1
|
Liou JW, Chen PY, Gao WY, Yen JH. Natural phytochemicals as small-molecule proprotein convertase subtilisin/kexin type 9 inhibitors. Tzu Chi Med J 2024; 36:360-369. [PMID: 39421488 PMCID: PMC11483095 DOI: 10.4103/tcmj.tcmj_46_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/01/2024] [Accepted: 06/03/2024] [Indexed: 10/19/2024] Open
Abstract
A decrease in the levels of low-density lipoprotein receptors (LDLRs) leads to the accumulation of LDL cholesterol (LDL-C) in the bloodstream, resulting in hypercholesterolemia and atherosclerotic cardiovascular diseases. Increasing the expression level or inducing the activity of LDLR in hepatocytes can effectively control hypercholesterolemia. Proprotein convertase subtilisin/kexin type 9 (PCSK9) protein, primarily produced in the liver, promotes the degradation of LDLR. Inhibiting the expression and/or function of PCSK9 can increase the levels of LDLR on the surface of hepatocytes and promote LDL-C clearance from the plasma. Thus, targeting PCSK9 represents a new strategy for developing preventive and therapeutic interventions for hypercholesterolemia. Currently, monoclonal antibodies are used as PCSK9 inhibitors in clinical practice. However, the need for oral and affordable anti-PCSK9 medications limits the perspective of choosing PCSK9 inhibitors for clinical usage. Emerging research reports have demonstrated that natural phytochemicals have efficacy in maintaining cholesterol stability and regulating lipid metabolism. Developing novel natural phytochemical PCSK9 inhibitors can serve as a starting point for developing small-molecule drugs to reduce plasma LDL-C levels in patients. In this review, we summarize the current literature on the critical role of PCSK9 in controlling LDLR degradation and hypercholesterolemia, and we discuss the results of studies attempting to develop PCSK9 inhibitors, with an emphasis on the inhibitory effects of natural phytochemicals on PCSK9. Furthermore, we provide insight into the mechanisms of action by which the reported phytochemicals exert their potential PCSK9 inhibitory effects against hypercholesterolemia.
Collapse
Affiliation(s)
- Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Yi Chen
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
2
|
Ye Y, Takeuchi A, Kawaguchi Y, Matsuba S, Zhang N, Mijiti M, Banno A, Hiramatsu N, Okada T, Nagaoka S. Eugeniin improves cholesterol metabolism in HepG2 cells and Caco-2 cells. Biosci Biotechnol Biochem 2023; 88:97-106. [PMID: 37952102 DOI: 10.1093/bbb/zbad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023]
Abstract
Considering the absence of prior studies on the cholesterol metabolism-improving effects of eugeniin, the present investigation aimed to explore the potential impact of eugeniin on cholesterol metabolism. This study sought to elucidate the molecular mechanisms involved in this process using HepG2 and Caco-2 cells treated with 5 µm eugeniin. The intracellular cholesterol levels in HepG2 and Caco-2 cells were significantly decreased in the 24-h eugeniin-treated group. The protein and messenger ribonucleic acid (mRNA) levels of the low-density lipoprotein receptor (LDLR) were increased, while 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase protein and mRNA levels were decreased in HepG2 cells 6 h of the eugeniin-treated group. Additionally, LDLR protein and mRNA levels were increased in HepG2 cells after 24 h of eugeniin treatment. In Caco-2, the protein and mRNA levels of ATP-binding cassette transporter 1 were increased after 24 h eugeniin treatment. This novel finding indicates that eugeniin improves cholesterol metabolism in human cell cultures.
