1
|
Borroto-Escuela DO, Gonzalez-Cristo E, Ochoa-Torres V, Serra-Rojas EM, Ambrogini P, Arroyo-García LE, Fuxe K. Understanding electrical and chemical transmission in the brain. Front Cell Neurosci 2024; 18:1398862. [PMID: 38988663 PMCID: PMC11233782 DOI: 10.3389/fncel.2024.1398862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
The histochemical Falck-Hillarp method for the localization of dopamine (DA), noradrenaline (NA) and serotonin in the central nervous system (CNS) of rodents was introduced in the 1960s. It supported the existence of chemical neurotransmission in the CNS. The monoamine neurons in the lower brain stem formed monosynaptic ascending systems to the telencephalon and diencephalon and monoamine descending systems to the entire spinal cord. The monoamines were early on suggested to operate via synaptic chemical transmission in the CNS. This chemical transmission reduced the impact of electrical transmission. In 1969 and the 1970s indications were obtained that important modes of chemical monoamine communication in the CNS also took place through the extra-synaptic fluid, the extracellular fluid, and long-distance communication in the cerebrospinal fluid involving diffusion and flow of transmitters like DA, NA and serotonin. In 1986, this type of transmission was named volume transmission (VT) by Agnati and Fuxe and their colleagues, also characterized by transmitter varicosity and receptor mismatches. The short and long-distance VT pathways were characterized by volume fraction, tortuosity and clearance. Electrical transmission also exists in the mammalian CNS, but chemical transmission is in dominance. One electrical mode is represented by electrical synapses formed by gap junctions which represent low resistant passages between nerve cells. It allows for a more rapid passage of action potentials between nerve cells compared to chemical transmission. The second mode is based on the ability of synaptic currents to generate electrical fields to modulate chemical transmission. One aim is to understand how chemical transmission can be integrated with electrical transmission and how putative (aquaporin water channel, dopamine D2R and adenosine A2AR) complexes in astrocytes can significancy participate in the clearance of waste products from the glymphatic system. VT may also help accomplish the operation of the acupuncture meridians essential for Chinese medicine in view of the indicated existence of extracellular VT pathways.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Emmanuell Gonzalez-Cristo
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
| | - Verty Ochoa-Torres
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
- Faculty of Engineering and Biotechnology, University OTR and the Regional Cooperative for Comprehensive Medical Assistance (CRAMI), Montevideo, Uruguay
| | - Emilio M. Serra-Rojas
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, Málaga, Spain
- Cardiology Service, Lozano Blesa University Clinical Hospital, Zaragoza, Spain
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, Università di Urbino Carlo Bo, Urbino, Italy
| | - Luis E. Arroyo-García
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Mirchandani-Duque M, Choucri M, Hernández-Mondragón JC, Crespo-Ramírez M, Pérez-Olives C, Ferraro L, Franco R, Pérez de la Mora M, Fuxe K, Borroto-Escuela DO. Membrane Heteroreceptor Complexes as Second-Order Protein Modulators: A Novel Integrative Mechanism through Allosteric Receptor-Receptor Interactions. MEMBRANES 2024; 14:96. [PMID: 38786931 PMCID: PMC11122807 DOI: 10.3390/membranes14050096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Bioluminescence and fluorescence resonance energy transfer (BRET and FRET) together with the proximity ligation method revealed the existence of G-protein-coupled receptors, Ionotropic and Receptor tyrosine kinase heterocomplexes, e.g., A2AR-D2R, GABAA-D5R, and FGFR1-5-HT1AR heterocomplexes. Molecular integration takes place through allosteric receptor-receptor interactions in heteroreceptor complexes of synaptic and extra-synaptic regions. It involves the modulation of receptor protomer recognition, signaling and trafficking, as well as the modulation of behavioral responses. Allosteric receptor-receptor interactions in hetero-complexes give rise to concepts like meta-modulation and protein modulation. The introduction of receptor-receptor interactions was the origin of the concept of meta-modulation provided by Katz and Edwards in 1999, which stood for the fine-tuning or modulation of nerve cell transmission. In 2000-2010, Ribeiro and Sebastiao, based on a series of papers, provided strong support for their view that adenosine can meta-modulate (fine-tune) synaptic transmission through adenosine receptors. However, another term should also be considered: protein modulation, which is the key feature of allosteric receptor-receptor interactions leading to learning and consolidation by novel adapter proteins to memory. Finally, it must be underlined that allosteric receptor-receptor interactions and their involvement both in brain disease and its treatment are of high interest. Their pathophysiological relevance has been obtained, especially for major depressive disorder, cocaine use disorder, and Parkinson's disease.
Collapse
Affiliation(s)
- Marina Mirchandani-Duque
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
| | - Malak Choucri
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Juan C. Hernández-Mondragón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Catalina Pérez-Olives
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Rafael Franco
- Department of Life Sciences and Biotechnology, Section of Medicinal and Health Products University of Ferrara, 44121 Ferrara, Italy; (L.F.); (R.F.)
| | - Miguel Pérez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.H.-M.); (M.C.-R.); (M.P.d.l.M.)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| | - Dasiel O. Borroto-Escuela
- Receptomics and Brain Disorders Lab, Department of Human Physiology Physical Education and Sport, Faculty of Medicine, University of Malaga, 29010 Málaga, Spain;
- Department of Neuroscience, Karolinska Institutet, Biomedicum (B0852), Solnavägen 9, 17165 Solna, Sweden;
| |
Collapse
|
3
|
Pittaluga A, Grilli M, Olivero G. Progress in metamodulation and receptor-receptor interaction: from physiology to pathology and therapy. Neuropharmacology 2023:109639. [PMID: 37343628 DOI: 10.1016/j.neuropharm.2023.109639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The organization and the role of receptor-receptor interaction (RRI) and metamodulation in physiological conditions have been extensively analyzed and discussed. In this Special Issue of Neuropharmacology, we review recent advances in the understanding of the RRI and the mechanisms underlying its adaptation that could be relevant to the etiopathogenesis of central neuropsychiatric disorders, as well as to the development of new therapeutic approaches to control the activity and to restore the physiological functions, posing the basis for new targeted pharmacological interventions.
Collapse
Affiliation(s)
- Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16145 Genoa, Italy.
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148 Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| |
Collapse
|
4
|
Cervetto C, Maura G, Guidolin D, Amato S, Ceccoli C, Agnati LF, Marcoli M. Striatal astrocytic A2A-D2 receptor-receptor interactions and their role in neuropsychiatric disorders. Neuropharmacology 2023:109636. [PMID: 37321323 DOI: 10.1016/j.neuropharm.2023.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
It is now generally accepted that astrocytes are active players in synaptic transmission, so that a neurocentric perspective of the integrative signal communication in the central nervous system is shifting towards a neuro-astrocentric perspective. Astrocytes respond to synaptic activity, release chemical signals (gliotransmitters) and express neurotransmitter receptors (G protein-coupled and ionotropic receptors), thus behaving as co-actors with neurons in signal communication in the central nervous system. The ability of G protein-coupled receptors to physically interact through heteromerization, forming heteromers and receptor mosaics with new distinct signal recognition and transduction pathways, has been intensively studied at neuronal plasma membrane, and has changed the view of the integrative signal communication in the central nervous system. One of the best-known examples of receptor-receptor interaction through heteromerization, with relevant consequences for both the physiological and the pharmacological points of view, is given by adenosine A2A and dopamine D2 receptors on the plasma membrane of striatal neurons. Here we review evidence that native A2A and D2 receptors can interact through heteromerization at the plasma membrane of astrocytes as well. Astrocytic A2A-D2 heteromers were found able to control the release of glutamate from the striatal astrocyte processes. A2A-D2 heteromers on striatal astrocytes and astrocyte processes are discussed as far as their potential relevance in the control of glutamatergic transmission in striatum is concerned, including potential roles in glutamatergic transmission dysregulation in pathological conditions including schizophrenia or the Parkinson's disease.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; Center for Promotion of 3Rs in Teaching and Research (Centro 3R), Pisa, Italy.
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Italy.
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Cristina Ceccoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Luigi F Agnati
- Department of Biochemical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy.
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; Center for Promotion of 3Rs in Teaching and Research (Centro 3R), Pisa, Italy; Center of Excellence for Biomedical Research, University of Genova, Italy.
| |
Collapse
|
5
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
6
|
Bono F, Fiorentini C, Mutti V, Tomasoni Z, Sbrini G, Trebesova H, Marchi M, Grilli M, Missale C. Central nervous system interaction and crosstalk between nAChRs and other ionotropic and metabotropic neurotransmitter receptors. Pharmacol Res 2023; 190:106711. [PMID: 36854367 DOI: 10.1016/j.phrs.2023.106711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are widely distributed in both the peripheral and the central nervous systems. nAChRs exert a crucial modulatory influence on several brain biological processes; they are involved in a variety of neuronal diseases including Parkinson's disease, Alzheimer's disease, epilepsy, and nicotine addiction. The influence of nAChRs on brain function depends on the activity of other neurotransmitter receptors that co-exist with nAChRs on neurons. In fact, the crosstalk between receptors is an important mechanism of neurotransmission modulation and plasticity. This may be due to converging intracellular pathways but also occurs at the membrane level, because of direct physical interactions between receptors. In this line, this review is dedicated to summarizing how nAChRs and other ionotropic and metabotropic receptors interact and the relevance of nAChRs cross-talks in modulating various neuronal processes ranging from the classical modulation of neurotransmitter release to neuron plasticity and neuroprotection.
Collapse
Affiliation(s)
- Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Veronica Mutti
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Zaira Tomasoni
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giulia Sbrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Hanna Trebesova
- Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Mario Marchi
- Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genova, 16148 Genoa, Italy.
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
7
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
8
|
Presynaptic 5-HT2A-mGlu2/3 Receptor–Receptor Crosstalk in the Prefrontal Cortex: Metamodulation of Glutamate Exocytosis. Cells 2022; 11:cells11193035. [PMID: 36230998 PMCID: PMC9562019 DOI: 10.3390/cells11193035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
The glutamatergic nerve endings of a rat prefrontal cortex (PFc) possess presynaptic 5-HT2A heteroreceptors and mGlu2/3 autoreceptors, whose activation inhibits glutamate exocytosis, and is measured as 15 mM KCl-evoked [3H]D-aspartate ([3H]D-asp) release (which mimics glutamate exocytosis). The concomitant activation of the two receptors nulls their inhibitory activities, whereas blockade of the 5-HT2A heteroreceptors with MDL11,939 (1 μM) strengthens the inhibitory effect elicited by the mGlu2/3 receptor agonist LY329268 (1 μM). 5-HT2A receptor antagonists (MDL11,939; ketanserin; trazodone) amplify the impact of low (3 nM) LY379268. Clozapine (0.1–10 μM) mimics the 5-HT2A agonist (±) DOI and inhibits the KCl-evoked [3H]D-asp overflow in a MDL11,939-dependent fashion, but does not modify the (±) DOI-induced effect. mGlu2 and 5-HT2A proteins do not co-immunoprecipitate from synaptosomal lysates, nor does the incubation of PFc synaptosomes with MDL11,939 (1 μM) or clozapine (10 µM) modify the insertion of mGlu2 subunits in synaptosomal plasma membranes. In conclusion, 5-HT2A and mGlu2/3 receptors colocalize, but do not physically associate, in PFc glutamatergic terminals, where they functionally interact in an antagonist-like fashion to control glutamate exocytosis. The mGlu2/3-5-HT2A metamodulation could be relevant to therapy for central neuropsychiatric disorders, including schizophrenia, but also unveil cellular events accounting for their development, which also influence the responsiveness to drugs regimens.
