1
|
Li G, Fang X, Liu Y, Lu X, Liu Y, Li Y, Zhao Z, Liu B, Yang R. Lipid Regulatory Element Interact with CD44 on Mitochondrial Bioenergetics in Bovine Adipocyte Differentiation and Lipometabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17481-17498. [PMID: 39072486 DOI: 10.1021/acs.jafc.4c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The CD44 gene is a critical factor in animal physiological processes and has been shown to affect insulin resistance and fat accumulation in mammals. Nevertheless, little research has been conducted on its precise functions in lipid metabolism and adipogenic differentiation in beef cattle. This study analyzed the expression of CD44 and miR-199a-3p during bovine preadipocyte differentiation. The luciferase reporter assay demonstrated that CD44 was a direct target of miR-199a-3p. Increased accumulation of lipid droplets and triglyceride levels, altered fatty acid metabolism, and accelerated preadipocyte differentiation were all caused by the upregulation of miR-199a-3p or a reduction in CD44 expression. CD44 knockdown upregulated the expression of adipocyte-specific genes (LPL and FABP4) and altered the levels of lipid metabolites (SOPC, l-arginine, and heptadecanoic acid). Multiomics highlights enriched pathways involved in energy metabolism (MAPK, cAMP, and calcium signaling) and shifts in mitochondrial respiration and glycolysis, indicating that CD44 plays a regulatory role in lipid metabolism. The findings show that intracellular lipolysis, glycolysis, mitochondrial respiration, fat deposition, and lipid droplet composition are all impacted by miR-199a-3p, which modulates CD44 in bovine adipocytes.
Collapse
Affiliation(s)
- Guanghui Li
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Xibi Fang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yinuo Liu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, 999 Hangchangqiao South Road, Huzhou, Zhejiang 313000, People's Republic of China
| | - Xin Lu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yue Liu
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Yue Li
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, 1 Haida Road, Zhanjiang, Guangdoong 524000, People's Republic of China
| | - Boqun Liu
- College of Food Science and Engineering, Jilin University, 5333 Xian Road, Changchun, Jilin 130062, People's Republic of China
| | - Runjun Yang
- College of Animal Science, Jilin University, 5333 Xi An Road, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
2
|
Daei S, Ildarabadi A, Goodarzi S, Mohamadi-Sartang M. Effect of Coenzyme Q10 Supplementation on Vascular Endothelial Function: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. High Blood Press Cardiovasc Prev 2024; 31:113-126. [PMID: 38630421 DOI: 10.1007/s40292-024-00630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION Coenzyme Q10 (CoQ10) has gained attention as a potential therapeutic agent for improving endothelial function. Several randomized clinical trials have investigated CoQ10 supplementation's effect on endothelial function. However, these studies have yielded conflicting results, therefore this systematic review and meta-analysis were conducted. AIM This systematic review and meta-analysis were conducted to assess the effects of CoQ10 supplementation on endothelial factors. METHODS A comprehensive search was done in numerous databases until July 19th, 2023. Quantitative data synthesis was performed using a random-effects model, with weight mean difference (WMD) and 95% confidence intervals (CI). Standard methods were used for the assessment of heterogeneity, meta-regression, sensitivity analysis, and publication bias. RESULTS 12 studies comprising 489 subjects were included in the meta-analysis. The results demonstrated significant increases in Flow Mediated Dilation (FMD) after CoQ10 supplementation (WMD: 1.45; 95% CI: 0.55 to 2.36; p < 0.02), but there is no increase in Vascular cell adhesion protein (VCAM), and Intercellular adhesion molecule (ICAM) following Q10 supplementation (VCAM: SMD: - 0.34; 95% CI: - 0.74 to - 0.06; p < 0.10) (ICAM: SMD: - 0.18; 95% CI: - 0.82 to 0.46; p < 0.57). The sensitivity analysis showed that the effect size was robust in FMD and VCAM. In meta-regression, changes in FMD percent were associated with the dose of supplementation (slope: 0.01; 95% CI: 0.004 to 0.03; p = 0.006). CONCLUSIONS CoQ10 supplementation has a positive effect on FMD in a dose-dependent manner. Our findings show that CoQ10 has an effect on FMD after 8 weeks of consumption. Additional research is warranted to establish the relationship between CoQ10 supplementation and endothelial function.
Collapse
Affiliation(s)
- Shahrzad Daei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Ildarabadi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sima Goodarzi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohsen Mohamadi-Sartang
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Song Y, Cao H, Zuo C, Gu Z, Huang Y, Miao J, Fu Y, Guo Y, Jiang Y, Wang F. Mitochondrial dysfunction: A fatal blow in depression. Biomed Pharmacother 2023; 167:115652. [PMID: 37801903 DOI: 10.1016/j.biopha.2023.115652] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondria maintain the normal physiological function of nerve cells by producing sufficient cellular energy and performing crucial roles in maintaining the metabolic balance through intracellular Ca2+ homeostasis, oxidative stress, and axonal development. Depression is a prevalent psychiatric disorder with an unclear pathophysiology. Damage to the hippocampal neurons is a key component of the plasticity regulation of synapses and plays a critical role in the mechanism of depression. There is evidence suggesting that mitochondrial dysfunction is associated with synaptic impairment. The maintenance of mitochondrial homeostasis includes quantitative maintenance and quality control of mitochondria. Mitochondrial biogenesis produces new and healthy mitochondria, and mitochondrial dynamics cooperates with mitophagy to remove damaged mitochondria. These processes maintain mitochondrial population stability and exert neuroprotective effects against early depression. In contrast, mitochondrial dysfunction is observed in various brain regions of patients with major depressive disorders. The accumulation of defective mitochondria accelerates cellular nerve dysfunction. In addition, impaired mitochondria aggravate alterations in the brain microenvironment, promoting neuroinflammation and energy depletion, thereby exacerbating the development of depression. This review summarizes the influence of mitochondrial dysfunction and the underlying molecular pathways on the pathogenesis of depression. Additionally, we discuss the maintenance of mitochondrial homeostasis as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yufeng Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yu Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| |
Collapse
|
4
|
Fakhrolmobasheri M, Hosseini MS, Shahrokh SG, Mohammadi Z, Kahlani MJ, Majidi SE, Zeinalian M. Coenzyme Q10 and Its Therapeutic Potencies Against COVID-19 and Other Similar Infections: A Molecular Review. Adv Pharm Bull 2023; 13:233-243. [PMID: 37342382 PMCID: PMC10278218 DOI: 10.34172/apb.2023.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 10/09/2021] [Accepted: 11/06/2021] [Indexed: 08/25/2023] Open
Abstract
Purpose: New lethal coronavirus disease 2019 (COVID-19), currently, has been converted to a disastrous pandemic worldwide. As there has been found no definitive treatment for the infection in this review we focused on molecular aspects of coenzyme Q10 (CoQ10) and possible therapeutic potencies of CoQ10 against COVID-19 and similar infections. Methods: This is a narrative review in which we used some authentic resources including PubMed, ISI, Scopus, Science Direct, Cochrane, and some preprint databases, the molecular aspects of CoQ10 effects, regarding to the COVID-19 pathogenesis, have been analyzed and discussed. Results: CoQ10 is an essential cofactor in the electron transport chain of the phosphorylative oxidation system. It is a powerful lipophilic antioxidant, anti-apoptotic, immunomodulatory and anti-inflammatory supplement which has been tested for the management and prevention of a variety of diseases particularly diseases with inflammatory pathogenesis. CoQ10 is a strong anti-inflammatory agent which can reduce tumor necrosis factor-α (TNF-α), interleukin (IL)- 6, C-reactive protein (CRP), and other inflammatory cytokines. The cardio-protective role of CoQ10 in improving viral myocarditis and drug induced cardiotoxicity has been determined in different studies. CoQ10 could also improve the interference in the RAS system caused by COVID-19 through exerting anti-Angiotensin II effects and decreasing oxidative stress. CoQ10 passes easily through blood-brain barrier (BBB). As a neuroprotective agent CoQ10 can reduce oxidative stress and modulate the immunologic reactions. These properties may help to reduce CNS inflammation and prevent BBB damage and neuronal apoptosis in COVID-19 patients. Conclusion: CoQ10 supplementation may prevent the COVID-19-induced morbidities with a potential protective role against the deleterious consequences of the disease, further clinical evaluations are encouraged.