Collapse
Affiliation(s)
- Yuyang Ye
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Asahi Takeuchi
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuya Kawaguchi
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shoya Matsuba
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Ni Zhang
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Maihemuti Mijiti
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Arata Banno
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Naoto Hiramatsu
- Department of Research and development, Toyohakko Co., Ltd., Aichi, Japan
| | - Toshitaka Okada
- Department of Research and development, Toyohakko Co., Ltd., Aichi, Japan
| | - Satoshi Nagaoka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
3
|
Platko K, Lebeau PF, Nederveen JP, Byun JH, MacDonald ME, Bourgeois JM, Tarnopolsky MA, Austin RC. A Metabolic Enhancer Protects against Diet-Induced Obesity and Liver Steatosis and Corrects a Pro-Atherogenic Serum Profile in Mice. Nutrients 2023; 15:nu15102410. [PMID: 37242292 DOI: 10.3390/nu15102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
OBJECTIVE Metabolic Syndrome (MetS) affects hundreds of millions of individuals and constitutes a major cause of morbidity and mortality worldwide. Obesity is believed to be at the core of metabolic abnormalities associated with MetS, including dyslipidemia, insulin resistance, fatty liver disease and vascular dysfunction. Although previous studies demonstrate a diverse array of naturally occurring antioxidants that attenuate several manifestations of MetS, little is known about the (i) combined effect of these compounds on hepatic health and (ii) molecular mechanisms responsible for their effect. METHODS We explored the impact of a metabolic enhancer (ME), consisting of 7 naturally occurring antioxidants and mitochondrial enhancing agents, on diet-induced obesity, hepatic steatosis and atherogenic serum profile in mice. RESULTS Here we show that a diet-based ME supplementation and exercise have similar beneficial effects on adiposity and hepatic steatosis in mice. Mechanistically, ME reduced hepatic ER stress, fibrosis, apoptosis, and inflammation, thereby improving overall liver health. Furthermore, we demonstrated that ME improved HFD-induced pro-atherogenic serum profile in mice, similar to exercise. The protective effects of ME were reduced in proprotein convertase subtilisin/kexin 9 (PCSK9) knock out mice, suggesting that ME exerts it protective effect partly in a PCSK9-dependent manner. CONCLUSIONS Our findings suggest that components of the ME have a positive, protective effect on obesity, hepatic steatosis and cardiovascular risk and that they show similar effects as exercise training.
Collapse
Affiliation(s)
- Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Paul F Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Joshua P Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Melissa E MacDonald
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| | - Jacqueline M Bourgeois
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 5Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), Hamilton, ON L8N 3Z5, Canada
- Exerkine Corporation, MUMC, Hamilton, ON L8N 3Z5, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, and the Research Institute of St. Joe's Hamilton, Hamilton, ON L8N 4A6, Canada
| |
Collapse
|
4
|
Tang L, Wei R, Chen R, Fan G, Zhou J, Qi Z, Wang K, Wei Q, Wei X, Xu X. Establishment and validation of a cholesterol metabolism-related prognostic signature for hepatocellular carcinoma. Comput Struct Biotechnol J 2022; 20:4402-4414. [PMID: 36051877 PMCID: PMC9420502 DOI: 10.1016/j.csbj.2022.07.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents the most important type of liver cancer, the 5-year survival rate for advanced HCC is 2%. The heterogeneity of HCC makes previous models fail to achieve satisfactory results. The role of Cholesterol-based metabolic reprogramming in cancer has attracted more and more attention. In this study, we screened cholesterol metabolism-related genes (CMRGs) based on a systematical analysis from TCGA and GEO database. Then, we constructed a prognostic signature based on the screened 5 CMRGs: FDPS, FABP5, ANXA2, ACADL and HMGCS2. The clinical value of the five CMRGs was validated by TCGA database and HPA database. HCC patients were assigned to the high-risk and low-risk groups on the basis of median risk score calculated by the five CMRGs. We evaluated the signature in TCGA database and validated in ICGC database. The results revealed that the prognostic signature had good prognostic performance, even among different clinicopathological subgroups. The function analysis linked CMRGs with KEGG pathway, such as cell adhesion molecules, drug metabolism-cytochrome P450 and other related pathways. In addition, patients in the high-risk group exhibited characteristics of high TP53 mutation, high immune checkpoints expression and high immune cell infiltration. Furthermore, based on the prognostic signature, we identified 25 most significant small molecule drugs as potential drugs for HCC patients. Finally, a nomogram combined risk score and TNM stage was constructed. These results indicated our prognostic signature has an excellent prediction performance. This study is expected to provide a potential diagnostic and therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Linsong Tang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Rongli Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Ronggao Chen
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Guanghan Fan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Junbin Zhou
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Zhetuo Qi
