1
|
Wang J, Wang J, Lu C, Wang Y, Bi H, Zheng J, Ding X. ISL1-overexpressing BMSCs attenuate renal ischemia-reperfusion injury by suppressing apoptosis and oxidative stress through the paracrine action. Cell Mol Life Sci 2024; 81:312. [PMID: 39066917 PMCID: PMC11335236 DOI: 10.1007/s00018-024-05354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a major event in renal transplantation, leading to adverse outcomes. Bone marrow mesenchymal stem cells (BMSCs) are novel promising therapeutics for repairing kidney injuries. The therapeutic efficacy of BMSCs with ISL1 overexpression in renal IRI and its underlying mechanism need to be investigated. The unilateral renal IRI rat model was established to mimic clinical acute kidney injury. Rats were injected with PBS, BMSCs-Scrambled or BMSCs-ISL1 via the tail vein at the timepoint of reperfusion, and then sacrificed after 24 h of reperfusion. The administration of BMSCs-ISL1 significantly improved renal function, inhibited tubular cells apoptosis, inflammation, oxidative stress in rats. In vitro, HKC cells subjected to H2O2 stimulation were pretreated with the conditioned medium (CM) of BMSCs-Scrambled or BMSCs-ISL1. The pretreatment of ISL1-CM attenuated apoptosis and oxidative stress induced by H2O2 in HKC cells. Our proteomic data suggested that haptoglobin (Hp) was one of the secretory proteins in ISL1-CM. Subsequent experiments confirmed that Hp was the important paracrine factor from BMSCs-ISL1 that exerted anti-apoptotic and antioxidant functions. Mechanistically, Hp played a cytoprotective role via the inhibition of ERK signaling pathway, which could be abrogated by Ro 67-7476, the ERK phosphorylation agonist. The results suggested that paracrine action may be the main mechanism for BMSCs-ISL1 to exert protective effects. As an important anti-apoptotic and antioxidant factor in ISL1-CM, Hp may serve as a new therapeutic agent for treating IRI, providing new insights for overcoming the long-term adverse effects of stem cell therapy.
Collapse
Affiliation(s)
- Jiale Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Jingwen Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Cuinan Lu
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Huanjing Bi
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Xiaoming Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
2
|
Ricelli A, Gionfra F, Percario Z, De Angelis M, Primitivo L, Bonfantini V, Antonioletti R, Bullitta SM, Saso L, Incerpi S, Pedersen JZ. Antioxidant and Biological Activities of Hydroxytyrosol and Homovanillic Alcohol Obtained from Olive Mill Wastewaters of Extra-Virgin Olive Oil Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15428-15439. [PMID: 33305574 DOI: 10.1021/acs.jafc.0c05230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Some constituents of the Mediterranean diet, such as extra-virgin olive oil (EVOO) contain substances such as hydroxytyrosol (HT) and its metabolite homovanillic alcohol (HA). HT has aroused much interest due to its antioxidant activity as a radical scavenger, whereas only a few studies have been made on the HA molecule. Both chemical synthesis and extraction techniques have been developed to obtain these molecules, with each method having its advantages and drawbacks. In this study, we report the use of tyrosol from olive mill wastewaters as a starting molecule to synthesize HT and HA, using a sustainable procedure characterized by high efficiency and low cost. The effects of HT and HA were evaluated on two cell lines, THP-1 human leukemic monocytes and L-6 myoblasts from rat skeletal muscle, after treating the cells with a radical generator. Both HT and HA efficiently inhibited ROS production. In particular, HT inhibited the proliferation of the THP-1 leukemic monocytes, while HA protected L-6 myoblasts from cytotoxicity.
Collapse
Affiliation(s)
| | - Fabio Gionfra
- Dept Sciences, University Roma Tre, I-00146 Roma, Italy
| | | | - Martina De Angelis
- Institute of Molecular Biology and Pathology-CNR I-00185 Roma, Italy
- Dept Chemistry, University "Sapienza", I-00185 Roma, Italy
| | - Ludovica Primitivo
- Institute of Molecular Biology and Pathology-CNR I-00185 Roma, Italy
- Dept Chemistry, University "Sapienza", I-00185 Roma, Italy
| | | | | | - Simonetta Maria Bullitta
- Institute for the Animal Production System in the Mediterranean Environment-CNR, I-07100 Sassari, Italy
| | - Luciano Saso
- Dept Physiology and Pharmacology, University "Sapienza", V. Erspamer I- 00185 Rome, Italy
| | | | | |
Collapse
|
3
|
Fusco R, Cordaro M, Siracusa R, D’Amico R, Genovese T, Gugliandolo E, Peritore AF, Crupi R, Impellizzeri D, Cuzzocrea S, Di Paola R. Biochemical Evaluation of the Antioxidant Effects of Hydroxytyrosol on Pancreatitis-Associated Gut Injury. Antioxidants (Basel) 2020; 9:antiox9090781. [PMID: 32842687 PMCID: PMC7555523 DOI: 10.3390/antiox9090781] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis is a severe abdominal pathology often associated with several complications including gut dysfunction. Oxidative stress is one of the most important pathways involved in this pathology. Hydroxytyrosol (HT), a phenolic compound obtained from olive oil, has shown anti-inflammatory and antioxidant properties. We evaluated the effects of HT administration on pancreatic and intestinal injury induced by caerulein administration. CD1 female mice were administered caerulein (50 μg/kg) for 10 h. HT treatment (5 mg/kg) was performed 30 min after the first caerulein injection and for two consecutive hours afterwards. One hour after the last caerulein injection, mice were sacrificed and serum, colon and pancreatic tissue samples were collected. HT was able to reduce the serum hallmarks of pancreatitis (amylase and lipase), histological damage score in both pancreas and colon tissue, inflammatory cells recruitment (mast cells) in both injured tissues, intrapancreatic trypsin activity and overexpression of the adhesion molecules (Intercellular Adhesion Molecule-1 (ICAM-1) and P-selectin) in colon. Additionally, HT reduced cytokine (interleukin 1 beta (IL- 1β), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α)) levels in serum, pancreas and colon tissue and chemokine release (monocyte chemotactic protein-1 (MCP1/CCL2)) in pancreas and colon tissue. HT decreased lipid peroxidation and oxidative stress (superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) activity) by enhancing the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in both injured tissues. Moreover, HT preserved intestinal barrier integrity, as shown by the diamine oxidase (DAO) serum levels and tight junction (zonula occludens (ZO) and occludin) expression in pancreas and colon. Our findings demonstrated that HT would be an important therapeutic tool against pancreatitis-induced injuries in the pancreas and gut.