Collapse
Affiliation(s)
- Mohammad Fakhrolmobasheri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Mahnaz-Sadat Hosseini
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh-Ghazal Shahrokh
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Zahra Mohammadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad-Javad Kahlani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Seyed-Erfan Majidi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran
- Pediatric Inherited Disease Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Iranians Cancer Control Charity Institute (MACSA), Isfahan, Iran
| |
Collapse
|
5
|
Zhao S, Wu W, Liao J, Zhang X, Shen M, Li X, Lin Q, Cao C. Molecular mechanisms underlying the renal protective effects of coenzyme Q10 in acute kidney injury. Cell Mol Biol Lett 2022; 27:57. [PMID: 35869439 PMCID: PMC9308331 DOI: 10.1186/s11658-022-00361-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractCoenzyme Q10 (CoQ10), an endogenous antioxidant, has been reported frequently to exert an outstanding protective effect on multiple organ injury, including acute kidney injury (AKI). In this study, we aim to summarize all the current evidence of the protective action of CoQ10 against AKI as there are presently no relevant reviews in the literature. After a systematic search, 20 eligible studies, either clinical trials or experimental studies, were included and further reviewed. CoQ10 treatment exhibited a potent renal protective effect on various types of AKI, such as AKI induced by drugs (e.g., ochratoxin A, cisplatin, gentamicin, L-NAME, and nonsteroidal anti-inflammatory drug), extracorporeal shock wave lithotripsy (ESWL), sepsis, contrast media, and ischemia–reperfusion injury. The renal protective role of CoQ10 against AKI might be mediated by the antiperoxidative, anti-apoptotic, and anti-inflammatory potential of CoQ10. The molecular mechanisms for the protective effects of CoQ10 might be attributed to the regulation of multiple essential genes (e.g., caspase-3, p53, and PON1) and signaling cascades (e.g., Nrf2/HO-1 pathway). This review highlights that CoQ10 may be a potential strategy in the treatment of AKI.
Collapse
|
6
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
7
|
López-Lluch G. Coenzyme Q homeostasis in aging: Response to non-genetic interventions. Free Radic Biol Med 2021; 164:285-302. [PMID: 33454314 DOI: 10.1016/j.freeradbiomed.2021.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/28/2022]
Abstract
Coenzyme Q (CoQ) is a key component for many essential metabolic and antioxidant activities in cells in mitochondria and cell membranes. Mitochondrial dysfunction is one of the hallmarks of aging and age-related diseases. Deprivation of CoQ during aging can be the cause or the consequence of this mitochondrial dysfunction. In any case, it seems clear that aging-associated CoQ deprivation accelerates mitochondrial dysfunction in these diseases. Non-genetic prolongevity interventions, including CoQ dietary supplementation, can increase CoQ levels in mitochondria and cell membranes improving mitochondrial activity and delaying cell and tissue deterioration by oxidative damage. In this review, we discuss the importance of CoQ deprivation in aging and age-related diseases and the effect of prolongevity interventions on CoQ levels and synthesis and CoQ-dependent antioxidant activities.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Universidad Pablo de Olavide, Centro Andaluz de Biología Del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera Km. 1, 41013, Sevilla, Spain.
| |
Collapse
|
8
|
Morris G, Walker AJ, Walder K, Berk M, Marx W, Carvalho AF, Maes M, Puri BK. Increasing Nrf2 Activity as a Treatment Approach in Neuropsychiatry. Mol Neurobiol 2021; 58:2158-2182. [PMID: 33411248 DOI: 10.1007/s12035-020-02212-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor encoded by NFE2L2. Under oxidative stress, Nrf2 does not undergo its normal cytoplasmic degradation but instead travels to the nucleus, where it binds to a DNA promoter and initiates transcription of anti-oxidative genes. Nrf2 upregulation is associated with increased cellular levels of glutathione disulfide, glutathione peroxidase, glutathione transferases, thioredoxin and thioredoxin reductase. Given its key role in governing the cellular antioxidant response, upregulation of Nrf2 has been suggested as a common therapeutic target in neuropsychiatric illnesses such as major depressive disorder, bipolar disorder and schizophrenia, which are associated with chronic oxidative and nitrosative stress, characterised by elevated levels of reactive oxygen species, nitric oxide and peroxynitrite. These processes lead to extensive lipid peroxidation, protein oxidation and carbonylation, and oxidative damage to nuclear and mitochondrial DNA. Intake of N-acetylcysteine, coenzyme Q10 and melatonin is accompanied by increased Nrf2 activity. N-acetylcysteine intake is associated with improved cerebral mitochondrial function, decreased central oxidative and nitrosative stress, reduced neuroinflammation, alleviation of endoplasmic reticular stress and suppression of the unfolded protein response. Coenzyme Q10, which acts as a superoxide scavenger in neuroglial mitochondria, instigates mitohormesis, ameliorates lipid peroxidation in the inner mitochondrial membrane, activates uncoupling proteins, promotes mitochondrial biogenesis and has positive effects on the plasma membrane redox system. Melatonin, which scavenges mitochondrial free radicals, inhibits mitochondrial nitric oxide synthase, restores mitochondrial calcium homeostasis, deacetylates and activates mitochondrial SIRT3, ameliorates increased permeability of the blood-brain barrier and intestine and counters neuroinflammation and glutamate excitotoxicity.
Collapse
Affiliation(s)
- G Morris
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - K Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - M Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - W Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - M Maes
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
9
|
Taghizadeh S, Izadi A, Shirazi S, Parizad M, Pourghassem Gargari B. The effect of coenzyme Q10 supplementation on inflammatory and endothelial dysfunction markers in overweight/obese polycystic ovary syndrome patients. Gynecol Endocrinol 2021; 37:26-30. [PMID: 32544011 DOI: 10.1080/09513590.2020.1779689] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND This study aimed at determining the effects of coenzyme Q10 (CoQ10) supplementation on the inflammatory and endothelial dysfunction indices among overweight and obese women with polycystic ovary syndrome (PCOS). METHODS This randomized double-blind, placebo-controlled clinical trial was performed among overweight and obese women diagnosed with PCOS. Forty three PCOS women were randomly assigned to two groups: one group received 200 mg CoQ10 capsules per day (n = 22) and the other received placebo (n = 21) for 8 weeks. Biomarkers of inflammation and endothelial dysfunction including high sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin were measured and compared before and after the intervention. RESULTS At the end of study, compared with pldacebo, CoQ10 supplementation resulted in significant decreases in serum levels of TNF-α (p = 0.009), hs-CRP and IL-6 (p = 0.001, p = 0.007, respectively). In addition, supplementation with CoQ10 resulted in a significant reduction in serum VCAM-1 (p = .002) and E-selectin (p = .006) compared with the control group. There were no significant differences for serum ICAM-1. CONCLUSIONS The present study showed that CoQ10 supplementation for 8 weeks had a beneficial effect on inflammatory and endothelial dysfunction markers in overweight and obese patients with PCOS.
Collapse
Affiliation(s)
- Shiva Taghizadeh
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azimeh Izadi
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Shirazi
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Parizad
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahram Pourghassem Gargari
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Moreno Fernández-Ayala DJ, Navas P, López-Lluch G. Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp Gerontol 2020; 142:111147. [PMID: 33171276 PMCID: PMC7648491 DOI: 10.1016/j.exger.2020.111147] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 causes a severe pneumonia (COVID-19) that affects essentially elderly people. In COVID-19, macrophage infiltration into the lung causes a rapid and intense cytokine storm leading finally to a multi-organ failure and death. Comorbidities such as metabolic syndrome, obesity, type 2 diabetes, lung and cardiovascular diseases, all of them age-associated diseases, increase the severity and lethality of COVID-19. Mitochondrial dysfunction is one of the hallmarks of aging and COVID-19 risk factors. Dysfunctional mitochondria is associated with defective immunological response to viral infections and chronic inflammation. This review discuss how mitochondrial dysfunction is associated with defective immune response in aging and different age-related diseases, and with many of the comorbidities associated with poor prognosis in the progression of COVID-19. We suggest here that chronic inflammation caused by mitochondrial dysfunction is responsible of the explosive release of inflammatory cytokines causing severe pneumonia, multi-organ failure and finally death in COVID-19 patients. Preventive treatments based on therapies improving mitochondrial turnover, dynamics and activity would be essential to protect against COVID-19 severity.
Collapse
Affiliation(s)
- Daniel J Moreno Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| |
Collapse
|
11
|
Oppedisano F, Maiuolo J, Gliozzi M, Musolino V, Carresi C, Nucera S, Scicchitano M, Scarano F, Bosco F, Macrì R, Ruga S, Zito MC, Palma E, Muscoli C, Mollace V. The Potential for Natural Antioxidant Supplementation in the Early Stages of Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21072618. [PMID: 32283806 PMCID: PMC7177481 DOI: 10.3390/ijms21072618] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The neurodegenerative process is characterized by the progressive ultrastructural alterations of selected classes of neurons accompanied by imbalanced cellular homeostasis, a process which culminates, in the later stages, in cell death and the loss of specific neurological functions. Apart from the neuronal cell impairment in selected areas of the central nervous system which characterizes many neurodegenerative diseases (e.g., Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, etc.), some alterations may be found in the early stages including gliosis and the misfolding or unfolding accumulation of proteins. On the other hand, several common pathophysiological mechanisms can be found early in the course of the disease including altered oxidative metabolism, the loss of cross-talk among the cellular organelles and increased neuroinflammation. Thus, antioxidant compounds have been suggested, in recent years, as a potential strategy for preventing or counteracting neuronal cell death and nutraceutical supplementation has been studied in approaching the early phases of neurodegenerative diseases. The present review will deal with the pathophysiological mechanisms underlying the early stages of the neurodegenerative process. In addition, the potential of nutraceutical supplementation in counteracting these diseases will be assessed.
