1
|
Costa D, Rupasinghe HV. Development of a Scalable Extraction Process for Anthocyanins of Haskap Berry ( Lonicera caerulea). Molecules 2025; 30:1071. [PMID: 40076296 PMCID: PMC11902241 DOI: 10.3390/molecules30051071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Haskap (Lonicera caerulea) berry is rich in anthocyanins, particularly cyanidin-3-O-glucoside (C3G). In this investigation, a response surface methodology was applied to optimize the anhydrous ethanol-based extraction parameters to obtain the maximum yield of anthocyanins from haskap berry and to compare the recovery of anthocyanins from different extraction methods. The central composite design was employed to study the effect of three independent variables (XA = ultrasonic bath power, XB = extraction temperature, and XC = extraction time) which were found to significantly affect the response variable total anthocyanin content (TAC) and fit to the second-order polynomial model. The optimum process parameters of XA = 536 W, XB = 62.3 °C, and XC = 63.5 min provided a predicted TAC of 16.5 mg C3G equivalence (C3GE)/g dry weight (DW), which was experimentally validated with 16.1 mg of C3GE/g DW. The optimized ultrasonication-assisted extraction process using anhydrous ethanol was also effective in recovering quercetin glycosides, catechin, procyanidin B2, and iridoids, as determined by ultra-pressure liquid chromatography-mass spectrometry. Though the anthocyanin recovery was the highest (17.6 mg of C3GE/g DW) when a deep eutectic solvent consisting of citric acid and D-(+)-maltose was used, this solvent system has limitations when preparing dehydrated extracts for industrial applications. This study concludes that the effective extraction of anthocyanins and other phytochemicals from haskap berries can be performed using food-grade anhydrous ethanol.
Collapse
Affiliation(s)
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
2
|
Lanquaye H, Dwivedi SK, Li X, Agyemang P, Rickauer G, Arachchige DL, Wang C, Peters J, Zhen I, Knighton I, Ata A, Werner T, Liu H. A Rhodamine-Based Ratiometric Fluorescent Sensor for Dual-Channel Visible and Near-Infrared Emission Detection of NAD(P)H in Living Cells and Fruit Fly Larvae. ACS APPLIED BIO MATERIALS 2025; 8:1707-1719. [PMID: 39905910 PMCID: PMC12032585 DOI: 10.1021/acsabm.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The detection and dynamic monitoring of intracellular NAD(P)H concentrations are crucial for comprehending cellular metabolism, redox biology, and their roles in various physiological and pathological processes. To address this need, we introduce sensor A, a near-infrared ratiometric fluorescent sensor for real-time, quantitative imaging of NAD(P)H fluctuations in live cells. Sensor A combines a 3-quinolinium electron-deficient acceptor with a near-infrared rhodamine dye, offering high sensitivity and specificity for NAD(P)H with superior photophysical properties. In its unbound state, sensor A emits strongly at 650 nm and weakly at 465 nm upon 400 nm excitation. Upon binding to NAD(P)H, it shows a fluorescence increase at 465 nm and a decrease at 650 nm, enabling accurate ratiometric measurements. Sensor A also exhibits ratiometric upconversion fluorescence when excited at 800 or 810 nm, offering additional flexibility for different experimental setups. The sensor's response relies on the reduction of the 3-quinolinium acceptor by NAD(P)H, forming a 1,4-dihydroquinoline donor that enhances fluorescence at 465 nm and quenches the near-infrared emission at 650 nm through photoinduced electron transfer. This mechanism ensures high sensitivity and reliable quantification of NAD(P)H levels while minimizing interference from sensor concentration, excitation intensity, or environmental factors. Sensor A was validated in HeLa and MD-MB453 cells under various metabolic and pharmacological conditions, including glucose and maltose stimulation and treatments with chemotherapeutic agents. Co-localization with mitochondrial-specific dyes confirmed its mitochondrial targeting, enabling precise tracking of NAD(P)H fluctuations. In vivo imaging of Drosophila larvae under nutrient starvation or chemotherapeutic exposure revealed dose-dependent fluorescence responses, highlighting its potential for tracking NAD(P)H changes in live organisms. Sensor A represents a significant advancement in NAD(P)H imaging, providing a powerful tool for exploring cellular metabolism and redox biology in biomedical research.
Collapse
Affiliation(s)
- Henry Lanquaye
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xinzhu Li
- Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Peter Agyemang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Grace Rickauer
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Crystal Wang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Houghton High School, Houghton, Michigan 49931, United States
| | - Joseph Peters
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ivy Zhen
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Carmel High School, 520 E Main St, Carmel, Indiana 46032, United States
| | - Isabelle Knighton
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Athar Ata
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
3
|
Merritt RJ. Should we be concerned about the use of lactose-free infant formulas? J Pediatr Gastroenterol Nutr 2024; 79:929-933. [PMID: 39315662 DOI: 10.1002/jpn3.12375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024]
Affiliation(s)
- Russell J Merritt
- Division of Pediatric Gastroenterology Hepatology and Nutrition, Intestinal Rehabilitation Program, Children's Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Zamfir-Taranu A, Löscher BS, Carbone F, Hoter A, Esteban Blanco C, Bozzarelli I, Torices L, Routhiaux K, Van den Houte K, Bonfiglio F, Mayr G, Corsetti M, Naim HY, Franke A, Tack J, D'Amato M. Functional Variation in Human CAZyme Genes in Relation to the Efficacy of a Carbohydrate-Restricted Diet in IBS Patients. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00870-X. [PMID: 39413891 DOI: 10.1016/j.cgh.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND & AIMS Limiting the dietary intake of certain carbohydrates has therapeutic effects in some but not all irritable bowel syndrome (IBS) patients. We investigated genetic variation in human Carbohydrate-Active enZYmes (hCAZymes) genes in relationship to the response to a FODMAP-lowering diet in the DOMINO study. METHODS hCAZy polymorphism was studied in patients with IBS from the dietary (FODMAP-lowering; n = 196) and medication (otilonium bromide; n = 54) arms of the DOMINO trial via targeted sequencing of 6 genes of interest (AMY2B, LCT, MGAM, MGAM2, SI, and TREH). hCAZyme defective (hypomorphic) variants were identified via computational annotation using clinical pathogenicity classifiers. Age- and sex-adjusted logistic regression was used to test hCAZyme polymorphisms in cumulative analyses where IBS patients were stratified into carrier and non-carrier groups (collapsing all hCAZyme hypomorphic variants into a single bin). Quantitative analysis of hCAZyme variation was also performed, in which the number of hCAZyme genes affected by a hypomorphic variant was taken into account. RESULTS In the dietary arm, the number of hypomorphic hCAZyme genes positively correlated with treatment response rate (P = .03; odds ratio = 1.51; confidence interval = 0.99-2.32). In the IBS-D group (n = 55), hCAZyme carriers were 6 times more likely to respond to the diet than non-carriers (P = .002; odds ratio = 6.33; confidence interval = 1.83-24.77). These trends were not observed in the medication arm. CONCLUSIONS hCAZYme genetic variation may be relevant to the efficacy of a carbohydrate-lowering diet. This warrants additional testing and replication of findings, including mechanistic investigations of this phenomenon.
