation map (DCCM) analysis and energy calculations were performed on wild type (WT), Y188A mutant, and F190A mutant systems. The results revealed that ordered communications between hydrophobic and polar interactions were essential for CK2α-Pc binding in the WT system. In addition to the loss of the hydrogen bond between Gln36 of CK2α and Gly189 of Pc in the two mutants, the improper recognition mechanisms occurred through different pathways. These pathways included the weakened hydrophobic interactions in the Y188A mutant as well as decreased polar and hydrophobic interactions in the F190A mutant. The energy analysis results qualitatively elucidated the instability of the two mutants and energetic contributions of the key residues. This study not only revealed the structural mechanisms for the decreased binding affinity of Y188A and F190A mutant CK2α-Pc complexes, but also provided valuable clues for the rational design of CK2α/CK2β subunit interaction inhibitors with high affinity and specificity.
Collapse
Affiliation(s)
- Yue Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Na Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Wenjuan Chen
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Lijiao Zhao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
21
|
Kubiński K, Masłyk M, Orzeszko A. Benzimidazole inhibitors of protein kinase CK2 potently inhibit the activity of atypical protein kinase Rio1. Mol Cell Biochem 2016; 426:195-203. [PMID: 27909846 PMCID: PMC5290066 DOI: 10.1007/s11010-016-2892-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/25/2016] [Indexed: 11/24/2022]
Abstract
Benzimidazole derivatives of 5,6-dichlorobenzimidazole 1-β-d-ribofuranoside (DRB) comprise the important class of protein kinase CK2 inhibitors. Depending on the structure, benzimidazoles inhibit CK2 with different selectivity and potency. Besides CK2, the compounds can inhibit, with similar activity, other classical eukaryotic protein kinases (e.g. PIM, DYRK, and PKD). The present results show that a majority of the most common CK2 inhibitors can affect the atypical kinase Rio1 in a nanomolar range. Kinetic data confirmed the mode of action of benzimidazoles as typical ATP-competitive inhibitors. In contrast to toyocamycin—the first discovered small-molecule inhibitor of Rio1—the most potent representative of benzimidazoles TIBI (IC50 = 0.09 µM, Ki = 0.05 µM) does not influence the oligomeric state of the Rio1 kinase. Docking studies revealed that TIBI can occupy the ATP-binding site of Rio1 in a manner similar to toyocamycin, and enhances the thermostability of the enzyme.
Collapse
Affiliation(s)
- Konrad Kubiński
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland.
| | - Andrzej Orzeszko
- Institute of Chemistry, Warsaw Life Sciences University, ul. Nowoursynowska 159c, 02-787, Warsaw, Poland
| |
Collapse
|
22
|
Shi J, Liu N, Xiao Y, Takei Y, Yasue M, Suzuki Y, Hou Z, Ohno H, Yamada M, Fuchi N, Oshida K, Miyamoto Y, Tsujimoto G, Hirasawa A. The Effects of a Selective CK2 Inhibitor on Anti-glomerular Basement Membrane Glomerulonephritis in Rats. Biol Pharm Bull 2016; 38:1345-51. [PMID: 26328489 DOI: 10.1248/bpb.b15-00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase CK2 ("casein kinase II") is a protein serine/threonine kinase that plays critical roles in biological processes such as cell growth, cell cycle progression, and apoptosis. So far, we have identified that one catalytic isozyme of CK2, CK2α, is over-expressed in the kidney during the progression of glomerulonephritis (GN). Moreover, we have shown that in vivo inhibition of CK2 by administration of CK2 inhibitors was effective in the treatment of experimental GN. Hence the development of potent CK2 inhibitors should be considered in therapeutic strategies for GN. In the present study we identified compound 13, a pyrazine derivative, as a potent CK2 inhibitor. By performing enzyme kinetics analysis in vitro, we characterized the inhibition of compound 13 toward each CK2 catalytic isozyme. Furthermore, in vivo, we demonstrated that compound 13 is effective in attenuating proteinuria, decreasing the enhanced level of blood urea nitrogen and serum creatinine, and ameliorating glomerular crescent formation in an experimental GN rat model. On the other hand, cellular apoptosis was detected in the rat testis following administration of compound 13. This study provides clues for new strategies for developing applicable compounds into CK2-targeted GN treatments.
