1
|
Bonomini A, Mercorelli B, Loregian A. Antiviral strategies against influenza virus: an update on approved and innovative therapeutic approaches. Cell Mol Life Sci 2025; 82:75. [PMID: 39945883 PMCID: PMC11825441 DOI: 10.1007/s00018-025-05611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025]
Abstract
Influenza viruses still represent a great concern for Public Health by causing yearly seasonal epidemics and occasionally worldwide pandemics. Moreover, spillover events at the animal-human interface are becoming more frequent nowadays, also involving animal species not previously found as reservoirs. To restrict the effects of influenza virus epidemics, especially in at-risk population, and to prepare a drug arsenal for possible future pandemics, researchers worldwide have been working on the development of antiviral strategies since the 80's of the last century. One of the main obstacles is the considerable genomic variability of influenza viruses, which constantly poses the issues of drug-resistance emergence and immune evasion. This review summarizes the approved therapeutics for clinical management of influenza, promising new anti-flu compounds and monoclonal antibodies currently undergoing clinical evaluation, and molecules with efficacy against influenza virus in preclinical studies. Moreover, we discuss some innovative anti-influenza therapeutic approaches such as combination therapies and targeted protein degradation. Given the limited number of drugs approved for influenza treatment, there is a still strong need for novel potent anti-influenza drugs endowed with a high barrier to drug resistance and broad-spectrum activity against influenza viruses of animal origin that may be responsible of future large outbreaks and pandemics.
Collapse
Affiliation(s)
- Anna Bonomini
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Arianna Loregian
- Department of Molecular Medicine, University of Padua, Padua, Italy.
- Microbiology and Virology Unit, Padua University Hospital, Padua, Italy.
| |
Collapse
|
2
|
Li YY, Liang GD, Chen ZX, Zhang K, Liang JL, Jiang LR, Yang SZ, Jiang F, Liu SW, Yang J. A small molecule compound targeting hemagglutinin inhibits influenza A virus and exhibits broad-spectrum antiviral activity. Acta Pharmacol Sin 2024; 45:2380-2393. [PMID: 38987389 PMCID: PMC11489770 DOI: 10.1038/s41401-024-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Influenza A virus (IAV) is a widespread pathogen that poses a significant threat to human health, causing pandemics with high mortality and pathogenicity. Given the emergence of increasingly drug-resistant strains of IAV, currently available antiviral drugs have been reported to be inadequate to meet clinical demands. Therefore, continuous exploration of safe, effective and broad-spectrum antiviral medications is urgently required. Here, we found that the small molecule compound J1 exhibited low toxicity both in vitro and in vivo. Moreover, J1 exhibits broad-spectrum antiviral activity against enveloped viruses, including IAV, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (HCoV-OC43), herpes simplex virus type 1 (HSV-1) and HSV-2. In this study, we explored the inhibitory effects and mechanism of action of J1 on IAV in vivo and in vitro. The results showed that J1 inhibited infection by IAV strains, including H1N1, H7N9, H5N1 and H3N2, as well as by oseltamivir-resistant strains. Mechanistic studies have shown that J1 blocks IAV infection mainly through specific interactions with the influenza virus hemagglutinin HA2 subunit, thereby blocking membrane fusion. BALB/c mice were used to establish a model of acute lung injury (ALI) induced by IAV. Treatment with J1 increased survival rates and reduced viral titers, lung index and lung inflammatory damage in virus-infected mice. In conclusion, J1 possesses significant anti-IAV effects in vitro and in vivo, providing insights into the development of broad-spectrum antivirals against future pandemics.
Collapse
Affiliation(s)
- Yin-Yan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guo-Dong Liang
- Key Laboratory for Candidate Drug Design and Screening Based on Chemical Biology, College of Pharmacy, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Zhi-Xuan Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ke Zhang
- Key Laboratory of Microbio and Infectious Disease Prevention & Control in Guizhou Province/Institute of Virology, School of Basic Medicine, Guizhou Medical University, Guiyang, 561113, China
| | - Jin-Long Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin-Rui Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Si-Zu Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Feng Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shu-Wen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
De Clercq E. A scientific career from the early 1960s till 2023: A tale of the various protagonists. Biochem Pharmacol 2024; 228:116248. [PMID: 38701868 DOI: 10.1016/j.bcp.2024.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
In this era spanning more than 60 years (from the early 1960s till today (2023), a broad variety of actors played a decisive role: Piet De Somer, Tom C. Merigan, Paul A. Janssen, Maurice Hilleman, and Georges Smets. Two protagonists (Antonín Holý and John C. Martin) formed with me a unique triangle (the Holý Trinity). Walter Fiers' group (with the help of Jean Content) contributed to the cloning of human β-interferon, and Piet Herdewijn accomplished the chemical synthesis of an array of anti-HIV 2',3'-dideoxynucleoside analogues. Rudi Pauwels, Masanori Baba, Dominique Schols, Johan Neyts, Lieve Naesens, Anita Van Lierde, Graciela Andrei, Robert Snoeck and Dirk Daelemans, as members of my team, helped me in achieving the intended goal, the development of a selective therapy for virus infections. The collaboration with "Lowie" (Guangdi Li) generated a new dimension for the future.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
4
|
Apaydın ÇB, Naesens L, Cihan-Üstündağ G. One-pot synthesis, characterization and antiviral properties of new benzenesulfonamide-based spirothiazolidinones. Mol Divers 2024; 28:2681-2688. [PMID: 38935302 PMCID: PMC11450120 DOI: 10.1007/s11030-024-10912-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
A novel series of benzenesulfonamide substituted spirothiazolidinone derivatives (3a-j) were synthesized, characterized and evaluated for their antiviral activity. The spirocyclic compounds were prepared by the condensation of 4-(aminosulfonyl)-2-methoxybenzohydrazide, appropriate cyclic ketones and 2-mercaptopropionic acid in a one-pot reaction. The structures of the new compounds were established by IR, 1H NMR, 13C NMR (APT), and elemental analysis. The new compounds were evaluated in vitro antiviral activity against influenza A/H1N1, A/H3N2 and B viruses, as well as herpes simplex virus type 1 (HSV-1), respiratory syncytial virus (RSV) and yellow fever virus (YFV). Two derivatives bearing propyl (3d) and tert-butyl (3e) substituents at position 8 of the spiro ring exhibited activity against influenza A/H1N1 virus with EC50 values in the range of 35-45 µM and no cytotoxicity at 100 μM, the highest concentration tested.
Collapse
Affiliation(s)
- Çağla Begüm Apaydın
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Fatih, 34126, Istanbul, Turkey.
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, B-3000, Louvain, Belgium
| | - Gökçe Cihan-Üstündağ
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, Fatih, 34126, Istanbul, Turkey
| |
Collapse
|
5
|
Malik S, Asghar M, Waheed Y. Outlining recent updates on influenza therapeutics and vaccines: A comprehensive review. Vaccine X 2024; 17:100452. [PMID: 38328274 PMCID: PMC10848012 DOI: 10.1016/j.jvacx.2024.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/27/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Influenza virus has presented a considerable healthcare challenge during the past years, particularly in vulnerable groups with compromised immune systems. Therapeutics and vaccination have always been in research annals since the spread of influenza. Efforts have been going on to develop an antiviral therapeutic approach that could assist in better disease management and reduce the overall disease complexity, resistance development, and fatality rates. On the other hand, vaccination presents a chance for effective, long-term, cost-benefit, and preventive response against the morbidity and mortality associated with the influenza. However, the issues of resistance development, strain mutation, antigenic variability, and inability to cure wide-spectrum and large-scale strains of the virus by available vaccines remain there. The article gathers the updated data for the therapeutics and available influenza vaccines, their mechanism of action, shortcomings, and trials under clinical experimentation. A methodological approach has been adopted to identify the prospective therapeutics and available vaccines approved and within the clinical trials against the influenza virus. Review contains influenza therapeutics, including traditional and novel antiviral drugs and inhibitor therapies against influenza virus as well as research trials based on newer drug combinations and latest technologies such as nanotechnology and organic and plant-based natural products. Most recent development of influenza vaccine has been discussed including some updates on traditional vaccination protocols and discussion on next-generation and upgraded novel technologies. This review will help the readers to understand the righteous approach for dealing with influenza virus infection and for deducing futuristic approaches for novel therapeutic and vaccine trials against Influenza.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Punjab 46000, Pakistan
| | - Muhammad Asghar
- Department of Biology, Lund University, Sweden
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
6
|
Hook JL, Bhattacharya J. The pathogenesis of influenza in intact alveoli: virion endocytosis and its effects on the lung's air-blood barrier. Front Immunol 2024; 15:1328453. [PMID: 38343548 PMCID: PMC10853445 DOI: 10.3389/fimmu.2024.1328453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Lung infection by influenza A virus (IAV) is a major cause of global mortality from lung injury, a disease defined by widespread dysfunction of the lung's air-blood barrier. Endocytosis of IAV virions by the alveolar epithelium - the cells that determine barrier function - is central to barrier loss mechanisms. Here, we address the current understanding of the mechanistic steps that lead to endocytosis in the alveolar epithelium, with an eye to how the unique structure of lung alveoli shapes endocytic mechanisms. We highlight where future studies of alveolar interactions with IAV virions may lead to new therapeutic approaches for IAV-induced lung injury.