Collapse
Affiliation(s)
| | - Britt-Sabina Löscher
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Florencia Carbone
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Abdullah Hoter
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | - Leire Torices
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain
| | - Karen Routhiaux
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Karen Van den Houte
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Ferdinando Bonfiglio
- Department of Molecular Medicine Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Gabriele Mayr
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Maura Corsetti
- NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom; Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Hassan Y Naim
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jan Tack
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium; Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Mauro D'Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
5
|
Wang X, Zhao J, Xu J, Li B, Liu X, Xie G, Duan X, Liu D. Noncaloric monosaccharides induce excessive sprouting angiogenesis in zebrafish via foxo1a-marcksl1a signal. eLife 2024; 13:RP95427. [PMID: 39365738 PMCID: PMC11452176 DOI: 10.7554/elife.95427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoning Wang
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Jinxiang Zhao
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
- Suqian First HospitalSuqianChina
| | - Jiehuan Xu
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Bowen Li
- Medical School, Nantong UniversityNantongChina
| | - Xia Liu
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Gangcai Xie
- Medical School, Nantong UniversityNantongChina
| | - Xuchu Duan
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| | - Dong Liu
- Affiliated Hospital of Nantong University, Nantong Laboratory of Development and Diseases, School of Life Science; Co-innovation Center of Neuroregeneration, Nantong UniversityNantongChina
| |
Collapse
|
6
|
Hu H, Qimu G, Nie J, Wu N, Dan T. Selection of a galactose-positive mutant strain of Streptococcus thermophilus and its optimized production as a high-vitality starter culture. J Dairy Sci 2024; 107:6558-6575. [PMID: 38754828 DOI: 10.3168/jds.2023-24550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 05/18/2024]
Abstract
Streptococcus thermophilus is a common starter in yogurt production and plays an important role in the dairy industry. In this study, a galactose-positive (Gal+) mutant strain, IMAU20246Y, was produced using the chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine (NTG) from wild-type S. thermophilus IMAU20246, which is known to have good fermentation characteristics. The sugar content of milk fermented by either the mutant or the wild type was determined using HPLC; metabolism of lactose and galactose was significantly increased in the mutant strain. In addition, we used response surface methodology to optimize components of the basic M17 medium for survival ratio of the mutant strain. Under these optimal conditions, the viable counts of mutant S. thermophilus IMAU20246Y reached 4.15 × 108 cfu/mL and, following freeze-drying in the medium, retained cell viability of up to 67.42%. These results are conducive to production of a high-vitality starter culture and development of "low sugar, high sweetness" dairy products.
Collapse
Affiliation(s)
- Haimin Hu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gesudu Qimu
- Inner Mongolia Scitop Bio-tech Co. Ltd., Hohhot 011508, China
| | - Jiaying Nie
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tong Dan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
7
|
Sun Y, Zhang R, Tian L, Pan Y, Sun X, Huang Z, Fan J, Chen J, Zhang K, Li S, Chen W, Bazzano LA, Kelly TN, He J, Bundy JD, Li C. Novel Metabolites Associated With Blood Pressure After Dietary Interventions. Hypertension 2024; 81:1966-1975. [PMID: 39005213 PMCID: PMC11324412 DOI: 10.1161/hypertensionaha.124.22999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND The blood pressure (BP) etiologic study is complex due to multifactorial influences, including genetic, environmental, lifestyle, and their intricate interplays. We used a metabolomics approach to capture internal pathways and external exposures and to study BP regulation mechanisms after well-controlled dietary interventions. METHODS In the ProBP trail (Protein and Blood Pressure), a double-blinded crossover randomized controlled trial, participants underwent dietary interventions of carbohydrate, soy protein, and milk protein, receiving 40 g daily for 8 weeks, with 3-week washout periods. We measured plasma samples collected at baseline and at the end of each dietary intervention. Multivariate linear models were used to evaluate the association between metabolites and systolic/diastolic BP. Nominally significant metabolites were examined for enriching biological pathways. Significant ProBP findings were evaluated for replication among 1311 participants of the BHS (Bogalusa Heart Study), a population-based study conducted in the same area as ProBP. RESULTS After Bonferroni correction for 77 independent metabolite clusters (α=6.49×10-4), 18 metabolites were significantly associated with BP at baseline or the end of a dietary intervention, of which 11 were replicated in BHS. Seven emerged as novel discoveries, which are as follows: 1-linoleoyl-GPE (18:2), 1-oleoyl-GPE (18:1), 1-stearoyl-2-linoleoyl-GPC (18:0/18:2), 1-palmitoyl-2-oleoyl-GPE (16:0/18:1), maltose, N-stearoyl-sphinganine (d18:0/18:0), and N6-carbamoylthreonyladenosine. Pathway enrichment analyses suggested dietary protein intervention might reduce BP through pathways related to G protein-coupled receptors, incretin function, selenium micronutrient network, and mitochondrial biogenesis. CONCLUSIONS Seven novel metabolites were identified to be associated with BP at the end of different dietary interventions. The beneficial effects of protein interventions might be mediated through specific metabolic pathways.