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Kai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
5
|
Waiz M, Alvi SS, Khan MS. Potential dual inhibitors of PCSK-9 and HMG-R from natural sources in cardiovascular risk management. EXCLI JOURNAL 2022; 21:47-76. [PMID: 35221836 PMCID: PMC8859648 DOI: 10.17179/excli2021-4453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands amongst the leading causes of mortality worldwide and has attracted the attention of world's leading pharmaceutical companies in order to tackle such mortalities. The low-density lipoprotein-cholesterol (LDL-C) is considered the most prominent biomarker for the assessment of ASCVD risk. Distinct inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-R), the chief hepatic cholesterogenic enzyme, are being used since last seven decades to manage hypercholesterolemia. On the other hand, discovery and the association of proprotein convertase subtilisin/kexin type-9 (PCSK-9) with increased ASCVD risk have established PCSK-9 as a novel therapeutic target in cardiovascular medicine. PCSK-9 is well reckoned to facilitate the LDL-receptor (LDL-R) degradation and compromised LDL-C clearance leading to the arterial atherosclerotic plaque formation. The currently available HMG-R inhibitors (statins) and PCSK-9 inhibitors (siRNA, anti-sense oligonucleotides, and monoclonal antibodies) have shown great promises in achieving LDL-C lowering goals, however, their life long prescriptions have raised significant concerns. These deficits associated with the synthetic HMG-R and PCSK-9 inhibitors called for the discovery of alternative therapeutic candidates with potential dual HMG-R and PCSK-9 inhibitory activities from natural origins. Therefore, this report firstly describes the mechanistic insights into the cholesterol homeostasis through HMG-R, PCSK-9, and LDL-R functionality and then compiles the pharmacological effects of natural secondary metabolites with special emphasis on their dual HMG-R and PCSK-9 inhibitory action. In conclusion, various natural products exhibit atheroprotective effects via targeting HMG-R and PCSK-9 activities and lipoprotein metabolism, however, further clinical assessments are still warranted prior their approval for ASCVD risk management in hypercholesterolemic patients.
Collapse
Affiliation(s)
- Mohd Waiz
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - Sahir Sultan Alvi
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| | - M Salman Khan
- IIRC-5, Clinical Biochemistry and Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, U.P. 226026, India
| |
Collapse
|
6
|
Sun P, Zhao L, Zhang N, Zhou J, Zhang L, Wu W, Ji B, Zhou F. Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering. Foods 2021; 10:2666. [PMID: 34828946 PMCID: PMC8617782 DOI: 10.3390/foods10112666] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases are the leading causes of the death around the world. An elevation of the low-density lipoprotein cholesterol (LDL-C) level is one of the most important risk factors for cardiovascular diseases. To achieve optimal plasma LDL-C levels, clinal therapies were investigated which targeted different metabolism pathways. However, some therapies also caused various adverse effects. Thus, there is a need for new treatment options and/or combination therapies to inhibit the LDL-C level. Dietary polyphenols have received much attention in the prevention of cardiovascular diseases due to their potential LDL-C lowering effects. However, the effectiveness and potential mechanisms of polyphenols in lowering LDL-C is not comprehensively summarized. This review focused on dietary polyphenols that could reduce LDL-C and their mechanisms of action. This review also discussed the limitations and suggestions regarding previous studies.
Collapse
Affiliation(s)
- Peng Sun
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Jingxuan Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China;
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.S.); (N.Z.); (J.Z.); (L.Z.); (B.J.)
| |
Collapse
|
7
|
Going "Green" in the Prevention and Management of Atherothrombotic Diseases: The Role of Dietary Polyphenols. J Clin Med 2021; 10:jcm10071490. [PMID: 33916712 PMCID: PMC8038361 DOI: 10.3390/jcm10071490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
During the 20th century processed and ready-to-eat foods became routinely consumed resulting in a sharp rise of fat, salt, and sugar intake in people's diets. Currently, the global incidence of obesity, raised blood lipids, hypertension, and diabetes in an increasingly aged population contributes to the rise of atherothrombotic events and cardiovascular diseases (CVD) mortality. Drug-based therapies are valuable strategies to tackle and help manage the socio-economic impact of atherothrombotic disorders though not without adverse side effects. The inclusion of fresh fruits and vegetables rich in flavonoids to human diets, as recommended by WHO offers a valuable nutritional strategy, alternative to drug-based therapies, to be explored in the prevention and management of atherothrombotic diseases at early stages. Though polyphenols are mostly associated to color and taste in foods, food flavonoids are emerging as modulators of cholesterol biosynthesis, appetite and food intake, blood pressure, platelet function, clot formation, and anti-inflammatory signaling, supporting the health-promoting effects of polyphenol-rich diets in mitigating the impact of risk factors in atherothrombotic disorders and CVD events. Here we overview the current knowledge on the effect of polyphenols particularly of flavonoid intake on the atherothrombotic risk factors and discuss the caveats and challenges involved with current experimental cell-based designs.