Collapse
|
9
|
Synaptosomes and Metamodulation of Receptors. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2417:99-111. [PMID: 35099794 DOI: 10.1007/978-1-0716-1916-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Synaptosomes are re-sealed pinched off nerve terminals that maintain all the main structural and functional features of the original structures and that are appropriate to study presynaptic events. Because of the discovery of new structural and molecular events that dictate the efficiency of transmitter release and of its receptor-mediated control in the central nervous system, the interest in this tissue preparation is continuously renewing. Most of these events have been already discussed in previous reviews, but few of them were not and deserve some comments since they could suggest new functional and possibly therapeutic considerations. Among them, the "metamodulation" of receptors represents an emerging aspect that dramatically increased the complexity of the presynaptic compartment, adding new insights to the role of presynaptic receptors as modulators of chemical synapses. Deciphering the mechanism of presynaptic metamodulation would permit indirect approaches to control the activity of presynaptic release-regulating receptors that are currently orphans of direct ligands/modulators, paving the road for the proposal of new therapeutic approaches for central neurological diseases.
Collapse
|
10
|
Bono F, Mutti V, Tomasoni Z, Sbrini G, Missale C, Fiorentini C. Recent Advances in Dopamine D3 Receptor Heterodimers: Focus on Dopamine D3 and D1 Receptor-Receptor Interaction and Striatal Function. Curr Top Behav Neurosci 2022; 60:47-72. [PMID: 35505059 DOI: 10.1007/7854_2022_353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
G protein-coupled receptors (GPCR) heterodimers represent new entities with unique pharmacological, signalling, and trafficking properties, with specific distribution restricted to those cells where the two interacting receptors are co-expressed. Like other GPCR, dopamine D3 receptors (D3R) directly interact with various receptors to form heterodimers: data showing the D3R physical interaction with both GPCR and non-GPCR receptors have been provided including D3R interaction with other dopamine receptors. The aim of this chapter is to summarize current knowledge of the distinct roles of heterodimers involving D3R, focusing on the D3R interaction with the dopamine D1 receptor (D1R): the D1R-D3R heteromer, in fact, has been postulated in both ventral and motor striatum. Interestingly, since both D1R and D3R have been implicated in several pathological conditions, including schizophrenia, motor dysfunctions, and substance use disorders, the D1R-D3R heteromer may represent a potential drug target for the treatment of these diseases.
Collapse
Affiliation(s)
- Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Veronica Mutti
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Zaira Tomasoni
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giulia Sbrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Fiorentini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
11
|
Somatostatin, a Presynaptic Modulator of Glutamatergic Signal in the Central Nervous System. Int J Mol Sci 2021; 22:ijms22115864. [PMID: 34070785 PMCID: PMC8198526 DOI: 10.3390/ijms22115864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023] Open
Abstract
Somatostatin is widely diffused in the central nervous system, where it participates to control the efficiency of synaptic transmission. This peptide mainly colocalizes with GABA, in inhibitory, GABA-containing interneurons from which it is actively released in a Ca2+ dependent manner upon application of depolarizing stimuli. Once released in the synaptic cleft, somatostatin acts locally, or it diffuses in the extracellular space through "volume diffusion", a mechanism(s) of distribution which mainly operates in the cerebrospinal fluid and that assures the progression of neuronal signalling from signal-secreting sender structures towards receptor-expressing targeted neurons located extrasynaptically, in a non-synaptic, inter-neuronal form of communication. Somatostatin controls the efficiency of central glutamate transmission by either modulating presynaptically the glutamate exocytosis or by metamodulating the activity of glutamate receptors colocalized and functionally coupled with somatostatin receptors in selected subpopulations of nerve terminals. Deciphering the role of somatostatin in the mechanisms of "volume diffusion" and in the "receptor-receptor interaction" unveils new perspectives in the central role of this fine tuner of synaptic strength, paving the road to new therapeutic approaches for the cure of central disorders.
Collapse
|
12
|
Franco R, Cordomí A, Llinas Del Torrent C, Lillo A, Serrano-Marín J, Navarro G, Pardo L. Structure and function of adenosine receptor heteromers. Cell Mol Life Sci 2021; 78:3957-3968. [PMID: 33580270 PMCID: PMC11072997 DOI: 10.1007/s00018-021-03761-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 11/25/2022]
Abstract
Adenosine is one of the most ancient signaling molecules and has receptors in both animals and plants. In mammals there are four specific receptors, A1, A2A, A2B, and A3, which belong to the superfamily of G-protein-coupled receptors (GPCRs). Evidence accumulated in the last 20 years indicates that GPCRs are often expressed as oligomeric complexes formed by a number of equal (homomers) or different (heteromers) receptors. This review presents the data showing the occurrence of heteromers formed by A1 and A2A, A2A and A2B, and A2A and A3 receptors highlighting (i) their tetrameric structural arrangements, and (ii) the functional diversity that those heteromers provide to adenosinergic signaling.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Catalonia, 08028, Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain.
| | - Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus Universitari, 08193, Bellaterra (Barcelona), Spain
| | - Claudia Llinas Del Torrent
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus Universitari, 08193, Bellaterra (Barcelona), Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Catalonia, Barcelona, Spain
| | - Joan Serrano-Marín
- Molecular Neurobiology Laboratory, Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Diagonal 643, Catalonia, 08028, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos iii, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Catalonia, Barcelona, Spain
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus Universitari, 08193, Bellaterra (Barcelona), Spain
| |
Collapse
|
13
|
Borroto-Escuela DO, Fuxe K. Oligomeric Receptor Complexes and Their Allosteric Receptor-Receptor Interactions in the Plasma Membrane Represent a New Biological Principle for Integration of Signals in the CNS. Front Mol Neurosci 2019; 12:230. [PMID: 31607863 PMCID: PMC6773811 DOI: 10.3389/fnmol.2019.00230] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) not only exist as monomers but also as homomers and heteromers in which allosteric receptor-receptor interactions take place, modulating the functions of the participating GPCR protomers. GPCRs can also form heteroreceptor complexes with ionotropic receptors and receptor tyrosine kinases modulating their function. Furthermore, adaptor proteins interact with receptor protomers and modulate their interactions. The state of the art is that the allosteric receptor-receptor interactions are reciprocal, highly dynamic and substantially alter the signaling, trafficking, recognition and pharmacology of the participating protomers. The pattern of changes appears to be unique for each heteromer and can favor antagonistic or facilitatory interactions or switch the G protein coupling from e.g., Gi/o to Gq or to beta-arrestin signaling. It lends a new dimension to molecular integration in the nervous system. Future direction should be aimed at determining the receptor interface involving building models of selected heterodimers. This will make design of interface-interfering peptides that specifically disrupt the heterodimer possible. This will help to determine the functional role of the allosteric receptor-receptor interactions as well as the integration of signals at the plasma membrane by the heteroreceptor complexes, vs. integration of the intracellular signaling pathways. Integration of signals also at the plasma membrane seems crucial in view of the hypothesis that learning and memory at a molecular level takes place by reorganization of homo and heteroreceptor complexes in the postsynaptic membrane. Homo and heteroreceptor complexes are in balance with each other, and their disbalance is linked to disease. Targeting heteroreceptor complexes represents a novel strategy for the treatment of brain disorders.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Biomolecular Science, Section of Physiology, University of Urbino, Campus Scientifico Enrico Mattei, Urbino, Italy
- Grupo Bohío-Estudio, Observatorio Cubano de Neurociencias, Yaguajay, Cuba
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Perez de la Mora M, Hernandez-Mondragon C, Crespo-Ramirez M, Rejon-Orantes J, Borroto-Escuela DO, Fuxe K. Conventional and Novel Pharmacological Approaches to Treat Dopamine-Related Disorders: Focus on Parkinson's Disease and Schizophrenia. Neuroscience 2019; 439:301-318. [PMID: 31349007 DOI: 10.1016/j.neuroscience.2019.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
The dopaminergic system integrated by cell groups distributed in several brain regions exerts a modulatory role in brain. Particularly important for this task are the mesencephalic dopamine neurons, which from the substantia nigra and ventral tegmental area project to the dorsal striatum and the cortical/subcortical limbic systems, respectively. Dopamine released from these neurons operates mainly via the short distance extrasynaptic volume transmission and activates five different dopaminergic receptor subtypes modulating synaptic GABA and glutamate transmission. To accomplish this task dopaminergic neurons keep mutual modulating interactions with neurons of other neurotransmitter systems, including allosteric receptor-receptor interactions in heteroreceptor complexes. As a result of its modulatory role dopaminergic mechanisms are involved in either the etiology or physiopathology of many brain diseases such as Parkinsońs disease and schizophrenia. The aim of this work is to review some novel and conventional approaches that either have been used or are currently employed to treat these diseases. Particular attention is paid to the approaches derived from the knowledge recently acquired in the realm of receptor-receptor interactions taking place through multiple dopamine heteroreceptor complexes in the plasma membrane. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Miguel Perez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Minerva Crespo-Ramirez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Rejon-Orantes
- Pharmacobiology Experimental laboratory, Faculty of Medicine, Universidad Autónoma de Chiapas
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Pelassa S, Guidolin D, Venturini A, Averna M, Frumento G, Campanini L, Bernardi R, Cortelli P, Buonaura GC, Maura G, Agnati LF, Cervetto C, Marcoli M. A2A-D2 Heteromers on Striatal Astrocytes: Biochemical and Biophysical Evidence. Int J Mol Sci 2019; 20:ijms20102457. [PMID: 31109007 PMCID: PMC6566402 DOI: 10.3390/ijms20102457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Our previous findings indicate that A2A and D2 receptors are co-expressed on adult rat striatal astrocytes and on the astrocyte processes, and that A2A-D2 receptor–receptor interaction can control the release of glutamate from the processes. Functional evidence suggests that the receptor–receptor interaction was based on heteromerization of native A2A and D2 receptors at the plasma membrane of striatal astrocyte processes. We here provide biochemical and biophysical evidence confirming that receptor–receptor interaction between A2A and D2 receptors at the astrocyte plasma membrane is based on A2A-D2 heteromerization. To our knowledge, this is the first direct demonstration of the ability of native A2A and D2 receptors to heteromerize on glial cells. As striatal astrocytes are recognized to be involved in Parkinson’s pathophysiology, the findings that adenosine A2A and dopamine D2 receptors can form A2A-D2 heteromers on the astrocytes in the striatum (and that these heteromers can play roles in the control of the striatal glutamatergic transmission) may shed light on the molecular mechanisms involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Simone Pelassa
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Via Gabelli 63, 35122 Padova, Italy.
| | - Arianna Venturini
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Monica Averna
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy.
| | - Giulia Frumento
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Letizia Campanini
- Division of Experimental Oncology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy.
| | - Rosa Bernardi
- Division of Experimental Oncology, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano, Italy.