Collapse
Affiliation(s)
- Yixi Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Y.S., R.Z., L.T., Z.H., J.F., J.C., W.C., L.B., J.H., J.D.B., C.L.)
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Y.S., R.Z., L.T., Z.H., J.F., J.C., W.C., L.B., J.H., J.D.B., C.L.)
| | - Ling Tian
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Y.S., R.Z., L.T., Z.H., J.F., J.C., W.C., L.B., J.H., J.D.B., C.L.)
| | - Yang Pan
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago (Y.P., X.S., T.N.K.)
| | - Xiao Sun
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago (Y.P., X.S., T.N.K.)
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Y.S., R.Z., L.T., Z.H., J.F., J.C., W.C., L.B., J.H., J.D.B., C.L.)
| | - Jia Fan
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Y.S., R.Z., L.T., Z.H., J.F., J.C., W.C., L.B., J.H., J.D.B., C.L.)
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Y.S., R.Z., L.T., Z.H., J.F., J.C., W.C., L.B., J.H., J.D.B., C.L.)
| | - Kai Zhang
- Department of Environmental Health Sciences, University of Albany, State University of New York, Rensselaer (K.Z.)
| | - Shengxu Li
- Children's Minnesota Research Institute, Children's Minnesota, Minneapolis (S.L.)
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Y.S., R.Z., L.T., Z.H., J.F., J.C., W.C., L.B., J.H., J.D.B., C.L.)
| | - Lydia A Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Y.S., R.Z., L.T., Z.H., J.F., J.C., W.C., L.B., J.H., J.D.B., C.L.)
| | - Tanika N Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago (Y.P., X.S., T.N.K.)
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Y.S., R.Z., L.T., Z.H., J.F., J.C., W.C., L.B., J.H., J.D.B., C.L.)
| | - Joshua D Bundy
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Y.S., R.Z., L.T., Z.H., J.F., J.C., W.C., L.B., J.H., J.D.B., C.L.)
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (Y.S., R.Z., L.T., Z.H., J.F., J.C., W.C., L.B., J.H., J.D.B., C.L.)
| |
Collapse
|
8
|
Olowolagba AM, Idowu MO, Arachchige DL, Aworinde OR, Dwivedi SK, Graham OR, Werner T, Luck RL, Liu H. Syntheses and Applications of Coumarin-Derived Fluorescent Probes for Real-Time Monitoring of NAD(P)H Dynamics in Living Cells across Diverse Chemical Environments. ACS APPLIED BIO MATERIALS 2024; 7:5437-5451. [PMID: 38995885 PMCID: PMC11333170 DOI: 10.1021/acsabm.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Fluorescent probes play a crucial role in elucidating cellular processes, with NAD(P)H sensing being pivotal in understanding cellular metabolism and redox biology. Here, the development and characterization of three fluorescent probes, A, B, and C, based on the coumarin platform for monitoring of NAD(P)H levels in living cells are described. Probes A and B incorporate a coumarin-cyanine hybrid structure with vinyl and thiophene connection bridges to 3-quinolinium acceptors, respectively, while probe C introduces a dicyano moiety for replacement of the lactone carbonyl group of probe A which increases the reaction rate of the probe with NAD(P)H. Initially, all probes exhibit subdued fluorescence due to intramolecular charge transfer (ICT) quenching. However, upon hydride transfer by NAD(P)H, fluorescence activation is triggered through enhanced ICT. Theoretical calculations confirm that the electronic absorption changes upon the addition of hydride to originate from the quinoline moiety instead of the coumarin section and end up in the middle section, illustrating how the addition of hydride affects the nature of this absorption. Control and dose-response experiments provide conclusive evidence of probe C's specificity and reliability in identifying intracellular NAD(P)H levels within HeLa cells. Furthermore, colocalization studies indicate probe C's selective targeting of mitochondria. Investigation into metabolic substrates reveals the influence of glucose, maltose, pyruvate, lactate, acesulfame potassium, and aspartame on NAD(P)H levels, shedding light on cellular responses to nutrient availability and artificial sweeteners. Additionally, we explore the consequence of oxaliplatin on cellular NAD(P)H levels, revealing complex interplays between DNA damage repair, metabolic reprogramming, and enzyme activities. In vivo studies utilizing starved fruit fly larvae underscore probe C's efficacy in monitoring NAD(P)H dynamics in response to external compounds. These findings highlight probe C's utility as a versatile tool for investigating NAD(P)H signaling pathways in biomedical research contexts, offering insights into cellular metabolism, stress responses, and disease mechanisms.