Collapse
Affiliation(s)
- Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jahar Bhattacharya
- Department of Medicine, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
7
|
Khalil AM, Martinez-Sobrido L, Mostafa A. Zoonosis and zooanthroponosis of emerging respiratory viruses. Front Cell Infect Microbiol 2024; 13:1232772. [PMID: 38249300 PMCID: PMC10796657 DOI: 10.3389/fcimb.2023.1232772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of respiratory viruses. All human pandemics have been caused by the members of two major virus families, namely Orthomyxoviridae (influenza A viruses (IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). These viruses acquired some adaptive changes in a known intermediate host including domestic birds (IAVs) or unknown intermediate host (SARS-CoV-2) following transmission from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily, these acquired adaptive substitutions facilitated crossing species barriers by these viruses to infect humans in a phenomenon that is known as zoonosis. Besides, these adaptive substitutions aided the variant strain to transmit horizontally to other contact non-human animal species including pets and wild animals (zooanthroponosis). Herein we discuss the main zoonotic and reverse-zoonosis events that occurred during the last two pandemics of influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of interspecies transmission of these pandemic viruses on virus evolution and possible prophylactic and therapeutic interventions. Based on information available and presented in this review article, it is important to close monitoring viral zoonosis and viral reverse zoonosis of pandemic strains within a One-Health and One-World approach to mitigate their unforeseen risks, such as virus evolution and resistance to limited prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
8
|
Li B, Huang L, Lin J, Ma X, Luo Y, Gai W, Xie Y, Zhu T, Wang W, Li D. Design, synthesis, and biological evaluation of novel penindolone derivatives as potential inhibitors of hemagglutinin-mediated membrane fusion. Eur J Med Chem 2023; 258:115615. [PMID: 37413878 DOI: 10.1016/j.ejmech.2023.115615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Development and design of anti-influenza drugs with novel mechanisms is of great significance to combat the ongoing threat of influenza A virus (IAV). Hemagglutinin (HA) is regarded as a potential target for the therapy of IAV. Our previous research led to the discovery of penindolone (PND), a new diclavatol indole adduct, as an HA targeting leading compound exhibited anti-IAV activity. To enhance the bioactivity and understand the structure-activity relationships (SARs), 65 PND derivatives were designed and synthesized, and the anti-IAV activities as well as the HA targeting effects were systematically investigated in this study. Among them, compound 5g possessed high affinity to HA and was more effective than PND in terms of inhibiting HA-mediated membrane fusion. Compound 5g may act on the trypsin cleavage site of HA to exhibit a strong inhibition on membrane fusion. In addition, oral administration of 5g can significantly reduce the pulmonary virus titer, attenuate the weight loss, and improve the survival of IAV-infected mice, superior to the effects of PND. These findings suggest that the HA inhibitor 5g has potential to be developed into a novel broad-spectrum anti-IAV agent in the future.
Collapse
Affiliation(s)
- Bohan Li
- Key Laboratory of Marine Drugs Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao, Sanya, PR China
| | - Lianghao Huang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao, Sanya, PR China
| | - Jiaqi Lin
- Key Laboratory of Marine Drugs Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao, Sanya, PR China
| | - Xiaoyao Ma
- Key Laboratory of Marine Drugs Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao, Sanya, PR China
| | - Yanan Luo
- Key Laboratory of Marine Drugs Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao, Sanya, PR China
| | - Wenrui Gai
- Key Laboratory of Marine Drugs Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao, Sanya, PR China
| | - Yingqi Xie
- Key Laboratory of Marine Drugs Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao, Sanya, PR China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao, Sanya, PR China
| | - Wei Wang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao, Sanya, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Dehai Li
- Key Laboratory of Marine Drugs Chinese Ministry of Education, School of Medicine and Pharmacy, Sanya Oceanographic Institute, Ocean University of China, Qingdao, Sanya, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
9
|
Nabil-Adam A, E. Elnosary M, L. Ashour M, M. Abd El-Moneam N, A. Shreadah M. Flavonoids Biosynthesis in Plants as a Defense Mechanism: Role and Function Concerning Pharmacodynamics and Pharmacokinetic Properties. FLAVONOID METABOLISM - RECENT ADVANCES AND APPLICATIONS IN CROP BREEDING 2023. [DOI: 10.5772/intechopen.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Flavonoids are a major class of secondary metabolites that comprises more than 6000 compounds that have been identified. They are biosynthesized via the phenylpropanoid metabolic pathway that involves groups of enzymes such as isomerases, hydroxylases, and reductases that greatly affect the determination of the flavonoid skeleton. For example, transferase enzymes responsible for the modification of sugar result in changes in the physiological activity of the flavonoids and changes in their physical properties, such as solubility, reactivity, and interaction with cellular target molecules, which affect their pharmacodynamics and pharmacokinetic properties. In addition, flavonoids have diverse biological activities such as antioxidants, anticancer, and antiviral in managing Alzheimer’s disease. However, most marine flavonoids are still incompletely discovered because marine flavonoid biosynthesis is produced and possesses unique substitutions that are not commonly found in terrestrial bioactive compounds. The current chapter will illustrate the importance of flavonoids’ role in metabolism and the main difference between marine and terrestrial flavonoids.
Collapse
|
10
|
Zhou A, Zhang W, Wang B. Host factor TNK2 is required for influenza virus infection. Genes Genomics 2023; 45:771-781. [PMID: 37133719 DOI: 10.1007/s13258-023-01384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 04/03/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Host factors are required for Influenza virus infection and have great potential to become antiviral target. OBJECTIVE Here we demonstrate the role of TNK2 in influenza virus infection. CRISPR/Cas9 induced TNK2 deletion in A549 cells. METHODS CRISPR/Cas9-mediated deletion of TNK2. Western blotting and qPCR was used to measure the expression of TNK2 and other proteins. RESULTS CRISPR/Cas9-mediated deletion of TNK2 decreased the replication of influenza virus and significantly inhibited the ex-pression of viral proteins and TNK2 inhibitors (XMD8-87 and AIM-100) reduced the expression of influenza M2, while over-expression of TNK2 weakened the resistance of TNK2-knockout cells to influenza virus infection. Furthermore, a decrease of nuclear import of IAV in the infected TNK2 mutant cells was observed in 3 h post-infection. Interestingly, TNK2 deletion enhanced the colocalization of LC3 with autophagic receptor p62 and led to the attenuation of influenza virus-caused accumulation of autophagosomes in TNK2 mutant cells. Further, confocal microscopy visualization result showed that influenza viral matrix 2 (M2) was colocalized with Lamp1 in the infected TNK2 mutant cells in early infection, while almost no colocalization between M2 and Lamp1 was observed in IAV-infected wild-type cells. Moreover, TNK2 depletion also affected the trafficking of early endosome and the movement of influenza viral NP and M2. CONCLUSION Our results identified TNK2 as a critical host factor for influenza viral M2 protein trafficking, suggesting that TNK2 will be an attractive target for the development of antivirals therapeutics.
Collapse
Affiliation(s)
- Ao Zhou
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China.
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Hubei Wuhan, Hubei, 430023, China.
| | - Wenhua Zhang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Hubei Wuhan, Hubei, 430023, China
| | - Baoxin Wang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Hubei Wuhan, Hubei, 430023, China
| |
Collapse
|
11
|
Tian WJ, Wang XJ. Broad-Spectrum Antivirals Derived from Natural Products. Viruses 2023; 15:v15051100. [PMID: 37243186 DOI: 10.3390/v15051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Scientific advances have led to the development and production of numerous vaccines and antiviral drugs, but viruses, including re-emerging and emerging viruses, such as SARS-CoV-2, remain a major threat to human health. Many antiviral agents are rarely used in clinical treatment, however, because of their inefficacy and resistance. The toxicity of natural products may be lower, and some natural products have multiple targets, which means less resistance. Therefore, natural products may be an effective means to solve virus infection in the future. New techniques and ideas are currently being developed for the design and screening of antiviral drugs thanks to recent revelations about virus replication mechanisms and the advancement of molecular docking technology. This review will summarize recently discovered antiviral drugs, mechanisms of action, and screening and design strategies for novel antiviral agents.
Collapse
Affiliation(s)
- Wen-Jun Tian
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Kwon EB, Li W, Kim YS, Kim B, Chung HS, Go Y, Ko HJ, Song JH, Kim YH, Choi CW, Choi JG. Vitisin B inhibits influenza A virus replication by multi-targeting neuraminidase and virus-induced oxidative stress. Acta Pharm Sin B 2023; 13:174-191. [PMID: 36815046 PMCID: PMC9939323 DOI: 10.1016/j.apsb.2022.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The development of drug-resistant influenza and new pathogenic virus strains underscores the need for antiviral therapeutics. Currently, neuraminidase (NA) inhibitors are commonly used antiviral drugs approved by the US Food and Drug Administration (FDA) for the prevention and treatment of influenza. Here, we show that vitisin B (VB) inhibits NA activity and suppresses H1N1 viral replication in MDCK and A549 cells. Reactive oxygen species (ROS), which frequently occur during viral infection, increase virus replication by activating the NF-κB signaling pathway, downmodulating glucose-6-phosphate dehydrogenase (G6PD) expression, and decreasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response activity. VB decreased virus-induced ROS generation by increasing G6PD expression and Nrf2 activity, and inhibiting NF-κB translocation to the nucleus through IKK dephosphorylation. In addition, VB reduced body weight loss, increased survival, decreased viral replication and the inflammatory response in the lungs of influenza A virus (IAV)-infected mice. Taken together, our results indicate that VB is a promising therapeutic candidate against IAV infection, complements existing drug limitations targeting viral NA. It modulated the intracellular ROS by G6PD, Nrf2 antioxidant response pathway, and NF-κB signaling pathway. These results demonstrate the feasibility of a multi-targeting drug strategy, providing new approaches for drug discovery against IAV infection.