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM) Alma Mater Studiorum-University of Bologna, Via Altura 3, 40139 Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy.
| | - Giovanna Calandra Buonaura
- Department of Biomedical and NeuroMotor Sciences (DIBINEM) Alma Mater Studiorum-University of Bologna, Via Altura 3, 40139 Bologna, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy.
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Luigi F Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 65 Stockholm, Sweden.
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Viale Cembrano 4, 16148 Genova, Italy.
- Centre of Excellence for Biomedical Research CEBR, University of Genova, Viale Benedetto XV, 5, 16132 Genova, Italy.
| |
Collapse
|
16
|
Moreno E, Cavic M, Krivokuca A, Casadó V, Canela E. The Endocannabinoid System as a Target in Cancer Diseases: Are We There Yet? Front Pharmacol 2019; 10:339. [PMID: 31024307 PMCID: PMC6459931 DOI: 10.3389/fphar.2019.00339] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system (ECS) has been placed in the anti-cancer spotlight in the last decade. The immense data load published on its dual role in both tumorigenesis and inhibition of tumor growth and metastatic spread has transformed the cannabinoid receptors CB1 (CB1R) and CB2 (CB2R), and other members of the endocannabinoid-like system, into attractive new targets for the treatment of various cancer subtypes. Although the clinical use of cannabinoids has been extensively documented in the palliative setting, clinical trials on their application as anti-cancer drugs are still ongoing. As drug repurposing is significantly faster and more economical than de novo introduction of a new drug into the clinic, there is hope that the existing pharmacokinetic and safety data on the ECS ligands will contribute to their successful translation into oncological healthcare. CB1R and CB2R are members of a large family of membrane proteins called G protein-coupled receptors (GPCR). GPCRs can form homodimers, heterodimers and higher order oligomers with other GPCRs or non-GPCRs. Currently, several CB1R and CB2R-containing heteromers have been reported and, in cancer cells, CB2R form heteromers with the G protein-coupled chemokine receptor CXCR4, the G protein-coupled receptor 55 (GPR55) and the tyrosine kinase receptor (TKR) human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2). These protein complexes possess unique pharmacological and signaling properties, and their modulation might affect the antitumoral activity of the ECS. This review will explore the potential of the endocannabinoid network in the anti-cancer setting as well as the clinical and ethical pitfalls behind it, and will develop on the value of cannabinoid receptor heteromers as potential new targets for anti-cancer therapies and as prognostic biomarkers.
Collapse
Affiliation(s)
- Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ana Krivokuca
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Enric Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
17
|
Guidolin D, Marcoli M, Tortorella C, Maura G, Agnati LF. Receptor-Receptor Interactions as a Widespread Phenomenon: Novel Targets for Drug Development? Front Endocrinol (Lausanne) 2019; 10:53. [PMID: 30833931 PMCID: PMC6387912 DOI: 10.3389/fendo.2019.00053] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
The discovery of receptor-receptor interactions (RRI) has expanded our understanding of the role that G protein-coupled receptors (GPCRs) play in intercellular communication. The finding that GPCRs can operate as receptor complexes, and not only as monomers, suggests that several different incoming signals could already be integrated at the plasma membrane level via direct allosteric interactions between the protomers that form the complex. Most research in this field has focused on neuronal populations and has led to the identification of a large number of RRI. However, RRI have been seen to occur not only in neurons but also in astrocytes and, outside the central nervous system, in cells of the cardiovascular and endocrine systems and in cancer cells. Furthermore, RRI involving the formation of macromolecular complexes are not limited to GPCRs, being also observed in other families of receptors. Thus, RRI appear as a widespread phenomenon and oligomerization as a common mechanism for receptor function and regulation. The discovery of these macromolecular assemblies may well have a major impact on pharmacology. Indeed, the formation of receptor complexes significantly broadens the spectrum of mechanisms available to receptors for recognition and signaling, which may be implemented through modulation of the binding sites of the adjacent protomers and of their signal transduction features. In this context, the possible appearance of novel allosteric sites in the receptor complex structure may be of particular relevance. Thus, the existence of RRI offers the possibility of new therapeutic approaches, and novel pharmacological strategies for disease treatment have already been proposed. Several challenges, however, remain. These include the accurate characterization of the role that the receptor complexes identified so far play in pathological conditions and the development of ligands specific to given receptor complexes, in order to efficiently exploit the pharmacological properties of these complexes.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy
- *Correspondence: Diego Guidolin
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | | | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Hökfelt T, Barde S, Xu ZQD, Kuteeva E, Rüegg J, Le Maitre E, Risling M, Kehr J, Ihnatko R, Theodorsson E, Palkovits M, Deakin W, Bagdy G, Juhasz G, Prud’homme HJ, Mechawar N, Diaz-Heijtz R, Ögren SO. Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness. Front Neural Circuits 2018; 12:106. [PMID: 30627087 PMCID: PMC6309708 DOI: 10.3389/fncir.2018.00106] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin's role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression-like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a 'brake' to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting - a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joelle Rüegg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Center for Molecular Medicine, Stockholm, Sweden
- Swedish Toxicology Sciences Research Center, Swetox, Södertälje, Sweden
| | - Erwan Le Maitre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Pronexus Analytical AB, Solna, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Ihnatko
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP 2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | | | - Naguib Mechawar
- Douglas Hospital Research Centre, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Di Liberto V, Mudò G, Belluardo N. Crosstalk between receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCR) in the brain: Focus on heteroreceptor complexes and related functional neurotrophic effects. Neuropharmacology 2018; 152:67-77. [PMID: 30445101 DOI: 10.1016/j.neuropharm.2018.11.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 01/11/2023]
Abstract
Neuronal events are regulated by the integration of several complex signaling networks in which G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) are considered key players of an intense bidirectional cross-communication in the cell, generating signaling mechanisms that, at the same time, connect and diversify the traditional signal transduction pathways activated by the single receptor. For this receptor-receptor crosstalk, the two classes of receptors form heteroreceptor complexes resulting in RTKs transactivation and in growth-promoting signals. In this review, we describe heteroreceptor complexes between GPCR and RTKs in the central nervous system (CNS) and their functional effects in controlling a variety of neuronal effects, ranging from development, proliferation, differentiation and migration, to survival, repair, synaptic transmission and plasticity. In this interaction, RTKs can also recruit components of the G protein signaling cascade, creating a bidirectional intricate interplay that provides complex control over multiple cellular events. These heteroreceptor complexes, by the integration of different signals, have recently attracted a growing interest as novel molecular target for depressive disorders. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Natale Belluardo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.
| |
Collapse
|
20
|
Borroto-Escuela DO, Perez De La Mora M, Manger P, Narváez M, Beggiato S, Crespo-Ramírez M, Navarro G, Wydra K, Díaz-Cabiale Z, Rivera A, Ferraro L, Tanganelli S, Filip M, Franco R, Fuxe K. Brain Dopamine Transmission in Health and Parkinson's Disease: Modulation of Synaptic Transmission and Plasticity Through Volume Transmission and Dopamine Heteroreceptors. Front Synaptic Neurosci 2018; 10:20. [PMID: 30042672 PMCID: PMC6048293 DOI: 10.3389/fnsyn.2018.00020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 06/19/2018] [Indexed: 01/04/2023] Open
Abstract
This perspective article provides observations supporting the view that nigro-striatal dopamine neurons and meso-limbic dopamine neurons mainly communicate through short distance volume transmission in the um range with dopamine diffusing into extrasynaptic and synaptic regions of glutamate and GABA synapses. Based on this communication it is discussed how volume transmission modulates synaptic glutamate transmission onto the D1R modulated direct and D2R modulated indirect GABA pathways of the dorsal striatum. Each nigro-striatal dopamine neuron was first calculated to form large numbers of neostriatal DA nerve terminals and then found to give rise to dense axonal arborizations spread over the neostriatum, from which dopamine is released. These neurons can through DA volume transmission directly influence not only the striatal GABA projection neurons but all the striatal cell types in parallel. It includes the GABA nerve cells forming the island-/striosome GABA pathway to the nigral dopamine cells, the striatal cholinergic interneurons and the striatal GABA interneurons. The dopamine modulation of the different striatal nerve cell types involves the five dopamine receptor subtypes, D1R to D5R receptors, and their formation of multiple extrasynaptic and synaptic dopamine homo and heteroreceptor complexes. These features of the nigro-striatal dopamine neuron to modulate in parallel the activity of practically all the striatal nerve cell types in the dorsal striatum, through the dopamine receptor complexes allows us to understand its unique and crucial fine-tuning of movements, which is lost in Parkinson's disease. Integration of striatal dopamine signals with other transmitter systems in the striatum mainly takes place via the receptor-receptor interactions in dopamine heteroreceptor complexes. Such molecular events also participate in the integration of volume transmission and synaptic transmission. Dopamine modulation of the glutamate synapses on the dorsal striato-pallidal GABA pathway involves D2R heteroreceptor complexes such as D2R-NMDAR, A2AR-D2R, and NTSR1-D2R heteroreceptor complexes. The dopamine modulation of glutamate synapses on the striato-entopeduncular/nigral pathway takes place mainly via D1R heteroreceptor complexes such as D1R-NMDAR, A2R-D1R, and D1R-D3R heteroreceptor complexes. Dopamine modulation of the island/striosome compartment of the dorsal striatum projecting to the nigral dopamine cells involve D4R-MOR heteroreceptor complexes. All these receptor-receptor interactions have relevance for Parkinson's disease and its treatment.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Physiology, Department of Biomolecular Science, University of Urbino, Urbino, Italy
- Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Yaguajay, Cuba
| | - Miguel Perez De La Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paul Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Manuel Narváez
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Karolina Wydra
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Zaida Díaz-Cabiale
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - Alicia Rivera
- Department of Cell Biology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Luca Ferraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Sergio Tanganelli
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, Ferrara, Italy
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biomedicine, University of Barcelona, Barcelona, Spain
- CiberNed: Centro de Investigación en Red Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Borroto-Escuela DO, Narváez M, Ambrogini P, Ferraro L, Brito I, Romero-Fernandez W, Andrade-Talavera Y, Flores-Burgess A, Millon C, Gago B, Narvaez JA, Odagaki Y, Palkovits M, Diaz-Cabiale Z, Fuxe K. Receptor⁻Receptor Interactions in Multiple 5-HT1A Heteroreceptor Complexes in Raphe-Hippocampal 5-HT Transmission and Their Relevance for Depression and Its Treatment. Molecules 2018; 23:molecules23061341. [PMID: 29865267 PMCID: PMC6099659 DOI: 10.3390/molecules23061341] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Due to the binding to a number of proteins to the receptor protomers in receptor heteromers in the brain, the term "heteroreceptor complexes" was introduced. A number of serotonin 5-HT1A heteroreceptor complexes were recently found to be linked to the ascending 5-HT pathways known to have a significant role in depression. The 5-HT1A⁻FGFR1 heteroreceptor complexes were involved in synergistically enhancing neuroplasticity in the hippocampus and in the dorsal raphe 5-HT nerve cells. The 5-HT1A protomer significantly increased FGFR1 protomer signaling in wild-type rats. Disturbances in the 5-HT1A⁻FGFR1 heteroreceptor complexes in the raphe-hippocampal 5-HT system were found in a genetic rat model of depression (Flinders sensitive line (FSL) rats). Deficits in FSL rats were observed in the ability of combined FGFR1 and 5-HT1A agonist cotreatment to produce antidepressant-like effects. It may in part reflect a failure of FGFR1 treatment to uncouple the 5-HT1A postjunctional receptors and autoreceptors from the hippocampal and dorsal raphe GIRK channels, respectively. This may result in maintained inhibition of hippocampal pyramidal nerve cell and dorsal raphe 5-HT nerve cell firing. Also, 5-HT1A⁻5-HT2A isoreceptor complexes were recently demonstrated to exist in the hippocampus and limbic cortex. They may play a role in depression through an ability of 5-HT2A protomer signaling to inhibit the 5-HT1A protomer recognition and signaling. Finally, galanin (1⁻15) was reported to enhance the antidepressant effects of fluoxetine through the putative formation of GalR1⁻GalR2⁻5-HT1A heteroreceptor complexes. Taken together, these novel 5-HT1A receptor complexes offer new targets for treatment of depression.