Collapse
Affiliation(s)
- Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Micah Olamide Idowu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | | | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Olivya Rose Graham
- Department of Biological Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Science, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
9
|
Carlos de Sousa W, Alves Morais R, Damian Giraldo Zuniga A. Buriti (Mauritia flexuosa) shell flour: Nutritional composition, chemical profile, and antioxidant potential as a strategy for valuing waste from native Brazilian fruits. Food Res Int 2024; 190:114578. [PMID: 38945600 DOI: 10.1016/j.foodres.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
The Cerrado is one of the most biodiverse biomes in the world, characterized by a wealth of native fruits with unique nutritional characteristics. In this sense, the social, economic, and environmental importance of fully utilizing food is widely recognized. Therefore, generally considered waste, fruit shells can be transformed into a coproduct with high added value. The objective of this work was to carry out a comprehensive assessment of the physicochemical properties, carbohydrate and fatty acid profile, phytochemical compounds, phenolic profile, and antioxidant potential of the recovered extracts of buriti (Mauritia flexuosa) shells in natura and dehydrated at 55 °C (flour). In addition, the functional properties were verified by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) from buriti shell flour. The results indicated high fiber content and energy value for the sample processed at 55 °C (58.95 g/100 g and 378.91 kcal/100 g, respectively) and low lipid and protein content (1.03 g/100 g and 1.39 g/100 g, respectively). Regardless of the sample analyzed, maltose was the majority sugar (37.33 - 281.01 g/100 g). The main fatty acids detected were oleic acid (61.33 - 62.08 %) followed by palmitic acid (33.91 - 34.40 %). The analysis of the mineral profile demonstrated that the samples did not differ significantly from each other, showing that the drying process did not interfere with the results obtained (p ≤ 0.05). The analysis of individual phenolics allowed the identification of six phenolic compounds in buriti shells. However, it is possible to observe that the drying method had a positive and significant influence on the phenolic profile (p ≤ 0.05), with chlorogenic acid (2.63 - 8.27 mg/100 g) and trigonelline (1.06 - 41.52 mg/100 g), the majority compounds. On the other hand, it is important to highlight that buriti shells have a high content of carotenoids, mainly β-carotene (27.18 - 62.94 µg/100 g) and α-carotene (18.23 - 60.28 µg/100 g), also being positively influenced by the drying process at 55 °C (p ≤ 0.05). The dried shells showed a high content of phytochemical compounds and high antioxidant activity based on the different methods tested. The results show that buriti shell flour can be fully utilized and has nutritional and chemical aspects that can be applied to develop new sustainable, nutritious, and functional food formulations.
Collapse
Affiliation(s)
- Wallace Carlos de Sousa
- Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas 77001-090, Brazil
| | - Romulo Alves Morais
- Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas 77001-090, Brazil.
| | - Abraham Damian Giraldo Zuniga
- Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Tocantins (UFT), Palmas 77001-090, Brazil
| |
Collapse
|
10
|
Mubeen HM, Li Y, Hu C. Metabolite Diversity and Carbohydrate Distribution in Brassica campestris ssp. chinensis L. Cultivars: A UPLC-MS/MS Approach. BIOLOGY 2024; 13:568. [PMID: 39194506 DOI: 10.3390/biology13080568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Pak choi exhibits a wide range of phenotypic and morphological variations, significantly impacting its carbohydrate composition. This study aimed to analyze these variations by employing UPLC-MS/MS technology on eight biological replicates of seven Pak choi cultivars. The untargeted metabolic analysis identified 513 metabolites, focusing on 16 key carbohydrates, including monosaccharides, disaccharides, and polysaccharides. Monosaccharides were the most prevalent, which were followed by di-, poly-, and oligosaccharides. Suzhouqing had the highest number of differentially accumulated metabolites (DAMs), while Xiangqingcai had the least. Notably, the cultivars Xiangqingcai, Suzhouqing, and Aijiaohuang showed significant metabolite differentiation. The study found 114 metabolites that differed significantly between Suzhouqing and Aijiaohuang, of which 69 were upregulated and 45 were downregulated. In Xiangqingcai and Aijiaohuang, 66 metabolites were upregulated and 49 were downregulated. Between Xiangqingcai and Suzhouqing, 80 metabolites were downregulated and 53 were upregulated. Key carbohydrate digestion and absorption pathways were identified alongside the most enriched flavonoid biosynthesis pathway in Xiangqingcai and Suzhouqing. The findings highlight the considerable carbohydrate variation among Pak choi cultivars, providing valuable insights for targeted carbohydrate extraction and improving nutritional and agricultural practices.
Collapse
Affiliation(s)
- Hafiz Muhammad Mubeen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Hu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Yap KH, Azmin S, Abdul Manan H, Yahya N, Ahmad N, Tajurudin FW, Mat Desa SH, van de Warrenburg B, Mohamed Mukari SA, Achok HN, Ahmad Damanhuri H, Rani R, Mohamed Ibrahim N. Randomized double-blind placebo-controlled trial of the effects of oral trehalose in spinocerebellar ataxia type 3: An interim analysis. Parkinsonism Relat Disord 2024; 124:107013. [PMID: 38843619 DOI: 10.1016/j.parkreldis.2024.107013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disease characterized by increasingly worsening ataxia and non-ataxia features, negatively impacting patients' quality of life. This study was designed to test formally evaluate whether oral trehalose was effective in SCA3 patients. METHODS In this double-blind, randomized controlled trial, SCA3 patients received either 100 g oral trehalose or 30 g maltose to improve ataxia severity over six months. We also measured other clinical (non-ataxia), patient-reported (quality of life, motivations), and safety endpoints. An unscheduled interim analysis was conducted using two-way ANOVAs to analyze the interaction between time (baseline, 3-months, 6-months) and intervention (Trehalose vs. Placebo). RESULTS Fifteen participants (Trehalose = 7 vs. Placebo = 8) completed the study at the time of interim analysis. There was no interaction effect on the ataxia severity, and available data suggested an estimated sample size of 132 (66 per arm) SCA3 patients required to demonstrate changes in a 6-month trial. There were significant interaction effects for executive function (ƞ2 = 0.28-0.43). Safety data indicated that 100 g oral trehalose was well-tolerated. CONCLUSION We performed an unplanned interim analysis due to a slow recruitment rate. The new estimated sample size was deemed unfeasible, leading to premature termination of the clinical trial. In this small, current sample of SCA3 patients, 100 g oral trehalose did not differentially impact on ataxia severity compared to placebo. Interestingly, our findings may suggest an improvement in executive function. Future efforts will require a large multi-country, multi-center study to investigate the potential effect of trehalose.