Collapse
Affiliation(s)
- Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-327-475-8007
| |
Collapse
|
12
|
Sharideh H, Zhandi M, Zeinoaldini S, Zaghari M, Sadeghi M. The effect of dietary coenzyme Q10 on plasma metabolites and hepatic gene expression in broiler breeder hens. Br Poult Sci 2020; 61:281-286. [PMID: 31973572 DOI: 10.1080/00071668.2020.1720908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. This study was performed to evaluate the effects of dietary supplementation of coenzyme Q10 (CoQ10) on laying rate, body weight, plasma metabolites and some liver gene expression in broiler breeder hens. 2. A total of 128 broiler breeder hens (Arbor Acres Plus, 47 weeks of age) were randomly distributed to four dietary groups supplemented with different levels of CoQ10 (0, 300, 600 or 900 mg/kg diet) with four replicates of eight hens each. During 47-54 weeks of age, laying rate, egg mass and body weight were recorded weekly. To assay plasma biochemical indicators, blood samples were collected at 54 weeks of age. At the end of the experiment, for evaluating the abdominal fat weight, liver weight and expression of the adiponectin and proliferator-activated receptor-α (PPAR-α) genes in the liver, eight hens per treatment were selected, weighed and humanely killed by decapitation. 3. Dietary supplementation of CoQ10 linearly decreased abdominal fat weight, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities by increased levels of CoQ10. The plasma levels of glucose, cholesterol and alkaline phosphatase (ALP) activity were quadratically decreased by increased levels of CoQ10. The best plasma levels of glucose, cholesterol and ALP activity were estimated at 562.5, 633.3 and 517.8 mg CoQ10/kg diet, respectively. Adiponectin and PPARα gene expression exhibited a linear increased by increased levels of CoQ10. 4. In conclusion, addition of CoQ10 to the diet influenced lipid metabolism and expression of the adiponectin and PPAR-α genes, which might be partially due to the improvement in mitochondrial metabolism and energy production. However, further studies are necessary to determine the effects of CoQ10 on these indicators in broiler breeder hens during ageing.
Collapse
Affiliation(s)
- H Sharideh
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - M Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - S Zeinoaldini
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - M Zaghari
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| | - M Sadeghi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran , Karaj, Iran
| |
Collapse
|
13
|
Morris G, Puri BK, Walker AJ, Berk M, Walder K, Bortolasci CC, Marx W, Carvalho AF, Maes M. The compensatory antioxidant response system with a focus on neuroprogressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109708. [PMID: 31351160 DOI: 10.1016/j.pnpbp.2019.109708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
Major antioxidant responses to increased levels of inflammatory, oxidative and nitrosative stress (ONS) are detailed. In response to increasing levels of nitric oxide, S-nitrosylation of cysteine thiol groups leads to post-transcriptional modification of many cellular proteins and thereby regulates their activity and allows cellular adaptation to increased levels of ONS. S-nitrosylation inhibits the function of nuclear factor kappa-light-chain-enhancer of activated B cells, toll-like receptor-mediated signalling and the activity of several mitogen-activated protein kinases, while activating nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2 or NFE2L2); in turn, the redox-regulated activation of Nrf2 leads to increased levels and/or activity of key enzymes and transporter systems involved in the glutathione system. The Nrf2/Kelch-like ECH-associated protein-1 axis is associated with upregulation of NAD(P)H:quinone oxidoreductase 1, which in turn has anti-inflammatory effects. Increased Nrf2 transcriptional activity also leads to activation of haem oxygenase-1, which is associated with upregulation of bilirubin, biliverdin and biliverdin reductase as well as increased carbon monoxide signalling, anti-inflammatory and antioxidant activity. Associated transcriptional responses, which may be mediated by retrograde signalling owing to elevated hydrogen peroxide, include the unfolded protein response (UPR), mitohormesis and the mitochondrial UPR; the UPR also results from increasing levels of mitochondrial and cytosolic reactive oxygen species and reactive nitrogen species leading to nitrosylation, glutathionylation, oxidation and nitration of crucial cysteine and tyrosine causing protein misfolding and the development of endoplasmic reticulum stress. It is shown how these mechanisms co-operate in forming a co-ordinated rapid and prolonged compensatory antioxidant response system.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Adam J Walker
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry, The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ken Walder
- CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Chiara C Bortolasci
- CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| | - Michael Maes
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
14
|
Morris G, Puri BK, Walker AJ, Maes M, Carvalho AF, Bortolasci CC, Walder K, Berk M. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci Biobehav Rev 2019; 107:862-882. [PMID: 31545987 DOI: 10.1016/j.neubiorev.2019.09.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Activated immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways and consequent mitochondrial aberrations are involved in the pathophysiology of psychiatric disorders including major depression, bipolar disorder and schizophrenia. They offer independent and shared contributions to pathways underpinning medical comorbidities including insulin resistance, metabolic syndrome, obesity and cardiovascular disease - herein conceptualized as somatoprogression. This narrative review of human studies aims to summarize relationships between IO&NS pathways, neuroprogression and somatoprogression. Activated IO&NS pathways, implicated in the neuroprogression of psychiatric disorders, affect the pathogenesis of comorbidities including insulin resistance, dyslipidaemia, obesity and hypertension, and by inference, metabolic syndrome. These conditions activate IO&NS pathways, exacerbating neuroprogression in psychiatric disorders. The processes whereby proinflammatory cytokines, nitrosative and endoplasmic reticulum stress, NADPH oxidase isoforms, PPARγ inactivation, SIRT1 deficiency and intracellular signalling pathways impact lipid metabolism and storage are considered. Through associations between body mass index, chronic neuroinflammation and FTO expression, activation of IO&NS pathways arising from somatoprogression may contribute to neuroprogression. Early evidence highlights the potential of adjuvants targeting IO&NS pathways for treating somatoprogression and neuroprogression.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Chiara C Bortolasci
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Ken Walder
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
15
|
Díaz-Casado ME, Quiles JL, Barriocanal-Casado E, González-García P, Battino M, López LC, Varela-López A. The Paradox of Coenzyme Q 10 in Aging. Nutrients 2019; 11:nu11092221. [PMID: 31540029 PMCID: PMC6770889 DOI: 10.3390/nu11092221] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q (CoQ) is an essential endogenously synthesized molecule that links different metabolic pathways to mitochondrial energy production thanks to its location in the mitochondrial inner membrane and its redox capacity, which also provide it with the capability to work as an antioxidant. Although defects in CoQ biosynthesis in human and mouse models cause CoQ deficiency syndrome, some animals models with particular defects in the CoQ biosynthetic pathway have shown an increase in life span, a fact that has been attributed to the concept of mitohormesis. Paradoxically, CoQ levels decline in some tissues in human and rodents during aging and coenzyme Q10 (CoQ10) supplementation has shown benefits as an anti-aging agent, especially under certain conditions associated with increased oxidative stress. Also, CoQ10 has shown therapeutic benefits in aging-related disorders, particularly in cardiovascular and metabolic diseases. Thus, we discuss the paradox of health benefits due to a defect in the CoQ biosynthetic pathway or exogenous supplementation of CoQ10.
Collapse
Affiliation(s)
- M Elena Díaz-Casado
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
| | - Eliana Barriocanal-Casado
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Pilar González-García
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Luis C López
- Institute of Biotechnology, Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| | - Alfonso Varela-López
- Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18016 Granada, Spain.
| |
Collapse
|
16
|
Targeting Mitochondrial Defects to Increase Longevity in Animal Models of Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:89-110. [PMID: 30919333 DOI: 10.1007/978-3-030-12668-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioenergetic homeostasis is a vital process maintaining cellular health and has primary importance in neuronal cells due to their high energy demand markedly at synapses. Mitochondria, the metabolic hubs of the cells, are the organelles responsible for producing energy in the form of ATP by using nutrients and oxygen. Defects in mitochondrial homeostasis result in energy deprivation and can lead to disrupted neuronal functions. Mitochondrial defects adversely contribute to the pathogenesis of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD). Mitochondrial defects not only include reduced ATP levels but also increased reactive oxygen species (ROS) leading to cellular damage. Here, we detail the mechanisms that lead to neuronal pathologies involving mitochondrial defects. Furthermore, we discuss how to target these mitochondrial defects in order to have beneficial effects as novel and complementary therapeutic avenues in neurodegenerative diseases. The critical evaluation of these strategies and their potential outcome can pave the way for finding novel therapies for neurodegenerative pathologies.
Collapse
|
17
|
Abstract
The aging process includes impairment in mitochondrial function, a reduction in anti-oxidant activity, and an increase in oxidative stress, marked by an increase in reactive oxygen species (ROS) production. Oxidative damage to macromolecules including DNA and electron transport proteins likely increases ROS production resulting in further damage. This oxidative theory of cell aging is supported by the fact that diseases associated with the aging process are marked by increased oxidative stress. Coenzyme Q10 (CoQ10) levels fall with aging in the human but this is not seen in all species or all tissues. It is unknown whether lower CoQ10 levels have a part to play in aging and disease or whether it is an inconsequential cellular response to aging. Despite the current lay public interest in supplementing with CoQ10, there is currently not enough evidence to recommend CoQ10 supplementation as an anti-aging anti-oxidant therapy.