Collapse
Affiliation(s)
- Junfeng Shi
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cuzzolin A, Sturlese M, Deganutti G, Salmaso V, Sabbadin D, Ciancetta A, Moro S. Deciphering the Complexity of Ligand–Protein Recognition Pathways Using Supervised Molecular Dynamics (SuMD) Simulations. J Chem Inf Model 2016; 56:687-705. [DOI: 10.1021/acs.jcim.5b00702] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Alberto Cuzzolin
- Molecular
Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova, Italy
| | - Mattia Sturlese
- Molecular
Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova, Italy
| | - Giuseppe Deganutti
- Molecular
Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova, Italy
| | - Veronica Salmaso
- Molecular
Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova, Italy
| | - Davide Sabbadin
- Molecular
Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova, Italy
| | - Antonella Ciancetta
- Molecular
Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova, Italy
| | - Stefano Moro
- Molecular
Modeling Section
(MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, Padova, Italy
| |
Collapse
|
24
|
Zhang N, Chen WJ, Zhou Y, Zhao H, Zhong RG. Rational Design of Coumarin Derivatives as CK2 Inhibitors by Improving the Interaction with the Hinge Region. Mol Inform 2015; 35:15-8. [DOI: 10.1002/minf.201500091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/06/2015] [Indexed: 01/31/2023]
|
25
|
Herhaus L, Perez-Oliva AB, Cozza G, Gourlay R, Weidlich S, Campbell DG, Pinna LA, Sapkota GP. Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization. Sci Signal 2015; 8:ra35. [PMID: 25872870 PMCID: PMC4421874 DOI: 10.1126/scisignal.aaa0441] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The deubiquitylating enzyme OTUB1 is present in all tissues and targets many substrates, in both the cytosol and nucleus. We found that casein kinase 2 (CK2) phosphorylated OTUB1 at Ser(16) to promote its nuclear accumulation in cells. Pharmacological inhibition or genetic ablation of CK2 blocked the phosphorylation of OTUB1 at Ser(16), causing its nuclear exclusion in various cell types. Whereas we detected unphosphorylated OTUB1 mainly in the cytosol, we detected Ser(16)-phosphorylated OTUB1 only in the nucleus. In vitro, Ser(16)-phosphorylated OTUB1 and nonphosphorylated OTUB1 exhibited similar catalytic activity, bound K63-linked ubiquitin chains, and interacted with the E2 enzyme UBE2N. CK2-mediated phosphorylation and subsequent nuclear localization of OTUB1 promoted the formation of 53BP1 (p53-binding protein 1) DNA repair foci in the nucleus of osteosarcoma cells exposed to ionizing radiation. Our findings indicate that the activity of CK2 is necessary for the nuclear translocation and subsequent function of OTUB1 in DNA damage repair.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/genetics
- Animals
- Casein Kinase II/antagonists & inhibitors
- Casein Kinase II/genetics
- Casein Kinase II/metabolism
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cells, Cultured
- Cysteine Endopeptidases/genetics
- Cysteine Endopeptidases/metabolism
- Deubiquitinating Enzymes
- Embryo, Mammalian/cytology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- HEK293 Cells
- HeLa Cells
- Humans
- Immunoblotting
- Lysine/genetics
- Lysine/metabolism
- Mice, Knockout
- Microscopy, Fluorescence
- Mutation
- Phosphorylation/drug effects
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA Interference
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Serine/genetics
- Serine/metabolism
- Transforming Growth Factor beta/pharmacology
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
Collapse
Affiliation(s)
- Lina Herhaus
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Ana B Perez-Oliva
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Giorgio Cozza
- Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Robert Gourlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Simone Weidlich
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David G Campbell
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lorenzo A Pinna
- Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Gopal P Sapkota
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
26
|
Iori E, Ruzzene M, Zanin S, Sbrignadello S, Pinna LA, Tessari P. Effects of CK2 inhibition in cultured fibroblasts from Type 1 Diabetic patients with or without nephropathy. Growth Factors 2015; 33:259-66. [PMID: 26340273 DOI: 10.3109/08977194.2015.1073725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CK2 is a multifunctional, pleiotropic protein kinase involved in the regulation of cell proliferation and survival. Since fibroblasts from Type 1 Diabetes patients (T1DM) with Nephropathy exhibit increased proliferation, we studied cell viability, basal CK2 expression and activity, and response to specific CK2 inhibitors TBB (4,5,6,7-tetrabenzotriazole) and CX4945, in fibroblasts from T1DM patients either with (T1DM+) or without (T1DM-) Nephropathy, and from healthy controls (N). We tested expression and phosphorylation of CK2-specific molecular targets. In untreated fibroblasts from T1DM+, the cell viability was higher than in both N and T1DM-. CK2 inhibitors significantly reduced cell viability in all groups, but more promptly and with a larger effect in T1DM+. Differences in CK2-dependent phosphorylation sites were detected. In conclusion, our results unveil a higher dependence of T1DM+ cells on CK2 for their survival, despite a similar expression and a lower activity of this kinase compared with those of normal cells.