Collapse
Affiliation(s)
- Kah Hui Yap
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Shahrul Azmin
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Hanani Abdul Manan
- Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Noorazrul Yahya
- School of Diagnostic and Applied Health Science, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Norfazilah Ahmad
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Farah Waheeda Tajurudin
- Department of Pharmacy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Siti Hajar Mat Desa
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Shahizon Azura Mohamed Mukari
- Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory), Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Hamdi Najman Achok
- Department of Medicine, Hospital Sultanah Aminah, 80586 Johor Bharu, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Rufaidah Rani
- Department of Dietetic and Food Services, Hospital Kuala Lumpur, 50586 Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Chen YJ, Sui X, Wang Y, Zhao ZH, Han TH, Liu YJ, Zhang JN, Zhou P, Yang K, Ye ZH. Preparation, structural characterization, biological activity, and nutritional applications of oligosaccharides. Food Chem X 2024; 22:101289. [PMID: 38544933 PMCID: PMC10966145 DOI: 10.1016/j.fochx.2024.101289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Oligosaccharides are low-molecular-weight carbohydrates between monosaccharides and polysaccharides. They can be extracted directly from natural products by physicochemical methods or obtained by chemical synthesis or enzymatic reaction. Oligosaccharides have important physicochemical and physiological properties. Their research and production involve many disciplines such as medicine, chemical industry, and biology. Functional oligosaccharides, as an excellent functional food base, can be used as dietary fibrer and prebiotics to enrich the diet; improve the microecology of the gut; exert antitumour, anti-inflammatory, antioxidant, and lipid-lowering properties. Therefore, the industrial applications of oligosaccharides have increased rapidly in the past few years. It has great prospects in the field of food and medicinal chemistry. This review summarized the preparation, structural features and biological activities of oligosaccharides, with particular emphasis on the application of functional oligosaccharides in the food industry and human nutritional health. It aims to inform further research and development of oligosaccharides and food chemistry.
Collapse
Affiliation(s)
- Ya-jing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xin Sui
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yue Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhi-hui Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Tao-hong Han
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Yi-jun Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jia-ning Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing 100191, China
| | - Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Zhi-hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
13
|
Qi X, Tester R. Phenylketonuria and dietary carbohydrate – A review. FOOD AND HUMANITY 2024; 2:100208. [DOI: 10.1016/j.foohum.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Si Q, Sun W, Liang B, Chen B, Meng J, Xie D, Feng L, Jiang P. Systematic Metabolic Profiling of Mice with Sleep-Deprivation. Adv Biol (Weinh) 2024; 8:e2300413. [PMID: 37880935 DOI: 10.1002/adbi.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Adequate sleep is essential for the biological maintenance of physical energy. Lack of sleep can affect thinking, lead to emotional anxiety, reduce immunity, and interfere with endocrine and metabolic processes, leading to disease. Previous studies have focused on long-term sleep deprivation and the risk of cancer, heart disease, diabetes, and obesity. However, systematic metabolomics analyses of blood, heart, liver, spleen, kidney, brown adipose tissue, and fecal granules have not been performed. This study aims to systematically assess the metabolic changes in the target organs caused by sleep deprivation in vivo, to search for differential metabolites and the involved metabolic pathways, to further understand the impact of sleep deprivation on health, and to provide strong evidence for the need for early intervention.
Collapse
Affiliation(s)
- Qingying Si
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Benhui Liang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410000, People's Republic of China
| | - Beibei Chen
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Junjun Meng
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Dadi Xie
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| |
Collapse
|
15
|
Ahmedah HT, Basheer HA, Almazari I, Amawi KF. Introduction to Nutrition and Cancer. Cancer Treat Res 2024; 191:1-32. [PMID: 39133402 DOI: 10.1007/978-3-031-55622-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
By the beginning of the year 2021, the estimated number of new cancer cases worldwide was about 19.3 million and there were 10.0 million cancer-related deaths. Cancer is one of the deadliest diseases worldwide that can be attributed to genetic and environmental factors, including nutrition. The good nutrition concept focuses on the dietary requirements to sustain life. There is a substantial amount of evidence suggesting that a healthy diet can modulate cancer risk, particularly the risk of colorectal and breast cancers. Many studies have evaluated the correlation between our diet and the risk of cancer development, prevention, and treatment. The effect of diet on cancer development is likely to happen through intertwining mechanisms including inflammation and immune responses. For instance, a greater intake of red and processed meat along with low consumption of fruits and vegetables has been associated with increased levels of inflammatory biomarkers that are implicated in cancer development. On the other hand, the consumption of phytosterols, vitamins, and minerals, which exert antioxidant and anti-inflammatory roles have been linked to lower cancer risk, or even its occurrence prevention. In this book, we aim to summarize the current knowledge on the role of nutrition in cancer to provide the best scientific advice in this regard.
Collapse
Affiliation(s)
- Hanadi Talal Ahmedah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh, 25732, Saudi Arabia.
| | | | - Inas Almazari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan
| | - Kawther Faisal Amawi
- Department of Medical Laboratory Science, Faculty of Allied Medical Science, Zarqa University, PO Box 132222, Zarqa, 13132, Jordan
| |
Collapse
|
16
|
Sayas-Barberá E, Paredes C, Salgado-Ramos M, Pallarés N, Ferrer E, Navarro-Rodríguez de Vera C, Pérez-Álvarez JÁ. Approaches to Enhance Sugar Content in Foods: Is the Date Palm Fruit a Natural Alternative to Sweeteners? Foods 2023; 13:129. [PMID: 38201157 PMCID: PMC10778573 DOI: 10.3390/foods13010129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The current levels of added sugars in processed foods impact dental health and contribute to a range of chronic non-communicable diseases, such as overweight, obesity, metabolic syndrome, type 2 diabetes, and cardiovascular diseases. This review presents sugars and sweeteners used in food processing, the current possibility to replace added sugars, and highlights the benefits of using dates as a new natural, nutritious and healthy alternative to synthetic and non-nutritive sweeteners. In the context of environmental sustainability, palm groves afford a propitious habitat for a diverse array of animal species and assume a pivotal social role by contributing to the provisioning of sustenance and livelihoods for local communities. The available literature shows the date as an alternative to added sugars due to its composition in macro and micronutrients, especially in bioactive components (fiber, polyphenols and minerals). Therefore, dates are presented as a health promoter and a preventative for certain diseases with the consequent added value. The use of damaged or unmarketable dates, due to its limited shelf life, can reduce losses and improve the sustainability of date palm cultivation. This review shows the potential use dates, date by-products and second quality dates as sugar substitutes in the production of sweet and healthier foods, in line with broader sustainability objectives and circular economy principles.