Collapse
Affiliation(s)
- Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
- Correspondence: (D.I.); (S.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
- Correspondence: (D.I.); (S.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.A.); (T.G.); (E.G.); (A.F.P.); (R.D.P.)
| |
Collapse
|
4
|
Uddin MS, Kabir MT, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR, Sobarzo-Sánchez E, Ashraf GM, Aleya L. Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer's Disease. Molecules 2020; 25:1267. [PMID: 32168835 PMCID: PMC7143946 DOI: 10.3390/molecules25061267] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is one of the utmost chronic neurodegenerative disorders, which is characterized from a neuropathological point of view by the aggregates of amyloid beta (Aβ) peptides that are deposited as senile plaques and tau proteins which form neurofibrillary tangles (NFTs). Even though advancement has been observed in order to understand AD pathogenesis, currently available therapeutic methods can only deliver modest symptomatic relief. Interestingly, naturally occurring dietary flavonoids have gained substantial attention due to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties as alternative candidates for AD therapy. Experimental proof provides support to the idea that some flavonoids might protect AD by interfering with the production and aggregation of Aβ peptides and/or decreasing the aggregation of tau. Flavonoids have the ability to promote clearance of Aβ peptides and inhibit tau phosphorylation by the mTOR/autophagy signaling pathway. Moreover, due to their cholinesterase inhibitory potential, flavonoids can represent promising symptomatic anti-Alzheimer agents. Several processes have been suggested for the aptitude of flavonoids to slow down the advancement or to avert the onset of Alzheimer's pathogenesis. To enhance cognitive performance and to prevent the onset and progress of AD, the interaction of flavonoids with various signaling pathways is proposed to exert their therapeutic potential. Therefore, this review elaborates on the probable therapeutic approaches of flavonoids aimed at averting or slowing the progression of the AD pathogenesis.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala 678557, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France
| |
Collapse
|
5
|
Liu N, Fan M. Protective functions of salvianolic acid B in PC-12 cells against hydrogen peroxide-triggered damage by mediation of microRNA-26a. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4030-4037. [PMID: 31603005 DOI: 10.1080/21691401.2019.1673766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Niansheng Liu
- Department of Traumatology, North Medical District of Linyi People’s Hospital, Linyi, PR China
| | - Mingfu Fan
- Department of Spinal Surgery, North Medical District of Linyi People’s Hospital, Linyi, PR China
| |
Collapse
|
6
|
Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, Ahmed J, Shahid M. Flavonoids as Prospective Neuroprotectants and Their Therapeutic Propensity in Aging Associated Neurological Disorders. Front Aging Neurosci 2019; 11:155. [PMID: 31293414 PMCID: PMC6606780 DOI: 10.3389/fnagi.2019.00155] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/11/2019] [Indexed: 01/13/2023] Open
Abstract
Modern research has revealed that dietary consumption of flavonoids and flavonoids-rich foods significantly improve cognitive capabilities, inhibit or delay the senescence process and related neurodegenerative disorders including Alzheimer’s disease (AD). The flavonoids rich foods such as green tea, cocoa, blue berry and other foods improve the various states of cognitive dysfunction, AD and dementia-like pathological alterations in different animal models. The mechanisms of flavonoids have been shown to be mediated through the inhibition of cholinesterases including acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), β-secretase (BACE1), free radicals and modulation of signaling pathways, that are implicated in cognitive and neuroprotective functions. Flavonoids interact with various signaling protein pathways like ERK and PI3-kinase/Akt and modulate their actions, thereby leading to beneficial neuroprotective effects. Moreover, they enhance vascular blood flow and instigate neurogenesis particularly in the hippocampus. Flavonoids also hamper the progression of pathological symptoms of neurodegenerative diseases by inhibiting neuronal apoptosis induced by neurotoxic substances including free radicals and β-amyloid proteins (Aβ). All these protective mechanisms contribute to the maintenance of number, quality of neurons and their synaptic connectivity in the brain. Thus flavonoids can thwart the progression of age-related disorders and can be a potential source for the design and development of new drugs effective in cognitive disorders.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Junaid
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan.,Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Ovais
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ikram Ullah
- Suliman Bin Abdullah Aba-Alkhail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Jawad Ahmed
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology (SUIT), Peshawar, Pakistan
| |
Collapse
|
7
|
Pruski M, Lang B. Primary Cilia-An Underexplored Topic in Major Mental Illness. Front Psychiatry 2019; 10:104. [PMID: 30886591 PMCID: PMC6409319 DOI: 10.3389/fpsyt.2019.00104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
Though much progress has been made in recent years towards understanding the function and physiology of primary cilia, they remain a somewhat elusive organelle. Some studies have explored the role of primary cilia in the developing nervous system, and their dysfunction has been linked with several neurosensory deficits. Yet, very little has been written on their potential role in psychiatric disorders. This article provides an overview of some of the functions of primary cilia in signalling pathways, and demonstrates that they are a worthy candidate in psychiatric research. The links between primary cilia and major mental illness have been demonstrated to exist at several levels, spanning genetics, signalling pathways, and pharmacology as well as cell division and migration. The primary focus of this review is on the sensory role of the primary cilium and the neurodevelopmental hypothesis of psychiatric disease. As such, the primary cilium is demonstrated to be a key link between the cellular environment and cell behaviour, and hence of key importance in the considerations of the nature and nurture debate in psychiatric research.
Collapse
Affiliation(s)
- Michal Pruski
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- Critical Care Laboratory, Critical Care Directorate, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
8
|
Serreli G, Melis MP, Corona G, Deiana M. Modulation of LPS-induced nitric oxide production in intestinal cells by hydroxytyrosol and tyrosol metabolites: Insight into the mechanism of action. Food Chem Toxicol 2019; 125:520-527. [DOI: 10.1016/j.fct.2019.01.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
|
9
|
Serreli G, Deiana M. In vivoformed metabolites of polyphenols and their biological efficacy. Food Funct 2019; 10:6999-7021. [DOI: 10.1039/c9fo01733j] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The metabolites of polyphenols are antioxidant, anti-inflammatory and anticancer agents. Being bioavailable, they may play an important role in preventing degenerative diseases.