Collapse
Affiliation(s)
- Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Young Soo Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Buyun Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| | - Chun Whan Choi
- Natural Product Research Team, Biocenter, Gyeonggido Business and Science Accelerator, Gyeonggi-Do 16229, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
- Corresponding authors. Tel./Fax.: +82 42 8215933/+82 42 8236566, +82 31 8886131/+82 31 8886139, +82 53 9403866/+82 53 9403899
| |
Collapse
|
13
|
Dondalska A, Axberg Pålsson S, Spetz AL. Is There a Role for Immunoregulatory and Antiviral Oligonucleotides Acting in the Extracellular Space? A Review and Hypothesis. Int J Mol Sci 2022; 23:ijms232314593. [PMID: 36498932 PMCID: PMC9735517 DOI: 10.3390/ijms232314593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Here, we link approved and emerging nucleic acid-based therapies with the expanding universe of small non-coding RNAs (sncRNAs) and the innate immune responses that sense oligonucleotides taken up into endosomes. The Toll-like receptors (TLRs) 3, 7, 8, and 9 are located in endosomes and can detect nucleic acids taken up through endocytic routes. These receptors are key triggers in the defense against viruses and/or bacterial infections, yet they also constitute an Achilles heel towards the discrimination between self- and pathogenic nucleic acids. The compartmentalization of nucleic acids and the activity of nucleases are key components in avoiding autoimmune reactions against nucleic acids, but we still lack knowledge on the plethora of nucleic acids that might be released into the extracellular space upon infections, inflammation, and other stress responses involving increased cell death. We review recent findings that a set of single-stranded oligonucleotides (length of 25-40 nucleotides (nt)) can temporarily block ligands destined for endosomes expressing TLRs in human monocyte-derived dendritic cells. We discuss knowledge gaps and highlight the existence of a pool of RNA with an approximate length of 30-40 nt that may still have unappreciated regulatory functions in physiology and in the defense against viruses as gatekeepers of endosomal uptake through certain routes.
Collapse
|
14
|
Lengerli D, Ibis K, Nural Y, Banoglu E. The 1,2,3-triazole 'all-in-one' ring system in drug discovery: a good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool. Expert Opin Drug Discov 2022; 17:1209-1236. [PMID: 36164263 DOI: 10.1080/17460441.2022.2129613] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The 1,2,3-triazole ring occupies an important space in medicinal chemistry due to its unique structural properties, synthetic versatility and pharmacological potential making it a critical scaffold. Since it is readily available through click chemistry for creating compound collections against various diseases, it has become an emerging area of interest for medicinal chemists. AREAS COVERED This review article addresses the unique properties of the1,2,3-triazole nucleus as an intriguing ring system in drug discovery while focusing on the most recent medicinal chemistry strategies exploited for the design and development of 1,2,3-triazole analogs as inhibitors of various biological targets. EXPERT OPINION Evidently, the 1,2,3-triazole ring with unique structural features has enormous potential in drug design against various diseases as a pharmacophore, a bioisoster or a structural platform. The most recent evidence indicates that it may be more emerging in drug molecules in near future along with an increasing understanding of its prominent roles in drug structures. The synthetic feasibility and versatility of triazole chemistry make it certainly ideal for creating compound libraries for more constructive structure-activity relationship studies. However, more comparative and target-specific studies are needed to gain a deeper understanding of the roles of the 1,2,3-triazole ring in molecular recognition.[Figure: see text].
Collapse
Affiliation(s)
- Deniz Lengerli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Kübra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
15
|
Huang K, Ying T, Wu Y. Single-Domain Antibodies as Therapeutics for Respiratory RNA Virus Infections. Viruses 2022; 14:1162. [PMID: 35746634 PMCID: PMC9230756 DOI: 10.3390/v14061162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Over the years, infectious diseases with high morbidity and mortality disrupted human healthcare systems and devastated economies globally. Respiratory viruses, especially emerging or re-emerging RNA viruses, including influenza and human coronavirus, are the main pathogens of acute respiratory diseases that cause epidemics or even global pandemics. Importantly, due to the rapid mutation of viruses, there are few effective drugs and vaccines for the treatment and prevention of these RNA virus infections. Of note, a class of antibodies derived from camelid and shark, named nanobody or single-domain antibody (sdAb), was characterized by smaller size, lower production costs, more accessible binding epitopes, and inhalable properties, which have advantages in the treatment of respiratory diseases compared to conventional antibodies. Currently, a number of sdAbs have been developed against various respiratory RNA viruses and demonstrated potent therapeutic efficacy in mouse models. Here, we review the current status of the development of antiviral sdAb and discuss their potential as therapeutics for respiratory RNA viral diseases.
Collapse
Affiliation(s)
- Keke Huang
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Tianlei Ying
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
16
|
Novel Naturally Occurring Dipeptides and Single-Stranded Oligonucleotide Act as Entry Inhibitors and Exhibit a Strong Synergistic Anti-HIV-1 Profile. Infect Dis Ther 2022; 11:1103-1116. [PMID: 35391633 PMCID: PMC9124260 DOI: 10.1007/s40121-022-00626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction The availability of new classes of antiretroviral drugs is critical for treatment-experienced patients due to drug resistance to and unwanted side effects from current drugs. Our aim was therefore to evaluate the anti-HIV-1 activity of a new set of antivirals, dipeptides (WG-am or VQ-am) combined with a single-stranded oligonucleotide (ssON). The dipeptides were identified as naturally occurring and enriched in feces and systemic circulation in HIV-1-infected elite controllers and were proposed to act as entry inhibitors by binding to HIV-1 gp120. The ssON is DNA 35-mer, stabilized by phosphorothioate modifications, which acts on the endocytic step by binding to cell host receptors and inhibiting viruses through interference with binding to nucleolin. Methods Chou–Talalay’s Combination Index method for quantifying synergism was used to evaluate the drug combinations. Patient-derived chimeric viruses encoding the gp120 (env region) were produced by transient transfection and used to evaluate the antiviral profile of the combinations by drug susceptibility assays. Results We found that the combination WG-am:ssON or VQ-am:ssON had low combination index values, suggesting strong antiviral synergism. Of the two combinations, WG-am:ssON (1 mM:1 μM) had high efficacy against all prototype or patient-derived HIV-1 isolates tested, independent of subtype including the HIV-1-A6 sub-subtype. In addition, the antiviral effect was independent of co-receptor usage in patient-derived strains. Conclusion WG-am and ssON alone significantly inhibited HIV-1 replication regardless of viral subtype and co-receptor usage, and the combination WG-am:ssON (1 mM:1 μM) was even more effective due to synergism.
Collapse
|
17
|
Hwang J, Jung Y, Moon S, Yu S, Oh H, Kim S, Kim KW, Yoon JH, Chun J, Kim SJ, Chung WJ, Kweon DH. Nanodisc-Mediated Conversion of Virustatic Antiviral Antibody to Disrupt Virus Envelope in Infected Cells. SMALL METHODS 2022; 6:e2101516. [PMID: 35107214 DOI: 10.1002/smtd.202101516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Many antibody-based antivirals, including broadly neutralizing antibodies (bnAbs) against various influenza virus strains, suffer from limited potency. A booster of the antiviral activity of an antibody is expected to facilitate development of antiviral therapeutics. In this study, a nanodisc (ND), a discoidal lipid bilayer encircled by membrane scaffold proteins, is engineered to provide virucidal properties to antibodies, thereby augmenting their antiviral activity. NDs carrying the Fc-binding peptide sequence form an antibody-ND complex (ANC), which can co-endocytose into cells infected with influenza virus. ANC efficiently inhibits endosome escape of viral RNA by dual complimentary mode of action. While the antibody moiety in an ANC inhibits hemagglutinin-mediated membrane fusion, its ND moiety destroys the viral envelope using free hemagglutinins that are not captured by antibodies. Providing virus-infected host cells with the ability to self-eliminate by the synergistic effect of ANC components dramatically amplifies the antiviral efficacy of a bnAb against influenza virus. When the efficacy of ANC is assessed in mouse models, administration of ANCs dramatically reduces morbidity and mortality compared to bnAb alone. This study is the first to demonstrate the novel nanoparticle ANC and its role in combating viral infections, suggesting that ANC is a versatile platform applicable to various viruses.
Collapse
Affiliation(s)
- Jaehyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Younghun Jung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seokhyeon Yu
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyunseok Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Soomin Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeong Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong Hyeon Yoon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihwan Chun
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
18
|
Tatar E, Yaldız S, Kulabaş N, Vanderlinden E, Naesens L, Küçükgüzel İ. Synthesis and structure-activity relationship of L-methionine-coupled 1,3,4-thiadiazole derivatives with activity against influenza virus. Chem Biol Drug Des 2021; 99:398-415. [PMID: 34873848 DOI: 10.1111/cbdd.13995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/17/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
In previous investigations, we identified a class of 1,3,4-thiadiazole derivatives with antiviral activity. N-{3-(Methylsulfanyl)-1-[5-(phenylamino)-1,3,4-thiadiazole-2-yl]propyl}benzamide emerged as a relevant lead compound for designing novel influenza A virus inhibitors. In the present study, we elaborated on this initial lead by performing chemical synthesis and antiviral evaluation of a series of structural analogues. During this research, thirteen novel 1,3,4-thiadiazole derivatives were synthesized by the cyclization of the corresponding thiosemicarbazides as synthetic precursors. The structures and the purities of the synthesized compounds were confirmed through chromatographic and spectral data. Four L-methionine-based 1,3,4-thiadiazole derivatives displayed activity against influenza A virus, the two best compounds being 24 carrying a 5-(4-chlorophenylamino)-1,3,4-thiadiazole moiety and 30 possessing a 5-(benzoylamino)-1,3,4-thiadiazole structure [antiviral EC50 against influenza A/H3N2 virus: 4.8 and 7.4 µM, respectively]. The 1,3,4-thiadiazole derivatives were inactive against influenza B virus and a wide panel of unrelated DNA and RNA viruses. Compound 24 represents a new class of selective influenza A virus inhibitors acting during the virus entry process, as evidenced by our findings in a time-of-addition assay. Molecular descriptors and in silico prediction of ADMET properties of the active compounds were calculated. According to in silico ADMET and drug similarity studies, active compounds have been estimated to be good candidates for oral administration with no apparent toxicity considerations.