Collapse
Affiliation(s)
- Estrella Sayas-Barberá
- Instituto de Investigación en Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, EPS-Orihuela, Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain; (E.S.-B.); (C.P.); (J.Á.P.-Á.)
| | - Concepción Paredes
- Instituto de Investigación en Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, EPS-Orihuela, Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain; (E.S.-B.); (C.P.); (J.Á.P.-Á.)
| | - Manuel Salgado-Ramos
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 Burjassot, València, Spain; (M.S.-R.); (N.P.); (E.F.)
| | - Noelia Pallarés
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 Burjassot, València, Spain; (M.S.-R.); (N.P.); (E.F.)
| | - Emilia Ferrer
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 Burjassot, València, Spain; (M.S.-R.); (N.P.); (E.F.)
| | - Casilda Navarro-Rodríguez de Vera
- Instituto de Investigación en Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, EPS-Orihuela, Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain; (E.S.-B.); (C.P.); (J.Á.P.-Á.)
| | - José Ángel Pérez-Álvarez
- Instituto de Investigación en Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, EPS-Orihuela, Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain; (E.S.-B.); (C.P.); (J.Á.P.-Á.)
| |
Collapse
|
17
|
Song J, Liu Y, Yin X, Nan Y, Shi Y, Chen X, Liang H, Zhang J, Ma B. Isolation and structural elucidation of prebiotic oligosaccharides from Ziziphi Spinosae Semen. Carbohydr Res 2023; 534:108948. [PMID: 37783055 DOI: 10.1016/j.carres.2023.108948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Six oligosaccharides were discovered and isolated for the first time from Ziziphi Spinosae Semen. On the basis of spectroscopic analysis, their structures were determined to be verbascose (1), verbascotetraose (2), stachyose (3), manninotriose (4), raffinose (5), and melibiose (6). The prebiotic effect of the oligosaccharide fraction was assayed by eight gut bacterial growth in vitro, revealing a significant increase in cell density, up to 4-fold, for Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus johnsonii. The impact of six oligosaccharides with different degrees of polymerization (DPs) and structures on the growth of Lactobacillus acidophilus was evaluated. As a result, stachyose and raffinose demonstrated superior support for bacterial growth compared to the other oligosaccharides. This study explored the structure-activity relationship of raffinose family oligosaccharides (RFOs) and showed that the more the monosaccharide type, the more supportive the gut bacteria growth when oligosaccharides have the same molecular weight.
Collapse
Affiliation(s)
- Juan Song
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yue Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510060, China
| | - Xiangchang Yin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yi Nan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhao Shi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaojuan Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haizhen Liang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Baiping Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510060, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
18
|
Greenfield E, Alves MDS, Rodrigues F, Nogueira JO, da Silva L, de Jesus HP, Cavalcanti DR, Carvalho BFDC, Almeida JD, Mendes MA, Oliveira Alves MG. Preliminary Findings on the Salivary Metabolome of Hookah and Cigarette Smokers. ACS OMEGA 2023; 8:36845-36855. [PMID: 37841134 PMCID: PMC10569005 DOI: 10.1021/acsomega.3c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/10/2023] [Indexed: 10/17/2023]
Abstract
The aim of the study was to evaluate the salivary metabolomic profile of patients who habitually smoke hookah and cigarettes. The groups consisted of 33 regular and exclusive hookah smokers, 26 regular and exclusive cigarette smokers, and 30 nonsmokers. Unstimulated whole saliva was collected for the measurement of salivary metabolites by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). The MetaboAnalyst software was used for statistical analysis and evaluation of biomarkers. 11 smoking salivary biomarkers were identified using the area under receiving-operator curver criterion and threshold of 0.9. Xylitol and octadecanol were higher in cigarette smokers compared to controls; arabitol and maltose were higher in controls compared to cigarette smokers; octadecanol and tyramine were higher in hookah smokers compared to controls; phenylalanine was higher in controls compared to hookah smokers; and fructose, isocitric acid, glucuronic acid, tryptamine, maltose, tyramine, and 3-hydroxyisolvaleric acid were higher in hookah smokers compared to cigarettes smokers. Conclusions: The evaluation of the salivary metabolome of hookah smokers, showing separation between the groups, especially between the control versus hookah groups and cigarette versus hookah groups, and it seems to demonstrate that the use of hookah tobacco is more damaging to health.