Collapse
Affiliation(s)
| | - Maria Ruzzene
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
| | - Sofia Zanin
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
| | | | - Lorenzo Alberto Pinna
- b Department of Biomedical Sciences , University of Padova , Padova , Italy , and
- c Venetian Institute of Molecular Medicine , Padova , Italy
| | | |
Collapse
|
27
|
Zhang S, Yang YL, Wang Y, You B, Dai Y, Chan G, Hsieh D, Kim IJ, Fang LT, Au A, Stoppler HJ, Xu Z, Jablons DM, You L. CK2α, over-expressed in human malignant pleural mesothelioma, regulates the Hedgehog signaling pathway in mesothelioma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:93. [PMID: 25422081 PMCID: PMC4254219 DOI: 10.1186/s13046-014-0093-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/22/2014] [Indexed: 12/26/2022]
Abstract
Background The Hedgehog (Hh) signaling pathway has been implicated in stem cell maintenance and its activation is aberrant in several types of cancer including mesothelioma. Protein kinase CK2 affects several cell signaling pathways through the mechanism of phosphorylation. Methods Protein and mRNA levels of CK2α and Gli1 were tested by quantitative RT-PCR and immunohistochemistry staining in mesothelioma samples and cell lines. Down-regulated Gli1 expression and transcriptional activity were demonstrated by RT-PCR, Western blot and luciferase reporter assay. Results In this study, we show that CK2α is over-expressed and a positive regulator of Hegdehog/Gli1 signaling in human malignant pleural mesothelioma. First of all, we found that the mRNA levels of CK2α and Gli1 were broadly elevated and correlated (n = 52, r = 0.401, P < 0.05), compared with LP9 (a normal mesothelial cell line). We then investigated their expression at the protein level, and found that all the 7 mesothelioma cell lines tested showed positive staining in CK2α and Gli1 immunohistochemistry. Correlation analysis by Pearson test for CK2α and Gli1 expression in the 75 mesothelioma tumors and the 7 mesothelioma cell lines showed that the two protein expression was significantly correlated (n = 82, r = 0.554, P < 0.01). Furthermore, we demonstrated that Gli1 expression and transcriptional activity were down-regulated after CK2α was silenced in two mesothelioma cell lines (H28 and H2052). CK2α siRNA also down-regulated the expression of Hh target genes in these cell lines. Moreover, treatment with a small-molecule CK2α inhibitor CX-4945 led to dose-dependent inhibition of Gli1 expression and transcriptional activity. Conversely, forced over-expression of CK2α resulted in an increase in Gli1 transcriptional activity in H28 cells. Conclusions Thus, we report for the first time that over-expressed CK2α positively regulate Hh/Gli1 signaling in human mesothelioma. Electronic supplementary material The online version of this article (doi:10.1186/s13046-014-0093-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shulin Zhang
- Department of Thoracic Surgery, The Fifth Hospital of Dalian, Dalian, 116021, P.R. China. .,Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Yucheng Wang
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Bin You
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA. .,Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital University of Medical Science, Beijing, P.R. China.
| | - Yuyuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Geraldine Chan
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - David Hsieh
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Il-Jin Kim
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Li Tai Fang
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Alfred Au
- Division of Diagnostic Pathology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Hubert J Stoppler
- Tissue Core, Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
28
|
Wang X, Pan P, Li Y, Li D, Hou T. Exploring the prominent performance of CX-4945 derivatives as protein kinase CK2 inhibitors by a combined computational study. MOLECULAR BIOSYSTEMS 2014; 10:1196-210. [PMID: 24647611 DOI: 10.1039/c4mb00013g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein kinase CK2, also known as casein kinase II, is related to various cellular events and is a potential target for numerous cancers. In this study, we attempted to gain more insight into the inhibition process of CK2 by a series of CX-4945 derivatives through an integrated computational study that combines molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations. Based on the binding poses predicted by molecular docking, the MD simulations were performed to explore the dynamic binding processes for ten selected inhibitors. Then, both Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) techniques were employed to predict the binding affinities of the studied systems. The predicted binding energies of the selected inhibitors correlate well with their experimental activities (r(2) = 0.78). The van der Waals term is the most favorable component for the total energies. The free energy decomposition on a per residue basis reveals that the residue K68 is essential for the electrostatic interactions between CK2 and the studied inhibitors and numerous residues, including L45, V53, V66, F113, M163 and I174, play critical roles in forming van der Waals interactions with the inhibitors. Finally, a number of new derivatives were designed and the binding affinity and the predicted binding free energies of each designed molecule were obtained on the basis of molecular docking and MM/PBSA. It is expected that our research will benefit the future rational design of novel and potent inhibitors of CK2.