Collapse
Affiliation(s)
- Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet; Retzius väg 8, 17177 Stockholm, Sweden.
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
- Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Zaya 50, 62100 Yaguajay, Cuba.
| | - Manuel Narváez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain.
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy.
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology (SVEB), University of Ferrara, 44121 Ferrara, Italy.
| | - Ismel Brito
- Department of Neuroscience, Karolinska Institutet; Retzius väg 8, 17177 Stockholm, Sweden.
- Observatorio Cubano de Neurociencias, Grupo Bohío-Estudio, Zaya 50, 62100 Yaguajay, Cuba.
| | | | - Yuniesky Andrade-Talavera
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Neuronal Oscillations Lab, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Antonio Flores-Burgess
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain.
| | - Carmelo Millon
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain.
| | - Belen Gago
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain.
| | - Jose Angel Narvaez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain.
| | - Yuji Odagaki
- Department of Psychiatry, Saitama Medical University, 3388570 Saitama, Japan.
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology. Faculty of Medicine. Semmelweis University, H-1094 Budapest, Hungary.
| | - Zaida Diaz-Cabiale
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain.
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet; Retzius väg 8, 17177 Stockholm, Sweden.
| |
Collapse
|
22
|
Zhang R, Asai M, Mahoney CE, Joachim M, Shen Y, Gunner G, Majzoub JA. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice. Mol Psychiatry 2017; 22:733-744. [PMID: 27595593 PMCID: PMC5339066 DOI: 10.1038/mp.2016.136] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/17/2016] [Accepted: 07/13/2016] [Indexed: 01/09/2023]
Abstract
A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, whereas extra-hypothalamic CRH has a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma adrenocorticotropic hormone, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open-field, elevated plus maze, holeboard, light-dark box and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation.
Collapse
Affiliation(s)
- Rong Zhang
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Key laboratory of Resource Biology and Biotechnology in Western China; College of Life Science, Northwest University, Xi’an, Shaanxi, 710069, China,Division for Experimental Natural Science, Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan,To whom correspondence should be addressed. ;
| | - Masato Asai
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA,Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Joachim
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuan Shen
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Georgia Gunner
- Neurodevelopmental Behavior Core, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph A Majzoub
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA,To whom correspondence should be addressed. ;
| |
Collapse
|
23
|
Borroto-Escuela DO, Carlsson J, Ambrogini P, Narváez M, Wydra K, Tarakanov AO, Li X, Millón C, Ferraro L, Cuppini R, Tanganelli S, Liu F, Filip M, Diaz-Cabiale Z, Fuxe K. Understanding the Role of GPCR Heteroreceptor Complexes in Modulating the Brain Networks in Health and Disease. Front Cell Neurosci 2017; 11:37. [PMID: 28270751 PMCID: PMC5318393 DOI: 10.3389/fncel.2017.00037] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022] Open
Abstract
The introduction of allosteric receptor-receptor interactions in G protein-coupled receptor (GPCR) heteroreceptor complexes of the central nervous system (CNS) gave a new dimension to brain integration and neuropsychopharmacology. The molecular basis of learning and memory was proposed to be based on the reorganization of the homo- and heteroreceptor complexes in the postjunctional membrane of synapses. Long-term memory may be created by the transformation of parts of the heteroreceptor complexes into unique transcription factors which can lead to the formation of specific adapter proteins. The observation of the GPCR heterodimer network (GPCR-HetNet) indicated that the allosteric receptor-receptor interactions dramatically increase GPCR diversity and biased recognition and signaling leading to enhanced specificity in signaling. Dysfunction of the GPCR heteroreceptor complexes can lead to brain disease. The findings of serotonin (5-HT) hetero and isoreceptor complexes in the brain over the last decade give new targets for drug development in major depression. Neuromodulation of neuronal networks in depression via 5-HT, galanin peptides and zinc involve a number of GPCR heteroreceptor complexes in the raphe-hippocampal system: GalR1-5-HT1A, GalR1-5-HT1A-GPR39, GalR1-GalR2, and putative GalR1-GalR2-5-HT1A heteroreceptor complexes. The 5-HT1A receptor protomer remains a receptor enhancing antidepressant actions through its participation in hetero- and homoreceptor complexes listed above in balance with each other. In depression, neuromodulation of neuronal networks in the raphe-hippocampal system and the cortical regions via 5-HT and fibroblast growth factor 2 involves either FGFR1-5-HT1A heteroreceptor complexes or the 5-HT isoreceptor complexes such as 5-HT1A-5-HT7 and 5-HT1A-5-HT2A. Neuromodulation of neuronal networks in cocaine use disorder via dopamine (DA) and adenosine signals involve A2AR-D2R and A2AR-D2R-Sigma1R heteroreceptor complexes in the dorsal and ventral striatum. The excitatory modulation by A2AR agonists of the ventral striato-pallidal GABA anti-reward system via targeting the A2AR-D2R and A2AR-D2R-Sigma1R heteroreceptor complex holds high promise as a new way to treat cocaine use disorders. Neuromodulation of neuronal networks in schizophrenia via DA, adenosine, glutamate, 5-HT and neurotensin peptides and oxytocin, involving A2AR-D2R, D2R-NMDAR, A2AR-D2R-mGluR5, D2R-5-HT2A and D2R-oxytocinR heteroreceptor complexes opens up a new world of D2R protomer targets in the listed heterocomplexes for treatment of positive, negative and cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden; Department of Biomolecular Science, Section of Physiology, University of UrbinoUrbino, Italy; Observatorio Cubano de Neurociencias, Grupo Bohío-EstudioYaguajay, Cuba
| | - Jens Carlsson
- Department of Cell and Molecular Biology, Uppsala Biomedical Centre (BMC), Uppsala University Uppsala, Sweden
| | - Patricia Ambrogini
- Department of Biomolecular Science, Section of Physiology, University of Urbino Urbino, Italy
| | - Manuel Narváez
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga Málaga, Spain
| | - Karolina Wydra
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences Kraków, Poland
| | - Alexander O Tarakanov
- St. Petersburg Institute for Informatics and Automation, Russian Academy of Sciences Saint Petersburg, Russia
| | - Xiang Li
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Carmelo Millón
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga Málaga, Spain
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| | - Riccardo Cuppini
- Department of Biomolecular Science, Section of Physiology, University of Urbino Urbino, Italy
| | - Sergio Tanganelli
- Department of Medical Sciences, University of Ferrara Ferrara, Italy
| | - Fang Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences Kraków, Poland
| | - Zaida Diaz-Cabiale
- Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
24
|
Understanding the Functional Plasticity in Neural Networks of the Basal Ganglia in Cocaine Use Disorder: A Role for Allosteric Receptor-Receptor Interactions in A2A-D2 Heteroreceptor Complexes. Neural Plast 2016; 2016:4827268. [PMID: 27872762 PMCID: PMC5107220 DOI: 10.1155/2016/4827268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/28/2016] [Accepted: 10/03/2016] [Indexed: 11/17/2022] Open
Abstract
Our hypothesis is that allosteric receptor-receptor interactions in homo- and heteroreceptor complexes may form the molecular basis of learning and memory. This principle is illustrated by showing how cocaine abuse can alter the adenosine A2AR-dopamine D2R heterocomplexes and their receptor-receptor interactions and hereby induce neural plasticity in the basal ganglia. Studies with A2AR ligands using cocaine self-administration procedures indicate that antagonistic allosteric A2AR-D2R heterocomplexes of the ventral striatopallidal GABA antireward pathway play a significant role in reducing cocaine induced reward, motivation, and cocaine seeking. Anticocaine actions of A2AR agonists can also be produced at A2AR homocomplexes in these antireward neurons, actions in which are independent of D2R signaling. At the A2AR-D2R heterocomplex, they are dependent on the strength of the antagonistic allosteric A2AR-D2R interaction and the number of A2AR-D2R and A2AR-D2R-sigma1R heterocomplexes present in the ventral striatopallidal GABA neurons. It involves a differential cocaine-induced increase in sigma1Rs in the ventral versus the dorsal striatum. In contrast, the allosteric brake on the D2R protomer signaling in the A2AR-D2R heterocomplex of the dorsal striatopallidal GABA neurons is lost upon cocaine self-administration. This is potentially due to differences in composition and allosteric plasticity of these complexes versus those in the ventral striatopallidal neurons.
Collapse
|
25
|
Agnati LF, Marcoli M, Maura G, Fuxe K, Guidolin D. The multi-facet aspects of cell sentience and their relevance for the integrative brain actions: role of membrane protein energy landscape. Rev Neurosci 2016; 27:347-63. [DOI: 10.1515/revneuro-2015-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022]
Abstract
AbstractSeveral ion channels can be randomly and spontaneously in an open state, allowing the exchange of ion fluxes between extracellular and intracellular environments. We propose that the random changes in the state of ion channels could be also due to proteins exploring their energy landscapes. Indeed, proteins can modify their steric conformation under the effects of the physicochemical parameters of the environments with which they are in contact, namely, the extracellular, intramembrane and intracellular environments. In particular, it is proposed that the random walk of proteins in their energy landscape is towards attractors that can favor the open or close condition of the ion channels and/or intrinsic activity of G-protein-coupled receptors. The main aspect of the present proposal is that some relevant physicochemical parameters of the environments (e.g. molecular composition, temperature, electrical fields) with which some signaling-involved plasma membrane proteins are in contact alter their conformations. In turn, these changes can modify their information handling via a modulatory action on their random walk towards suitable attractors of their energy landscape. Thus, spontaneous and/or signal-triggered electrical activities of neurons occur that can have emergent properties capable of influencing the integrative actions of brain networks. Against this background, Cook’s hypothesis on ‘cell sentience’ is developed by proposing that physicochemical parameters of the environments with which the plasma-membrane proteins of complex cellular networks are in contact fulfill a fundamental role in their spontaneous and/or signal-triggered activity. Furthermore, it is proposed that a specialized organelle, the primary cilium, which is present in most cells (also neurons and astrocytes), could be of peculiar importance to pick up chemical signals such as ions and transmitters and to detect physical signals such as pressure waves, thermal gradients, and local field potentials.