Collapse
Affiliation(s)
- Ellen Greenfield
- Technology
Research Center (NPT), Universidade de Mogi
das Cruzes, Mogi das
Cruzes 08780-911, Brazil
| | - Mariana de Sá Alves
- Department
of Biosciences and Oral Diagnosis, Institute
of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 01049-010, Brazil
| | - Fernanda Rodrigues
- Technology
Research Center (NPT), Universidade de Mogi
das Cruzes, Mogi das
Cruzes 08780-911, Brazil
| | | | | | | | | | - Bruna Fernandes do Carmo Carvalho
- Department
of Biosciences and Oral Diagnosis, Institute
of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 01049-010, Brazil
| | - Janete Dias Almeida
- Department
of Biosciences and Oral Diagnosis, Institute
of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 01049-010, Brazil
| | - Maria Anita Mendes
- Dempster
MS Lab, Department of Chemical Engineering, Polytechnic School, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Mônica Ghislaine Oliveira Alves
- Technology
Research Center (NPT), Universidade de Mogi
das Cruzes, Mogi das
Cruzes 08780-911, Brazil
- Department
of Biosciences and Oral Diagnosis, Institute
of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo 01049-010, Brazil
| |
Collapse
|
19
|
Kwon D, Lee W, Kim SH, Jung YS. Comparison of Hepatic Metabolite Profiles between Infant and Adult Male Mice Using 1H-NMR-Based Untargeted Metabolomics. Metabolites 2022; 12:metabo12100910. [PMID: 36295812 PMCID: PMC9611911 DOI: 10.3390/metabo12100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022] Open
Abstract
Although age-related characteristics of hepatic metabolism are reported, those in infants are not fully understood. In the present study, we performed untargeted metabolomic profiling of the livers of infant (3-week-old) and adult (9-week-old) male ICR mice using 1H-NMR spectroscopy and compared 35 abundant hepatic metabolite concentrations between the two groups. The liver/body weight ratio did not differ between the two groups; however, serum glucose, blood urea nitrogen, total cholesterol, and triglyceride concentrations were lower in infants than in adults. Hepatic carbohydrate metabolites (glucose, maltose, and mannose) were higher, whereas amino acids (glutamine, leucine, methionine, phenylalanine, tyrosine, and valine) were lower in infant mice than in adult mice. The concentrations of ascorbate, betaine, sarcosine, and ethanolamine were higher, whereas those of taurine, inosine, and O-phosphocholine were lower in infant mice than in adult mice. The differences in liver metabolites between the two groups could be due to differences in their developmental stages and dietary sources (breast milk for infants and laboratory chow for adults). The above results provide insights into the hepatic metabolism in infants; however, the exact implications of the findings require further investigation.
Collapse
Affiliation(s)
- Doyoung Kwon
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 690-756, Korea
| | - Wonho Lee
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Sou Hyun Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea
- Correspondence: (S.H.K.); (Y.-S.J.); Tel.: +82-51-5102816 (Y.-S.J.)
| | - Young-Suk Jung
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea
- Correspondence: (S.H.K.); (Y.-S.J.); Tel.: +82-51-5102816 (Y.-S.J.)
| |
Collapse
|
20
|
Nakbi A, Bouzid M, Khemis IB, Aouaini F, Hassen AB, Torkia YB, Lamine AB. A putative biological adsorption process of binary mixture taste of sucrose and caffeine on human neuroreceptor site by the use of statistical physics modeling. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Li D, Shi Y, Sun Y, Wang Z, Kehoe DK, Romeral L, Gao F, Yang L, McCurtin D, Gun’ko YK, Lyons MEG, Xiao L. Microbe-Based Sensor for Long-Term Detection of Urine Glucose. SENSORS (BASEL, SWITZERLAND) 2022; 22:5340. [PMID: 35891020 PMCID: PMC9320042 DOI: 10.3390/s22145340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The development of a reusable and low-cost urine glucose sensor can benefit the screening and control of diabetes mellitus. This study focused on the feasibility of employing microbial fuel cells (MFC) as a selective glucose sensor for continuous monitoring of glucose levels in human urine. Using MFC technology, a novel cylinder sensor (CS) was developed. It had a quick response time (100 s), a large detection range (0.3-5 mM), and excellent accuracy. More importantly, the CS could last for up to 5 months. The selectivity of the CS was validated by both synthetic and actual diabetes-negative urine samples. It was found that the CS's selectivity could be significantly enhanced by adjusting the concentration of the culture's organic matter. The CS results were comparable to those of a commercial glucose meter (recovery ranged from 93.6% to 127.9%) when the diabetes-positive urine samples were tested. Due to the multiple advantages of high stability, low cost, and high sensitivity over urine test strips, the CS provides a novel and reliable approach for continuous monitoring of urine glucose, which will benefit diabetes assessment and control.
Collapse
Affiliation(s)
- Dunzhu Li
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
| | - Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
| | - Yifan Sun
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
| | - Zeena Wang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
| | - Daniel K. Kehoe
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.K.K.); (L.R.); (M.E.G.L.)
| | - Luis Romeral
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.K.K.); (L.R.); (M.E.G.L.)
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | - Fei Gao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
| | - David McCurtin
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yurii K. Gun’ko
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland;
- BEACON, Bioeconomy SFI Research Centre, University College Dublin, D07 R2WY Dublin, Ireland
| | - Michael E. G. Lyons
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.K.K.); (L.R.); (M.E.G.L.)
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; (D.L.); (Y.S.); (Y.S.); (Z.W.); (F.G.); (L.Y.); (D.M.)
- TrinityHaus, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
22
|
Fels L, Bunzel M. Application of accelerated heteronuclear single quantum coherence experiments to the rapid quantification of monosaccharides and disaccharides in dairy products. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:692-701. [PMID: 35102606 DOI: 10.1002/mrc.5255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Monosaccharides and disaccharides are important dietary components, but if insufficiently metabolized by some population subgroups, they are also linked to disease patterns. Thus, the correct analytical identification, quantification, and labeling of these food components are crucial to inform and potentially protect consumers. Enzymatic assays and high-performance anion-exchange chromatography with pulsed amperometric detection are established methods for the quantification of monosaccharides and disaccharides that, however, require long measuring times (60-180 min). Accelerated methods for the identification and quantification of the nutritionally relevant monosaccharides and disaccharides d-glucose, d-galactose, d-fructose, sucrose, lactose, and maltose were therefore developed. To realize this goal, the NMR experiments HSQC (heteronuclear single quantum coherence) and acceleration by sharing adjacent polarization (ASAP)-HSQC were applied. Measurement times were reduced to 27 and 6 min, respectively, by optimizing the interscan delay and applying non-uniform sampling. The optimized methods were used to quantify d-glucose, d-galactose, d-fructose, sucrose, and lactose in various dairy products. Results of the HSQC and ASAP-HSQC methods are equivalent to the results of the reference methods in terms of both precision and accuracy, demonstrating that these methods can be used to correctly analyze nutritionally relevant monosaccharides and disaccharides in short times.