Collapse
Affiliation(s)
- Xuwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | | | | | | | | |
Collapse
|
29
|
TANG AIQIONG, CAO XIAOCHENG, TIAN LI, HE LIHUA, LIU FEI. Apigenin inhibits the self-renewal capacity of human ovarian cancer SKOV3-derived sphere-forming cells. Mol Med Rep 2014; 11:2221-6. [DOI: 10.3892/mmr.2014.2974] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 10/31/2014] [Indexed: 11/06/2022] Open
|
30
|
Jin CH, Jun KY, Lee E, Kim S, Kwon Y, Kim K, Na Y. Ethyl 2-(benzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate analogues as a new scaffold for protein kinase casein kinase 2 inhibitor. Bioorg Med Chem 2014; 22:4553-65. [PMID: 25131958 DOI: 10.1016/j.bmc.2014.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
Protein kinase casein kinase 2 (PKCK2) is a constitutively active, growth factor-independent serine/threonine kinase, and changes in PKCK2 expression or its activity are reported in many cancer cells. To develop a novel PKCK2 inhibitor(s), we first performed cell-based phenotypic screening using 4000 chemicals purchased from ChemDiv chemical libraries (2000: randomly selected; 2000: kinase-biased) and performed in vitro kinase assay-based screening using hits found from the first screening. We identified compound 24 (C24)[(Z)-ethyl 5-(4-chlorophenyl)-2-(3,4-dihydroxybenzylidene)-7-methyl-3-oxo-3,5-dihydro-2H-thiazolo[3,2-a] pyrimidine-6-carboxylate] as a novel inhibitor of PKCK2 that is more potent and selective than 4,5,6,7-tetrabromobenzotriazole (TBB). In particular, compound 24 [half maximal inhibitory concentration (IC50)=0.56μM] inhibited PKCK2 2.2-fold more efficiently than did TBB (IC50=1.24μM), which is quite specific toward PKCK2 with respect to ATP binding, in a panel of 31 human protein kinases. The Ki values of compound 24 and TBB for PKCK2 were 0.78μM and 2.70μM, respectively. Treatment of cells with compound 24 inhibited endogenous PKCK2 activity and showed anti-proliferative and pro-apoptotic effects against stomach and hepatocellular cancer cell lines more efficiently than did TBB. As expected, compound 24 also enabled tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-resistant cancer cells to be sensitive toward TRAIL. In comparing the molecular docking of compound 24 bound to PKCK2α versus previously reported complexes of PKCK2 with other inhibitors, our findings suggest a new scaffold for specific PKCK2α inhibitors. Thus, compound 24 appears to be a selective, cell-permeable, potent, and novel PKCK2 inhibitor worthy of further characterization.
Collapse
Affiliation(s)
- Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea
| | - Kyu-Yeon Jun
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eunjung Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea
| | - Seongrak Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea; Integrated Genomic Research Center for Metabolic Regulation, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kunhong Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea; Integrated Genomic Research Center for Metabolic Regulation, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 487-010, Republic of Korea.
| |
Collapse
|
31
|
Zhou Y, Li X, Zhang N, Zhong R. Structural Basis for Low-Affinity Binding of Non-R2 Carboxylate-Substituted Tricyclic Quinoline Analogs to CK2α: Comparative Molecular Dynamics Simulation Studies. Chem Biol Drug Des 2014; 85:189-200. [DOI: 10.1111/cbdd.12372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Zhou
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| | - Xitao Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School; Peking University; Shenzhen 518055 China
| | - Na Zhang
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| | - Rugang Zhong
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| |
Collapse
|
32
|
Ostrynska OV. EFFECT OF INHIBITORS OF PROTEIN KINASE CK2 ON THE ACTIVITY ITS CATALYTIC SUBUNITS СК2α AND СК2α′. BIOTECHNOLOGIA ACTA 2014. [DOI: 10.15407/biotech7.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
Discovery and characterization of synthetic 4′-hydroxyflavones—New CK2 inhibitors from flavone family. Bioorg Med Chem 2013; 21:6681-9. [DOI: 10.1016/j.bmc.2013.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 11/19/2022]
|
34
|
Abstract
INTRODUCTION CK2 is a pleiotropic, ubiquitous and constitutively active protein kinase, localized in both cytosolic and nuclear compartments, where it catalyzes the phosphorylation of hundreds of proteins. CK2 is generally described as a tetramer composed of two catalytic (α and/or α') and two regulatory subunits (β), however, the free α/α' subunits are catalytically active by themselves. CK2 plays a key role in several physiological and pathological processes and has been connected to many neoplastic, inflammatory, autoimmune and infectious disorders. In the last 20 years, several inhibitors of CK2 have been discovered though only one of these, CX-4945, has recently entered into Phase II clinical trials as potential anticancer drug. AREAS COVERED The main objective of the present review is to describe the development of CK2 activity modulators over the years according to the timeline of their patent registration. EXPERT OPINION CK2 was discovered in 1954, but the first patent on CK2 modulators was deposited only 50 years later, in 2004. However, in the last 5 years an increasing number of patents on CK2 inhibitors have been registered, reflecting an increased interest in this kind of drug candidates and their possible therapeutic applications.