Collapse
Affiliation(s)
| | - Manuela Marcoli
- 3University of Genova, Department of Pharmacy and Center of Excellence for Biomedical Research, Viale Cembrano 4, I-16148 Genova, Italy
| | - Guido Maura
- 3University of Genova, Department of Pharmacy and Center of Excellence for Biomedical Research, Viale Cembrano 4, I-16148 Genova, Italy
| | - Kjell Fuxe
- 2Karolinska Institutet, Department of Neuroscience, S-17177 Stockholm, Sweden
| | - Diego Guidolin
- 4University of Padova, Department of Molecular Medicine, I-35122 Padova, Italy
| |
Collapse
|
26
|
Franco R, Martínez-Pinilla E, Lanciego JL, Navarro G. Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization. Front Pharmacol 2016; 7:76. [PMID: 27065866 PMCID: PMC4815248 DOI: 10.3389/fphar.2016.00076] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/25/2022] Open
Abstract
Cell membrane receptors rarely work on isolation, often they form oligomeric complexes with other receptor molecules and they may directly interact with different proteins of the signal transduction machinery. For a variety of reasons, rhodopsin-like class A G-protein-coupled receptors (GPCRs) seem an exception to the general rule of receptor-receptor direct interaction. In fact, controversy surrounds their potential to form homo- hetero-dimers/oligomers with other class A GPCRs; in a sense, the field is going backward instead of forward. This review focuses on the convergent, complementary and telling evidence showing that homo- and heteromers of class A GPCRs exist in transfected cells and, more importantly, in natural sources. It is time to decide between questioning the occurrence of heteromers or, alternatively, facing the vast scientific and technical challenges that class A receptor-dimer/oligomer existence pose to Pharmacology and to Drug Discovery.
Collapse
Affiliation(s)
- Rafael Franco
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biología, Universitat de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red: Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain; Institute of Biomedicine, University of BarcelonaBarcelona, Spain
| | - Eva Martínez-Pinilla
- Instituto de Neurociencias del Principado de Asturias, Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de OviedoAsturias, Spain; Neurosciences Division, Centre for Applied Medical Research, University of NavarraPamplona, Spain; Instituto de Investigaciones Sanitarias de NavarraPamplona, Spain
| | - José L Lanciego
- Centro de Investigación Biomédica en Red: Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain; Neurosciences Division, Centre for Applied Medical Research, University of NavarraPamplona, Spain; Instituto de Investigaciones Sanitarias de NavarraPamplona, Spain
| | - Gemma Navarro
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biología, Universitat de BarcelonaBarcelona, Spain; Centro de Investigación Biomédica en Red: Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos IIIMadrid, Spain
| |
Collapse
|
27
|
Agnati LF, Guidolin D, Cervetto C, Borroto-Escuela DO, Fuxe K. Role of iso-receptors in receptor-receptor interactions with a focus on dopamine iso-receptor complexes. Rev Neurosci 2016; 27:1-25. [DOI: 10.1515/revneuro-2015-0024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022]
Abstract
AbstractIntercellular and intracellular communication processes consist of signals and recognition/decoding apparatuses of these signals. In humans, the G protein-coupled receptor (GPCR) family represents the largest family of cell surface receptors. More than 30 years ago, it has been proposed that GPCR could form dimers or higher-order oligomers (receptor mosaics [RMs] at the plasma membrane level and receptor-receptor interactions [RRIs] have been proposed as a new integrative mechanism for chemical signals impinging on cell plasma membranes). The basic phenomena involved in RRIs are allostery and cooperativity of membrane receptors, and the present paper provides basic information concerning their relevance for the integrative functions of RMs. In this context, the possible role of iso-receptor RM is discussed (with a special focus on dopamine receptor subtypes and on some of the RMs they form with other dopamine iso-receptors), and it is proposed that two types of cooperativity, namely, homotropic and heterotropic cooperativity, could allow distinguishing two types of functionally different RMs. From a general point of view, the presence of iso-receptors and their topological organization within RMs allow the use of a reduced number of signals for the intercellular communication processes, since the target cells can recognize and decode the same signal in different ways. This theoretical aspect is further analyzed here by means of an analogy with artificial information systems. Thus, it is suggested that the ‘multiplexer’ and ‘demultiplexer’ concepts could, at least in part, model the role of RMs formed by iso-receptors in the information handling by the cell.
Collapse
Affiliation(s)
- Luigi F. Agnati
- 1Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Via Campi 287, 41100 Modena, Italy
| | - Diego Guidolin
- 2Department of Molecular Medicine, University of Padova, Via Gabelli 65, 35121 Padova, Italy
| | - Chiara Cervetto
- 3Department of Pharmacy, University of Genova, Viale Cembrano 4, 16147 Genova, Italy
| | | | - Kjell Fuxe
- 4Department of Neuroscience, Karolinska Institutet, Retzius vag 8, 17177 Stockholm, Sweden
| |
Collapse
|
28
|
Abstract
Since their discovery, G protein-coupled receptors (GPCRs) constitute one of the most studied proteins leading to important discoveries and perspectives in terms of their biology and implication in physiology and pathophysiology. This is mostly linked to the remarkable advances in the development and application of the biophysical resonance energy transfer (RET)-based approaches, including bioluminescence and fluorescence resonance energy transfer (BRET and FRET, respectively). Indeed, BRET and FRET have been extensively applied to study different aspects of GPCR functioning such as their activation and regulation either statically or dynamically, in real-time and intact cells. Consequently, our view on GPCRs has considerably changed opening new challenges for the study of GPCRs in their native tissues in the aim to get more knowledge on how these receptors control the biological responses. Moreover, the technological aspect of this field of research promises further developments for robust and reliable new RET-based assays that may be compatible with high-throughput screening as well as drug discovery programs.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biologie et Bioinformatique des Systèmes de Signalisation, Institut National de la Recherche Agronomique, UMR85, Unité Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, Orléans, France.
| |
Collapse
|
29
|
Fuxe K, Agnati LF, Borroto-Escuela DO. The impact of receptor-receptor interactions in heteroreceptor complexes on brain plasticity. Expert Rev Neurother 2014; 14:719-21. [PMID: 24894440 DOI: 10.1586/14737175.2014.922878] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Allosteric mechanisms in receptor heteromers markedly increase the repertoire of receptor recognition and signaling. Of high importance is the altered function in the receptor heteromer versus the receptor homomer. Such a change in receptor function is mainly brought about by agonist induced allosteric receptor-receptor interactions and leads to functional and structural plasticity. Receptor-receptor interactions integrating synaptic and volume transmission signals participate in a significant way in modulating bidirectional synaptic plasticity and thus Hebbian plasticity. One molecular mechanism that can contribute to a change of synaptic weight may be represented by multiple interactions between plasma membrane receptors forming higher order heteroreceptor complexes via oligomerization at the pre- and post-junctional level. Such long-lived heteroreceptor complexes may play a significant role in learning and memory.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Division of Cellular and Molecular Neurochemistry, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | |
Collapse
|
30
|
Fuxe K, Borroto-Escuela DO, Tarakanov AO, Romero-Fernandez W, Ferraro L, Tanganelli S, Perez-Alea M, Di Palma M, Agnati LF. Dopamine D2 heteroreceptor complexes and their receptor-receptor interactions in ventral striatum: novel targets for antipsychotic drugs. PROGRESS IN BRAIN RESEARCH 2014; 211:113-39. [PMID: 24968778 DOI: 10.1016/b978-0-444-63425-2.00005-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review is focused on the D2 heteroreceptor complexes within the ventral striatum with their receptor-receptor interactions and relevance for the treatment of schizophrenia. A "guide-and-clasp" manner for receptor-receptor interactions is proposed where "adhesive guides" may be amino acid triplet homologies, which were determined for different kinds of D2 heteroreceptor complexes. The first putative D2 heteroreceptor complex to be discovered in relation to schizophrenia was the A2A-D2 heteroreceptor complex where antagonistic A2A-D2 receptor-receptor interactions were demonstrated after A2A agonist treatment in the ventral striatum. The A2A agonist CGS 21680 with atypical antipsychotic properties may at least in part act by increasing β-arrestin2 signaling over the D2 protomer in the A2A-D2 heteroreceptor complex in the ventral striatum. The antagonistic NTS1-D2 interactions in the NTS1-D2 heteroreceptor complex in the ventral striatum are proposed as one molecular mechanism for the potential antipsychotic effects of NT. Indications were obtained that the psychotic actions of the 5-HT2AR hallucinogens LSD and DOI can involve enhancement of D2R protomer signaling via a biased agonist action at the 5-HT2A protomer in the D2-5-HT2A heteroreceptor complex in the ventral striatum. Facilitatory allosteric D2likeR-OTR interactions in heteroreceptor complexes in nucleus accumbens may have a role in social and emotional behaviors. By blocking the D2 protomers of these heteroreceptor complexes, antipsychotics can fail to reduce the negative symptoms of schizophrenia. The discovery of different types of D2 heteroreceptor complexes gives an increased understanding of molecular mechanisms involved in causing schizophrenia and new strategies for its treatment and understanding the side effects of antipsychotics.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | - Alexander O Tarakanov
- Russian Academy of Sciences, St Petersburg Institute for Informatics and Automatation, St. Petersburg, Russia
| | | | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sergio Tanganelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mileidys Perez-Alea
- Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Michael Di Palma
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Earth, Life and Environmental Sciences, Section of Physiology, Campus Scientifico 'Enrico Mattei', Urbino, Italy
| | | |
Collapse
|
31
|
Fuxe K, Tarakanov A, Romero Fernandez W, Ferraro L, Tanganelli S, Filip M, Agnati LF, Garriga P, Diaz-Cabiale Z, Borroto-Escuela DO. Diversity and Bias through Receptor-Receptor Interactions in GPCR Heteroreceptor Complexes. Focus on Examples from Dopamine D2 Receptor Heteromerization. Front Endocrinol (Lausanne) 2014; 5:71. [PMID: 24860548 PMCID: PMC4026686 DOI: 10.3389/fendo.2014.00071] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/28/2014] [Indexed: 01/14/2023] Open
Abstract