Collapse
Affiliation(s)
- Gabriele Serreli
- Department of Biomedical Sciences
- University of Cagliari
- Cagliari
- Italy
| | - Monica Deiana
- Department of Biomedical Sciences
- University of Cagliari
- Cagliari
- Italy
| |
Collapse
|
10
|
Biological Relevance of Extra Virgin Olive Oil Polyphenols Metabolites. ANTIOXIDANTS (BASEL, SWITZERLAND) 2018. [PMID: 30469520 DOI: 10.3390/antiox7120170]] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extra virgin olive oil (EVOO) polyphenols beneficial effects have widely been debated throughout the last three decades, with greater attention to hydroxytyrosol and tyrosol, which are by far the most studied. The main concern about the evaluation of EVOO phenols activities in vitro and in vivo is that the absorption and metabolism of these compounds once ingested lead to the production of different metabolites in the human body. EVOO phenols in the ingested forms are less concentrated in human tissues than their glucuronide, sulfate and methyl metabolites; on the other hand, metabolites may undergo deconjugation before entering the cells and thus act as free forms or may be reformed inside the cells so acting as conjugated forms. In most in vitro studies the presence of methyl/sulfate/glucuronide functional groups does not seem to inhibit biological activity. Parent compounds and metabolites have been shown to reach tissue concentrations useful to exert beneficial effects others than antioxidant and scavenging properties, by modulating intracellular signaling and improving cellular response to oxidative stress and pro-inflammatory stimuli. This review aims to give an overview on the reported evidence of the positive effects exerted by the main EVOO polyphenols metabolites in comparison with the parent compounds.
Collapse
|
11
|
Biological Relevance of Extra Virgin Olive Oil Polyphenols Metabolites. Antioxidants (Basel) 2018; 7:antiox7120170. [PMID: 30469520 PMCID: PMC6315336 DOI: 10.3390/antiox7120170] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 01/23/2023] Open
Abstract
Extra virgin olive oil (EVOO) polyphenols beneficial effects have widely been debated throughout the last three decades, with greater attention to hydroxytyrosol and tyrosol, which are by far the most studied. The main concern about the evaluation of EVOO phenols activities in vitro and in vivo is that the absorption and metabolism of these compounds once ingested lead to the production of different metabolites in the human body. EVOO phenols in the ingested forms are less concentrated in human tissues than their glucuronide, sulfate and methyl metabolites; on the other hand, metabolites may undergo deconjugation before entering the cells and thus act as free forms or may be reformed inside the cells so acting as conjugated forms. In most in vitro studies the presence of methyl/sulfate/glucuronide functional groups does not seem to inhibit biological activity. Parent compounds and metabolites have been shown to reach tissue concentrations useful to exert beneficial effects others than antioxidant and scavenging properties, by modulating intracellular signaling and improving cellular response to oxidative stress and pro-inflammatory stimuli. This review aims to give an overview on the reported evidence of the positive effects exerted by the main EVOO polyphenols metabolites in comparison with the parent compounds.
Collapse
|
12
|
Peyrol J, Meyer G, Obert P, Dangles O, Pechère L, Amiot MJ, Riva C. Involvement of bilitranslocase and beta-glucuronidase in the vascular protection by hydroxytyrosol and its glucuronide metabolites in oxidative stress conditions. J Nutr Biochem 2018; 51:8-15. [DOI: 10.1016/j.jnutbio.2017.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/26/2022]
|
13
|
Olive compounds attenuate oxidative damage induced in HEK-293 cells via MAPK signaling pathway. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
14
|
Serra G, Deiana M, Spencer JPE, Corona G. Olive Oil Phenolics Prevent Oxysterol-Induced Proinflammatory Cytokine Secretion and Reactive Oxygen Species Production in Human Peripheral Blood Mononuclear Cells, Through Modulation of p38 and JNK Pathways. Mol Nutr Food Res 2017; 61. [PMID: 28815947 PMCID: PMC5765427 DOI: 10.1002/mnfr.201700283] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/25/2017] [Indexed: 01/28/2023]
Abstract
Scope The aim of the present study was to investigate the ability of extra virgin olive oil (EVOO) polyphenols to counteract the proinflammatory effects induced by dietary and endogenous oxysterols in ex vivo immune cells. Methods and results Peripheral blood mononuclear cells (PBMCs), separated from the whole blood of healthy donors, were utilized and were stimulated with an oxysterols mixture, in the presence of physiologically relevant concentrations of the EVOO polyphenols, hydroxytyrosol, tyrosol, and homovanillic alcohol. Oxysterols significantly increased the production of proinflammatory cytokines, interleukin‐1β, regulated on activation, normal T‐cell expressed and secreted and macrophage migration inhibitory factor in ex vivo cultured PBMCs. Increased levels of reactive oxygen species (ROS) were also detected along with increased phosphorylation of the p38 and JNK. All phenolic compounds significantly reduced cytokine secretion induced by the oxysterols and inhibited ROS production and mitogen activated protein kinase phosphorylation. Conclusions These results suggest that extra virgin olive oil polyphenols modulate the immune response induced by dietary and endogenous cholesterol oxidation products in human immune cells and may hold benefit in controlling chronic immune and/or inflammatory processes.
Collapse
Affiliation(s)
- Gessica Serra
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jeremy P E Spencer
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Giulia Corona
- Health Sciences Research Centre, University of Roehampton, London, UK
| |
Collapse
|
15
|
Abstract
Objective: To investigate the toxicity and activity against HIV of 5-hydroxytyrosol as a potential microbicide. Design: The anti-HIV-1 activity of 5-hydroxytyrosol, a polyphenolic compound, was tested against wild-type HIV-1 and viral clones resistant to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors and integrase inhibitors. In addition to its activity against founder viruses, different viral subtypes and potential synergy with tenofovir disoproxil fumarate, lamivudine and emtricitabine was also tested. 5-Hydroxytyrosol toxicity was evaluated in vivo in rabbit vaginal mucosa. Methods: We have cloned pol gene from drug-resistant HIV-1 isolated from infected patients and env gene from Fiebeg III/IV patients or A, C, D, E, F and G subtypes in the NL4.3-Ren backbone. 5-Hydroxytyrosol anti-HIV-1 activity was evaluated in infections of MT-2, U87-CCR5 or peripheral blood mononuclear cells preactivated with phytohemagglutinin + interleukin-2 with viruses obtained through 293T transfections. Inhibitory concentration 50% and cytotoxic concentration 50% were calculated. Synergy was analysed according to Chou and Talalay method. In-vivo toxicity was evaluated for 14 days in rabbit vaginal mucosa. Results: 5-Hydroxytyrosol inhibited HIV-1 infections of recombinant or wild-type viruses in all the target cells tested. Moreover, 5-hydroxytyrosol showed similar inhibitory concentration 50% values for infections with NRTIs, NNRTIs, protease inhibitors and INIs resistant viruses; founder viruses and all the subtypes tested. Combination of 5-hydroxytyrosol with tenofovir was found to be synergistic, whereas it was additive with lamivudine and emtricitabine. In-vivo toxicity of 5-hydroxytyrosol was very low even at the highest tested doses. Conclusion: 5-Hydroxytyrosol displayed a broad anti-HIV-1 activity in different cells systems in the absent of in-vivo toxicity, therefore supporting its candidacy as a potential new class of microbicides.