Collapse
Affiliation(s)
- Giorgio Cozza
- University of Padova, Department of Biomedical Sciences, Padova 35121, Italy
| | | | | |
Collapse
|
35
|
Zhou Y, Zhang N, Zhong R. Exploring the crucial structural elements required for tricyclic quinoline analogs as protein kinase CK2 inhibitors by a combined computational analysis. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0442-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Zhang S, Wang Y, Mao JH, Hsieh D, Kim IJ, Hu LM, Xu Z, Long H, Jablons DM, You L. Inhibition of CK2α down-regulates Hedgehog/Gli signaling leading to a reduction of a stem-like side population in human lung cancer cells. PLoS One 2012; 7:e38996. [PMID: 22768056 PMCID: PMC3387212 DOI: 10.1371/journal.pone.0038996] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/14/2012] [Indexed: 11/26/2022] Open
Abstract
Protein kinase CK2 is frequently elevated in a variety of human cancers. The Hedgehog (Hh) signaling pathway has been implicated in stem cell maintenance, and its aberrant activation has been indicated in several types of cancer, including lung cancer. In this study, we show that CK2 is positively involved in Hh/Gli signaling in lung cancer cell lines A549 and H1299. First, we found a correlation between CK2α and Gli1 mRNA levels in 100 primary lung cancer tissues. Down-regulation of Gli1 expression and transcriptional activity were demonstrated after the silencing of CK2α in lung cancer cells. In addition, CK2α siRNA down-regulated the expression of Hh target genes. Furthermore, two small-molecule CK2α inhibitors led to a dose-dependent inhibition of Gli1 expression and transcriptional activity in lung cancer cells. Reversely, forced over-expression of CK2α resulted in an increase both in Gli1 expression and transcriptional activity in A549 cells. Finally, the inhibition of Hh/Gli by CK2α siRNA led to a reduction of a cancer stem cell-like side population that shows higher ABCG2 expression level. Thus, we report that the inhibition of CK2α down-regulates Hh/Gli signaling and subsequently reduces stem-like side population in human lung cancer cells.
Collapse
Affiliation(s)
- Shulin Zhang
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
- Lung Cancer Institute, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Surgical Oncology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yucheng Wang
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Jian-Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - David Hsieh
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Il-Jin Kim
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Li-Min Hu
- Department of Obstertrics and Gynecology, University of California San Francisco, San Francisco, California, United States of America
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Hao Long
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - David M. Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
37
|
Kolář M, Hobza P. On Extension of the Current Biomolecular Empirical Force Field for the Description of Halogen Bonds. J Chem Theory Comput 2012; 8:1325-33. [PMID: 26596748 DOI: 10.1021/ct2008389] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Until recently, the description of halogen bonding by standard molecular mechanics has been poor, owing to the lack of the so-called σ hole localized at the halogen. This region of positive electrostatic potential located on top of a halogen atom explains the counterintuitive attraction of halogenated compounds interacting with Lewis bases. In molecular mechanics, the σ hole is modeled by a massless point charge attached to the halogen atom and referred to as an explicit σ hole (ESH). Here, we introduce and compare three methods of ESH construction, which differ in the complexity of the input needed. The molecular mechanical dissociation curves of three model complexes containing bromine are compared with accurate CCSD(T)/CBS data. Furthermore, the performance of the Amber force field enhanced by the ESH on geometry characteristics is tested on the casein kinase 2 protein complex with seven brominated inhibitors. It is shown how various schemes depend on the selection of the ESH parameters and to what extent the energies and geometries are reliable. The charge of 0.2e placed 1.5 Å from the bromine atomic center is suggested as a universal model for the ESH.