Collapse
|
8
|
Hosseini S, Alipour M, Zakerkish M, Cheraghian B, Ghandil P. Effects of epigallocatechin gallate on total antioxidant capacity, biomarkers of systemic low-grade inflammation and metabolic risk factors in patients with type 2 diabetes mellitus: the role of FTO-rs9939609 polymorphism. Arch Med Sci 2021; 17:1722-1729. [PMID: 34900054 PMCID: PMC8641491 DOI: 10.5114/aoms.2020.95903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/22/2018] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is known as one of the most common metabolic diseases and FTO polymorphism has been implicated in the susceptibility to this disease. Epigallocatechin-3-gallate (EGCG) has shown favorable effects on risk factors related to T2DM. The present study aimed to investigate the effects of EGCG on total antioxidant capacity, biomarkers of systemic low-grade inflammation and metabolic risk factors in patients with T2DM considering the role of FTO polymorphism. MATERIAL AND METHODS In this double-blind randomized clinical trial, 60 patients with T2DM (20-60 years) were randomly allocated to three groups. Group 1 received 300 mg of EGCG (TT genotype). Group 2 received 300 mg of EGCG (AA + AT genotypes) and Group 3 received placebo. We genotyped FTO (rs9939609) and measured body mass index (BMI), blood pressure, profile lipid, interleukin-6, high sensitivity C-reactive protein and total antioxidant capacity, before and after the intervention, at 2 months. RESULTS In carriers of A allele, EGCG intervention caused a significant decrease in BMI, diastolic blood pressure (DBP), mean arterial pressure and serum cholesterol level compared with placebo (p < 0.05). Also, we found a significant gene-treatment interaction effect between FTO-rs9939609 and EGCG on BMI and DBP (P > 0.05). CONCLUSIONS These findings suggest that carriers of the risk alleles (A) of FTO-rs9939609 have a better response to EGCG in improving BMI and DBP in patients with T2DM.
Collapse
Affiliation(s)
- Seyedahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meysam Alipour
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoosh Zakerkish
- Department of Endocrinology and Metabolism, Health Research Institute, Diabetes Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Cheraghian
- Department of Statistics and Epidemiology, Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Ghandil
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Choi YJ, Lee SJ, Kim HI, Lee HJ, Kang SJ, Kim TY, Cheon C, Ko SG. Platycodin D enhances LDLR expression and LDL uptake via down-regulation of IDOL mRNA in hepatic cells. Sci Rep 2020; 10:19834. [PMID: 33199761 PMCID: PMC7670405 DOI: 10.1038/s41598-020-76224-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
The root of Platycodon grandiflorum (PG) has long been used as a traditional herbal medicine in Asian country. Platycondin D (PD), triterpenoid saponin that is a main constituent of PG, exhibits various biological activities such as anti-inflammatory, anti-oxidant, anti-diabetic, and anti-cancer effects. A previous study showed that PD had cholesterol-lowering effects in mice that develop hypercholesterolemia, but the underlying molecular mechanisms have not been elucidated during the last decade. Here, we demonstrated that both PG and PD markedly increased levels of cell surface low-density lipoprotein receptor (LDLR) by down-regulation of the E3 ubiquitin ligase named inducible degrader of the LDLR (IDOL) mRNA, leading to the enhanced uptake of LDL-derived cholesterol (LDL-C) in hepatic cells. Furthermore, cycloheximide chase analysis and in vivo ubiquitination assay revealed that PD increased the half-life of LDLR protein by reducing IDOL-mediated LDLR ubiquitination. Finally, we demonstrated that treatment of HepG2 cells with simvastatin in combination with PG and PD had synergistic effects on the improvement of LDLR expression and LDL-C uptake. Together, these results provide the first molecular evidence for anti-hypercholesterolemic activity of PD and suggest that PD alone or together with statin could be a potential therapeutic option in the treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sol Ji Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Hyo In Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hee Jung Lee
- Department Global Public Health and Korean Medicine Management, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - So Jung Kang
- Department of Clinical Koeran Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Tai Young Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea. .,Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul, 130-701, Korea.
| | - Chunhoo Cheon
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul, 130-701, Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul, 130-701, Korea.