Collapse
|
16
|
Ravishankar D, Corona G, Hogan SM, Spencer JP, Greco F, Osborn HM. Thioflavones as novel neuroprotective agents. Bioorg Med Chem 2016; 24:5513-5520. [DOI: 10.1016/j.bmc.2016.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
|
17
|
Martínez-Lara E, Peña A, Calahorra J, Cañuelo A, Siles E. Hydroxytyrosol decreases the oxidative and nitrosative stress levels and promotes angiogenesis through HIF-1 independent mechanisms in renal hypoxic cells. Food Funct 2016; 7:540-8. [PMID: 26608793 DOI: 10.1039/c5fo00928f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the kidney, tissue oxygen tension is comparatively low and this renders this organ more prone to hypoxic injury. In fact, hypoxia has a central role in the development and progression of renal disease. The recovery from this situation is dependent on the degree to which sublethally damaged cells restore normal function. The master regulator of the hypoxic response is hypoxia-inducible factor-1 (HIF-1). HIF-1 activity depends on the HIF-1α subunit level which is regulated by oxygen, nitric oxide (NO), reactive oxygen species and mTOR. Given the antioxidant and antinitrosative properties ascribed to hydroxytyrosol (HT), this study evaluates the impact of this olive oil polyphenol on the response to hypoxia in kidney cells. For this purpose, the human embryonic kidney HEK293T cell line was treated with HT and cultured under sublethal hypoxic conditions. Our results demonstrate that HT treatment decreases both, post-hypoxic reactive oxygen species and NO levels and, consequently, HIF-1α accumulation. However, HT does not affect mTOR activation or the factor inhibiting HIF level but promotes the expression of angiogenic proteins, suggesting that HT activates an adaptive response to hypoxia in a HIF-1α-independent pathway. In fact, this effect could be ascribed to the up-regulation of estrogen-related receptor α. In conclusion, our results suggest that in renal hypoxia, HT treatment might act as an effective preventive therapeutic approach to decrease stress and to improve the adaptive response to this pathological situation.
Collapse
Affiliation(s)
- Esther Martínez-Lara
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| | - Ana Peña
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| | - Jesús Calahorra
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| | - Ana Cañuelo
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| | - Eva Siles
- Department of Experimental Biology, University of Jaén, Paraje Las Lagunillas s/n, 23071-Jaén, Spain.
| |
Collapse
|
18
|
Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y. Antioxidative and Antidiabetic Effects of Natural Polyphenols and Isoflavones. Molecules 2016; 21:molecules21060708. [PMID: 27248987 PMCID: PMC6274112 DOI: 10.3390/molecules21060708] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 01/09/2023] Open
Abstract
Many polyphenols that contain more than two phenolic hydroxyl groups are natural antioxidants and can provide health benefits to humans. These polyphenols include, for example, oleuropein, hydroxytyrosol, catechin, chlorogenic acids, hesperidin, nobiletin, and isoflavones. These have been studied widely because of their strong radical-scavenging and antioxidative effects. These effects may contribute to the prevention of diseases, such as diabetes. Insulin secretion, insulin resistance, and homeostasis are important factors in the onset of diabetes, a disease that is associated with dysfunction of pancreatic β-cells. Oxidative stress is thought to contribute to this dysfunction and the effects of antioxidants on the pathogenesis of diabetes have, therefore, been investigated. Here, we summarize the antioxidative effects of polyphenols from the perspective of their radical-scavenging activities as well as their effects on signal transduction pathways. We also describe the preventative effects of polyphenols on diabetes by referring to recent studies including those reported by us. Appropriate analytical approaches for evaluating antioxidants in studies on the prevention of diabetes are comprehensively reviewed.
Collapse
Affiliation(s)
- Aya Umeno
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan.
| | - Masanori Horie
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan.
| | - Kazutoshi Murotomi
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan.
| | - Yoshihiro Nakajima
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan.
| | - Yasukazu Yoshida
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan.
| |
Collapse
|
19
|
FU PENG, HU QUAN. 3,4-Dihydroxyphenylethanol alleviates early brain injury by modulating oxidative stress and Akt and nuclear factor-κB pathways in a rat model of subarachnoid hemorrhage. Exp Ther Med 2016; 11:1999-2004. [PMID: 27168841 PMCID: PMC4840544 DOI: 10.3892/etm.2016.3101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/22/2016] [Indexed: 11/06/2022] Open
Abstract
3,4-Dihydroxyphenylethanol (DOPET) is a naturally occurring polyphenolic compound, present in olive oil and in the wastewater generated during olive oil processing. DOPET has various biological and pharmacological activities, including anticancer, antibacterial and anti-inflammatory effects. This study was designed to determine whether DOPET alleviates early brain injury (EBI) associated with subarachnoid hemorrhage (SAH) through suppression of oxidative stress and Akt and nuclear factor (NF)-κB pathways. Rats were randomly divided into the following groups: Sham group, SAH group, SAH + vehicle group and SAH + DOPET group. Mortality, blood-brain barrier (BBB) permeability and brain water content were assessed. Oxidative stress, Akt, NF-κB p65 and caspase-3 assays were also performed. DOPET induced a reduction in brain water content, and decreased the BBB permeability of SAH model rats. Furthermore, DOPET effectively controlled oxidative stress, NF-κB p65 and caspase-3 levels, in addition to significantly increasing Akt levels in the cortex following SAH. These results provide evidence that DOPET attenuates apoptosis in a rat SAH model through modulating oxidative stress and Akt and NF-κB signaling pathways.