Allosteric receptor-receptor interactions in GPCR heteromers appeared to introduce an intermolecular allosteric mechanism contributing to the diversity and bias in the protomers. Examples of dopamine D2R heteromerization are given to show how such allosteric mechanisms significantly change the receptor protomer repertoire leading to diversity and biased recognition and signaling. In 1980s and 1990s, it was shown that neurotensin (NT) through selective antagonistic NTR-D2 like receptor interactions increased the diversity of DA signaling by reducing D2R-mediated dopamine signaling over D1R-mediated dopamine signaling. Furthermore, D2R protomer appeared to bias the specificity of the NTR orthosteric binding site toward neuromedin N vs. NT in the heteroreceptor complex. Complex CCK2R-D1R-D2R interactions in possible heteroreceptor complexes were also demonstrated further increasing receptor diversity. In D2R-5-HT2AR heteroreceptor complexes, the hallucinogenic 5-HT2AR agonists LSD and DOI were recently found to exert a biased agonist action on the orthosteric site of the 5-HT2AR protomer leading to the development of an active conformational state different from the one produced by 5-HT. Furthermore, as recently demonstrated allosteric A2A-D2R receptor-receptor interaction brought about not only a reduced affinity of the D2R agonist binding site but also a biased modulation of the D2R protomer signaling in A2A-D2R heteroreceptor complexes. A conformational state of the D2R was induced, which moved away from Gi/o signaling and instead favored β-arrestin2-mediated signaling. These examples on allosteric receptor-receptor interactions obtained over several decades serve to illustrate the significant increase in diversity and biased recognition and signaling that develop through such mechanisms.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Kjell Fuxe, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm 17177, Sweden e-mail:
| | - Alexander Tarakanov
- St. Petersburg Institute for Informatics and Automation, Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Luca Ferraro
- Pharmacology Section, Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sergio Tanganelli
- Pharmacology Section, Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Luigi F. Agnati
- Istituto di Ricovero e Cura a Carattere Scientifico, Venice Lido, Italy
| | - Pere Garriga
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Zaida Diaz-Cabiale
- Department of Physiology, School of Medicine, University of Málaga, Málaga, Spain
| | | |
Collapse
|
32
|
Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Palkovits M, Tarakanov AO, Ciruela F, Agnati LF. Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field. Neuropsychopharmacology 2014; 39:131-55. [PMID: 24105074 PMCID: PMC3857668 DOI: 10.1038/npp.2013.242] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 12/28/2022]
Abstract
There is serious interest in understanding the dynamics of the receptor-receptor and receptor-protein interactions in space and time and their integration in GPCR heteroreceptor complexes of the CNS. Moonlighting proteins are special multifunctional proteins because they perform multiple autonomous, often unrelated, functions without partitioning into different protein domains. Moonlighting through receptor oligomerization can be operationally defined as an allosteric receptor-receptor interaction, which leads to novel functions of at least one receptor protomer. GPCR-mediated signaling is a more complicated process than previously described as every GPCR and GPCR heteroreceptor complex requires a set of G protein interacting proteins, which interacts with the receptor in an orchestrated spatio-temporal fashion. GPCR heteroreceptor complexes with allosteric receptor-receptor interactions operating through the receptor interface have become major integrative centers at the molecular level and their receptor protomers act as moonlighting proteins. The GPCR heteroreceptor complexes in the CNS have become exciting new targets for neurotherapeutics in Parkinson's disease, schizophrenia, drug addiction, and anxiety and depression opening a new field in neuropsychopharmacology.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet,, Stockholm, Sweden
| | | | | | - Miklós Palkovits
- Department of Anatomy, Histology and Embryology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Alexander O Tarakanov
- Russian Academy of Sciences, St. Petersburg Institute for Informatics and Automation, Saint Petersburg, Russia
| | - Francisco Ciruela
- Facultat de Medicina, Departament de Patologia i Terapèutica Experimental IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Unitat de Farmacologia, Barcelona, Spain
| | | |
Collapse
|
33
|
Fuxe K, Borroto-Escuela DO, Tarakanov A, Fernandez WR, Manger P, Rivera A, van Craenenbroeck K, Skieterska K, Diaz-Cabiale Z, Filip M, Ferraro L, Tanganelli S, Guidolin D, Cullheim S, de la Mora MP, Agnati LF. Understanding the balance and integration of volume and synaptic transmission. Relevance for psychiatry. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.npbr.2013.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Ganon-Elazar E, Akirav I. Cannabinoids and traumatic stress modulation of contextual fear extinction and GR expression in the amygdala-hippocampal-prefrontal circuit. Psychoneuroendocrinology 2013; 38:1675-87. [PMID: 23433741 DOI: 10.1016/j.psyneuen.2013.01.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/02/2013] [Accepted: 01/30/2013] [Indexed: 11/19/2022]
Abstract
Considerable evidence suggests that cannabinoids modulate the behavioral and physiological response to stressful events. We have recently shown that activating the cannabinoid system using the CB1/CB2 receptor agonist WIN55,212-2 (WIN) in proximity to exposure to single-prolonged stress (SPS), a rat model of emotional trauma, prevented the stress-induced enhancement of acoustic startle response, the impairment in avoidance extinction and the enhanced negative feedback on the hypothalamic-pituitary-adrenal (HPA) axis (Ganon-Elazar and Akirav, 2012). Some of the effects were found to be mediated by CB1 receptors in the basolateral amygdala (BLA). Here we examined whether cannabinoid receptor activation in a putative brain circuit that includes the BLA, hippocampus and prefrontal cortex (PFC), could prevent the effects of traumatic stress on contextual fear extinction and alterations in glucocorticoid receptor (GR) protein levels. We found that: (i) SPS impaired contextual fear extinction tested one week after trauma exposure and that WIN prevented the stress-induced impairment of extinction when microinjected immediately after trauma exposure into the BLA or hippocampus (5 μg), but not when microinjected into the PFC, (ii) the ameliorating effects of WIN on contextual extinction were prevented by blocking GRs in the BLA and hippocampus, and (iii) SPS up regulated GRs in the BLA, PFC and hippocampus and systemic WIN administration (0.5 mg/kg) after trauma exposure normalized GR levels in the BLA and hippocampus, but not in the PFC. Cannabinoid receptor activation in the aftermath of trauma exposure may regulate the emotional response to the trauma and prevent stress-induced impairment of extinction and GR up regulation through the mediation of CB1 receptors in the BLA and hippocampus. Taken together, the findings suggest that the interaction between the cannabinoid and glucocorticoid systems is crucial in the modulation of emotional trauma.
Collapse
MESH Headings
- Amygdala/drug effects
- Amygdala/physiopathology
- Animals
- Benzoxazines/pharmacology
- Cannabinoids/pharmacology
- Electroshock
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Fear/drug effects
- Fear/physiology
- Freezing Reaction, Cataleptic/drug effects
- Freezing Reaction, Cataleptic/physiology
- Hippocampus/drug effects
- Hippocampus/physiopathology
- Hypothalamo-Hypophyseal System/physiopathology
- Male
- Microinjections
- Mifepristone/pharmacology
- Models, Psychological
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Piperidines/pharmacology
- Pituitary-Adrenal System/physiopathology
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/physiopathology
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/physiology
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/biosynthesis
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/physiology
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Eti Ganon-Elazar
- Department of Psychology, University of Haifa, Haifa 31905, Israel
| | | |
Collapse
|
35
|
Woods AS, Jackson SN. How adenylate cyclase choreographs the pas de deux of the receptors heteromerization dance. Neuroscience 2013; 238:335-44. [PMID: 23434492 DOI: 10.1016/j.neuroscience.2013.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/02/2013] [Accepted: 02/05/2013] [Indexed: 12/19/2022]
Abstract
Our work suggests that heteromer formation, mainly involves linear motifs (LMs) found in disordered regions of proteins. Local disorder imparts plasticity to LMs. Most molecular recognition of proteins occurs between short linear segments, known as LMs. Interaction of short continuous epitopes is not constrained by sequence and has the advantage of resulting in interactions with micromolar affinities which suit transient, reversible complexes such as receptor heteromers. Electrostatic interactions between epitopes of the G-protein coupled receptors (GPCR) involved, are the key step in driving heteromer formation forward. The first step in heteromerization, involves phosphorylating Ser/Thr in an epitope containing a casein kinase 1/2-consensus site. Our data suggest that dopaminergic neurotransmission, through cAMP-dependent protein kinase A (PKA) slows down heteromerization. The negative charge, acquired by the phosphorylation of a Ser/Thr in a PKA consensus site in the Arg-rich epitope, affects the activity of the receptors involved in heteromerization by causing allosteric conformational changes, due to the repulsive effect generated by the negatively charged phosphate. In addition to modulating heteromerization, it affects the stability of the heteromers' interactions and their binding affinity. So here we have an instance where phosphorylation is not just an on/off switch, instead by weakening the noncovalent bond, heteromerization acts like a rheostat that controls the stability of the heteromer through activation or inhibition of adenylate cyclase by the neurotransmitter Dopamine depending on which Dopamine receptor it docks at.
Collapse
Affiliation(s)
- A S Woods
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States.
| | | |
Collapse
|
36
|
Ferraro L, Beggiato S, Tomasini MC, Fuxe K, Antonelli T, Tanganelli S. A(2A)/D(2) receptor heteromerization in a model of Parkinson's disease. Focus on striatal aminoacidergic signaling. Brain Res 2012; 1476:96-107. [PMID: 22370145 DOI: 10.1016/j.brainres.2012.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 02/06/2023]
Abstract
The present manuscript mainly summarizes the basic concepts and the molecular mechanisms underlying adenosine A(2A)-dopamine D(2) receptor-receptor interactions in the basal ganglia. Special emphasis is placed on neurochemical, behavioral and electrophysiological findings supporting the functional role that A(2A)/D(2) heteromeric receptor complexes located on striato-pallidal GABA neurons and corticostriatal glutamate terminals play in the regulation of the so called "basal ganglia indirect pathway". Furthermore, the role of A(2A)/mGluR(5) synergistic interactions in striatal neuron function and dysfunction is discussed. The functional consequences of the interactions between striatal adenosine A(2A), mGluR(5) and dopamine D(2) receptors on striatopallidal GABA release and motor behavior dysfunctions suggest the possibility of simultaneously targeting these receptors in Parkinson's disease treatment. This article is part of a Special Issue entitled Brain Integration. This article is part of a Special Issue entitled: Brain Integration.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, and IRET Foundation, Ozzano Emilia, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Vilardaga JP, Agnati LF, Fuxe K, Ciruela F. G-protein-coupled receptor heteromer dynamics. J Cell Sci 2011; 123:4215-20. [PMID: 21123619 DOI: 10.1242/jcs.063354] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) represent the largest family of cell surface receptors, and have evolved to detect and transmit a large palette of extracellular chemical and sensory signals into cells. Activated receptors catalyze the activation of heterotrimeric G proteins, which modulate the propagation of second messenger molecules and the activity of ion channels. Classically thought to signal as monomers, different GPCRs often pair up with each other as homo- and heterodimers, which have been shown to modulate signaling to G proteins. Here, we discuss recent advances in GPCR heteromer systems involving the kinetics of the early steps in GPCR signal transduction, the dynamic property of receptor-receptor interactions, and how the formation of receptor heteromers modulate the kinetics of G-protein signaling.