| |
Collapse
|
10
|
IIAEK Targets Intestinal Alkaline Phosphatase (IAP) to Improve Cholesterol Metabolism with a Specific Activation of IAP and Downregulation of ABCA1. Nutrients 2020; 12:nu12092859. [PMID: 32961978 PMCID: PMC7551322 DOI: 10.3390/nu12092859] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 01/11/2023] Open
Abstract
IIAEK (Ile-Ile-Ala-Glu-Lys, lactostatin) is a novel cholesterol-lowering pentapeptide derived from bovine milk β-lactoglobulin. However, the molecular mechanisms underlying the IIAEK-mediated suppression of intestinal cholesterol absorption are unknown. Therefore, we evaluated the effects of IIAEK on intestinal cholesterol metabolism in a human intestinal model using Caco-2 cells. We found that IIAEK significantly reduced the expression of intestinal cholesterol metabolism-associated genes, particularly that of the ATP-binding cassette transporter A1 (ABCA1). Subsequently, we chemically synthesized a novel molecular probe, IIXEK, which can visualize a complex of target proteins interacting with photoaffinity-labeled IIAEK by fluorescent substances. Through photoaffinity labeling and MS analysis with IIXEK for the rat small intestinal mucosa and intestinal lipid raft fractions of Caco-2 cells, we identified intestinal alkaline phosphatase (IAP) as a specific molecule interacting with IIAEK and discovered the common IIAEK-binding amino acid sequence, GFYLFVEGGR. IIAEK significantly increased IAP mRNA and protein levels while decreasing ABCA1 mRNA and protein levels in Caco-2 cells. In conclusion, we found that IIAEK targets IAP to improve cholesterol metabolism via a novel signaling pathway involving the specific activation of IAP and downregulation of intestinal ABCA1.
Collapse
|
11
|
Hwang JT, Kim HJ, Choi HK, Park JH, Chung S, Chung MY. Butein Synergizes with Statin to Upregulate Low-Density Lipoprotein Receptor Through HNF1α-Mediated PCSK9 Inhibition in HepG2 Cells. J Med Food 2020; 23:1102-1108. [PMID: 32835593 DOI: 10.1089/jmf.2020.4761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Downregulation of the low-density lipoprotein (LDL) receptor (LDLR) can lead to hypercholesterolemia and related conditions, including cardiovascular diseases. Statins are a class of LDL cholesterol-lowering agents and are best-selling medications for patients at high risk of developing cardiovascular diseases. Indeed, statins upregulate LDLR and proprotein convertase subtilisin/kexin type 9a (PCSK9), leading to LDLR lysosomal degradation, which interferes with the attenuation of hypercholesterolemia. In the present study, butein was found to decrease extracellular PCSK9 levels by reducing its mRNA expression, which was attributable to butein-mediated downregulation of HNF1α in HepG2 cells. Butein-mediated PCSK9 inhibition further reversed LDLR protein synthesis inhibition, which possibly occurred through butein-mediated inhibition of LDLR degradation. When treated as a combination of butein and a statin, butein reduced statin-mediated enhancement of PCSK9 protein expression. This resulted in a synergistic enhancement of LDLR protein expression, whereas butein alone marginally increased LDLR protein expression. These findings suggest that butein, a novel PCSK9 inhibitor, may be a potential alternative or adjunct to statin treatment.
Collapse
Affiliation(s)
- Jin-Taek Hwang
- Korea Food Research Institute, Wanju-Gun, Korea.,Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| | - Hyo Jin Kim
- Korea Food Research Institute, Wanju-Gun, Korea.,Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| | | | - Jae-Ho Park
- Korea Food Research Institute, Wanju-Gun, Korea
| | | | | |
Collapse
|
12
|
Naturally Occurring PCSK9 Inhibitors. Nutrients 2020; 12:nu12051440. [PMID: 32429343 PMCID: PMC7284437 DOI: 10.3390/nu12051440] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic, epidemiological and pharmacological data have led to the conclusion that antagonizing or inhibiting Proprotein convertase subtilisin/kexin type 9 (PCSK9) reduces cardiovascular events. This clinical outcome is mainly related to the pivotal role of PCSK9 in controlling low-density lipoprotein (LDL) cholesterol levels. The absence of oral and affordable anti-PCSK9 medications has limited the beneficial effects of this new therapeutic option. A possible breakthrough in this field may come from the discovery of new naturally occurring PCSK9 inhibitors as a starting point for the development of oral, small molecules, to be used in combination with statins in order to increase the percentage of patients reaching their LDL-cholesterol target levels. In the present review, we have summarized the current knowledge on natural compounds or extracts that have shown an inhibitory effect on PCSK9, either in experimental or clinical settings. When available, the pharmacodynamic and pharmacokinetic profiles of the listed compounds are described.