Collapse
|
18
|
Nyariki JN, Ochola LA, Jillani NE, Nyamweya NO, Amwayi PE, Yole DS, Azonvide L, Isaac AO. Oral administration of Coenzyme Q 10 protects mice against oxidative stress and neuro-inflammation during experimental cerebral malaria. Parasitol Int 2019; 71:106-120. [PMID: 30981893 DOI: 10.1016/j.parint.2019.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/08/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
In animal model of experimental cerebral malaria (ECM), the genesis of neuropathology is associated with oxidative stress and inflammatory mediators. There is limited progress in the development of new approaches to the treatment of cerebral malaria. Here, we tested whether oral supplementation of Coenzyme Q10 (CoQ10) would offer protection against oxidative stress and brain associated inflammation following Plasmodium berghei ANKA (PbA) infection in C57BL/6 J mouse model. For this purpose, one group of C57BL/6 mice was used as control; second group of mice were orally supplemented with 200 mg/kg CoQ10 and then infected with PbA and the third group was PbA infected alone. Clinical, biochemical, immunoblot and immunological features of ECM was monitored. We observed that oral administration of CoQ10 for 1 month and after PbA infection was able to improve survival, significantly reduced oedema, TNF-α and MIP-1β gene expression in brain samples in PbA infected mice. The result also shows the ability of CoQ10 to reduce cholesterol and triglycerides lipids, levels of matrix metalloproteinases-9, angiopoietin-2 and angiopoietin-1 in the brain. In addition, CoQ10 was very effective in decreasing NF-κB phosphorylation. Furthermore, CoQ10 supplementation abrogated Malondialdehyde, and 8-OHDG and restored cellular glutathione. These results constitute the first demonstration that oral supplementation of CoQ10 can protect mice against PbA induced oxidative stress and neuro-inflammation usually observed in ECM. Thus, the need to study CoQ10 as a candidate of antioxidant and immunomodulatory molecule in ECM and testing it in clinical studies either alone or in combination with antimalaria regimens to provide insight into a potential translatable therapy.
Collapse
Affiliation(s)
- James N Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya.
| | - Lucy A Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, P.O. Box, 24481, 00502 Karen, Kenya
| | - Ngalla E Jillani
- Department of Non-communicable diseases, Institute of Primate Research, P.O. Box, 24481, 00502 Karen, Kenya
| | - Nemwel O Nyamweya
- Departmwent of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton, Kenya
| | - Peris E Amwayi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| | - Dorcas S Yole
- School of Biological and Life Sciences, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| | - Laurent Azonvide
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alfred Orina Isaac
- School of Health Sciences, Technical University of Kenya, P.O. Box, 52428, 00200 Nairobi, Kenya
| |
Collapse
|
19
|
Yang X, Xu W, Huang K, Zhang B, Wang H, Zhang X, Gong L, Luo Y, He X. Precision toxicology shows that troxerutin alleviates ochratoxin A-induced renal lipotoxicity. FASEB J 2018; 33:2212-2227. [PMID: 30247986 DOI: 10.1096/fj.201800742r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lipotoxicity is the most common cause of severe kidney disease, with few treatment options available today. Precision toxicology can improve detection of subtle intracellular changes in response to exogenous substrates; thus, it facilitates in-depth research on bioactive molecules that may interfere with the onset of certain diseases. In the current study, troxerutin significantly relieved nephrotoxicity, increased endurance, and improved systemic energy metabolism and renal inflammation in OTA-induced nephrotic mice. Lipidomics showed that troxerutin effectively reduced the levels of triglycerides, phosphatidylcholines, and phosphatidylethanolamines in nephropathy. The mechanism was partly attributable to troxerutin in alleviating the aberrantly up-regulated expression of sphingomyelinase, the cystic fibrosis transmembrane conductance regulator, and chloride channel 2. Renal tubular epithelial cells, the main site of toxin-induced accumulation of lipids in the kidney, were subjected to transcriptomic profiling, which uncovered several metabolic factors relevant to aberrant lipid and lipoprotein metabolism. Our work provides new insights into the molecular features of toxin-induced lipotoxicity in renal tubular epithelial cells in vivo and demonstrates the function of troxerutin in alleviating OTA-induced nephrosis and associated systemic energy metabolism disorders.-Yang, X., Xu, W., Huang, K., Zhang, B., Wang, H., Zhang, X., Gong, L., Luo, Y., He, X. Precision toxicology shows that troxerutin alleviates ochratoxin A-induced renal lipotoxicity.
Collapse
Affiliation(s)
- Xuan Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Haomiao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xueqin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lijing Gong
- China Academy of Sport and Health Sciences, Beijing Sport University, Beijing, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism-Food Safety, Ministry of Agriculture, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism-Food Safety, Ministry of Agriculture, China
| |
Collapse
|
20
|
Rahmani E, Jamilian M, Samimi M, Zarezade Mehrizi M, Aghadavod E, Akbari E, Tamtaji OR, Asemi Z. The effects of coenzyme Q10 supplementation on gene expression related to insulin, lipid and inflammation in patients with polycystic ovary syndrome. Gynecol Endocrinol 2018; 34:217-222. [PMID: 28949260 DOI: 10.1080/09513590.2017.1381680] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 09/15/2017] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE This research was conducted to assess the effects of coenzyme Q10 (CoQ10) intake on gene expression related to insulin, lipid and inflammation in subjects with polycystic ovary syndrome (PCOS). METHODS This randomized double-blind, placebo-controlled trial was conducted on 40 subjects diagnosed with PCOS. Subjects were randomly allocated into two groups to intake either 100 mg CoQ10 (n = 20) or placebo (n = 20) per day for 12 weeks. Gene expression related to insulin, lipid and inflammation were quantified in blood samples of PCOS women with RT-PCR method. RESULTS Results of RT-PCR shown that compared with the placebo, CoQ10 intake downregulated gene expression of oxidized low-density lipoprotein receptor 1 (LDLR) (p < 0.001) and upregulated gene expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) (p = 0.01) in peripheral blood mononuclear cells of subjects with PCOS. In addition, compared to the placebo group, CoQ10 supplementation downregulated gene expression of interleukin-1 (IL-1) (p = 0.03), interleukin-8 (IL-8) (p = 0.001) and tumor necrosis factor alpha (TNF-α) (p < 0.001) in peripheral blood mononuclear cells of subjects with PCOS. CONCLUSIONS Overall, CoQ10 intake for 12 weeks in PCOS women significantly improved gene expression of LDLR, PPAR-γ, IL-1, IL-8 and TNF-α.
Collapse
Affiliation(s)
- Elham Rahmani
- a Department of Gynecology and Obstetrics, School of Medicine , Bushehr University of Medical Sciences , Bushehr , Iran
| | - Mehri Jamilian
- b Endocrinology and Metabolism Research Center, Department of Gynecology and Obstetrics , School of Medicine, Arak University of Medical Sciences , Arak , Iran
| | - Mansooreh Samimi
- c Department of Gynecology and Obstetrics, School of Medicine , Kashan University of Medical Sciences , Kashan , Iran
| | - Maryam Zarezade Mehrizi
- c Department of Gynecology and Obstetrics, School of Medicine , Kashan University of Medical Sciences , Kashan , Iran
| | - Esmat Aghadavod
- d Research Center for Biochemistry and Nutrition in Metabolic Diseases , Kashan University of Medical Sciences , Kashan , Iran
| | - Elmira Akbari
- e Physiology Research Center , Kashan University of Medical Sciences , Kashan , Iran
| | - Omid Reza Tamtaji
- e Physiology Research Center , Kashan University of Medical Sciences , Kashan , Iran
| | - Zatollah Asemi
- d Research Center for Biochemistry and Nutrition in Metabolic Diseases , Kashan University of Medical Sciences , Kashan , Iran
| |
Collapse
|
21
|
Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q 10 Supplementation in Aging and Disease. Front Physiol 2018; 9:44. [PMID: 29459830 PMCID: PMC5807419 DOI: 10.3389/fphys.2018.00044] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
Coenzyme Q (CoQ) is an essential component of the mitochondrial electron transport chain and an antioxidant in plasma membranes and lipoproteins. It is endogenously produced in all cells by a highly regulated pathway that involves a mitochondrial multiprotein complex. Defects in either the structural and/or regulatory components of CoQ complex or in non-CoQ biosynthetic mitochondrial proteins can result in a decrease in CoQ concentration and/or an increase in oxidative stress. Besides CoQ10 deficiency syndrome and aging, there are chronic diseases in which lower levels of CoQ10 are detected in tissues and organs providing the hypothesis that CoQ10 supplementation could alleviate aging symptoms and/or retard the onset of these diseases. Here, we review the current knowledge of CoQ10 biosynthesis and primary CoQ10 deficiency syndrome, and have collected published results from clinical trials based on CoQ10 supplementation. There is evidence that supplementation positively affects mitochondrial deficiency syndrome and the symptoms of aging based mainly on improvements in bioenergetics. Cardiovascular disease and inflammation are alleviated by the antioxidant effect of CoQ10. There is a need for further studies and clinical trials involving a greater number of participants undergoing longer treatments in order to assess the benefits of CoQ10 treatment in metabolic syndrome and diabetes, neurodegenerative disorders, kidney diseases, and human fertility.