Collapse
Affiliation(s)
- PENG FU
- Department of Neurosurgery, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - QUAN HU
- Department of Neurosurgery, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| |
Collapse
|
20
|
Terzuoli E, Giachetti A, Ziche M, Donnini S. Hydroxytyrosol, a product from olive oil, reduces colon cancer growth by enhancing epidermal growth factor receptor degradation. Mol Nutr Food Res 2015; 60:519-29. [PMID: 26577496 DOI: 10.1002/mnfr.201500498] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/08/2015] [Accepted: 11/06/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Erika Terzuoli
- Department of Life Sciences; University of Siena; Siena Italy
| | | | - Marina Ziche
- Department of Life Sciences; University of Siena; Siena Italy
- Istituto Toscano Tumori (ITT); Florence Italy
| | - Sandra Donnini
- Department of Life Sciences; University of Siena; Siena Italy
- Istituto Toscano Tumori (ITT); Florence Italy
| |
Collapse
|
21
|
Scoditti E, Massaro M, Carluccio MA, Pellegrino M, Wabitsch M, Calabriso N, Storelli C, De Caterina R. Additive regulation of adiponectin expression by the mediterranean diet olive oil components oleic Acid and hydroxytyrosol in human adipocytes. PLoS One 2015; 10:e0128218. [PMID: 26030149 PMCID: PMC4452359 DOI: 10.1371/journal.pone.0128218] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 04/24/2015] [Indexed: 11/19/2022] Open
Abstract
Adiponectin, an adipocyte-derived insulin-sensitizing and anti-inflammatory hormone, is suppressed in obesity through mechanisms involving chronic inflammation and oxidative stress. Olive oil consumption is associated with beneficial cardiometabolic actions, with possible contributions from the antioxidant phenol hydroxytyrosol (HT) and the monounsaturated fatty acid oleic acid (OA, 18:1n-9 cis), both possessing anti-inflammatory and vasculo-protective properties. We determined the effects of HT and OA, alone and in combination, on adiponectin expression in human and murine adipocytes under pro-inflammatory conditions induced by the cytokine tumor necrosis factor(TNF)-α. We used human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes and murine 3T3-L1 adipocytes as cell model systems, and pretreated them with 1-100 μmol/L OA, 0.1-20 μmol/L HT or OA plus HT combination before stimulation with 10 ng/mL TNF-α. OA or HT significantly (P<0.05) prevented TNF-α-induced suppression of total adiponectin secretion (by 42% compared with TNF-α alone) as well as mRNA levels (by 30% compared with TNF-α alone). HT and OA also prevented-by 35%-TNF-α-induced downregulation of peroxisome proliferator-activated receptor PPARγ. Co-treatment with HT and OA restored adiponectin and PPARγ expression in an additive manner compared with single treatments. Exploring the activation of JNK, which is crucial for both adiponectin and PPARγ suppression by TNF-α, we found that HT and OA additively attenuated TNF-α-stimulated JNK phosphorylation (up to 55% inhibition). In conclusion, the virgin olive oil components OA and HT, at nutritionally relevant concentrations, have additive effects in preventing adiponectin downregulation in inflamed adipocytes through an attenuation of JNK-mediated PPARγ suppression.
Collapse
Affiliation(s)
- Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | | | - Mariangela Pellegrino
- Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, Lecce, Italy
| | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Nadia Calabriso
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Carlo Storelli
- Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, Lecce, Italy
| | - Raffaele De Caterina
- “G. d’Annunzio” University and Center of Excellence on Aging, Chieti, Italy
- “G. Monasterio” Foundation for Clinical Research, Pisa, Italy
| |
Collapse
|
22
|
Mine Y, Young D, Yang C. Antioxidative stress effect of phosphoserine dimers is mediated via activation of the Nrf2 signaling pathway. Mol Nutr Food Res 2014; 59:303-14. [DOI: 10.1002/mnfr.201400381] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Yoshinori Mine
- Department of Food Science; University of Guelph; Guelph ON Canada
| | - Denise Young
- Department of Food Science; University of Guelph; Guelph ON Canada
| | - Chengbo Yang
- Department of Food Science; University of Guelph; Guelph ON Canada
| |
Collapse
|
23
|
Gallardo E, Palma-Valdés R, Espartero JL, Santiago M. In vivo striatal measurement of hydroxytyrosol, and its metabolite (homovanillic alcohol), compared with its derivative nitrohydroxytyrosol. Neurosci Lett 2014; 579:173-6. [PMID: 25072818 DOI: 10.1016/j.neulet.2014.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/03/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022]
Abstract
Phenolic compounds were measured by in vivo brain microdialysis in rat striatum. Basal extracellular levels of hydroxytyrosol, homovanillic alcohol and nitro-hydroxytyrosol were not detectable by HPLC with electrochemical detection. However, systemic administration of hydroxytyrosol (20 and 40mg/kg, i.p.) showed a clear increase in the extracellular level of this compound. This increase was accompanied by an increase in the extracellular level of homovanillic alcohol, a metabolite of hydroxytyrosol formed by catechol-O-methyltransferase activity. Perfusion of hydroxytyrosol (20μM) through the microdialysis cannula also produced an increase in the extracellular level of homovanillic alcohol. Systemic administration of nitro-hydroxytyrosol (20 and 40mg/kg, i.p.) produced a small increase in the extracellular level of this compound. Our data show that hydroxytyrosol is a more brain penetrant phenolic compound than nitro-hydroxytyrosol. Accordingly, there is high cerebral metabolism of hydroxytyrosol to produce homovanillic alcohol by catechol-O-methyltransferase activity, that is saturated at the higher administered dose of hydroxytyrosol.
Collapse
Affiliation(s)
- Elena Gallardo
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain
| | - Rocío Palma-Valdés
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain
| | - José Luis Espartero
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain
| | - Marti Santiago
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
24
|
Zhao B, Ma Y, Xu Z, Wang J, Wang F, Wang D, Pan S, Wu Y, Pan H, Xu D, Liu L, Jiang H. Hydroxytyrosol, a natural molecule from olive oil, suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathways. Cancer Lett 2014; 347:79-87. [DOI: 10.1016/j.canlet.2014.01.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/05/2014] [Accepted: 01/24/2014] [Indexed: 11/25/2022]
|
25
|
Song JL, Choi JH, Seo JH, Kil JH, Park KY. Antioxidative effects of fermented sesame sauce against hydrogen peroxide-induced oxidative damage in LLC-PK1 porcine renal tubule cells. Nutr Res Pract 2014; 8:138-45. [PMID: 24741396 PMCID: PMC3988501 DOI: 10.4162/nrp.2014.8.2.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/26/2013] [Accepted: 12/17/2013] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES This study was performed to investigate the in vitro antioxidant and cytoprotective effects of fermented sesame sauce (FSeS) against hydrogen peroxide (H2O2)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS/METHODS 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical ((•)OH), and H2O2 scavenging assay was used to evaluate the in vitro antioxidant activity of FSeS. To investigate the cytoprotective effect of FSeS against H2O2-induced oxidative damage in LLC-PK1 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation, and endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) were measured. RESULTS The ability of FSeS to scavenge DPPH, (•)OH and H2O2 was greater than that of FSS and AHSS. FSeS also significantly inhibited H2O2-induced (500 µM) oxidative damage in the LLC-PK1 cells compared to FSS and AHSS (P < 0.05). Following treatment with 100 µg/mL of FSeS and FSS to prevent H2O2-induced oxidation, cell viability increased from 56.7% (control) to 83.7% and 75.6%, respectively. However, AHSS was not able to reduce H2O2-induced cell damage (viability of the AHSS-treated cells was 54.6%). FSeS more effectively suppressed H2O2-induced ROS generation and lipid peroxidation compared to FSS and AHSS (P < 0.05). Compared to the other sauces, FSeS also significantly increased cellular CAT, SOD, and GSH-px activities and mRNA expression (P < 0.05). CONCULUSIONS These results from the present study suggest that FSeS is an effective radical scavenger and protects against H2O2-induced oxidative damage in LLC-PK1 cells by reducing ROS levels, inhibiting lipid peroxidation, and stimulating antioxidant enzyme activity.