Collapse
Affiliation(s)
- Esra Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Seda Yaldız
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Necla Kulabaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Evelien Vanderlinden
- Laboratory of Virology and Chemotherapy, KU Leuven Rega Institute, Leuven, Belgium
| | - Lieve Naesens
- Laboratory of Virology and Chemotherapy, KU Leuven Rega Institute, Leuven, Belgium
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| |
Collapse
|
19
|
The pH-sensitive action of cholesterol-conjugated peptide inhibitors of influenza virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183762. [PMID: 34478733 DOI: 10.1016/j.bbamem.2021.183762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023]
Abstract
Influenza viruses are major human pathogens, responsible for respiratory diseases affecting millions of people worldwide, with high morbidity and significant mortality. Infections by influenza can be controlled by vaccines and antiviral drugs. However, this virus is constantly under mutations, limiting the effectiveness of these clinical antiviral strategies. It is therefore urgent to develop new ones. Influenza hemagglutinin (HA) is involved in receptor binding and promotes the pH-dependent fusion of viral and cell endocytic membranes. HA-targeted peptides may emerge as a novel antiviral option to block this viral entry step. In this study, we evaluated three HA-derived (lipo)peptides using fluorescence spectroscopy. Peptide membrane interaction assays were performed at neutral and acidic pH to better resemble the natural conditions in which influenza fusion occurs. We found that peptide affinity towards membranes decreases upon the acidification of the environment. Therefore, the released peptides would be able to bind their complementary domain and interfere with the six-helix bundle formation necessary for viral fusion, and thus for the infection of the target cell. Our results provide new insight into molecular interactions between HA-derived peptides and cell membranes, which may contribute to the development of new influenza virus inhibitors.
Collapse
|
20
|
Park C, Lim JW, Park G, Kim HO, Lee S, Kwon YH, Kim SE, Yeom M, Na W, Song D, Kim E, Haam S. Kinetic stability modulation of polymeric nanoparticles for enhanced detection of influenza virus via penetration of viral fusion peptides. J Mater Chem B 2021; 9:9658-9669. [PMID: 34647566 DOI: 10.1039/d1tb01847g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Specific interactions between viruses and host cells provide essential insights into material science-based strategies to combat emerging viral diseases. pH-triggered viral fusion is ubiquitous to multiple viral families and is important for understanding the viral infection cycle. Inspired by this process, virus detection has been achieved using nanomaterials with host-mimetic membranes, enabling interactions with amphiphilic hemagglutinin fusion peptides of viruses. Most research has been on designing functional nanoparticles with fusogenic capability for virus detection, and there has been little exploitation of the kinetic stability to alter the ability of nanoparticles to interact with viral membranes and improve their sensing performance. In this study, a homogeneous fluorescent assay using self-assembled polymeric nanoparticles (PNPs) with tunable responsiveness to external stimuli is developed for rapid and straightforward detection of an activated influenza A virus. Dissociation of PNPs induced by virus insertion can be readily controlled by varying the fraction of hydrophilic segments in copolymers constituting PNPs, giving rise to fluorescence signals within 30 min and detection of various influenza viruses, including H9N2, CA04(H1N1), H4N6, and H6N8. Therefore, the designs demonstrated in this study propose underlying approaches for utilizing engineered PNPs through modulation of their kinetic stability for direct and sensitive identification of infectious viruses.
Collapse
Affiliation(s)
- Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering College of Art, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sojeong Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Yuri H Kwon
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | | | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea.,Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Eunjung Kim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
21
|
Hossain MG, Akter S, Dhole P, Saha S, Kazi T, Majbauddin A, Islam MS. Analysis of the Genetic Diversity Associated With the Drug Resistance and Pathogenicity of Influenza A Virus Isolated in Bangladesh From 2002 to 2019. Front Microbiol 2021; 12:735305. [PMID: 34603265 PMCID: PMC8484749 DOI: 10.3389/fmicb.2021.735305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
The subtype prevalence, drug resistance- and pathogenicity-associated mutations, and the distribution of the influenza A virus (IAV) isolates identified in Bangladesh from 2002 to 2019 were analyzed using bioinformatic tools. A total of 30 IAV subtypes have been identified in humans (4), avian species (29), and environment (5) in Bangladesh. The predominant subtypes in human and avian species are H1N1/H3N2 and H5N1/H9N2, respectively. However, the subtypes H5N1/H9N2 infecting humans and H3N2/H1N1 infecting avian species have also been identified. Among the avian species, the maximum number of subtypes (27) have been identified in ducks. A 3.56% of the isolates showed neuraminidase inhibitor (NAI) resistance with a prevalence of 8.50, 1.33, and 2.67% in avian species, humans, and the environment, respectively, the following mutations were detected: V116A, I117V, D198N, I223R, S247N, H275Y, and N295S. Prevalence of adamantane-resistant IAVs was 100, 50, and 30.54% in humans, the environment, and avian species, respectively, the subtypes H3N2, H1N1, H9N2, and H5N2 were highly prevalent, with the subtype H5N1 showing a comparatively lower prevalence. Important PB2 mutations such D9N, K526R, A588V, A588I, G590S, Q591R, E627K, K702R, and S714R were identified. A wide range of IAV subtypes have been identified in Bangladesh with a diversified genetic variation in the NA, M2, and PB2 proteins providing drug resistance and enhanced pathogenicity. This study provides a detailed analysis of the subtypes, and the host range of the IAV isolates and the genetic variations related to their proteins, which may aid in the prevention, treatment, and control of IAV infections in Bangladesh, and would serve as a basis for future investigations.
Collapse
Affiliation(s)
- Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sharmin Akter
- Department of Physiology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Priya Dhole
- Department of Biology, The Pennsylvania State University, Pennsylvania, PA, United States
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Taheruzzaman Kazi
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Abir Majbauddin
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Md Sayeedul Islam
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
22
|
White K, Esparza M, Liang J, Bhat P, Naidoo J, McGovern BL, Williams MAP, Alabi BR, Shay J, Niederstrasser H, Posner B, García-Sastre A, Ready J, Fontoura BMA. Aryl Sulfonamide Inhibits Entry and Replication of Diverse Influenza Viruses via the Hemagglutinin Protein. J Med Chem 2021; 64:10951-10966. [PMID: 34260245 PMCID: PMC8900595 DOI: 10.1021/acs.jmedchem.1c00304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Influenza viruses cause approximately half a million deaths every year worldwide. Vaccines are available but partially effective, and the number of antiviral medications is limited. Thus, it is crucial to develop therapeutic strategies to counteract this major pathogen. Influenza viruses enter the host cell via their hemagglutinin (HA) proteins. The HA subtypes of influenza A virus are phylogenetically classified into groups 1 and 2. Here, we identified an inhibitor of the HA protein, a tertiary aryl sulfonamide, that prevents influenza virus entry and replication. This compound shows potent antiviral activity against diverse H1N1, H5N1, and H3N2 influenza viruses encoding HA proteins from both groups 1 and 2. Synthesis of derivatives of this aryl sulfonamide identified moieties important for antiviral activity. This compound may be considered as a lead for drug development with the intent to be used alone or in combination with other influenza A virus antivirals to enhance pan-subtype efficacy.
Collapse
Affiliation(s)
- Kris White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Matthew Esparza
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jue Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Prasanna Bhat
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jacinth Naidoo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Briana L McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Michael A P Williams
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Busola R Alabi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jerry Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Hanspeter Niederstrasser
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Joseph Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
23
|
Ito K, Okumura A, Takeuchi JS, Watashi K, Inoue R, Yamauchi T, Sakamoto K, Yamashita Y, Iguchi Y, Une M, Wakita T, Umezawa K, Yoneda M. Dual Agonist of Farnesoid X Receptor and Takeda G Protein-Coupled Receptor 5 Inhibits Hepatitis B Virus Infection In Vitro and In Vivo. Hepatology 2021; 74:83-98. [PMID: 33434356 DOI: 10.1002/hep.31712] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Chronic HBV infection is a major health problem worldwide. Currently, the first-line treatment for HBV is nucleos(t)ide analogs or interferons; however, efficient therapeutic approaches that enable cure are lacking. Therefore, anti-HBV agents with mechanisms distinct from those of current drugs are needed. Sodium taurocholate cotransporting polypeptide (NTCP) was previously identified as an HBV receptor that is inhibited by several compounds. Farnesoid X receptor (FXR) activation also inhibits NTCP function. APPROACH AND RESULTS In this study, we investigated the inhibitory effect of bile acid (BA) derivatives-namely obeticholic acid (OCA), 6α-ethyl-24-nor-5β-cholane-3α,7α,23-triol-23 sulfate sodium salt (INT-767; a dual agonist of FXR and Takeda G protein-coupled receptor [TGR5]), and 6α-ethyl-23(S)-methyl-cholic acid (INT-777; a TGR5 agonist)-3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064; a FXR agonist), cyclosporin A, and irbesartan. OCA and INT-777 suppressed HBV infection in HepG2-human NTCP-C4 cells. Interestingly, INT-767 showed potent inhibition by attaching to HBV particles rather than binding to NTCP. As an entry inhibitor, INT-767 was stronger than various natural BAs. Furthermore, in chimeric mice with humanized liver, INT-767 markedly delayed the initial rise of HBsAg, HBeAg, and HBV DNA and reduced covalently closed circular DNA. The strong inhibitory effect of INT-767 may be due to the cumulative effect of its ability to inhibit the entry of HBV and to stimulate FXR downstream signaling, which affects the postentry step. CONCLUSIONS Our results suggest that BA derivatives, particularly INT-767, are prospective candidate anti-HBV agents. Clarifying the underlying mechanisms of BA derivatives would facilitate the development of anti-HBV agents.