Collapse
|
13
|
Cui CJ, Jin JL, Guo LN, Sun J, Wu NQ, Guo YL, Liu G, Dong Q, Li JJ. Beneficial impact of epigallocatechingallate on LDL-C through PCSK9/LDLR pathway by blocking HNF1α and activating FoxO3a. J Transl Med 2020; 18:195. [PMID: 32398139 PMCID: PMC7216725 DOI: 10.1186/s12967-020-02362-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Green tea drinking has been proven to lower lipid and exert cardiovascular protection, while the potential mechanism has not been fully determined. This study was to investigate whether the beneficial impact of epigallocatechingallate (EGCG), a type of catechin in green tea on lipids is associated with proprotein convertase subtilisin/kexin type 9 (PCSK9) pathways. METHODS We studied the effects and underlying molecular mechanism of EGCG or green tea on regulating cholesterol from human, animal and in vitro. RESULTS In the age- and gender-matched case control observation, we found that individuals with frequent tea consumption (n = 224) had the lower plasma PCSK9 and low density lipoprotein cholesterol (LDL-C) levels compared with ones without tea consumption (n = 224, p < 0.05). In the high fat diet (HFD) fed rats, EGCG administration significantly lowered circulating PCSK9 concentration and liver PCSK9 expression, along with up-regulated LDL receptor (LDLR) expression but decreased level of LDL-C. In hepatic cell study, similar results were obtained regarding the impact of EGCG on LDLR and PCSK9 expression. The assay transposase-accessible chromatic with high-throughput sequencing (ATAC-seq) and subsequent results suggested that two transcription factors, hepatocyte nuclear factor-1α (HNF-1α) and forkhead box class O (FoxO) 3a involved in inhibitory action of EGCG on PCSK9 expression. CONCLUSIONS The present study demonstrates that EGCG suppresses PCSK9 production by promoting nuclear FoxO3a, and reducing nuclear HNF1α, resulting in up-regulated LDLR expression and LDL uptake in hepatocytes. Thereby inhibiting liver and circulating PCSK9 levels, and ultimately lowering LDL-C levels.
Collapse
Affiliation(s)
- Chuan-Jue Cui
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Jing-Lu Jin
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Lin-Na Guo
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Jing Sun
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Na-Qiong Wu
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Yuan-Lin Guo
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Geng Liu
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Qian Dong
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Jian-Jun Li
- Faculty of Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
14
|
Luo K, Ma C, Xing S, An Y, Feng J, Dang H, Huang W, Qiao L, Cheng J, Xie L. White tea and its active polyphenols lower cholesterol through reduction of very-low-density lipoprotein production and induction of LDLR expression. Biomed Pharmacother 2020; 127:110146. [PMID: 32334376 DOI: 10.1016/j.biopha.2020.110146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging in vivo and vitro data suggest that white tea extract (WTE) is capable of favourably modulating metabolic syndrome, especially by ameliorating abnormal lipid metabolism. Microarray-based gene expression profiling was performed in HepG2 cells to analyze the effects of WTE from a systematic perspective. Gene Ontology and pathway analysis revealed that WTE significantly affected pathways related to lipid metabolism. WTE significantly downregulated apolipoprotein B (APOB) and microsomal triglyceride transfer protein (MTTP) expression and thereby reduced the production of very-low-density lipoprotein. In the meanwhile, WTE stimulated low-density lipoprotein-cholesterol (LDL-c) uptake through targeting low-density lipoprotein receptor (LDLR), as a consequence of the activation of sterol regulatory element-binding protein 2 (SREBP2) and peroxisome proliferator-activated receptor δ (PPARδ). Furthermore, WTE significantly downregulated triglycerides synthetic genes and reduced intracellular triglycerides accumulation. Besides, we demonstrated that the tea catechins epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate (ECG) are abundant in WTE and contribute to the regulation of cholesterol metabolism related genes, including LDLR, MTTP and APOB. Our findings suggest white tea plays important roles in ameliorating abnormal lipid metabolism in vitro.