Collapse
Affiliation(s)
- Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
38
|
Agnati LF, Guidolin D, Vilardaga JP, Ciruela F, Fuxe K. On the expanding terminology in the GPCR field: the meaning of receptor mosaics and receptor heteromers. J Recept Signal Transduct Res 2010; 30:287-303. [PMID: 20429829 PMCID: PMC3595533 DOI: 10.3109/10799891003786226] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The oligomerization of G protein-coupled receptors (GPCRs) is a fact that deserves further attention as increases both the complexity and diversity of the receptor-mediated signal transduction, thus enriching the cell signaling. Consequently, in the present review we tackle among others the problems concerning the terminology used to describe aspects surrounding the GPCRs oligomerization phenomenon. Therefore, the theoretical implications of the GPCR oligomerization will be briefly discussed together with possible implications of this phenomenon especially for new strategies in drug development.
Collapse
|
39
|
Agnati LF, Guidolin D, Leo G, Carone C, Genedani S, Fuxe K. Receptor-receptor interactions: A novel concept in brain integration. Prog Neurobiol 2009; 90:157-75. [PMID: 19850102 DOI: 10.1016/j.pneurobio.2009.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/29/2009] [Accepted: 10/08/2009] [Indexed: 02/07/2023]
Abstract
A brief historical presentation of the hypothesis on receptor-receptor interactions as an important integrative mechanism taking place at plasma membrane level is given. Some concepts derived from this integrative mechanism especially the possible assemblage of receptors in receptor mosaics (high-order receptor oligomers) and their relevance for the molecular networks associated with the plasma membrane are discussed. In particular, the Rodbell's disaggregation theory for G-proteins is revisited in the frame of receptor mosaic model. The paper also presents some new indirect evidence on A2A;D2 receptor interactions obtained by means of Atomic Force Microscopy on immunogold preparations of A2A and D2 receptors in CHO cells. These findings support previous data obtained by means of computer-assisted confocal laser microscopy. The allosteric control of G-protein coupled receptors is examined in the light of the new views on allosterism and recent data on a homocysteine analogue capable of modulating D2 receptors are shown. Finally, the hypothesis is introduced on the existence of check-points along the amino acid pathways connecting allosteric and orthosteric binding sites of a receptor and their potential importance for drug development.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of BioMedical Sciences, University of Modena and IRCCS San Camillo, Lido Venezia, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Receptor mosaics of neural and immune communication: Possible implications for basal ganglia functions. ACTA ACUST UNITED AC 2008; 58:400-14. [DOI: 10.1016/j.brainresrev.2007.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 12/22/2022]
|
41
|
Ampatzis K, Kentouri M, Dermon CR. Neuronal and glial localization of alpha(2A)-adrenoceptors in the adult zebrafish (Danio rerio) brain. J Comp Neurol 2008; 508:72-93. [PMID: 18300261 DOI: 10.1002/cne.21663] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The alpha(2A)-adrenoceptor (AR) subtype, a G protein-coupled receptor located both pre- and postsynaptically, mediates adrenaline/noradrenaline functions. The present study aimed to determine the alpha(2A)-AR distribution in the adult zebrafish (Danio rerio) brain by means of immunocytochemistry. Detailed mapping showed labeling of alpha(2A)-ARs, in neuropil, neuronal somata and fibers, glial processes, and blood vessels. A high density of alpha(2A)-AR immunoreactivity was found in the ventral telencephalic area, preoptic, pretectal, hypothalamic areas, torus semicircularis, oculomotor nucleus (NIII), locus coreruleus (LC), medial raphe, medial octavolateralis nucleus (MON), magnocellular octaval nucleus (MaON), reticular formation (SRF, IMRF, IRF), rhombencephalic nerves and roots (DV, V, VII, VIII, X), and cerebellar Purkinje cell layer. Moderate levels of alpha(2A)-ARs were observed in the medial and central zone nuclei of dorsal telencephalic area, in the periventricular gray zone of optic tectum, in the dorsomedial part of optic tectum layers, and in the molecular and granular layers of all cerebellum subdivisions. Glial processes were found to express alpha(2A)-ARs in rhombencephalon, intermingled with neuronal fibers. Medium-sized neurons were labeled in telencephalic, diencephalic, and mesencephlic areas, whereas densely labeled large neurons were found in rhombencephalon, locus coeruleus, reticular formation, oculomotor area, medial octavolateralis and magnocellular octaval nuclei, and Purkinje cell somata. The functional role of alpha(2A)-ARs on neurons and glial processes is not known at present; however, their strong relation to the ventricular system, somatosensory nuclei, and nerves supports a possible regulatory role of alpha(2A)-ARs in autonomic functions, nerve output, and sensory integration in adult zebrafish brain.
Collapse
|
42
|
Guidolin D, Fuxe K, Neri G, Nussdorfer GG, Agnati LF. On the role of receptor–receptor interactions and volume transmission in learning and memory. ACTA ACUST UNITED AC 2007; 55:119-33. [PMID: 17408566 DOI: 10.1016/j.brainresrev.2007.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/16/2022]
Abstract
Learning and memory seem to be inherent to a biological neural network. To emerge, they need an extensive functional connectivity, enabling a large repertoire of possible responses to stimuli, and sensitivity of the connectivity to activity, allowing for the selection of adaptive responses. According to the classical view about the organization of the CNS, the connectivity issue is realized by the huge amount of synaptic contacts each neuron establishes, while the adaptation of the network to specific tasks is obtained by mechanisms of activity-dependent synaptic plasticity. The discovery of direct receptor-receptor interactions at the level of the plasma membrane and the existence in the brain of two main modes of communication, the wiring transmission (such as the synaptic transmission) and the volume transmission (based on the diffusion of signals in the extracellular space), provided a broader view of the functional organization of the CNS with potential important consequences on the understanding of learning and memory processes. Owing to receptor-receptor interactions clusters of receptors, the receptor mosaics (RM), can be formed at the plasma membrane where they can work as collective functional units. As a consequence, the connections between the cells become themselves networks (molecular networks) able to adapt their function according to the stimuli they receive. Learning, therefore, can occur also at the level of RMs. Thus, memory formation seems not only to be a distributed process, but also to follow a hierarchical morpho-functional organization. Furthermore, the combination of the two different forms of transmission could allow processes of correlation and coordination to be established between networks and network elements without the need of additional physical connections, leading to a significant increase of the degrees of freedom available to the CNS for learning.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Human Anatomy and Physiology, Section of Anatomy, University of Padova Medical School, via Gabelli 65, I-35121 Padua, Italy.
| | | | | | | | | |
Collapse
|
43
|
Fuxe K, Dahlström A, Höistad M, Marcellino D, Jansson A, Rivera A, Diaz-Cabiale Z, Jacobsen K, Tinner-Staines B, Hagman B, Leo G, Staines W, Guidolin D, Kehr J, Genedani S, Belluardo N, Agnati LF. From the Golgi–Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: Wiring and volume transmission. ACTA ACUST UNITED AC 2007; 55:17-54. [PMID: 17433836 DOI: 10.1016/j.brainresrev.2007.02.009] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 02/21/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
After Golgi-Cajal mapped neural circuits, the discovery and mapping of the central monoamine neurons opened up for a new understanding of interneuronal communication by indicating that another form of communication exists. For instance, it was found that dopamine may be released as a prolactin inhibitory factor from the median eminence, indicating an alternative mode of dopamine communication in the brain. Subsequently, the analysis of the locus coeruleus noradrenaline neurons demonstrated a novel type of lower brainstem neuron that monosynaptically and globally innervated the entire CNS. Furthermore, the ascending raphe serotonin neuron systems were found to globally innervate the forebrain with few synapses, and where deficits in serotonergic function appeared to play a major role in depression. We propose that serotonin reuptake inhibitors may produce antidepressant effects through increasing serotonergic neurotrophism in serotonin nerve cells and their targets by transactivation of receptor tyrosine kinases (RTK), involving direct or indirect receptor/RTK interactions. Early chemical neuroanatomical work on the monoamine neurons, involving primitive nervous systems and analysis of peptide neurons, indicated the existence of alternative modes of communication apart from synaptic transmission. In 1986, Agnati and Fuxe introduced the theory of two main types of intercellular communication in the brain: wiring and volume transmission (WT and VT). Synchronization of phasic activity in the monoamine cell clusters through electrotonic coupling and synaptic transmission (WT) enables optimal VT of monoamines in the target regions. Experimental work suggests an integration of WT and VT signals via receptor-receptor interactions, and a new theory of receptor-connexin interactions in electrical and mixed synapses is introduced. Consequently, a new model of brain function must be built, in which communication includes both WT and VT and receptor-receptor interactions in the integration of signals. This will lead to the unified execution of information handling and trophism for optimal brain function and survival.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Goncharova LB, Tarakanov AO. Molecular networks of brain and immunity. ACTA ACUST UNITED AC 2007; 55:155-66. [PMID: 17408562 DOI: 10.1016/j.brainresrev.2007.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/22/2022]
Abstract
Exciting complexity of natural phenomena can be based on rather simple biophysical principles. For example, the genetic code is based on a double-helix of DNA formed by planar geometry of weak hydrogen bounds. On the examples of cytokine networks, immune synapse, psychoneuroimmunology and systems biology, this review paper attempts to show how molecular networks both in brain and immunity can be studied using common principles of protein-protein interactions.