Collapse
Affiliation(s)
- Juan D Hernández-Camacho
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain
| |
Collapse
|
22
|
Nasoohi S, Simani L, Khodagholi F, Nikseresht S, Faizi M, Naderi N. Coenzyme Q10 supplementation improves acute outcomes of stroke in rats pretreated with atorvastatin. Nutr Neurosci 2017; 22:264-272. [PMID: 28946820 DOI: 10.1080/1028415x.2017.1376928] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Coenzyme Q10 (CoQ10, ubiquinone) stands among the safest supplements in the elderly to protect against cardiovascular disorders. Noteworthy, CoQ10 deficiency is common in many surviving stroke patients as they are mostly prescribed statins for the secondary prevention of stroke incidence lifelong. Accordingly, the current study aims to experimentally examine whether CoQ10 supplementation in animals receiving atorvastatin may affect acute stroke-induced injury. METHODS Adult rats underwent transient middle cerebral artery occlusion after atorvastatin pretreatment (5 or 10 mg/ kg/day; po; 30 days) with or without CoQ10 (200 mg/kg/day). After 24 hours ischemic/reperfusion injury, animals were subjected to functional assessments followed by cerebral molecular and histological to detect inflammation, apoptosis and oxidative stress. RESULTS Animals dosed with 10 mg/kg presented the worst neurological function and brain damage in the acute phase of stroke injury. CoQ10 supplementation efficiently improved functional deficit and cerebral infarction in all stroke animals, particularly those exhibiting statin toxicity. Such benefits were associated with remarkable anti-inflammatory and anti-apoptotic effects, based on the analyzed tumor necrosis factor-α, interleukin-6, Bax/Bcl2 and cleaved caspase 3/9 immunoblots. Importantly, our fluoro-jade staining data indicated CoQ10 may revert the stroke-induced neurodegeneration. No parallel alteration was detected in stroke-induced oxidative stress as determined by malondialdehyde and 8-oxo-2'-deoxyguanosine levels. DISCUSSION These data suggest that all stroke animals may benefit from CoQ10 administration through modulating inflammatory and degenerative pathways. This study provides empirical evidence for potential advantages of CoQ10 supplementation in atorvastatin-receiving patients which may not shadow its antioxidant properties.
Collapse
Affiliation(s)
- Sanaz Nasoohi
- a Neuroscience Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Leila Simani
- b Skull Base Research Center, Loghman Hakim Medical Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Fariba Khodagholi
- a Neuroscience Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Sara Nikseresht
- a Neuroscience Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mehrdad Faizi
- c Department of Pharmacology and Toxicology, School of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Nima Naderi
- c Department of Pharmacology and Toxicology, School of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
23
|
Shamardl HA, El-Ashmony SM, Kamel HF, Fatani SH. Potential Cardiovascular and Renal Protective Effects of Vitamin D and Coenzyme Q 10 in l-NAME-Induced Hypertensive Rats. Am J Med Sci 2017; 354:190-198. [PMID: 28864378 DOI: 10.1016/j.amjms.2017.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/25/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypertension is one of the primary modifiable risk factors for cardiovascular disease. Adequate vitamin D (vit D) levels have been shown to reduce vascular smooth muscle contraction and to increase arterial compliance, which may be beneficial in hypertension. Further, coenzyme Q10 (COQ10) through its action to lower oxidative stress has been reported to have beneficial effects on hypertension and heart failure. This study examined the possible cardiac and renal protective effects of vit D and COQ10 both separately and in combination with an angiotensin II receptor blocker, valsartan (vals) in l-NAME hypertensive rats. MATERIALS AND METHODS Hypertension was induced in rats by l-NAME administration. Following induction of hypertension, the rats were assigned into the following 6 subgroups: an l-NAME alone group and treated groups receiving the following drugs intraperitoneally for 6 weeks; vals, vit D, COQ10 and combination of vals with either vit D or COQ10. A group of normotensive rats were used as negative controls. At the end of the treatment period, blood pressure, serum creatinine, blood urea nitrogen, lipids and serum, cardiac and renal parameters of oxidative stress were measured. RESULTS Compared to the l-NAME only group, all treatments lowered systolic, diastolic, mean arterial pressure, total cholesterol, low-density lipoprotein cholesterol, and creatinine levels as well as TNF-α and malondialdehyde. Further, the agents increased serum, cardiac and renal total antioxidant capacity. Interestingly, the combination of agents had further effects on all the parameters compared to treatment with each single agent. CONCLUSIONS The study suggests that the additive protective effects of vit D and COQ10 when used alone or concurrent with vals treatment in hypertensive rats may be due to their effects as antioxidants, anticytokines and blood pressure conservers.
Collapse
Affiliation(s)
- Hanan A Shamardl
- Department of Pharmacology (HAS), Faculty of Medicine, Fayoum University, Fayoum, Egypt; Department of Pharmacology & Clinical Pharmacy (SME), Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Sahar M El-Ashmony
- Department of Clinical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Pharmacology & Clinical Pharmacy (SME), Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hala F Kamel
- Department of Biochemistry (HFK, SHF), Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sameer H Fatani
- Department of Biochemistry (HFK, SHF), Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
24
|
Fischer A, Onur S, Niklowitz P, Menke T, Laudes M, Rimbach G, Döring F. Coenzyme Q10 Status as a Determinant of Muscular Strength in Two Independent Cohorts. PLoS One 2016; 11:e0167124. [PMID: 27907044 PMCID: PMC5132250 DOI: 10.1371/journal.pone.0167124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022] Open
Abstract
Aging is associated with sarcopenia, which is a loss of skeletal muscle mass and function. Coenzyme Q10 (CoQ10) is involved in several important functions that are related to bioenergetics and protection against oxidative damage; however, the role of CoQ10 as a determinant of muscular strength is not well documented. The aim of the present study was to evaluate the determinants of muscular strength by examining hand grip force in relation to CoQ10 status, gender, age and body mass index (BMI) in two independent cohorts (n = 334, n = 967). Furthermore, peak flow as a function of respiratory muscle force was assessed. Spearman's correlation revealed a significant positive association between CoQ10/cholesterol level and hand grip in the basic study population (p<0.01) as well as in the validation population (p<0.001). In the latter, we also found a negative correlation with the CoQ10 redox state (p<0.01), which represents a lower percentage of the reduced form of CoQ10 (ubiquinol) in subjects who exhibit a lower muscular strength. Furthermore, the age of the subjects showed a negative correlation with hand grip (p<0.001), whereas BMI was positively correlated with hand grip (p<0.01), although only in the normal weight subgroup (BMI <25 kg/m2). Analysis of the covariance (ANCOVA) with hand grip as the dependent variable revealed CoQ10/cholesterol as a determinant of muscular strength and gender as the strongest effector of hand grip. In conclusion, our data suggest that both a low CoQ10/cholesterol level and a low percentage of the reduced form of CoQ10 could be an indicator of an increased risk of sarcopenia in humans due to their negative associations to upper body muscle strength, peak flow and muscle mass.
Collapse
Affiliation(s)
- Alexandra Fischer
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Simone Onur
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Petra Niklowitz
- Children’s Hospital of Datteln, Witten/Herdecke University, Datteln, Germany
| | - Thomas Menke
- Children’s Hospital of Datteln, Witten/Herdecke University, Datteln, Germany
| | - Matthias Laudes
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Gerald Rimbach
- Department of Food Science, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Frank Döring
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
25
|
Nakamura K, Koyama M, Ishida R, Kitahara T, Nakajima T, Aoyama T. Characterization of bioactive agents in five types of marketed sprouts and comparison of their antihypertensive, antihyperlipidemic, and antidiabetic effects in fructose-loaded SHRs. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:581-90. [PMID: 26787977 PMCID: PMC4711472 DOI: 10.1007/s13197-015-2048-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/15/2015] [Accepted: 09/25/2015] [Indexed: 01/01/2023]
Abstract
Hypertension, hyperlipidemia, and diabetes are important precursors of cardiovascular disease. Here, we evaluated the antihypertensive, antihyperlipidemic, and antidiabetic potential of five types of sprouts in fructose-loaded spontaneously hypertensive rats (SHRs). Powdered sprouts (PSs) were produced from mung bean, broccoli, radish, and buckwheat sprouts and germinated soybeans by lyophilization. The PSs were analyzed for nutritional composition and bioactive agents (γ-aminobutyric acid [GABA], coenzyme Q10 [CoQ10], rutin, and myo-inositol-1,2,3,4,5,6-hexakisphosphate [IP6]) and functionally tested in SHRs given water containing 25 % fructose and diets containing 30 % PS for 46 days. All PSs were nutritionally rich in protein and dietary fiber. CoQ10, GABA/rutin, and GABA/IP6 were abundant in broccoli, buckwheat, and germinated soybean PSs, respectively. Mung bean, broccoli, and buckwheat PSs caused significant reductions in heart rates and/or serum triglycerides. Mung bean PS also significantly reduced serum total cholesterol. These data supported the antihypertensive and antihyperlipidemic potential of mung bean, broccoli, and buckwheat sprouts.