Collapse
Affiliation(s)
- Kun Luo
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China; Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chengmei Ma
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Shaofang Xing
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Yannan An
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Juan Feng
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China; Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Honglei Dang
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Wenting Huang
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China; Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Liansheng Qiao
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China; Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Cheng
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China; Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China; National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China.
| | - Lan Xie
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing, 100084, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China; Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing, 100084, China; National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China.
| |
Collapse
|
15
|
Shafabakhsh R, Reiner Ž, Hallajzadeh J, Mirsafaei L, Asemi Z. Are anti-inflammatory agents and nutraceuticals - novel inhibitors of PCSK9? Crit Rev Food Sci Nutr 2020; 61:325-336. [PMID: 32090592 DOI: 10.1080/10408398.2020.1731678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease which increases the lysosomal degradation of low density lipoprotein receptor (LDLR) resulting in elevated serum LDL-cholesterol levels. Elevated LDL-cholesterol is the main risk factor for cardiovascular disease (CVD). Antibodies to PCSK9 decrease LDL-cholesterol. Recent studies have suggested a direct relationship between PCSK9 and inflammation and the potential inhibitory effects of anti-inflammatory agents against this enzyme. Nutraceuticals are natural compounds, which have numerous anti-inflammatory and lipid-lowering effects. In this review we focus on anti-inflammatory substances and nutraceuticals, which are beneficial in treatment of dyslipidemia. We also reviewed the recent findings concerning the role of PCSK9 as the main target for molecular mechanisms of these substances.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Liaosadat Mirsafaei
- Department of Cardiology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
16
|
Zanka K, Kawaguchi Y, Okada Y, Nagaoka S. Epigallocatechin Gallate Induces Upregulation of LDL Receptor via the 67 kDa Laminin Receptor-Independent Pathway in HepG2 Cells. Mol Nutr Food Res 2020; 64:e1901036. [PMID: 31978263 DOI: 10.1002/mnfr.201901036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/27/2019] [Indexed: 12/14/2022]
Abstract
SCOPE Epigallocatechin gallate (EGCG), an active polyphenol in green tea, exhibits various physiological effects, including activation of low-density lipoprotein receptors (LDLR). The previous studies have suggested that EGCG activates LDLR via extracellular signal-regulated kinase (ERK) pathway in HepG2 cells. However, the detailed molecular mechanism remains unclear. Recently, 67 kDa laminin receptor (67LR) is identified as a receptor for EGCG. Therefore, this study aims to determine whether 67LR is involved in the mechanism of LDLR activation by EGCG. METHODS AND RESULTS EGCG induces upregulation of LDLR when 67LR is knocked down in HepG2 cells. Similar effect is observed after the cells are treated with 67LR monoclonal antibody. The loss of antiallergic effect following 67LR siRNA knockdown and 67LR antibody treatment confirms the results since the antiallergic effect of EGCG is known to be mediated by 67LR. CONCLUSION EGCG activates LDLR expression via 67LR-independent pathway in HepG2 cells.
Collapse
Affiliation(s)
- Kumiko Zanka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuya Kawaguchi
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yudai Okada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Satoshi Nagaoka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
17
|
Kanasaki A, Jiang Z, Mizokami T, Shirouchi B, Iida T, Nagata Y, Sato M. Dietary d-allulose alters cholesterol metabolism in Golden Syrian hamsters partly by reducing serum PCSK9 levels. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
18
|
Lu X. Structure and Function of Proprotein Convertase Subtilisin/kexin Type 9 (PCSK9) in Hyperlipidemia and Atherosclerosis. Curr Drug Targets 2019; 20:1029-1040. [DOI: 10.2174/1389450120666190214141626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/01/2023]
Abstract