Collapse
Affiliation(s)
- Michal Kolář
- Institute of Organic Chemistry and Biochemistry and Gilead Science Research Center, Academy of Sciences of the Czech Republic , Flemingovo nam. 2, 166 10 Prague 6, The Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague , Albertov 6, 128 43 Prague 2, The Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry and Gilead Science Research Center, Academy of Sciences of the Czech Republic , Flemingovo nam. 2, 166 10 Prague 6, The Czech Republic.,Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University , Olomouc, 771 46 Olomouc, The Czech Republic.,Department of Chemistry, Pohang University of Science and Technology , San 31, Hyojadong, Namgu, Pohang 790-784, Republic of Korea
| |
Collapse
|
38
|
Haddach M, Pierre F, Regan CF, Borsan C, Michaux J, Stefan E, Kerdoncuff P, Schwaebe MK, Chua PC, Siddiqui-Jain A, Macalino D, Drygin D, O’Brien SE, Rice WG, Ryckman DM. Synthesis and SAR of inhibitors of protein kinase CK2: Novel tricyclic quinoline analogs. Bioorg Med Chem Lett 2012; 22:45-8. [DOI: 10.1016/j.bmcl.2011.11.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/21/2011] [Indexed: 11/24/2022]
|
39
|
Scherer GFE, Labusch C, Effendi Y. Phospholipases and the Network of Auxin Signal Transduction with ABP1 and TIR1 as Two Receptors: A Comprehensive and Provocative Model. FRONTIERS IN PLANT SCIENCE 2012; 3:56. [PMID: 22629277 PMCID: PMC3355549 DOI: 10.3389/fpls.2012.00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/04/2012] [Indexed: 05/08/2023]
Abstract
Three types of phospholipases, phospholipase D, secreted phospholipase A(2), and patatin-related phospholipase A (pPLA) have functions in auxin signal transduction. Potential linkage to auxin receptors ABP1 or TIR1, their rapid activation or post-translational activation mechanisms, and downstream functions regulated by these phospholipases is reviewed and discussed. Only for pPLA all aspects are known at least to some detail. Evidence is gathered that all these signal reactions are located in the cytosol and seem to merge on regulation of PIN-catalyzed auxin efflux transport proteins. As a consequence, auxin concentration in the nucleus is also affected and this regulates the E3 activity of this auxin receptor. We showed that ABP1, PIN2, and pPLA, all outside the nucleus, have an impact on regulation of auxin-induced genes within 30 min. We propose that regulation of PIN protein activities and of auxin efflux transport are the means to coordinate ABP1 and TIR1 activity and that no physical contact between components of the ABP1-triggered cytosolic pathways and TIR1-triggered nuclear pathways of signaling is necessary to perform this.
Collapse
Affiliation(s)
- Günther F. E. Scherer
- Laboratory Molekulare Ertragsphysiologie, Institut für Zierpflanzenbau und Gehölzwissenschaften, Leibniz Universität HannoverHannover, Germany
- *Correspondence: Günther F. E. Scherer, Laboratory Molekulare Ertragsphysiologie, Institut für Zierpflanzenbau und Gehölzwissenschaften, Leibniz Universität Hannover, Herrenhäuser Str. 2, D30419 Hannover, Germany. e-mail:
| | - Corinna Labusch
- Laboratory Molekulare Ertragsphysiologie, Institut für Zierpflanzenbau und Gehölzwissenschaften, Leibniz Universität HannoverHannover, Germany
| | - Yunus Effendi
- Laboratory Molekulare Ertragsphysiologie, Institut für Zierpflanzenbau und Gehölzwissenschaften, Leibniz Universität HannoverHannover, Germany
| |
Collapse
|
40
|
Moucadel V, Prudent R, Sautel CF, Teillet F, Barette C, Lafanechere L, Receveur-Brechot V, Cochet C. Antitumoral activity of allosteric inhibitors of protein kinase CK2. Oncotarget 2011; 2:997-1010. [PMID: 22184283 PMCID: PMC3282105 DOI: 10.18632/oncotarget.361] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Due to its physiological role into promoting cell survival and its dysregulation in most cancer cells, protein kinase CK2 is a relevant physiopathological target for development of chemical inhibitors. We report the discovery of azonaphthalene derivatives, as a new family of highly specific CK2 inhibitors. First, we demonstrated that CK2 inhibition (IC50= 0.4 µM) was highly specific, reversible and non ATP-competitive. Small Angle X-ray Scattering experiments showed that this inhibition was due to large conformational change of CK2α upon binding of these inhibitors. We showed that several compounds of the family were cell-potent CK2 inhibitors promoting cell cycle arrest of human glioblastoma U373 cells. Finally, in vitro and in vivo assays showed that these compounds could decrease U373 cell tumor mass by 83 % emphasizing their efficacy against these apoptosis-resistant tumors. In contrast, Azonaphthalene derivatives inactive on CK2 activity showed no effect in colony formation and tumor regression assays. These findings illustrate the emergence of nonclassical CK2 inhibitors and provide exciting opportunities for the development of novel allosteric CK2 inhibitors. BACKGROUND CK2 is an emerging therapeutic target and ATP-competitive inhibitors have been identified. CK2 is endowed with specific structural features providing alternative strategies for inhibition. RESULTS Azonaphthalene compounds are allosteric CK2 inhibitors showing antitumor activity. CONCLUSION CK2 may be targeted allosterically. SIGNIFICANCE These inhibitors provide a foundation for a new paradigm for specific CK2 inhibition.