Collapse
Affiliation(s)
- Kozo Nakamura
- />Institute of Agriculture, Academic Assembly, Shinshu University, 8304 Minamiminowa-Village, Nagano, 399-4598 Japan
- />Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, 8304 Minamiminowa-Village, Nagano, 399-4598 Japan
- />Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, 8304 Minamiminowa-Village, Nagano, 399-4598 Japan
| | - Masahiro Koyama
- />Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, 8304 Minamiminowa-Village, Nagano, 399-4598 Japan
| | - Ryuya Ishida
- />Department of Bioscience and Biotechnology, Graduate School of Agriculture, Shinshu University, 8304 Minamiminowa-Village, Nagano, 399-4598 Japan
| | - Takashi Kitahara
- />Saladcosmo Co., Ltd, 1-15 Sentanbayashi, Nakatsugawa, Gifu 509-9131 Japan
| | - Takero Nakajima
- />Department of Metabolic Regulation, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 Japan
| | - Toshifumi Aoyama
- />Department of Metabolic Regulation, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 Japan
| |
Collapse
|
26
|
Fischer A, Niklowitz P, Menke T, Döring F. Coenzyme Q regulates the expression of essential genes of the pathogen- and xenobiotic-associated defense pathway in C. elegans. J Clin Biochem Nutr 2015; 57:171-7. [PMID: 26566301 PMCID: PMC4639588 DOI: 10.3164/jcbn.15-46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/01/2015] [Indexed: 11/22/2022] Open
Abstract
Coenzyme Q (CoQ) is necessary for mitochondrial energy production and modulates the expression of genes that are important for inflammatory processes, growth and detoxification reactions. A cellular surveillance-activated detoxification and defenses (cSADDs) pathway has been recently identified in C. elegans. The down-regulation of the components of the cSADDs pathway initiates an aversion behavior of the nematode. Here we hypothesized that CoQ regulates genes of the cSADDs pathway. To verify this we generated CoQ-deficient worms ("CoQ-free") and performed whole-genome expression profiling. We found about 30% (120 genes) of the cSADDs pathway genes were differentially regulated under CoQ-deficient condition. Remarkably, 83% of these genes were down-regulated. The majority of the CoQ-sensitive cSADDs pathway genes encode for proteins involved in larval development (enrichment score (ES) = 38.0, p = 5.0E(-37)), aminoacyl-tRNA biosynthesis, proteasome function (ES 8.2, p = 5.9E(-31)) and mitochondria function (ES 3.4, p = 1.7E(-5)). 67% (80 genes) of these genes are categorized as lethal. Thus it is shown for the first time that CoQ regulates a substantial number of essential genes that function in the evolutionary conserved cellular surveillance-activated detoxification and defenses pathway in C. elegans.
Collapse
Affiliation(s)
- Alexandra Fischer
- Institute of Human Nutrition and Food Science, Division of Molecular Prevention, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Petra Niklowitz
- Children's Hospital of Datteln, Witten/Herdecke University, Dr.-Friedrich-Steiner Str. 5, 45711 Datteln, Germany
| | - Thomas Menke
- Children's Hospital of Datteln, Witten/Herdecke University, Dr.-Friedrich-Steiner Str. 5, 45711 Datteln, Germany
| | - Frank Döring
- Institute of Human Nutrition and Food Science, Division of Molecular Prevention, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| |
Collapse
|
27
|
Ito K, Watanabe C, Nakamura A, Oikawa-Tada S, Murata M. Reduced Coenzyme Q10 Decreases Urinary 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine Concentrations in Healthy Young Female Subjects. J Med Food 2015; 18:835-40. [DOI: 10.1089/jmf.2014.3302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Kimiko Ito
- Department of Life Science, Tsu City College, Tsu, Mie, Japan
| | - Chigusa Watanabe
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Akari Nakamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Saeko Oikawa-Tada
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
28
|
Onur S, Niklowitz P, Fischer A, Jacobs G, Lieb W, Laudes M, Menke T, Döring F. Determination of the coenzyme Q10 status in a large Caucasian study population. Biofactors 2015; 41:211-21. [PMID: 26228113 DOI: 10.1002/biof.1216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/22/2015] [Indexed: 11/11/2022]
Abstract
Coenzyme Q10 (CoQ10 ) exists in a reduced (ubiquinol) and an oxidized (ubiquinone) form in all human tissues and functions, amongst others, in the respiratory chain, redox-cycles, and gene expression. As the status of CoQ10 is an important risk factor for several diseases, here we determined the CoQ10 status (ubiquinol, ubiquinone) in a large Caucasian study population (n = 1,911). The study population covers a wide age range (age: 18-83 years, 43.4% men), has information available on more than 10 measured clinical phenotypes, more than 30 diseases (presence vs. absence), about 30 biomarkers, and comprehensive genetic information including whole-genome SNP typing (>891,000 SNPs). The major aim of this long-term resource in CoQ10 research is the comprehensive analysis of the CoQ10 status with respect to integrated health parameters (i.e., fat metabolism, inflammation), disease-related biomarkers (i.e., liver enzymes, marker for heart failure), common diseases (i.e., neuropathy, myocardial infarction), and genetic risk in humans. Based on disease status, biomarkers, and genetic variants, our cohort is also useful to perform Mendelian randomisation approaches. In conclusion, the present study population is a promising resource to gain deeper insight into CoQ10 status in human health and disease.
Collapse
Affiliation(s)
- Simone Onur
- Division of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian Albrechts University Kiel, Kiel, 24118, Germany
| | - Petra Niklowitz
- Children's Hospital of Datteln, University of Witten/Herdecke, 45711, Datteln, Germany
| | - Alexandra Fischer
- Division of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian Albrechts University Kiel, Kiel, 24118, Germany
| | - Gunnar Jacobs
- Institute of Epidemiology and Biobank Popgen, Christian Albrechts University Kiel, Campus University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, Christian Albrechts University Kiel, Campus University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Matthias Laudes
- Department of Internal Medicine, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Thomas Menke
- Children's Hospital of Datteln, University of Witten/Herdecke, 45711, Datteln, Germany
| | - Frank Döring
- Division of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian Albrechts University Kiel, Kiel, 24118, Germany
| |
Collapse
|
29
|
Brauner H, Lüthje P, Grünler J, Ekberg NR, Dallner G, Brismar K, Brauner A. Markers of innate immune activity in patients with type 1 and type 2 diabetes mellitus and the effect of the anti-oxidant coenzyme Q10 on inflammatory activity. Clin Exp Immunol 2014; 177:478-82. [PMID: 24593795 DOI: 10.1111/cei.12316] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2014] [Indexed: 12/20/2022] Open
Abstract
Major long-term complications in patients with diabetes are related to oxidative stress, caused by the hyperglycaemia characteristic for diabetes mellitus. The anti-oxidant coenzyme Q10 (CoQ10) has therefore been proposed as a beneficial supplement to diabetes treatment. Apart from its anti-oxidative function, CoQ10 appears to modulate immune functions by largely unknown mechanisms. The aim of this study was therefore to investigate the effect of CoQ10 on antimicrobial peptides and natural killer (NK) cells, both innate immune components implicated in the pathogenesis of diabetes and diabetes-associated long-term complications such as cardiovascular disease. We determined serum levels of antimicrobial peptides and the phenotype of NK cells isolated from peripheral blood of patients with type 1 (T1DM) or type 2 diabetes mellitus (T2DM) and from healthy controls. In addition, the same parameters were determined in diabetic patients after a 12-week period of CoQ10 supplementation. Two antimicrobial peptides, the human cathelicidin antimicrobial peptide (CAMP) and the human beta defensin 1 (hBD1), were reduced in serum from patients with T1DM. This defect was not reversible by CoQ10 supplementation. In contrast, CoQ10 reduced the levels of circulating hBD2 in these patients and induced changes in subset distribution and activation markers in peripheral NK cells. The results of the present study open up novel approaches in the prevention of long-term complications associated to T1DM, although further investigations are needed.