Collapse
Affiliation(s)
- Larisa B Goncharova
- Institute Pasteur of St. Petersburg, ul. Mira 14, St. Petersburg 197101, Russia
| | | |
Collapse
|
45
|
Agnati LF, Genedani S, Leo G, Rivera A, Guidolin D, Fuxe K. One century of progress in neuroscience founded on Golgi and Cajal's outstanding experimental and theoretical contributions. ACTA ACUST UNITED AC 2007; 55:167-89. [PMID: 17467058 DOI: 10.1016/j.brainresrev.2007.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 03/09/2007] [Indexed: 11/16/2022]
Abstract
Since the discovery and mapping of the neuronal circuits of the brain by Golgi and Cajal neuroscientists have clearly spelled the fundamental questions which should be answered to delineate the arena for a scientific understanding of brain function: How neurons communicate with each other in a network? Is there some basic principle according to which brain networks are organised? Is it possible to map out brain regions specialised in carrying out some specific task? As far as the first point is concerned it is well known that Golgi and Cajal had opposite views on the interneuronal communication. Golgi suggested protoplasmic continuity and/or electrotonic spreading of currents between neurons. Cajal proposed the so-called "neuron doctrine", which maintained that neurons could communicate only via a specialised region of contiguity, namely the synapse. The present paper has the first and second points as main topics and last century progresses in these fields are viewed as developments of Golgi and Cajal's findings and above all, hypotheses. Thus, we will briefly discuss these topics moving from the transmitter based mapping, which brought neurochemistry into the Golgi-Cajal mapping of the brain with silver impregnation techniques. The mapping of transmitter-identified neurons in the brain represents one of the major foundations for neuropsychopharmacology and a reference frame for the biochemical and behavioural investigations of brain function. Biochemical techniques allowed giving evidence for multiple transmission lines in synapses interacting via receptor-receptor interactions postulated to be based on supramolecular aggregates, called receptor mosaics. Immunocytochemical and autoradiographic mapping techniques allowed the discovery of extra-synaptic receptors and of transmitter-receptor mismatches leading to the introduction of the volume transmission concept by Agnati-Fuxe teams. The Volume Transmission theory proposed the existence of a three-dimensional diffusion of e.g. transmitter and ion signals, released by any type of cell, in the extra-cellular space and the cerebrospinal fluid of the brain. Thus, a synthesis between Golgi and Cajal's views became possible, by considering two main modes of intercellular communication: volume transmission (VT) and wiring transmission (WT) (a prototype of the latter one is synaptic transmission) and two types of networks (cellular and molecular networks) in the central nervous system. This was the basis for the suggestion of two fundamental principles in brain morphological and functional organisation, the miniaturisation and hierarchic organisation. Finally, moving from Apathy's work, a new model of brain networks has recently been proposed. In fact, it has been proposed that a network of fibrils enmeshes the entire CNS forming a global molecular network (GMN) superimposed on the cellular networks.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of BioMedical Sciences, University of Modena and Reggio Emilia, via Campi 287, 41100 Modena, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Ferraro L, Tomasini MC, Fuxe K, Agnati LF, Mazza R, Tanganelli S, Antonelli T. Mesolimbic dopamine and cortico-accumbens glutamate afferents as major targets for the regulation of the ventral striato-pallidal GABA pathways by neurotensin peptides. ACTA ACUST UNITED AC 2007; 55:144-54. [PMID: 17448541 DOI: 10.1016/j.brainresrev.2007.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 12/11/2022]
Abstract
The tridecapeptide neurotensin (NT) acts in the mammalian brain as a primary neurotransmitter or neuromodulator of classical neurotransmitters. Morphological and functional in vitro and in vivo studies have demonstrated the existence of close interactions between NT and dopamine both in limbic and in striatal brain regions. Additionally, biochemical and neurochemical evidence indicates that in these brain regions NT plays also a crucial role in the regulation of the aminoacidergic signalling. It is suggested that in the nucleus accumbens the regulation of prejunctional dopaminergic transmission induced by NT may be primarily due to indirect mechanism(s) involving mediation via the aminoacidergic neuronal systems with increased glutamate release followed by increased GABA release in the nucleus accumbens rather than a direct action of the peptide on accumbens dopaminergic terminals. The neurochemical profile of action of NT in the control of the pattern of dopamine, glutamate and GABA release in the nucleus accumbens differs to a substantial degree from that shown by the peptide in the dorsal striatum. The neuromodulatory NT mechanisms in the regulation of the ventral striato-pallidal GABA pathways are discussed and their relevance for schizophrenia is underlined.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Agnati LF, Ferré S, Genedani S, Leo G, Guidolin D, Filaferro M, Carriba P, Casadó V, Lluis C, Franco R, Woods AS, Fuxe K. Allosteric modulation of dopamine D2 receptors by homocysteine. J Proteome Res 2007; 5:3077-83. [PMID: 17081059 DOI: 10.1021/pr0601382] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been suggested that L-DOPA-induced hyperhomocysteinemia can increase the risk of stroke, heart disease, and dementia and is an additional pathogenetic factor involved in the progression of Parkinson's disease. In Chinese hamster ovary (CHO) cells stably cotransfected with adenosine A(2A) and dopamine D2 receptors, homocysteine selectively decreased the ability of D2 receptor stimulation to internalize adenosine A(2A)-dopamine D2 receptor complexes. Radioligand-binding experiments in the same cell line demonstrated that homocysteine acts as an allosteric D2 receptor antagonist, by selectively reducing the affinity of D2 receptors for agonists but not for antagonists. Mass spectrometric analysis showed that, by means of an arginine (Arg)-thiol electrostatic interaction, homocysteine forms noncovalent complexes with the two Arg-rich epitopes of the third intracellular loop of the D2 receptor, one of them involved in A(2A)-D2 receptor heteromerization. However, homocysteine was unable to prevent or disrupt A(2A)-D2 receptor heteromerization, as demonstrated with Fluorescence Resonance Energy Transfer (FRET) experiments in stably cotransfected HEK cells. The present results could have implications for Parkinson's disease.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Biomedical Sciences, University of Modena, 41100 Modena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fuxe K, Canals M, Torvinen M, Marcellino D, Terasmaa A, Genedani S, Leo G, Guidolin D, Diaz-Cabiale Z, Rivera A, Lundstrom L, Langel U, Narvaez J, Tanganelli S, Lluis C, Ferré S, Woods A, Franco R, Agnati LF. Intramembrane receptor–receptor interactions: a novel principle in molecular medicine. J Neural Transm (Vienna) 2006; 114:49-75. [PMID: 17066251 DOI: 10.1007/s00702-006-0589-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
In 1980/81 Agnati and Fuxe introduced the concept of intramembrane receptor-receptor interactions and presented the first experimental observations for their existence in crude membrane preparations. The second step was their introduction of the receptor mosaic hypothesis of the engram in 1982. The third step was their proposal that the existence of intramembrane receptor-receptor interactions made possible the integration of synaptic (WT) and extrasynaptic (VT) signals. With the discovery of the intramembrane receptor-receptor interactions with the likely formation of receptor aggregates of multiple receptors, so called receptor mosaics, the entire decoding process becomes a branched process already at the receptor level in the surface membrane. Recent developments indicate the relevance of cooperativity in intramembrane receptor-receptor interactions namely the presence of regulated cooperativity via receptor-receptor interactions in receptor mosaics (RM) built up of the same type of receptor (homo-oligomers) or of subtypes of the same receptor (RM type1). The receptor-receptor interactions will to a large extent determine the various conformational states of the receptors and their operation will be dependent on the receptor composition (stoichiometry), the spatial organization (topography) and order of receptor activation in the RM. The biochemical and functional integrative implications of the receptor-receptor interactions are outlined and long-lived heteromeric receptor complexes with frozen RM in various nerve cell systems may play an essential role in learning, memory and retrieval processes. Intramembrane receptor-receptor interactions in the brain have given rise to novel strategies for treatment of Parkinson's disease (A2A and mGluR5 receptor antagonists), schizophrenia (A2A and mGluR5 agonists) and depression (galanin receptor antagonists). The A2A/D2, A2A/D3 and A2A/mGluR5 heteromers and heteromeric complexes with their possible participation in different types of RM are described in detail, especially in the cortico-striatal glutamate synapse and its extrasynaptic components, together with a postulated existence of A2A/D4 heteromers. Finally, the impact of intramembrane receptor-receptor interactions in molecular medicine is discussed outside the brain with focus on the endocrine, the cardiovascular and the immune systems.
Collapse
Affiliation(s)
- K Fuxe
- Department of Neuroscience, Division of Cellular and Molecular Neurochemistry, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Agnati LF, Guidolin D, Leo G, Fuxe K. A boolean network modelling of receptor mosaics relevance of topology and cooperativity. J Neural Transm (Vienna) 2006; 114:77-92. [PMID: 16955372 DOI: 10.1007/s00702-006-0567-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
In the last five years data have been obtained showing that a functional cross-talk among G Protein Coupled receptors (GPCR) exists at the plasma membrane level where they can dimerise and are able to generate high order oligomers. These findings are in agreement with the receptor mosaic (RM) hypothesis that claims the existence of clusters of receptor proteins at the plasma membrane level, where they establish mutual interactions and work as 'intelligent interfaces' between the extra-cellular and the intra-cellular environments. Individual receptor dimers can be considered to have two stable conformational states with respect to the macromolecular effectors: one active, one inactive. Owing to receptor-receptor interactions, however, a state change of a given receptor will change the probability of changing the state for the adjacent receptors in the RM and the effect will propagate throughout the cluster, leading to a complex cooperative behaviour. In this study we explore the properties of a RM on the basis of an equivalence with a Boolean network, a mathematical framework able to describe how complex properties may emerge from systems characterized by deterministic local interactions of many simple components acting in parallel. Computer simulations of receptor clusters arranged according to topologies consistent with available experimental ultrastructural data were performed. They indicated that RMs after a stimulation can achieve a limited number of specific temporary equilibrium configurations (attractors), characterized by the presence of receptor units frozen in the active state. They could be interpreted as a form of information storage and a role of RM in learning and memory could be hypothesized. Moreover, they seem to be at the basis of very common 'macroscopical' properties of a receptor system, such as a sigmoidal response curve to an extracellular ligand, the sensitivity of the mosaic being modulated by changes in the topology and/or in the level of cooperativity among receptors.
Collapse
Affiliation(s)
- L F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia and IRCCS, Ospedale San Camillo, Venezia, Italy.
| | | | | | | |
Collapse
|
50
|
Cáceda R, Kinkead B, Owens MJ, Nemeroff CB. Virally mediated increased neurotensin 1 receptor in the nucleus accumbens decreases behavioral effects of mesolimbic system activation. J Neurosci 2006; 25:11748-56. [PMID: 16354933 PMCID: PMC6726044 DOI: 10.1523/jneurosci.4282-05.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine receptor agonist and NMDA receptor antagonist activation of the mesolimbic dopamine system increases locomotion and disrupts prepulse inhibition of the acoustic startle response (PPI), paradigms frequently used to study both the pharmacology of antipsychotic drugs and drugs of abuse. In rats, virally mediated overexpression of the neurotensin 1 (NT1) receptor in the nucleus accumbens antagonized d-amphetamine- and dizocilpine-induced PPI disruption, hyperlocomotion, and D-amphetamine-induced rearing. The NT receptor antagonist SR 142948A [2-[[5-(2,6-dimethoxyphenyl)-1-(4-N-(3-dimethylaminopropyl)-N-methylcarbamoyl)-2-isopropylphenyl)-1H-pyrazole-3-carbonyl]amino] adamantane-2-carboxylic acid, hydrochloride] blocked inhibition of dizocilpine-induced hyperlocomotion mediated by overexpression of the NT1 receptor. Together, these results suggest that increased nucleus accumbens NT neurotransmission, via the NT1 receptor, can decrease the effects of activation of the mesolimbic dopamine system and disruption of the glutamatergic input from limbic cortices, resembling the action of the atypical antipsychotic drug clozapine. In contrast to clozapine, virally mediated overexpression of the NT1 receptor in the nucleus accumbens had prolonged protective effects (up to 4 weeks after viral injection) without perturbing baseline PPI and locomotor behaviors. These data further confirm the NT1 receptor as the receptor mediating the antistimulant- and antipsychotic-like properties of NT and provide rationale for the development of NT1 receptor agonists as novel antipsychotic drugs. In addition, the NT1 receptor vector might be a valuable tool for understanding the mechanism of action of antipsychotic drugs and drugs of abuse and may have potential therapeutic applications.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|