Background:One of the important factors in Low-Density Lipoprotein (LDL) metabolism is the LDL receptor (LDLR) by its capacity to bind and subsequently clear cholesterol derived from LDL (LDL-C) in the circulation. Proprotein Convertase Subtilisin-like Kexin type 9 (PCSK9) is a newly discovered serine protease that destroys LDLR in the liver and thereby controls the levels of LDL in plasma. Inhibition of PCSK9-mediated degradation of LDLR has, therefore, become a novel target for lipid-lowering therapy.Methods:We review the current understanding of the structure and function of PCSK9 as well as its implications for the treatment of hyperlipidemia and atherosclerosis.Results:New treatments such as monoclonal antibodies against PCSK9 may be useful agents to lower plasma levels of LDL and hence prevent atherosclerosis.Conclusion:PCSK9's mechanism of action is not yet fully clarified. However, treatments that target PCSK9 have shown striking early efficacy and promise to improve the lives of countless patients with hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, SW3 6LR, United Kingdom
| |
Collapse
|
19
|
Kubota S, Tanaka Y, Nagaoka S. Ellagic acid affects mRNA expression levels of genes that regulate cholesterol metabolism in HepG2 cells. Biosci Biotechnol Biochem 2019; 83:952-959. [PMID: 30741106 DOI: 10.1080/09168451.2019.1576498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ellagic acid has been shown to improve cholesterol metabolism in animal studies, but the molecular mechanisms underlying this function have not been fully understood. We performed DNA microarray analysis to elucidate the effects of ellagic acid on cholesterol metabolism in HepG2 hepatocytes. This revealed that the expression levels of several genes related to cholesterol metabolism, including the low-density lipoprotein receptor (LDLR), were changed by ellagic acid treatment. Using a real-time PCR and immunoblot we confirmed that ellagic acid treatment up-regulated mRNA and protein expression level of the LDLR. Moreover, In the presence of 25 μM ellagic acid, extracellular apoB protein and MTP mRNA levels were significantly decreased. These findings indicate that ellagic acid improves cholesterol metabolism through the up-regulation of LDLR, down-regulation of MTP mRNA and reduces extracellular apoB levels. The ellagic acid-induced up-regulation of LDLR occurred via the extracellular signal-regulated kinase (ERK) signaling pathway in HepG2 hepatocytes. Abbreviations: LDLR: low-density lipoprotein receptor; apoB: apolipoprotein B; PKC: diacylglycerol-protein kinase C; MAPK: mitogen-activated protein kinase; ERK: p42/44 extracellular signal-regulated kinase; JNK: c-Jun N-terminal kinase; VLDLR: very low density lipoprotein receptor; PPARδ: peroxisome proliferator-activated receptor δ; SREBPs: sterol regulatory element-binding proteins; MTP: microsomal triacylglycerol transfer protein; LPDS: lipoprotein-deficient serum.
Collapse
Affiliation(s)
- Shizuka Kubota
- a Department of Applied Life Science, Faculty of Applied Biological Sciences , Gifu University , Gifu , Japan
| | - Yuma Tanaka
- a Department of Applied Life Science, Faculty of Applied Biological Sciences , Gifu University , Gifu , Japan
| | - Satoshi Nagaoka
- a Department of Applied Life Science, Faculty of Applied Biological Sciences , Gifu University , Gifu , Japan
| |
Collapse
|
20
|
Araki R, Fujie K, Nakata Y, Suzuki H, Matsui K, Uematsu K, Shibasaki H, Ando T, Ueyama Y, Isoda H, Hashimoto K. An Exploratory Study of the Effects of Continuous Intake of Olive Leaf Tea on Physique and Glucose and Lipid Metabolism. ACTA ACUST UNITED AC 2018. [DOI: 10.4327/jsnfs.71.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Risa Araki
- Course of Clinical Research and Regional Innovation Donated by the Japanese Agriculture Ibaraki Public Welfare Federation, Faculty of Medicine, University of Tsukuba
| | - Keiko Fujie
- Course of Clinical Research and Regional Innovation Donated by the Japanese Agriculture Ibaraki Public Welfare Federation, Faculty of Medicine, University of Tsukuba
| | - Yoshio Nakata
- Course of Clinical Research and Regional Innovation Donated by the Japanese Agriculture Ibaraki Public Welfare Federation, Faculty of Medicine, University of Tsukuba
| | - Hiroaki Suzuki
- Department of Internal Medicine, Metabolism and Endocrinology, Faculty of Medicine, University of Tsukuba
| | | | | | - Hiroyuki Shibasaki
- Fermentation & Food Research Institute, Kagawa Prefectural Industrial Technology Center
| | - Takahiko Ando
- Course of Clinical Research and Regional Innovation Donated by the Japanese Agriculture Ibaraki Public Welfare Federation, Faculty of Medicine, University of Tsukuba
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Yukari Ueyama
- Course of Clinical Research and Regional Innovation Donated by the Japanese Agriculture Ibaraki Public Welfare Federation, Faculty of Medicine, University of Tsukuba
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Koichi Hashimoto
- Course of Clinical Research and Regional Innovation Donated by the Japanese Agriculture Ibaraki Public Welfare Federation, Faculty of Medicine, University of Tsukuba
| |
Collapse
|
21
|
Nagaoka S. Nutrition and Food Science Studies of Cholesterol Metabolism Regulation. ACTA ACUST UNITED AC 2018. [DOI: 10.4327/jsnfs.71.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Satoshi Nagaoka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University
| |
Collapse
|