Collapse
Affiliation(s)
- H Brauner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Clark YY, Wold LE, Szalacha LA, McCarthy DO. Ubiquinol reduces muscle wasting but not fatigue in tumor-bearing mice. Biol Res Nurs 2014; 17:321-9. [PMID: 25230747 DOI: 10.1177/1099800414543822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Fatigue is the most common and distressing symptom reported by cancer patients during and after treatment. Tumor growth increases oxidative stress and cytokine production, which causes skeletal muscle wasting and cardiac dysfunction. The purpose of this study was to determine whether treatment with the antioxidant ubiquinol improves muscle mass, cardiac function, and behavioral measures of fatigue in tumor-bearing mice. METHOD Adult female mice were inoculated with colon26 tumor cells. Half the control and tumor-bearing mice were administered ubiquinol (500 mg/kg/day) in their drinking water. Voluntary wheel running (i.e., voluntary running activity [VRA]) and grip strength were measured at Days 0, 8, 14, and 17 of tumor growth. Cardiac function was measured using echocardiography on Day 18 or 19. Biomarkers of inflammation, protein degradation, and oxidative stress were measured in serum and heart and gastrocnemius tissue. RESULTS VRA and grip strength progressively declined in tumor-bearing mice. Muscle mass and myocardial diastolic function were decreased, and expression of proinflammatory cytokines was increased in serum and muscle and heart tissue on Day 19 of tumor growth. Oxidative stress was present only in the heart, while biomarkers of protein degradation were increased only in the gastrocnemius muscle. Ubiquinol increased muscle mass in the tumor-bearing and control animals but had no effect on the expression of biomarkers of inflammation, protein degradation, or oxidative stress or on behavioral measures of fatigue.
Collapse
Affiliation(s)
- Yvonne Y Clark
- Pain Evaluation and Management Center of Ohio, Dayton, OH, USA
| | - Loren E Wold
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Laura A Szalacha
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
31
|
Failla ML, Chitchumroonchokchai C, Aoki F. Increased bioavailability of ubiquinol compared to that of ubiquinone is due to more efficient micellarization during digestion and greater GSH-dependent uptake and basolateral secretion by Caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7174-7182. [PMID: 24979483 DOI: 10.1021/jf5017829] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The oral bioavailability of ubiquinol recently has been reported to be greater than that of ubiquinone in healthy adults. The basis for this influence of redox state of coenzyme Q (CoQ) on bioavailability has been investigated using the coupled in vitro digestion/Caco-2 cell model. Solubilized ubiquinol and ubiquinone were added to yogurt and subjected to simulated gastric and small intestinal digestion. Partitioning of CoQ in mixed micelles during small intestinal digestion was significantly greater during digestion of yogurt enriched with ubiquinol. Similarly, apical uptake from mixed micelles and transepithelial transport of CoQ by Caco-2 cells were significantly greater after digestion of the ubiquinol-rich yogurt compared to digested ubiquinone-rich yogurt. Reduction of cellular GSH significantly decreased cell uptake and basolateral secretion of both ubiquinol and ubiquinone, although the adverse impact was much greater for ubiquinol. These data suggest that the enhanced bioaccessibility and bioavailability of ubiquinol compared to ubiquinone results from reduced coenzyme being more efficiently incorporated into mixed micelles during digestion and its greater uptake and basolateral secretion in a glutathione-dependent mechanism.
Collapse
Affiliation(s)
- Mark L Failla
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | |
Collapse
|
32
|
Tian G, Sawashita J, Kubo H, Nishio SY, Hashimoto S, Suzuki N, Yoshimura H, Tsuruoka M, Wang Y, Liu Y, Luo H, Xu Z, Mori M, Kitano M, Hosoe K, Takeda T, Usami SI, Higuchi K. Ubiquinol-10 supplementation activates mitochondria functions to decelerate senescence in senescence-accelerated mice. Antioxid Redox Signal 2014; 20:2606-20. [PMID: 24124769 PMCID: PMC4025630 DOI: 10.1089/ars.2013.5406] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM The present study was conducted to define the relationship between the anti-aging effect of ubiquinol-10 supplementation and mitochondrial activation in senescence-accelerated mouse prone 1 (SAMP1) mice. RESULTS Here, we report that dietary supplementation with ubiquinol-10 prevents age-related decreases in the expression of sirtuin gene family members, which results in the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a major factor that controls mitochondrial biogenesis and respiration, as well as superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2), which are major mitochondrial antioxidant enzymes. Ubiquinol-10 supplementation can also increase mitochondrial complex I activity and decrease levels of oxidative stress markers, including protein carbonyls, apurinic/apyrimidinic sites, malondialdehydes, and increase the reduced glutathione/oxidized glutathione ratio. Furthermore, ubiquinol-10 may activate Sirt1 and PGC-1α by increasing cyclic adenosine monophosphate (cAMP) levels that, in turn, activate cAMP response element-binding protein (CREB) and AMP-activated protein kinase (AMPK). INNOVATION AND CONCLUSION These results show that ubiquinol-10 may enhance mitochondrial activity by increasing levels of SIRT1, PGC-1α, and SIRT3 that slow the rate of age-related hearing loss and protect against the progression of aging and symptoms of age-related diseases.
Collapse
Affiliation(s)
- Geng Tian
- 1 Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Alam MA, Rahman MM. Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome. J Diabetes Metab Disord 2014; 13:60. [PMID: 24932457 PMCID: PMC4057567 DOI: 10.1186/2251-6581-13-60] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/03/2014] [Indexed: 02/06/2023]
Abstract
Co-enzyme Q10 (Co-Q10) is an essential component of the mitochondrial electron transport chain. Most cells are sensitive to co-enzyme Q10 (Co-Q10) deficiency. This deficiency has been implicated in several clinical disorders such as heart failure, hypertension, Parkinson's disease and obesity. The lipid lowering drug statin inhibits conversion of HMG-CoA to mevalonate and lowers plasma Co-Q10 concentrations. However, supplementation with Co-Q10 improves the pathophysiological condition of statin therapy. Recent evidence suggests that Co-Q10 supplementation may be useful for the treatment of obesity, oxidative stress and the inflammatory process in metabolic syndrome. The anti-inflammatory response and lipid metabolizing effect of Co-Q10 is probably mediated by transcriptional regulation of inflammation and lipid metabolism. This paper reviews the evidence showing beneficial role of Co-Q10 supplementation and its potential mechanism of action on contributing factors of metabolic and cardiovascular complications.
Collapse
Affiliation(s)
- Md Ashraful Alam
- School of Biomedical Science, The University of Queensland, Brisbane, Australia
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
34
|
Del Pozo-Cruz J, Rodríguez-Bies E, Ballesteros-Simarro M, Navas-Enamorado I, Tung BT, Navas P, López-Lluch G. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans. Biogerontology 2014; 15:199-211. [PMID: 24384733 DOI: 10.1007/s10522-013-9491-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/29/2013] [Indexed: 01/11/2023]
Abstract
Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Jesús Del Pozo-Cruz
- Dpto. Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo, CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Carretera de Utrera km. 1, 41013, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Ahmadvand H, Ghasemi Dehnoo M, Dehghani A, Bagheri S, Cheraghi RA. Serum paraoxonase 1 status and its association with atherogenic indexes in gentamicin-induced nephrotoxicity in rats treated with coenzyme Q10. Ren Fail 2013; 36:413-8. [PMID: 24320085 DOI: 10.3109/0886022x.2013.865154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coenzyme Q10 is a natural antioxidant and scavenger of free radicals. In the present study, we examined the effect of coenzyme Q10 on paraoxonase 1 (PON1) activity, lipid profile, atherogenic indexes and relationship of PON 1 activity by high-density lipoprotein (HDL) and atherogenic indexes in gentamicin (GM)-induced nephrotoxicity rats. Thirty Sprague-Dawley rats were divided into three groups to receive saline; GM, 100 mg/kg/d; and GM plus coenzyme Q10 by 15 mg/kg i.p daily, respectively. After 12 days, animals were anaesthetized, blood samples were also collected before killing to measure the levels of triglyceride (TG), cholesterol (C), low-density lipoprotein (LDL), very low density lipoprotein (VLDL), HDL, atherogenic indexes and the activities of PON1 of all groups were analyzed. Data were analyzed by non-parametric Mann-Whitney test (using SPSS 13 software). Coenzyme Q10 significantly decreased TG, C, LDL, VLDL, atherogenic index, atherogenic coefficient and cardiac risk ratio. HDL level and PON1 activity were significantly increased when treated with coenzyme Q10. Also, the activity of PON 1 correlated positively with HDL and negatively with atherogenic coefficient, cardiac risk ratio 1 and cardiac risk ratio 2. This study showed that coenzyme Q10 exerts beneficial effects on PON1 activity, lipid profile, atherogenic index and correlation of PON 1 activity with HDL and atherogenic index in GM -induced nephrotoxicity rats.