Collapse
Affiliation(s)
- Jia-Le Song
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea. ; Kimchi Research Institute, Pusan National University, 2, Busandaehak-ro 63 Beon-gil, Geumjeong, Busan 609-735, Korea
| | | | | | - Jeung-Ha Kil
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea
| | - Kun-Young Park
- Department of Food Science and Nutrition, Pusan National University, Busan 609-735, Korea. ; Kimchi Research Institute, Pusan National University, 2, Busandaehak-ro 63 Beon-gil, Geumjeong, Busan 609-735, Korea
| |
Collapse
|
26
|
Baptista FI, Henriques AG, Silva AMS, Wiltfang J, da Cruz e Silva OAB. Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer's disease. ACS Chem Neurosci 2014; 5:83-92. [PMID: 24328060 DOI: 10.1021/cn400213r] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease is characterized by pathological aggregation of protein tau and amyloid-β peptides, both of which are considered to be toxic to neurons. Naturally occurring dietary flavonoids have received considerable attention as alternative candidates for Alzheimer's therapy taking into account their antiamyloidogenic, antioxidative, and anti-inflammatory properties. Experimental evidence supports the hypothesis that certain flavonoids may protect against Alzheimer's disease in part by interfering with the generation and assembly of amyloid-β peptides into neurotoxic oligomeric aggregates and also by reducing tau aggregation. Several mechanisms have been proposed for the ability of flavonoids to prevent the onset or to slow the progression of the disease. Some mechanisms include their interaction with important signaling pathways in the brain like the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways that regulate prosurvival transcription factors and gene expression. Other processes include the disruption of amyloid-β aggregation and alterations in amyloid precursor protein processing through the inhibition of β-secretase and/or activation of α-secretase, and inhibiting cyclin-dependent kinase-5 and glycogen synthase kinase-3β activation, preventing abnormal tau phosphorylation. The interaction of flavonoids with different signaling pathways put forward their therapeutic potential to prevent the onset and progression of Alzheimer's disease and to promote cognitive performance. Nevertheless, further studies are needed to give additional insight into the specific mechanisms by which flavonoids exert their potential neuroprotective actions in the brain of Alzheimer's disease patients.
Collapse
Affiliation(s)
- Filipa I. Baptista
- Laboratory
of Neurosciences, Centre for Cell Biology, Health Sciences Department
and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana G. Henriques
- Laboratory
of Neurosciences, Centre for Cell Biology, Health Sciences Department
and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jens Wiltfang
- Department
of Psychiatry and Psychotherapy, University Medicine Göttingen, 37075 Göttingen, Germany
| | - Odete A. B. da Cruz e Silva
- Laboratory
of Neurosciences, Centre for Cell Biology, Health Sciences Department
and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Pierno S, Tricarico D, Liantonio A, Mele A, Digennaro C, Rolland JF, Bianco G, Villanova L, Merendino A, Camerino GM, De Luca A, Desaphy JF, Camerino DC. An olive oil-derived antioxidant mixture ameliorates the age-related decline of skeletal muscle function. AGE (DORDRECHT, NETHERLANDS) 2014; 36:73-88. [PMID: 23716142 PMCID: PMC3889891 DOI: 10.1007/s11357-013-9544-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
Age-related skeletal muscle decline is characterized by the modification of sarcolemma ion channels important to sustain fiber excitability and to prevent metabolic dysfunction. Also, calcium homeostasis and contractile function are impaired. In the aim to understand whether these modifications are related to oxidative damage and can be reverted by antioxidant treatment, we examined the effects of in vivo treatment with an waste water polyphenolic mixture (LACHI MIX HT) supplied by LACHIFARMA S.r.l. Italy containing hydroxytirosol (HT), gallic acid, and homovanillic acid on the skeletal muscles of 27-month-old rats. After 6-week treatment, we found an improvement of chloride ClC-1 channel conductance, pivotal for membrane electrical stability, and of ATP-dependent potassium channel activity, important in coupling excitability with fiber metabolism. Both of them were analyzed using electrophysiological techniques. The treatment also restored the resting cytosolic calcium concentration, the sarcoplasmic reticulum calcium release, and the mechanical threshold for contraction, an index of excitation-contraction coupling mechanism. Muscle weight and blood creatine kinase levels were preserved in LACHI MIX HT-treated aged rats. The antioxidant activity of LACHI MIX HT was confirmed by the reduction of malondialdehyde levels in the brain of the LACHI MIX HT-treated aged rats. In comparison, the administration of purified HT was less effective on all the parameters studied. Although muscle function was not completely recovered, the present study provides evidence of the beneficial effects of LACHI MIX HT, a natural compound, to ameliorate skeletal muscle functional decline due to aging-associated oxidative stress.