Collapse
Affiliation(s)
- Virginie Moucadel
- From INSERM, U1036, Biology of Cancer and Infection, Grenoble, F-38054, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, F-38054, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, F-38041, France
| | - Renaud Prudent
- From INSERM, U1036, Biology of Cancer and Infection, Grenoble, F-38054, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, F-38054, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, F-38041, France
| | - Céline F. Sautel
- From INSERM, U1036, Biology of Cancer and Infection, Grenoble, F-38054, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, F-38054, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, F-38041, France
| | - Florence Teillet
- From INSERM, U1036, Biology of Cancer and Infection, Grenoble, F-38054, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, F-38054, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, F-38041, France
| | | | | | | | - Claude Cochet
- From INSERM, U1036, Biology of Cancer and Infection, Grenoble, F-38054, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, F-38054, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, F-38041, France
| |
Collapse
|
41
|
Cozza G, Gianoncelli A, Bonvini P, Zorzi E, Pasquale R, Rosolen A, Pinna LA, Meggio F, Zagotto G, Moro S. Urolithin as a converging scaffold linking ellagic acid and coumarin analogues: design of potent protein kinase CK2 inhibitors. ChemMedChem 2011; 6:2273-86. [PMID: 21972104 DOI: 10.1002/cmdc.201100338] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/12/2011] [Indexed: 11/12/2022]
Abstract
Casein kinase 2 (CK2) is a ubiquitous, essential, and highly pleiotropic protein kinase; its abnormally high constitutive activity is suspected to underlie its pathogenic potential in neoplasia and other relevant diseases. Previously, using different in silico screening approaches, two potent and selective CK2 inhibitors were identified by our group: ellagic acid, a naturally occurring tannic acid derivative (K(i)=20 nM) and 3,8-dibromo-7-hydroxy-4-methylchromen-2-one (DBC, K(i)=60 nM). Comparing the crystallographic binding modes of both ellagic acid and DBC, an X-ray structure-driven merging approach was taken to design novel CK2 inhibitors with improved target affinity. A urolithin moiety is proposed as a possible bridging scaffold between the two known CK2 inhibitors, ellagic acid and DBC. Optimization of urolithin A as the bridging moiety led to the identification of 4-bromo-3,8-dihydroxy-benzo[c]chromen-6-one as a novel, potent and selective CK2 inhibitor, which shows a K(i) value of 7 nM against the protein kinase, representing a significant improvement in affinity for the target compared with the two parent fragments.
Collapse
Affiliation(s)
- Giorgio Cozza
- Department of Biological Chemistry, University of Padova, Viale Giuseppe Colombo 3, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol Cell Biochem 2011; 356:37-43. [PMID: 21755459 DOI: 10.1007/s11010-011-0956-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 10/18/2022]
Abstract
In this article we describe the preclinical characterization of 5-(3-chlorophenylamino) benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first orally available small molecule inhibitor of protein CK2 in clinical trials for cancer. CX-4945 was optimized as an ATP-competitive inhibitor of the CK2 holoenzyme (Ki = 0.38 nM). Iterative synthesis and screening of analogs, guided by molecular modeling, led to the discovery of orally available CX-4945. CK2 promotes signaling in the Akt pathway and CX-4945 suppresses the phosphorylation of Akt as well as other key downstream mediators of the pathway such as p21. CX-4945 induced apoptosis and caused cell cycle arrest in cancer cells in vitro. CX-4945 exhibited a dose-dependent antitumor activity in a xenograft model of PC3 prostate cancer model and was well tolerated. In vivo time-dependent reduction in the phosphorylation of the biomarker p21 at T145 was observed by immunohistochemistry. Inhibition of the newly validated CK2 target by CX-4945 represents a fresh therapeutic strategy for cancer.