Collapse
Affiliation(s)
- Kiyoaki Ito
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Akinori Okumura
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Junko S Takeuchi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Rieko Inoue
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Taeko Yamauchi
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Kazumasa Sakamoto
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| | - Yukiko Yamashita
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Yusuke Iguchi
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Mizuho Une
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine Screening, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Masashi Yoneda
- Department of Gastroenterology, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
24
|
Das A, Pandita D, Jain GK, Agarwal P, Grewal AS, Khar RK, Lather V. Role of phytoconstituents in the management of COVID-19. Chem Biol Interact 2021; 341:109449. [PMID: 33798507 PMCID: PMC8008820 DOI: 10.1016/j.cbi.2021.109449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/07/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND COVID-19, a severe global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emerged as one of the most threatening transmissible disease. As a great threat to global public health, the development of treatment options has become vital, and a rush to find a cure has mobilized researchers globally from all areas. SCOPE AND APPROACH This review focuses on deciphering the potential of different secondary metabolites from medicinal plants as therapeutic options either as inhibitors of therapeutic targets of SARS-CoV-2 or as blockers of viral particles entry through host cell receptors. The use of medicinal plants containing specific phytomoieties could be seen in providing a safer and long-term solution for the population with lesser side effects. Key Findings and Conclusions: Considering the high cost and time-consuming drug discovery process, therapeutic repositioning of existing drugs was explored as treatment option in COVID-19, however several molecules have been retracted as therapeutics either due to no positive outcomes or the severe side effects. These effects call for exploring the alternate treatment options which are therapeutically effective as well as safe. Keeping this in mind, phytopharmaceuticals derived from medicinal plants could be explored as important resources in the development of COVID-19 treatment, as their role in the past for treatment of viral diseases like HIV, MERS-CoV, and influenza has been well reported. Considering this fact, different phytoconstituents such as flavonoids, alkaloids, tannins and glycosides etc. Possessing antiviral properties against coronaviruses and possessing potential against SARS-CoV-2 have been reviewed in the present work.
Collapse
Affiliation(s)
- Amiya Das
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Deepti Pandita
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Pallavi Agarwal
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | | | - Roop K Khar
- BS Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
25
|
In Vitro Characterization of the Carbohydrate-Binding Agents HHA, GNA, and UDA as Inhibitors of Influenza A and B Virus Replication. Antimicrob Agents Chemother 2021; 65:AAC.01732-20. [PMID: 33288640 DOI: 10.1128/aac.01732-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/02/2020] [Indexed: 12/30/2022] Open
Abstract
Here, we report on the anti-influenza virus activity of the mannose-binding agents Hippeastrum hybrid agglutinin (HHA) and Galanthus nivalis agglutinin (GNA) and the (N-acetylglucosamine) n -specific Urtica dioica agglutinin (UDA). These carbohydrate-binding agents (CBA) strongly inhibited various influenza A(H1N1), A(H3N2), and B viruses in vitro, with 50% effective concentration values ranging from 0.016 to 83 nM, generating selectivity indexes up to 125,000. Somewhat less activity was observed against A/Puerto Rico/8/34 and an A(H1N1)pdm09 strain. In time-of-addition experiments, these CBA lost their inhibitory activity when added 30 min postinfection (p.i.). Interference with virus entry processes was also evident from strong inhibition of virus-induced hemolysis at low pH. However, a direct effect on acid-induced refolding of the viral hemagglutinin (HA) was excluded by the tryptic digestion assay. Instead, HHA treatment of HA-expressing cells led to a significant reduction of plasma membrane mobility. Crosslinking of membrane glycoproteins, through interaction with HA, could also explain the inhibitory effect on the release of newly formed virions when HHA was added at 6 h p.i. These CBA presumably interact with one or more N-glycans on the globular head of HA, since their absence led to reduced activity against mutant influenza B viruses and HHA-resistant A(H1N1) viruses. The latter condition emerged only after 33 cell culture passages in the continuous presence of HHA, and the A(H3N2) virus retained full sensitivity even after 50 passages. Thus, these CBA qualify as potent inhibitors of influenza A and B viruses in vitro with a pleiotropic mechanism of action and a high barrier for viral resistance.
Collapse
|
26
|
Yin H, Jiang N, Shi W, Chi X, Liu S, Chen JL, Wang S. Development and Effects of Influenza Antiviral Drugs. Molecules 2021; 26:molecules26040810. [PMID: 33557246 PMCID: PMC7913928 DOI: 10.3390/molecules26040810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal outbreaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treatment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some references for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development.
Collapse
|
27
|
Shao L, Yang F, Li W, Yu F. Design, Synthesis and Anti-influenza A Virus Evaluation of Oleanolic Acid C3-Glycoconjugates. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Abd-Alla HI, Soltan MM, Hassan AZ, Taie HAA, Abo-Salem HM, Karam EA, El-Safty MM, Hanna AG. Cardenolides and pentacyclic triterpenes isolated from Acokanthera oblongifolia leaves: their biological activities with molecular docking study. ACTA ACUST UNITED AC 2020; 76:301-315. [PMID: 34218548 DOI: 10.1515/znc-2020-0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/01/2020] [Indexed: 01/09/2023]
Abstract
Pentacyclic triterpenes and cardenolides were isolated from Acokanthera oblongifolia leaves. Their chemical structures were determined based on comprehensive 1D and 2D NMR spectroscopy. Their MIC was determined against 12 microorganisms. Their exerted cytotoxicity on the immortalized normal cells, hTERT-RPE1 was assessed by the sulforhodamine-B assay. The viral inhibitory effects of compounds against Newcastle disease virus (NDV) and H5N1 influenza virus IV were evaluated. Four in vitro antioxidant assays were performed in comparison with BHT and trolox and a weak activity was exhibited. Acovenoside A was with potent against H5N1-IV and NDV with IC50 ≤ 3.2 and ≤ 2.1 μg/ml and SI values of 93.75 and 95.23%, respectively, in comparison to ribavirin. Its CC50 record on Vero cells was > 400 and 200 μg/ml, respectively. Acobioside A was the most active compound against a broad range of microbes while Pseudomonas aeruginosa was the most sensitive. Its MIC (0.07 μg/ml) was 1/100-fold of the recorded CC50 (7.1 μg/ml/72 h) against hTERT-RPE1. The molecular docking of compounds on human DNA topoisomerase I (Top1-DNA) and IV glycoprotein hemagglutinin were studied using MOE program. This study has introduced the cardenolides rather than triterpenoids with the best docking score and binding interaction with the active site of the studied proteins.
Collapse
Affiliation(s)
- Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Maha M Soltan
- Chemistry of Medicinal Plants Department, Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Amal Z Hassan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Heba M Abo-Salem
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Eman A Karam
- Microbial Chemistry Department, National Research Centre, Dokki-Giza, 12622, Egypt
| | - Mounir M El-Safty
- Central Laboratory for Evaluation of Veterinary Biologics, Abbassia-Cairo, 13181, Egypt
| | - Atef G Hanna
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Giza, 12622, Egypt
| |
Collapse
|
29
|
A universal dual mechanism immunotherapy for the treatment of influenza virus infections. Nat Commun 2020; 11:5597. [PMID: 33154358 PMCID: PMC7645797 DOI: 10.1038/s41467-020-19386-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Seasonal influenza epidemics lead to 3–5 million severe infections and 290,000–650,000 annual global deaths. With deaths from the 1918 influenza pandemic estimated at >50,000,000 and future pandemics anticipated, the need for a potent influenza treatment is critical. In this study, we design and synthesize a bifunctional small molecule by conjugating the neuraminidase inhibitor, zanamivir, with the highly immunogenic hapten, dinitrophenyl (DNP), which specifically targets the surface of free virus and viral-infected cells. We show that this leads to simultaneous inhibition of virus release, and immune-mediated elimination of both free virus and virus-infected cells. Intranasal or intraperitoneal administration of a single dose of drug to mice infected with 100x MLD50 virus is shown to eradicate advanced infections from representative strains of both influenza A and B viruses. Since treatments of severe infections remain effective up to three days post lethal inoculation, our approach may successfully treat infections refractory to current therapies. In this study, the authors combine an anti-viral drug and immune system inducer to treat influenza A and B viral infections in vitro and in vivo. They show that the compound outperforms zanamivir alone as it is still able to clear infection three days post infection, and it can be administered via different routes without reduced efficacy.
Collapse
|
30
|
Xu H, Liu Z, Zheng S, Han G, He F. CD163 Antibodies Inhibit PRRSV Infection via Receptor Blocking and Transcription Suppression. Vaccines (Basel) 2020; 8:vaccines8040592. [PMID: 33050150 PMCID: PMC7711879 DOI: 10.3390/vaccines8040592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023] Open
Abstract
CD163 has been identified as the essential receptor for Porcine reproductive and respiratory syndrome (PRRSV), a major etiologic agent of pigs. Scavenger receptor cysteine-rich domain 5–9 (SRCR5–9) in CD163 was shown to be responsible for the virus interaction. In this study, monoclonal antibodies (mAbs) 6E8 and 9A10 against SRCR5–9 were selected based on the significant activity to inhibit PRRSV infection in Porcine Alveolar Macrophage (PAMs) and Marc-145. Both mAbs are capable of blocking variable PRRSV strains in a dose-dependent manner. Meanwhile, as candidates for both prevention and therapeutics, the antibodies successfully inhibit PRRSV infection and the related NF-κB pathway either before or after virus attachment. Besides, the antibody treatment with either mAb leads to a remarkable decrease of CD163 transcription in PAMs and Marc-145. It is potentially caused by the excessive accumulation of membrane associated CD163 due to the failure in CD163 cleavage with the antibody binding. Further, conformational epitopes targeted by 6E8 and 9A10 are identified to be spanning residues 570SXDVGXV576 in SRCR5 and Q797 in SRCR7, respectively. CD163 with mutated epitopes expressed in 3D4 cells fails to support PRRSV infection while wild type CD163 recovers PRRSV infection, indicating the critical role of these residues in PRRSV invasion. These findings promote the understanding in the interaction between PRRSV and the receptor and provide novel broad antiviral strategies for PRRSV prevention and treatment via alternative mechanisms.
Collapse
Affiliation(s)
- Huiling Xu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (Z.L.); (S.Z.); (G.H.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Zehui Liu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (Z.L.); (S.Z.); (G.H.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Suya Zheng
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (Z.L.); (S.Z.); (G.H.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Guangwei Han
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (Z.L.); (S.Z.); (G.H.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Fang He
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.X.); (Z.L.); (S.Z.); (G.H.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
31
|
Nie C, Stadtmüller M, Yang H, Xia Y, Wolff T, Cheng C, Haag R. Spiky Nanostructures with Geometry-matching Topography for Virus Inhibition. NANO LETTERS 2020; 20:5367-5375. [PMID: 32515974 DOI: 10.1021/acs.nanolett.0c01723] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced >99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.