Collapse
Affiliation(s)
- Sabata Pierno
- Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4-campus, 70125, Bari, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li JK, Ge R, Tang L, Li QS. Protective effects of farrerol against hydrogen-peroxide-induced apoptosis in human endothelium-derived EA.hy926 cells. Can J Physiol Pharmacol 2013; 91:733-40. [DOI: 10.1139/cjpp-2013-0008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vascular endothelium plays an important role in the physiological homeostasis of blood vessels. Endothelial injury is considered to be implicated in the pathogenesis of many cardiovascular diseases, including atherosclerosis. Farrerol, a flavonoid considered to be the major bioactive component in a traditional Chinese herb, “Man-shan-hong”, which is the dried leaves of Rhododendron dauricum L., displays many bioactive properties, including antibechic, antibacterial, anti-inflammatory, and the inhibition of vascular smooth muscle cell (VSMC) proliferation. In this study, the protective effects of farrerol on hydrogen peroxide (H2O2)-induced apoptosis in human endothelium-derived EA.hy926 cells were investigated. The results showed that farrerol significantly inhibited the loss of cell viability and enhanced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in H2O2-induced EA.hy926 cells. Meanwhile, farrerol inhibited H2O2-induced elevation in the levels of intracellular malondialdehyde and reactive oxygen species, as well as cell apoptosis. Furthermore, real time RT–PCR and Western blot analysis showed that farrerol significantly decreased the expression of Bax mRNA, Bax, cleaved caspase-3, and phosph-p38 MAPK, while increasing the exporession of Bcl-2 mRNA and Bcl-2 in H2O2-induced EA.hy926 cells. These results are the first demonstration that farrerol has protective effects against H2O2-induced apoptosis in EA.hy926 cells, and suggests that farrerol is a potential candidate for the intervention of endothelial-injury-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Jian-Kuan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China
- School of Public Health Science, Shanxi Medical University, Taiyuan 030001, China
| | - Rui Ge
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Li Tang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Qing-Shan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
29
|
Lozano-Sánchez J, Bendini A, Quirantes-Piné R, Cerretani L, Segura-Carretero A, Fernández-Gutiérrez A. Monitoring the bioactive compounds status of extra-virgin olive oil and storage by-products over the shelf life. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.06.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Hu JL, Xiao L, Li ZY, Wang Q, Chang Y, Jin Y. Upregulation of HO-1 is accompanied by activation of p38MAPK and mTOR in human oesophageal squamous carcinoma cells. Cell Biol Int 2013; 37:584-92. [PMID: 23412940 DOI: 10.1002/cbin.10075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/06/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Jian-Li Hu
- Cancer Centre, Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| | - Lan Xiao
- Department of Obstetrics and Gynecology; First Affiliated Hospital, An Hui Medical College; 218 Jixi Road, Hefei; AnHui; 230022; PR China
| | - Zhen-Yun Li
- Cancer Centre, Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| | - Qiong Wang
- Cancer Centre, Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| | - Yu Chang
- Cancer Centre, Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| | - Yi Jin
- Laboratory Department; Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| |
Collapse
|
31
|
Friedman M, Rasooly R, Do PM, Henika PR. The olive compound 4-hydroxytyrosol inactivates Staphylococcus aureus bacteria and Staphylococcal Enterotoxin A (SEA). J Food Sci 2012; 76:M558-63. [PMID: 22417596 DOI: 10.1111/j.1750-3841.2011.02365.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The foodborne pathogen Staphylococcus aureus produces the virulent staphylococcal enterotoxin A (SEA), a single chain protein which consists of 233 amino acid residues with a molecular weight of 27078 Da. SEA is a superantigen that is reported to contribute to animal (mastitis) and human (emesis, diarrhea, atopic dermatitis, arthritis, and toxic shock) syndromes. Changes in the native structural integrity may inactivate the toxin by preventing molecular interaction with cell membrane receptor sites of their host cells. In the present study, we evaluated the ability of the pure olive compound 4-hydroxytyrosol and a commercial olive powder called Hidrox-12, prepared by freeze-drying olive juice, to inhibit S. aureus bacteria and SEA's biological activity. Dilutions of both test substances inactivated the pathogens. Two independent cell assays (BrdU incorporation into newly synthesized DNA and glycyl-phenylalanyl-aminofluorocoumarin proteolysis) demonstrated that the olive compound 4-hydroxytyrosol also inactivated the biological activity of SEA at concentrations that were not toxic to the spleen cells. However, efforts to determine inhibition of the toxin by Hidrox-12 were not successful because the olive powder was cytotoxic to the spleen cells at concentrations found to be effective against the bacteria. The results suggest that food-compatible and safe antitoxin olive compounds can be used to inactivate both pathogens and toxins produced by the pathogens. Practical Application: The results of this study suggest that food-compatible and safe antitoxin olive compounds can be used to reduce both pathogens and toxins produced by the pathogens in foods.
Collapse
Affiliation(s)
- Mendel Friedman
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Dept. of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| | | | | | | |
Collapse
|
32
|
Lozano-Sánchez J, Cerretani L, Bendini A, Gallina-Toschi T, Segura-Carretero A, Fernández-Gutiérrez A. New filtration systems for extra-virgin olive oil: effect on antioxidant compounds, oxidative stability, and physicochemical and sensory properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3754-3762. [PMID: 22433055 DOI: 10.1021/jf205353b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The purpose of this work was to evaluate some new filtration systems in relation to the quality of extra-virgin olive oil (EVOO). Filtration processes were undertaken using a polypropylene filter bag and two different inert gas flows as filter aids (argon and nitrogen). Qualitative and quantitative variations of the glyceride composition, antioxidant and pro-oxidant compounds, and water content were correlated with the oxidative stability to establish the effect on EVOO shelf life. The influence on physicochemical and sensorial properties was also evaluated. After filtration, the oxidative stability was reduced. The behavior of the polyphenols and water content on the filtration process could explain the lowest oxidative stability of filtered EVOO. Moreover, the results of the sensorial analysis confirmed that filtration using inert gases did not decrease the intensity of the main positive sensory attributes. The results could help olive-oil producers to improve EVOO quality and establish optimal storage conditions.
Collapse
Affiliation(s)
- Jesús Lozano-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Hydroxytyrosyl acetate contributes to the protective effects against oxidative stress of virgin olive oil. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.09.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Abstract
Plant-based diets contain a plethora of secondary metabolites that may impact on health and disease prevention. Much attention has been focused on the potential bioactivity and nutritional relevance of several classes of phytochemicals such as flavonoids, carotenoids, phyto-oestrogens and glucosinolates. Less attention has been paid to simple phenolic acids that are widely found in fruit, vegetables, herbs, spices and beverages. Daily intakes may exceed 100 mg. In addition, bacteria in the gut can perform reactions that transform more complex plant phenolics such as anthocyanins, procyanidins, flavanones, flavonols, tannins and isoflavones into simple phenolic metabolites. The colon is thus a rich source of potentially active phenolic acids that may impact both locally and systemically on gut health. Both the small and large intestine (colon) contain absorption sites for phenolic acids but low post-prandial concentrations in plasma indicate minimal absorption early in the gastrointestinal tract and/or rapid hepatic metabolism and excretion. Therefore, any bioactivity that contributes to gut health may predominantly occur in the colon. Several phenolic acids affect the expression and activity of enzymes involved in the production of inflammatory mediators of pathways thought to be important in the development of gut disorders including colon cancer. However, at present, we remain largely ignorant as to which of these compounds are beneficial to gut health. Until we can elucidate which pro-inflammatory and potentially carcinogenetic changes in gene expression can be moderated by simple phenolic acids, it is not possible to recommend specific plant-based foods rich in particular phenolics to optimise gut health.