Collapse
Affiliation(s)
- Hassan Ahmadvand
- Razi Herbal Researches Center, Lorestan University of Medical Sciences , Khoram Abad , Iran
| | | | | | | | | |
Collapse
|
36
|
Determination of coenzyme Q10 tissue status via high-performance liquid chromatography with electrochemical detection in swine tissues (Sus scrofa domestica). Anal Biochem 2013; 437:88-94. [DOI: 10.1016/j.ab.2013.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/07/2013] [Accepted: 02/13/2013] [Indexed: 11/20/2022]
|
37
|
Fischer A, Onur S, Schmelzer C, Döring F. Ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory chemokine ligand 2 gene in humans. BMC Res Notes 2012; 5:540. [PMID: 23021568 PMCID: PMC3542089 DOI: 10.1186/1756-0500-5-540] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coenzyme Q₁₀ is an essential cofactor in the respiratory chain and serves in its reduced form, ubiquinol, as a potent antioxidant. Studies in vitro and in vivo provide evidence that ubiquinol reduces inflammatory processes via gene expression. Here we investigate the putative link between expression and DNA methylation of ubiquinol sensitive genes in monocytes obtained from human volunteers supplemented with 150 mg/ day ubiquinol for 14 days. FINDINGS Ubiquinol decreases the expression of the pro-inflammatory chemokine (C-X-C motif) ligand 2 gene (CXCL2) more than 10-fold. Bisulfite-/ MALDI-TOF-based analysis of regulatory regions of the CXCL2 gene identified six adjacent CpG islands which showed a 3.4-fold decrease of methylation status after ubiquinol supplementation. This effect seems to be rather gene specific, because ubiquinol reduced the expression of two other pro-inflammatory genes (PMAIP1, MMD) without changing the methylation pattern of the respective gene. CONCLUSION In conclusion, ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory CXCL2 gene in humans. Current Controlled Trials ISRCTN26780329.
Collapse
Affiliation(s)
- Alexandra Fischer
- Institute for Human Nutrition and Food Science, Department of Molecular Prevention, Christian Albrechts University, Kiel, Germany
| | | | | | | |
Collapse
|
38
|
Schmelzer C, Kitano M, Hosoe K, Döring F. Ubiquinol affects the expression of genes involved in PPARα signalling and lipid metabolism without changes in methylation of CpG promoter islands in the liver of mice. J Clin Biochem Nutr 2011; 50:119-26. [PMID: 22448092 PMCID: PMC3303474 DOI: 10.3164/jcbn.11-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 05/21/2011] [Indexed: 01/25/2023] Open
Abstract
Coenzyme Q10 is an essential cofactor in the respiratory chain and serves as a potent antioxidant in biological membranes. Recent studies in vitro and in vivo provide evidence that Coenzyme Q10 is involved in inflammatory processes and lipid metabolism via gene expression. To study these effects at the epigenomic level, C57BL6J mice were supplemented for one week with reduced Coenzyme Q10 (ubiquinol). Afterwards, gene expression signatures and DNA promoter methylation patterns of selected genes were analysed. Genome-wide transcript profiling in the liver identified 1112 up-regulated and 571 down-regulated transcripts as differentially regulated between ubiquinol-treated and control animals. Text mining and GeneOntology analysis revealed that the ”top 20” ubiquinol-regulated genes play a role in lipid metabolism and are functionally connected by the PPARα signalling pathway. With regard to the ubiquinol-induced changes in gene expression of about +3.14-fold (p≤0.05), +2.18-fold (p≤0.01), and −2.13-fold (p≤0.05) for ABCA1, ACYP1, and ACSL1 genes, respectively, hepatic DNA methylation analysis of 282 (sense orientation) and 271 (antisense) CpG units in the respective promoter islands revealed no significant effect of ubiquinol. In conclusion, ubiquinol affects the expression of genes involved in PPARα signalling and lipid metabolism without changing the promoter DNA methylation status in the liver of mice.
Collapse
Affiliation(s)
- Constance Schmelzer
- Leibniz Institute for Farm Animal Biology (FBN), Research Unit Nutritional Physiology "Oskar Kellner", Dummerstorf, Germany
| | | | | | | |
Collapse
|
39
|
Schmelzer C, Döring F. Micronutrient special issue: coenzyme Q(10) requirements for DNA damage prevention. Mutat Res 2011; 733:61-8. [PMID: 21964355 DOI: 10.1016/j.mrfmmm.2011.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 01/12/2023]
Abstract
Coenzyme Q(10) (CoQ(10)) is an essential component for electron transport in the mitochondrial respiratory chain and serves as cofactor in several biological processes. The reduced form of CoQ(10) (ubiquinol, Q(10)H(2)) is an effective antioxidant in biological membranes. During the last years, particular interest has been grown on molecular effects of CoQ(10) supplementation on mechanisms related to DNA damage prevention. This review describes recent advances in our understanding about the impact of CoQ(10) on genomic stability in cells, animals and humans. With regard to several in vitro and in vivo studies, CoQ(10) provides protective effects on several markers of oxidative DNA damage and genomic stability. In comparison to the number of studies reporting preventive effects of CoQ(10) on oxidative stress biomarkers, CoQ(10) intervention studies in humans with a direct focus on markers of DNA damage are limited. Thus, more well-designed studies in healthy and disease populations with long-term follow up results are needed to substantiate the reported beneficial effects of CoQ(10) on prevention of DNA damage.
Collapse
Affiliation(s)
- Constance Schmelzer
- Leibniz Institute for Farm Animal Biology (FBN), Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | | |
Collapse
|
40
|
Tsai KL, Chen LH, Chiou SH, Chiou GY, Chen YC, Chou HY, Chen LK, Chen HY, Chiu TH, Tsai CS, Ou HC, Kao CL. Coenzyme Q10 suppresses oxLDL-induced endothelial oxidative injuries by the modulation of LOX-1-mediated ROS generation via the AMPK/PKC/NADPH oxidase signaling pathway. Mol Nutr Food Res 2011; 55 Suppl 2:S227-40. [DOI: 10.1002/mnfr.201100147] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/28/2011] [Accepted: 06/14/2011] [Indexed: 02/06/2023]
|
41
|
Falk MJ, Polyak E, Zhang Z, Peng M, King R, Maltzman JS, Okwuego E, Horyn O, Nakamaru-Ogiso E, Ostrovsky J, Xie LX, Chen JY, Marbois B, Nissim I, Clarke CF, Gasser DL. Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in Pdss2 mutant mice. EMBO Mol Med 2011; 3:410-27. [PMID: 21567994 PMCID: PMC3394513 DOI: 10.1002/emmm.201100149] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/16/2022] Open
Abstract
Therapy of mitochondrial respiratory chain diseases is complicated by limited understanding of cellular mechanisms that cause the widely variable clinical findings. Here, we show that focal segmental glomerulopathy-like kidney disease in Pdss2 mutant animals with primary coenzyme Q (CoQ) deficiency is significantly ameliorated by oral treatment with probucol (1% w/w). Preventative effects in missense mutant mice are similar whether fed probucol from weaning or for 3 weeks prior to typical nephritis onset. Furthermore, treating symptomatic animals for 2 weeks with probucol significantly reduces albuminuria. Probucol has a more pronounced health benefit than high-dose CoQ10 supplementation and uniquely restores CoQ9 content in mutant kidney. Probucol substantially mitigates transcriptional alterations across many intermediary metabolic domains, including peroxisome proliferator-activated receptor (PPAR) pathway signaling. Probucol's beneficial effects on the renal and metabolic manifestations of Pdss2 disease occur despite modest induction of oxidant stress and appear independent of its hypolipidemic effects. Rather, decreased CoQ9 content and altered PPAR pathway signaling appear, respectively, to orchestrate the glomerular and global metabolic consequences of primary CoQ deficiency, which are both preventable and treatable with oral probucol therapy.
Collapse
Affiliation(s)
- Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schmelzer C, Niklowitz P, Okun JG, Haas D, Menke T, Döring F. Ubiquinol-induced gene expression signatures are translated into altered parameters of erythropoiesis and reduced low density lipoprotein cholesterol levels in humans. IUBMB Life 2011; 63:42-8. [PMID: 21280176 DOI: 10.1002/iub.413] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Studies in vitro and in mice indicate a role for Coenzyme Q(10) (CoQ(10) ) in gene expression. To determine this function in relationship to physiological readouts, a 2-week supplementation study with the reduced form of CoQ(10) (ubiquinol, Q(10) H(2) , 150 mg/d) was performed in 53 healthy males. Mean CoQ(10) plasma levels increased 4.8-fold after supplementation. Transcriptomic and bioinformatic approaches identified a gene-gene interaction network in CD14-positive monocytes, which functions in inflammation, cell differentiation, and peroxisome proliferator-activated receptor-signaling. These Q(10) H(2) -induced gene expression signatures were also described previously in liver tissues of SAMP1 mice. Biochemical and NMR-based analyses showed a reduction of low density lipoprotein (LDL) cholesterol plasma levels after Q(10) H(2) supplementation. This effect was especially pronounced in atherogenic small dense LDL particles (19-21 nm, 1.045 g/L). In agreement with gene expression signatures, Q(10) H(2) reduces the number of erythrocytes but increases the concentration of reticulocytes. In conclusion, Q(10) H(2) induces characteristic gene expression patterns, which are translated into reduced LDL cholesterol levels and altered parameters of erythropoiesis in humans.
Collapse
Affiliation(s)
- Constance Schmelzer
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Schmelzer C, Okun JG, Haas D, Higuchi K, Sawashita J, Mori M, Döring F. The reduced form of coenzyme Q10 mediates distinct effects on cholesterol metabolism at the transcriptional and metabolite level in SAMP1 mice. IUBMB Life 2010; 62:812-8. [DOI: 10.1002/iub.388] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|