Collapse
Affiliation(s)
- Chuanxiong Nie
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany
| | - Marlena Stadtmüller
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany
| | - Hua Yang
- Institute of Mechanics, Chair of Continuum Mechanics and Constitutive Theory, Technische Universität Berlin, Einsteinufer 5, 10587 Berlin, Germany
| | - Yi Xia
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany
| | - Chong Cheng
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rainer Haag
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
32
|
Banti C, Kourkoumelis N, Hatzidimitriou A, Antoniadou I, Dimou A, Rallis M, Hoffmann A, Schmidtke M, McGuire K, Busath D, Kolocouris A, Hadjikakou S. Amantadine copper(II) chloride conjugate with possible implementation in influenza virus inhibition. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Reprogramming of the Antibacterial Drug Vancomycin Results in Potent Antiviral Agents Devoid of Antibacterial Activity. Pharmaceuticals (Basel) 2020; 13:ph13070139. [PMID: 32610683 PMCID: PMC7407158 DOI: 10.3390/ph13070139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/05/2023] Open
Abstract
Influenza A and B viruses are a global threat to human health and increasing resistance to the existing antiviral drugs necessitates new concepts to expand the therapeutic options. Glycopeptide derivatives have emerged as a promising new class of antiviral agents. To avoid potential antibiotic resistance, these antiviral glycopeptides are preferably devoid of antibiotic activity. We prepared six vancomycin aglycone hexapeptide derivatives with the aim of obtaining compounds having anti-influenza virus but no antibacterial activity. Two of them exerted strong and selective inhibition of influenza A and B virus replication, while antibacterial activity was successfully eliminated by removing the critical N-terminal moiety. In addition, these two molecules offered protection against several other viruses, such as herpes simplex virus, yellow fever virus, Zika virus, and human coronavirus, classifying these glycopeptides as broad antiviral molecules with a favorable therapeutic index.
Collapse
|
34
|
de Castro S, Ginex T, Vanderlinden E, Laporte M, Stevaert A, Cumella J, Gago F, Camarasa MJ, Luque FJ, Naesens L, Velazquez S. N-benzyl 4,4-disubstituted piperidines as a potent class of influenza H1N1 virus inhibitors showing a novel mechanism of hemagglutinin fusion peptide interaction. Eur J Med Chem 2020; 194:112223. [DOI: 10.1016/j.ejmech.2020.112223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
|
35
|
Host-Virus Interaction: How Host Cells Defend against Influenza A Virus Infection. Viruses 2020; 12:v12040376. [PMID: 32235330 PMCID: PMC7232439 DOI: 10.3390/v12040376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Influenza A viruses (IAVs) are highly contagious pathogens infecting human and numerous animals. The viruses cause millions of infection cases and thousands of deaths every year, thus making IAVs a continual threat to global health. Upon IAV infection, host innate immune system is triggered and activated to restrict virus replication and clear pathogens. Subsequently, host adaptive immunity is involved in specific virus clearance. On the other hand, to achieve a successful infection, IAVs also apply multiple strategies to avoid be detected and eliminated by the host immunity. In the current review, we present a general description on recent work regarding different host cells and molecules facilitating antiviral defenses against IAV infection and how IAVs antagonize host immune responses.
Collapse
|
36
|
An Oleanolic Acid Derivative Inhibits Hemagglutinin-Mediated Entry of Influenza A Virus. Viruses 2020; 12:v12020225. [PMID: 32085430 PMCID: PMC7077228 DOI: 10.3390/v12020225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/09/2020] [Accepted: 02/14/2020] [Indexed: 01/09/2023] Open
Abstract
Influenza A viruses (IAV) have been a major public health threat worldwide, and options for antiviral therapy become increasingly limited with the emergence of drug-resisting virus strains. New and effective anti-IAV drugs, especially for highly pathogenic influenza, with different modes of action, are urgently needed. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. In this study, we show that OA-10, a newly synthesized triterpene out of 11 oleanane-type derivatives, exhibited significant antiviral activity against four different subtypes of IAV (H1N1, H5N1, H9N2 and H3N2) replications in A549 cell cultures with EC50 ranging from 6.7 to 19.6 μM and a negligible cytotoxicity (CC50 > 640 μM). It inhibited acid-induced hemolysis in a dose-dependent manner, with an IC50 of 26 µM, and had a weak inhibition on the adsorption of H5 HA to chicken erythrocytes at higher concentrations (≥40 µM). Surface plasmon resonance (SPR) analysis showed that OA-10 interacted with HA in a dose-dependent manner with the equilibrium dissociation constants (KD) of the interaction of 2.98 × 10-12 M. Computer-aided molecular docking analysis suggested that OA-10 might bind to the cavity in HA stem region which is known to undergo significant rearrangement during membrane fusion. Our results demonstrate that OA-10 inhibits H5N1 IAV replication mainly by blocking the conformational changes of HA2 subunit required for virus fusion with endosomal membrane. These findings suggest that OA-10 could serve as a lead for further development of novel virus entry inhibitors to prevent and treat IAV infections.
Collapse
|
37
|
Günther SC, Maier JD, Vetter J, Podvalnyy N, Khanzhin N, Hennet T, Stertz S. Antiviral potential of 3'-sialyllactose- and 6'-sialyllactose-conjugated dendritic polymers against human and avian influenza viruses. Sci Rep 2020; 10:768. [PMID: 31964943 PMCID: PMC6972948 DOI: 10.1038/s41598-020-57608-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022] Open
Abstract
Current treatment options for influenza virus infections in humans are limited and therefore the development of novel antivirals is of high priority. Inhibiting influenza virus attachment to host cells would provide an early and efficient block of the infection and thus, receptor analogs have been considered as options for antiviral treatment. Here, we describe the rapid and efficient synthesis of PAMAM dendrimers conjugated with either 3′-sialyllactose (3SL) or 6′-sialyllactose (6SL) and their potential to inhibit a diverse range of human and avian influenza virus strains. We show in a hemagglutination inhibition (HAI) assay that human IAV strains can be inhibited by (6SL)- and to a lesser extent also by (3SL)-conjugated PAMAM dendrimers. In contrast, avian strains could only be inhibited by (3SL)-conjugated dendrimers. Importantly, the differential sensitivities of human and avian IAV to the two types of sialyllactose-conjugated dendrimers could be confirmed in cell-based neutralization assays. Based on our findings, we suggest to further develop both, (3SL)- and (6SL)-conjugated PAMAM dendrimers, as influenza virus inhibitors.
Collapse
Affiliation(s)
| | - Julian David Maier
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | - Janine Vetter
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | - Nikita Podvalnyy
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | | | - Thierry Hennet
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
38
|
Cihan-Üstündağ G, Zopun M, Vanderlinden E, Ozkirimli E, Persoons L, Çapan G, Naesens L. Superior inhibition of influenza virus hemagglutinin-mediated fusion by indole-substituted spirothiazolidinones. Bioorg Med Chem 2020; 28:115130. [DOI: 10.1016/j.bmc.2019.115130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/26/2022]
|
39
|
Yarovaya OI, Sokolova AS, Mainagashev IY, Volobueva AS, Lantseva K, Borisevich SS, Shtro AA, Zarubaev VV, Salakhutdinov NF. Synthesis and structure-activity relationships of novel camphecene analogues as anti-influenza agents. Bioorg Med Chem Lett 2019; 29:126745. [PMID: 31668423 DOI: 10.1016/j.bmcl.2019.126745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023]
Abstract
A chemical library was constructed based on the scaffold of camphecene (2-(E)-((1R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene-aminoethanol). The modifications included introduction of mono-and bicyclic heterocyclic moieties in place of the terminal hydroxyl group of camphecene. All compounds were tested for cytotoxicity and anti-viral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells. Among 15 tested compounds 11 demonstrated a selectivity index (SI) higher than 10 and IC50 values in the micromolar range. The antiviral activity and toxicity were shown to strongly depend on the nature of the heterocyclic substituent. Compounds 2 and 14 demonstrated the highest virus-inhibiting activity with SIs of 106 and 183, and bearing pyrrolidine and piperidine moieties, correspondingly. Compound 14 was shown to interfere with viral reproduction at early stages of the viral life cycle (0-2 h post-infection). Taken together, our data suggest potential of camphecene derivatives in particular and camphor-based imine derivatives in general as effective anti-influenza compounds.
Collapse
Affiliation(s)
- Olga I Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia.
| | - Anastasiya S Sokolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Iliya Ya Mainagashev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | - Alexandrina S Volobueva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Str., 197101 St. Petersburg, Russia
| | - Khristina Lantseva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Str., 197101 St. Petersburg, Russia
| | - Sophia S Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 71 Octyabrya pr., 450054 Ufa, Russia
| | - Anna A Shtro
- Department of Chemotherapy, Influenza Research Institute, 15/17 Prof. Popova St., 197376 St. Petersburg, Russia
| | - Vladimir V Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Str., 197101 St. Petersburg, Russia
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| |
Collapse
|
40
|
Meng L, Su Y, Yang F, Xiao S, Yin Z, Liu J, Zhong J, Zhou D, Yu F. Design, synthesis and biological evaluation of amino acids-oleanolic acid conjugates as influenza virus inhibitors. Bioorg Med Chem 2019; 27:115147. [PMID: 31635892 DOI: 10.1016/j.bmc.2019.115147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 09/30/2019] [Indexed: 01/16/2023]
Abstract
Viral entry inhibitors are of great importance in current efforts to develop a new generation of anti-influenza drugs. Inspired by the discovery of a series of pentacyclic triterpene derivatives as entry inhibitors targeting the HA protein of influenza virus, we designed and synthesized 32 oleanolic acid (OA) analogues in this study by conjugating different amino acids to the 28-COOH of OA. The antiviral activity of these compounds was evaluated in vitro. Some of these compounds revealed impressive anti-influenza potencies against influenza A/WSN/33 (H1N1) virus. Among them, compound 15a exhibited robust potency and broad antiviral spectrum with IC50 values at the low-micromolar level against four different influenza strains. Hemagglutination inhibition (HI) assay and docking experiment indicated that these OA analogues may act in the same way as their parent compound by interrupting the interaction between HA protein of influenza virus and the host cell sialic acid receptor via binding to HA, thus blocking viral entry.