Collapse
|
35
|
Williams RJ, Spencer JPE. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 2012; 52:35-45. [PMID: 21982844 DOI: 10.1016/j.freeradbiomed.2011.09.010] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 01/02/2023]
Abstract
There is increasing evidence that the consumption of flavonoid-rich foods can beneficially influence normal cognitive function. In addition, a growing number of flavonoids have been shown to inhibit the development of Alzheimer disease (AD)-like pathology and to reverse deficits in cognition in rodent models, suggestive of potential therapeutic utility in dementia. The actions of flavonoid-rich foods (e.g., green tea, blueberry, and cocoa) seem to be mediated by the direct interactions of absorbed flavonoids and their metabolites with a number of cellular and molecular targets. For example, their specific interactions within the ERK and PI3-kinase/Akt signaling pathways, at the level of receptors or kinases, have been shown to increase the expression of neuroprotective and neuromodulatory proteins and increase the number of, and strength of, connections between neurons. Concurrently, their effects on the vascular system may also lead to enhancements in cognitive performance through increased brain blood flow and an ability to initiate neurogenesis in the hippocampus. Additional mechanisms have been suggested for the ability of flavonoids to delay the initiation of and/or slow the progression of AD-like pathology and related neurodegenerative disorders, including a potential to inhibit neuronal apoptosis triggered by neurotoxic species (e.g., oxidative stress and neuroinflammation) or disrupt amyloid β aggregation and effects on amyloid precursor protein processing through the inhibition of β-secretase (BACE-1) and/or activation of α-secretase (ADAM10). Together, these processes act to maintain the number and quality of synaptic connections in key brain regions and thus flavonoids have the potential to prevent the progression of neurodegenerative pathologies and to promote cognitive performance.
Collapse
Affiliation(s)
- Robert J Williams
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | |
Collapse
|
36
|
Madrona A, Pereira-Caro G, Bravo L, Mateos R, Espartero J. Preparation and antioxidant activity of tyrosyl and homovanillyl ethers. Food Chem 2011; 129:1169-78. [DOI: 10.1016/j.foodchem.2011.05.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 03/29/2011] [Accepted: 05/20/2011] [Indexed: 02/02/2023]
|
37
|
Lozano-Sánchez J, Giambanelli E, Quirantes-Piné R, Cerretani L, Bendini A, Segura-Carretero A, Fernández-Gutiérrez A. Wastes generated during the storage of extra virgin olive oil as a natural source of phenolic compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11491-11500. [PMID: 21939275 DOI: 10.1021/jf202596q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phenolic compounds in extra virgin olive oil (EVOO) have been associated with beneficial effects for health. Indeed, these compounds exert strong antiproliferative effects on many pathological processes, which has stimulated chemical characterization of the large quantities of wastes generated during olive oil production. In this investigation, the potential of byproducts generated during storage of EVOO as a natural source of antioxidant compounds has been evaluated using solid-liquid and liquid-liquid extraction processes followed by rapid resolution liquid chromatography (RRLC) coupled to electrospray time-of-flight and ion trap mass spectrometry (TOF/IT-MS). These wastes contain polyphenols belonging to different classes such as phenolic acids and alcohols, secoiridoids, lignans, and flavones. The relationship between phenolic and derived compounds has been tentatively established on the basis of proposed degradation pathways. Finally, qualitative and quantitative characterizations of solid and aqueous wastes suggest that these byproducts can be considered an important natural source of phenolic compounds, mainly hydroxytyrosol, tyrosol, decarboxymethyl oleuropein aglycone, and luteolin, which, after suitable purification, could be used as food antioxidants or as ingredients in nutraceutical products due to their interesting technological and pharmaceutical properties.
Collapse
Affiliation(s)
- Jesus Lozano-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Deiana M, Incani A, Rosa A, Atzeri A, Loru D, Cabboi B, Paola Melis M, Lucas R, Morales JC, Assunta Dessì M. Hydroxytyrosol glucuronides protect renal tubular epithelial cells against H(2)O(2) induced oxidative damage. Chem Biol Interact 2011; 193:232-9. [PMID: 21798251 DOI: 10.1016/j.cbi.2011.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/04/2011] [Accepted: 07/10/2011] [Indexed: 10/17/2022]
Abstract
Hydroxytyrosol (2-(3',4'-dihydroxyphenyl)ethanol; HT), the most active ortho-diphenolic compound, present either in free or esterified form in extravirgin olive oil, is extensively metabolized in vivo mainly to O-methylated, O-sulfated and glucuronide metabolites. We investigated the capacity of three glucuronide metabolites of HT, 3'-O-β-d-glucuronide and 4'-O-β-d-glucuronide derivatives and 2-(3',4'-dihydroxyphenyl)ethanol-1-O-β-d-glucuronide, in comparison with the parent compound, to inhibit H(2)O(2) induced oxidative damage and cell death in LLC-PK1 cells, a porcine kidney epithelial cell line. H(2)O(2) treatment exerted a toxic effect inducing cell death, interacting selectively within the pro-death extracellular-signal relate kinase (ERK 1/2) and the pro-survival Akt/PKB signaling pathways. It also produced direct oxidative damage initiating the membrane lipid peroxidation process. None of the tested glucuronides exhibited any protection against the loss in renal cell viability. They also failed to prevent the changes in the phosphorylation states of ERK and Akt, probably reflecting their inability to enter the cells, while HT was highly effective. Notably, pretreatment with glucuronides exerted a protective effect at the highest concentration tested against membrane oxidative damage, comparable to that of HT: the formation of malondialdehyde, fatty acid hydroperoxides and 7-ketocholesterol was significantly inhibited.
Collapse
Affiliation(s)
- Monica Deiana
- Dipartimento di Biologia Sperimentale, Sezione di Patologia Sperimentale, Università degli Studi di Cagliari, Cittadella Universitaria, Monserrato, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|