Collapse
|
43
|
Gratz A, Kuckländer U, Bollig R, Götz C, Jose J. Identification of novel CK2 inhibitors with a benzofuran scaffold by novel non-radiometric in vitro assays. Mol Cell Biochem 2011; 356:83-90. [DOI: 10.1007/s11010-011-0957-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 06/24/2011] [Indexed: 11/30/2022]
|
44
|
Structure-based discovery of novel flavonol inhibitors of human protein kinase CK2. Mol Cell Biochem 2011; 356:107-15. [DOI: 10.1007/s11010-011-0945-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 11/25/2022]
|
45
|
Dobeš P, Řezáč J, Fanfrlík J, Otyepka M, Hobza P. Semiempirical Quantum Mechanical Method PM6-DH2X Describes the Geometry and Energetics of CK2-Inhibitor Complexes Involving Halogen Bonds Well, While the Empirical Potential Fails. J Phys Chem B 2011; 115:8581-9. [DOI: 10.1021/jp202149z] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Petr Dobeš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague, Czech Republic
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine − Hematooncology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 771 46 Olomouc, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 771 46 Olomouc, Czech Republic
| |
Collapse
|
46
|
Cristiani A, Costa G, Cozza G, Meggio F, Scapozza L, Moro S. The role of the N-terminal domain in the regulation of the "constitutively active" conformation of protein kinase CK2α: insight from a molecular dynamics investigation. ChemMedChem 2011; 6:1207-16. [PMID: 21591262 DOI: 10.1002/cmdc.201100046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/14/2011] [Indexed: 11/11/2022]
Abstract
Protein kinase CK2 is an extremely well-conserved pleiotropic protein kinase with a growing list of substrates, the majority of which are proteins implicated in signal transduction, gene expression, and transcription-related functions. Protein kinase CK2 is a ubiquitous heterotetrameric serine/threonine protein kinase made up of two α or α' catalytic subunits and two β regulatory subunits. Moreover, protein kinase CK2 is defined as a "constitutively active" protein kinase in contrast to most other protein kinases characterized by the presence of distinct conformations associated with the active and inactive states. As previously demonstrated by in vitro mutation studies, CK2 activity is substantially regulated by the interaction between the N-terminal tail and the kinase domain. In fact, progressive deletions of the N-terminal tail show a decrease in the activity of the kinase. Even if the detrimental effects of Δ2-12 deletion can be partially reversed by the addition of a CK2β subunit, deletions Δ2-12 and Δ2-30 progressively decrease the basal activity of CK2. In particular, as experimentally demonstrated, the Δ2-12 N-terminal deletion affects both the K(M) value for ATP and for the substrate peptide, and the k(cat) value of CK2α. In this work, molecular dynamics (MD) simulations were carried out on wild-type (wt), Δ2-12 and Δ2-30 deletion mutants of CK2α in order to explore the role of the N-terminal tail on the conformational behavior of CK2. Furthermore, classical MD simulations were carried out to assess the anticipated impact of conformational changes in a novel set of CK2α mutant forms, such as the triple mutant Y206F-R10A-Y261F and the single mutant Y125F.
Collapse
Affiliation(s)
- Andrea Cristiani
- LCT-Biochimie Pharmaceutique, Section des Sciences Pharmaceutiques, Université de Genève, Quai E. Ansermet 30, 1211 Genève, Switzerland.
| | | | | | | | | | | |
Collapse
|
47
|
Schuster I, Bernhardt R. Interactions of natural polyamines with mammalian proteins. Biomol Concepts 2011; 2:79-94. [DOI: 10.1515/bmc.2011.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AbstractThe ubiquitously expressed natural polyamines putrescine, spermidine, and spermine are small, flexible cationic compounds that exert pleiotropic actions on various regulatory systems and, accordingly, are essentially involved in diverse life functions. These roles of polyamines result from their capability to interact with negatively charged regions of all major classes of biomolecules, which might act in response by changing their structures and functions. The present review deals with polyamine-protein interactions, thereby focusing on mammalian proteins. We discuss the various modes in which polyamines can interact with proteins, describe major types of affected functions illustrated by representative examples of involved proteins, and support information with respective structural evidence from elucidated three-dimensional structures. A specific focus is put on polyamine interactions at protein surfaces that can modulate the aggregation of proteins to organized structural networks as well as to toxic aggregates and, moreover, can play a role in important transient protein-protein interactions.
Collapse
Affiliation(s)
- Inge Schuster
- 1Institute for Theoretical Chemistry, University Vienna, A-1090 Vienna, Austria
| | - Rita Bernhardt
- 2Institute of Biochemistry, Saarland University, Campus B2.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
48
|
Pierre F, O’Brien SE, Haddach M, Bourbon P, Schwaebe MK, Stefan E, Darjania L, Stansfield R, Ho C, Siddiqui-Jain A, Streiner N, Rice WG, Anderes K, Ryckman DM. Novel potent pyrimido[4,5-c]quinoline inhibitors of protein kinase CK2: SAR and preliminary assessment of their analgesic and anti-viral properties. Bioorg Med Chem Lett 2011; 21:1687-91. [DOI: 10.1016/j.bmcl.2011.01.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
49
|
Golub AG, Bdzhola VG, Briukhovetska NV, Balanda AO, Kukharenko OP, Kotey IM, Ostrynska OV, Yarmoluk SM. Synthesis and biological evaluation of substituted (thieno[2,3-d]pyrimidin-4-ylthio)carboxylic acids as inhibitors of human protein kinase CK2. Eur J Med Chem 2011; 46:870-6. [DOI: 10.1016/j.ejmech.2010.12.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/16/2010] [Accepted: 12/18/2010] [Indexed: 11/30/2022]
|
50
|
Lambert IH, Hansen DB. Regulation of Taurine Transport Systems by Protein Kinase CK2 in Mammalian Cells. Cell Physiol Biochem 2011; 28:1099-110. [DOI: 10.1159/000335846] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2011] [Indexed: 12/28/2022] Open
|