Collapse
Affiliation(s)
- Lingkuan Meng
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yangqing Su
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Fan Yang
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhili Yin
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jiaxin Liu
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jindong Zhong
- Faculty of Life Science and Technology of Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fei Yu
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
41
|
Liao Y, Chen L, Li S, Cui ZN, Lei Z, Li H, Liu S, Song G. Structure-aided optimization of 3-O-β-chacotriosyl ursolic acid as novel H5N1 entry inhibitors with high selective index. Bioorg Med Chem 2019; 27:4048-4058. [PMID: 31350154 DOI: 10.1016/j.bmc.2019.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 01/11/2023]
Abstract
Currently, entry inhibitors contribute immensely in developing a new generation of anti-influenza virus drugs. Our earlier studies have identified that 3-O-β-chacotriosyl ursolic acid (1) could inhibit H5N1 pseudovirus by targeting hemagglutinin (HA). In the present study, a series of C-28 modified pentacyclic triterpene saponins via conjugation with a series of amide derivatives were synthesized and their antiviral activities against influenza A/Duck/Guangdong/99 virus (H5N1) in MDCK cells were evaluated. The SARs analysis of these compounds revealed that introduction of certain amide structures at the 17-COOH of ursolic acid could significantly enhance both their antiviral activity and selective index. This study indicated that the attachment of the methoxy group or Cl atom to the phenyl ring at the ortho- or para-position was crucial to improve inhibitory activity. Mechanism studies demonstrated that these title triterpenoids could bind tightly to the viral envelope HA to block the attachment of viruses to host cells, which was consistent with docking studies.
Collapse
Affiliation(s)
- Yixian Liao
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Lizhu Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sumei Li
- Department of Human Anatomy, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Zhiwei Lei
- Guizhou Tea Reasearch Institute, Guizhou Academy of Agricultural Science, Guiyang, Guizhou 550006, China
| | - Hui Li
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
42
|
Vilas Boas LCP, Campos ML, Berlanda RLA, de Carvalho Neves N, Franco OL. Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci 2019; 76:3525-3542. [PMID: 31101936 PMCID: PMC7079787 DOI: 10.1007/s00018-019-03138-w] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/28/2023]
Abstract
While scientific advances have led to large-scale production and widespread distribution of vaccines and antiviral drugs, viruses still remain a major cause of human diseases today. The ever-increasing reports of viral resistance and the emergence and re-emergence of viral epidemics pressure the health and scientific community to constantly find novel molecules with antiviral potential. This search involves numerous different approaches, and the use of antimicrobial peptides has presented itself as an interesting alternative. Even though the number of antimicrobial peptides with antiviral activity is still low, they already show immense potential to become pharmaceutically available antiviral drugs. Such peptides can originate from natural sources, such as those isolated from mammals and from animal venoms, or from artificial sources, when bioinformatics tools are used. This review aims to shed some light on antimicrobial peptides with antiviral activities against human viruses and update the data about the already well-known peptides that are still undergoing studies, emphasizing the most promising ones that may become medicines for clinical use.
Collapse
Affiliation(s)
| | - Marcelo Lattarulo Campos
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, 78060-900, Brazil
| | - Rhayfa Lorrayne Araujo Berlanda
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Natan de Carvalho Neves
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil
| | - Octávio Luiz Franco
- Universidade de Brasília, Pós-Graduação em Patologia Molecular, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.
- Centro de Análises Bioquímicas e Proteômicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, 70790-160, Brazil.
- S-Inova Biotech, Pós-graduação em Biotecnologia Universidade Católica Dom Bosco, Campo Grande, MS, 79117-900, Brazil.
| |
Collapse
|
43
|
Li W, Yang F, Meng L, Sun J, Su Y, Shao L, Zhou D, Yu F. Synthesis, Structure Activity Relationship and Anti-influenza A Virus Evaluation of Oleanolic Acid-Linear Amino Derivatives. Chem Pharm Bull (Tokyo) 2019; 67:1201-1207. [PMID: 31434835 DOI: 10.1248/cpb.c19-00485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oleanolic acid (OA) was discovered as a mild influenza hemagglutinin (HA) inhibitor in our earlier studies. In the present work, 20 compounds were prepared by structural modifications of OA, and their antiviral activities against influenza A/WSN/33 (H1N1) virus in Madin-Darby canine kidney (MDCK) cells were evaluated. Based on the biological result, structure-activity relationship (SAR) was discussed. Compound 10 with six-carbon chain and a terminal hydroxyl group showed the strongest anti-influenza activity with an IC50 of 2.98 µM, which is an order of magnitude more potent than OA. Hemagglutination inhibition and Surface plasmon resonance (SPR) assay indicated that compound 10 might interfere with influenza invasion by interacting with HA protein.
Collapse
Affiliation(s)
- Weijia Li
- Medical School of Kunming University of Science and Technology
| | - Fan Yang
- Medical School of Kunming University of Science and Technology
| | - Lingkuan Meng
- Medical School of Kunming University of Science and Technology
| | - Jiaqi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University
| | - Yangqing Su
- Medical School of Kunming University of Science and Technology
| | - Liang Shao
- Medical School of Kunming University of Science and Technology
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University
| | - Fei Yu
- Medical School of Kunming University of Science and Technology
| |
Collapse
|
44
|
Su Y, Meng L, Sun J, Li W, Shao L, Chen K, Zhou D, Yang F, Yu F. Design, synthesis of oleanolic acid-saccharide conjugates using click chemistry methodology and study of their anti-influenza activity. Eur J Med Chem 2019; 182:111622. [PMID: 31425909 DOI: 10.1016/j.ejmech.2019.111622] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
The development of entry inhibitors is an emerging approach to the inhibition of influenza virus. In our previous research, oleanolic acid (OA) was discovered as a mild influenza hemagglutinin (HA) inhibitor. Herein, as a further study, we report the preparation of a series of OA-saccharide conjugates via the CuAAC reaction, and the anti-influenza activity of these compounds was evaluated in vitro. Among them, compound 11b, an OA-glucose conjugate, showed a significantly increased anti-influenza activity with an IC50 of 5.47 μM, and no obvious cytotoxic effect on MDCK cells was observed at 100 μM. Hemagglutination inhibition assay and docking experiment indicated that 11b might interfere with influenza virus infection by acting on HA protein. Broad-spectrum anti-influenza experiments showed 11b to be robustly potent against 5 different strains, including influenza A and B viruses, with IC50 values at the low-micromole level. Overall, this finding further extends the utility of OA-saccharide conjugates in anti-influenza virus drug design.
Collapse
Affiliation(s)
- Yangqing Su
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Lingkuan Meng
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jiaqi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Weijia Li
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Liang Shao
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Kexuan Chen
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Fan Yang
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Fei Yu
- Medical School of Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
45
|
Influenza Virus with Increased pH of Hemagglutinin Activation Has Improved Replication in Cell Culture but at the Cost of Infectivity in Human Airway Epithelium. J Virol 2019; 93:JVI.00058-19. [PMID: 31189708 PMCID: PMC6694820 DOI: 10.1128/jvi.00058-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/02/2019] [Indexed: 01/09/2023] Open
Abstract
The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus’ ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus’ ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle. Pandemic H1N1 (pH1N1) influenza virus emerged from swine in 2009 with an adequate capability to infect and transmit between people. In subsequent years, it has circulated as a seasonal virus and evolved further human-adapting mutations. Mutations in the hemagglutinin (HA) stalk that increase pH stability have been associated with human adaptation and airborne transmission of pH1N1 virus. Yet, our understanding of how pH stability impacts virus-host interactions is incomplete. Here, using recombinant viruses with point mutations that alter the pH stability of pH1N1 HA, we found distinct effects on virus phenotypes in different experimental models. Increased pH sensitivity enabled viruses to uncoat in endosomes more efficiently, manifesting as increased replication rate in typical continuous cell cultures under single-cycle conditions. A more acid-labile HA also conferred a small reduction in sensitivity to antiviral therapeutics that act at the pH-sensitive HA fusion step. Conversely, in primary human airway epithelium cultured at the air-liquid interface, increased pH sensitivity attenuated multicycle viral replication by compromising virus survival in the extracellular microenvironment. In a mouse model of influenza pathogenicity, there was an optimum HA activation pH, and viruses with either more- or less-pH-stable HA were less virulent. Opposing pressures inside and outside the host cell that determine pH stability may influence zoonotic potential. The distinct effects that changes in pH stability exert on viral phenotypes underscore the importance of using the most appropriate systems for assessing virus titer and fitness, which has implications for vaccine manufacture, antiviral drug development, and pandemic risk assessment. IMPORTANCE The pH stability of the hemagglutinin surface protein varies between different influenza strains and subtypes and can affect the virus’ ability to replicate and transmit. Here, we demonstrate a delicate balance that the virus strikes within and without the target cell. We show that a pH-stable hemagglutinin enables a human influenza virus to replicate more effectively in human airway cells and mouse lungs by facilitating virus survival in the extracellular environment of the upper respiratory tract. Conversely, after entering target cells, being more pH stable confers a relative disadvantage, resulting in less efficient delivery of the viral genome to the host cell nucleus. Since the balance we describe will be affected differently in different host environments, it may restrict a virus’ ability to cross species. In addition, our findings imply that different influenza viruses may show variation in how well they are controlled by antiviral strategies targeting pH-dependent steps in the virus replication cycle.
Collapse
|
46
|
To J, Torres J. Viroporins in the Influenza Virus. Cells 2019; 8:cells8070654. [PMID: 31261944 PMCID: PMC6679168 DOI: 10.3390/cells8070654] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza is a highly contagious virus that causes seasonal epidemics and unpredictable pandemics. Four influenza virus types have been identified to date: A, B, C and D, with only A–C known to infect humans. Influenza A and B viruses are responsible for seasonal influenza epidemics in humans and are responsible for up to a billion flu infections annually. The M2 protein is present in all influenza types and belongs to the class of viroporins, i.e., small proteins that form ion channels that increase membrane permeability in virus-infected cells. In influenza A and B, AM2 and BM2 are predominantly proton channels, although they also show some permeability to monovalent cations. By contrast, M2 proteins in influenza C and D, CM2 and DM2, appear to be especially selective for chloride ions, with possibly some permeability to protons. These differences point to different biological roles for M2 in types A and B versus C and D, which is also reflected in their sequences. AM2 is by far the best characterized viroporin, where mechanistic details and rationale of its acid activation, proton selectivity, unidirectionality, and relative low conductance are beginning to be understood. The present review summarizes the biochemical and structural aspects of influenza viroporins and discusses the most relevant aspects of function, inhibition, and interaction with the host.
Collapse
Affiliation(s)
- Janet To
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
47
|
Vrijens P, Noppen S, Boogaerts T, Vanstreels E, Ronca R, Chiodelli P, Laporte M, Vanderlinden E, Liekens S, Stevaert A, Naesens L. Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor β signalling pathway. J Gen Virol 2019; 100:583-601. [PMID: 30762518 DOI: 10.1099/jgv.0.001235] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The possible resistance of influenza virus against existing antiviral drugs calls for new therapeutic concepts. One appealing strategy is to inhibit virus entry, in particular at the stage of internalization. This requires a better understanding of virus-host interactions during the entry process, including the role of receptor tyrosine kinases (RTKs). To search for cellular targets, we evaluated a panel of 276 protein kinase inhibitors in a multicycle antiviral assay in Madin-Darby canine kidney cells. The RTK inhibitor Ki8751 displayed robust anti-influenza A and B virus activity and was selected for mechanistic investigations. Ki8751 efficiently disrupted the endocytic process of influenza virus in different cell lines carrying platelet-derived growth factor receptor β (PDGFRβ), an RTK that is known to act at GM3 ganglioside-positive lipid rafts. The more efficient virus entry in CHO-K1 cells compared to the wild-type ancestor (CHO-wt) cells indicated a positive effect of GM3, which is abundant in CHO-K1 but not in CHO-wt cells. Entering virus localized to GM3-positive lipid rafts and the PDGFRβ-containing endosomal compartment. PDGFRβ/GM3-dependent virus internalization involved PDGFRβ phosphorylation, which was potently inhibited by Ki8751, and desialylation of activated PDGFRβ by the viral neuraminidase. Virus uptake coincided with strong activation of the Raf/MEK/Erk cascade, but not of PI3K/Akt or phospholipase C-γ. We conclude that influenza virus efficiently hijacks the GM3-enhanced PDGFRβ signalling pathway for cell penetration, providing an opportunity for host cell-targeting antiviral intervention.
Collapse
Affiliation(s)
- Pieter Vrijens
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sam Noppen
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Talitha Boogaerts
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Els Vanstreels
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Roberto Ronca
- 2Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paola Chiodelli
- 2Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manon Laporte
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Evelien Vanderlinden
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sandra Liekens
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Annelies Stevaert
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lieve Naesens
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Kong B, Moon S, Kim Y, Heo P, Jung Y, Yu SH, Chung J, Ban C, Kim YH, Kim P, Hwang BJ, Chung WJ, Shin YK, Seong BL, Kweon DH. Virucidal nano-perforator of viral membrane trapping viral RNAs in the endosome. Nat Commun 2019; 10:185. [PMID: 30643128 PMCID: PMC6331592 DOI: 10.1038/s41467-018-08138-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/18/2018] [Indexed: 11/09/2022] Open
Abstract
Membrane-disrupting agents that selectively target virus versus host membranes could potentially inhibit a broad-spectrum of enveloped viruses, but currently such antivirals are lacking. Here, we develop a nanodisc incorporated with a decoy virus receptor that inhibits virus infection. Mechanistically, nanodiscs carrying the viral receptor sialic acid bind to influenza virions and are co-endocytosed into host cells. At low pH in the endosome, the nanodiscs rupture the viral envelope, trapping viral RNAs inside the endolysosome for enzymatic decomposition. In contrast, liposomes containing a decoy receptor show weak antiviral activity due to the lack of membrane disruption. The nanodiscs inhibit influenza virus infection and reduce morbidity and mortality in a mouse model. Our results suggest a new class of antivirals applicable to other enveloped viruses that cause irreversible physical damage specifically to virus envelope by viruses' own fusion machine. In conclusion, the lipid nanostructure provides another dimension for antiviral activity of decoy molecules.
Collapse
Affiliation(s)
- Byoungjae Kong
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yuna Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Paul Heo
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Younghun Jung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Hyeon Yu
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jinhyo Chung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choongjin Ban
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Ho Kim
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Beom Jeung Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yeon-Kyun Shin
- Department of Biochemistry Biophysics and Molecular Biology, Iowa State University, Iowa, IA, 50011, USA
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea. .,Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
49
|
Kiran P, Bhatia S, Lauster D, Aleksić S, Fleck C, Peric N, Maison W, Liese S, Keller BG, Herrmann A, Haag R. Exploring Rigid and Flexible Core Trivalent Sialosides for Influenza Virus Inhibition. Chemistry 2018; 24:19373-19385. [PMID: 30295350 PMCID: PMC6587447 DOI: 10.1002/chem.201804826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Indexed: 12/25/2022]
Abstract
Herein, the chemical synthesis and binding analysis of functionalizable rigid and flexible core trivalent sialosides bearing oligoethylene glycol (OEG) spacers interacting with spike proteins of influenza A virus (IAV) X31 is described. Although the flexible Tris-based trivalent sialosides achieved micromolar binding constants, a trivalent binder based on a rigid adamantane core dominated flexible tripodal compounds with micromolar binding and hemagglutination inhibition constants. Simulation studies indicated increased conformational penalties for long OEG spacers. Using a systematic approach with molecular modeling and simulations as well as biophysical analysis, these findings emphasize on the importance of the scaffold rigidity and the challenges associated with the spacer length optimization.
Collapse
Affiliation(s)
- Pallavi Kiran
- Institut für Chemie und Biochemie Organische ChemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Sumati Bhatia
- Institut für Chemie und Biochemie Organische ChemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Daniel Lauster
- Institut für Biologie, Molekulare Biophysik, IRI Life SciencesHumboldt-Universität zu BerlinInvalidenstr. 4210115BerlinGermany
| | - Stevan Aleksić
- Institut für Chemie und Biochemie, Physikalische und Theoretische ChemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Carsten Fleck
- Fachbereich ChemieInstitut für PharmazieUniversität HamburgBundesstr. 4520146HamburgGermany
| | - Natalija Peric
- Fachbereich ChemieInstitut für PharmazieUniversität HamburgBundesstr. 4520146HamburgGermany
| | - Wolfgang Maison
- Fachbereich ChemieInstitut für PharmazieUniversität HamburgBundesstr. 4520146HamburgGermany
| | - Susanne Liese
- Department of MathematicsUniversity of Oslo, P.O Box1053 Blinder0316OsloNorway
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Bettina G. Keller
- Institut für Chemie und Biochemie, Physikalische und Theoretische ChemieFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Andreas Herrmann
- Institut für Biologie, Molekulare Biophysik, IRI Life SciencesHumboldt-Universität zu BerlinInvalidenstr. 4210115BerlinGermany
| | - Rainer Haag
- Institut für Chemie und Biochemie Organische ChemieFreie Universität BerlinTakustr. 314195BerlinGermany
| |
Collapse
|
50
|
Szűcs Z, Kelemen V, Le Thai S, Csávás M, Rőth E, Batta G, Stevaert A, Vanderlinden E, Naesens L, Herczegh P, Borbás A. Structure-activity relationship studies of lipophilic teicoplanin pseudoaglycon derivatives as new anti-influenza virus agents. Eur J Med Chem 2018; 157:1017-1030. [PMID: 30170320 PMCID: PMC7115582 DOI: 10.1016/j.ejmech.2018.08.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 02/03/2023]
Abstract
Six series of semisynthetic lipophilic glycopeptide antibiotic derivatives were evaluated for in vitro activity against influenza A and B viruses. The new teicoplanin pseudoaglycon-derived lipoglycopeptides were prepared by coupling one or two side chains to the N-terminus of the glycopeptide core, using various conjugation methods. Three series of derivatives bearing two lipophilic groups were synthesized by attaching bis-alkylthio maleimides directly or through linkers of different lengths to the glycopeptide. Access to the fourth and fifth series of compounds was achieved by click chemistry, introducing single alkyl/aryl chains directly or through a tetraethylene glycol linker to the same position. A sixth group of semisynthetic derivatives was obtained by sulfonylation of the N-terminus. Of the 42 lipophilic teicoplanin pseudoaglycon derivatives tested, about half showed broad activity against influenza A and B viruses, with some of them having reasonable or no cytotoxicity. Minor differences in the side chain length as well as lipophilicity appeared to have significant impact on antiviral activity and cytotoxicity. Several lipoglycopeptides were also found to be active against human coronavirus. Multiple series of lipophilic teicoplanin pseudoaglycon derivatives were prepared. Alkyl or aryl chains were coupled to the N-terminus by various conjugation methods. The activity of new antibiotic derivatives was evaluated against influenza viruses. Half of the 42 derivatives showed high activity against influenza A and B viruses. The length and lipophilicity of the side chains influence the antiviral activity.
Collapse
Affiliation(s)
- Zsolt Szűcs
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Viktor Kelemen
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Son Le Thai
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Magdolna Csávás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Erzsébet Rőth
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Annelies Stevaert
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | | | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium.
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.
| |
Collapse
|