Collapse
Affiliation(s)
- Lea Fels
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
23
|
Kosicka-Gębska M, Jeżewska-Zychowicz M, Gębski J, Sajdakowska M, Niewiadomska K, Nicewicz R. Consumer Motives for Choosing Fruit and Cereal Bars-Differences Due to Consumer Lifestyles, Attitudes toward the Product, and Expectations. Nutrients 2022; 14:2710. [PMID: 35807890 PMCID: PMC9268435 DOI: 10.3390/nu14132710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Fruit and cereal bars are the response to the changing needs of consumers seeking health-promoting and convenient products. A cross-sectional study was conducted using the CAWI (Computer-Assisted Web Interview) method, with 1034 respondents consuming products of this kind. The aims of the study were (1) to identify consumer segments based on the importance they attached to the selected attributes of fruit and cereal bars and (2) to characterize the identified segments in terms of frequency and reasons for the consumption of fruit and cereal bars, views on their impact on health, and consumer behavior related to the selected lifestyle elements. Five distinct consumer clusters were identified. Involved and Health-oriented were more likely to consume bars, perceiving them as nutritious products, with a positive impact on health. Frugal and Visual consumed fruit and cereal bars the least frequently. They paid little attention to choosing healthier products in daily diet and physical activity. The Information seekers consumed bars to reduce stress and to improve their mood.
Collapse
Affiliation(s)
- Małgorzata Kosicka-Gębska
- Department of Food Market and Consumer Research, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland; (M.J.-Z.); (J.G.); (M.S.); (K.N.); (R.N.)
| | | | | | | | | | | |
Collapse
|
24
|
Fels L, Ruf F, Bunzel M. Quantification of Isomaltulose in Food Products by Using Heteronuclear Single Quantum Coherence NMR-Experiments. Front Nutr 2022; 9:928102. [PMID: 35832046 PMCID: PMC9271938 DOI: 10.3389/fnut.2022.928102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Isomaltulose is a commonly used sweetener in sports nutrition and in products intended for consumption by diabetics. Because previously established chromatographic methods for quantification of isomaltulose suffer from long analysis times (60–210 min), faster quantitative approaches are required. Here, an HSQC (heteronuclear single quantum coherence) experiment with reduced interscan delay was established in order to quantify isomaltulose next to potential additional sugars such as d-glucose, d-fructose, d-galactose, sucrose, lactose, and maltose in 53 min. By using HSQC coupled to non-uniform sampling (NUS) as well as ASAP-HSQC (acceleration by sharing adjacent polarization), analysis times were reduced to a few minutes. Application of NUS-HSQC with reduced interscan delay takes 27 min, resulting in accurate and precise data. In principle, application of ASAP-HSQC approaches (with analysis times as low as 6 min) can be used; however, precision data may not suffice all applications.
Collapse
|
25
|
Current Advances and Future Aspects of Sweetener Synergy: Properties, Evaluation Methods and Molecular Mechanisms. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sweetener synergy is the phenomenon in which certain combinations of sweeteners work more effectively than the theoretical sum of the effects of each components. It provides benefits in reducing sweetener dosages and improving their sweetness. Many mixtures of sweeteners with synergistic effects have been reported up to now. Both artificial high-intensity sweeteners and natural sweeteners are popularly used in sweetener mixtures for synergism, although the former seem to display more potential to exhibit synergy than the latter. Furthermore, several evaluation methods to investigate sweetener synergy have been applied, which could lead to discrepancies in results. Moreover, structurally dissimilar sweeteners could cooperatively bind at the different sites in the sweet taste receptor T1R2/T1R3 to activate the receptor, and their hydration characters/packing characteristics in solvents could affect their interaction with the receptor, providing the preliminary explanations for the molecular basis of sweetener synergy. In this article, we firstly present a systematic review, analysis and comment on the properties, evaluation methods and molecular mechanisms of sweetener synergy. Secondly, challenges of sweetener synergy in both theory and practice and possible strategies to overcome these limitations are comprehensively discussed. Finally, future perspectives for this important performance in human sweet taste perception are proposed.
Collapse
|
26
|
Cheng PW, Liang HL, Lin HL, Hao CL, Tseng YH, Tu YC, Yeh BC, Shen KP. Pre-germinated brown rice alleviates non-alcoholic fatty liver disease induced by high fructose and high fat intake in rat. J Clin Biochem Nutr 2022; 70:248-255. [PMID: 35692676 PMCID: PMC9130058 DOI: 10.3164/jcbn.21-158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
In past researches, we had been proved the action mechanism of pre-germinated brown rice (PGBR) to treat metabolic syndrome and diabetes mellitus. This study was to investigate the protective effect of PGBR in high fructose and high fat-induced non-alcoholic fatty liver disease (NAFLD) in rodents. WKY rats were divided into: Control group was fed normal drinking water and diet; FLD group was fed 10% high-fructose-water (HFW) and high-fat-diet (HFD); PGBR group was given HFW, and HFD mixed PGBR. After four weeks, the body, hepatic and cardiac weight gains of FLD group had significant increases than that of Control group. The enhanced blood pressure and heart rate, hypertriglyceridemia, hyperuricemia, and higher liver function index (GPT levels) were observed; meanwhile, the IL-6 and TNF-α levels of serum, and TG level of liver were also elevated in FLD group. The related protein expressions of lipid synthesis, inflammation, cardiac fibrosis, and hypertrophy were deteriorated by HFW/HFD. However, in treatment group, PGBR decreased all above influenced parameters, additionally GOT; and related protein expressions. PGBR treated HFW/HFD-induced NAFLD and cardiac complications might be via improving lipid homeostasis, and inhibiting inflammation. Together, PGBR could be used as a healthy food for controlling NAFLD and its' cardiac dysfunction.
Collapse
Affiliation(s)
- Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd., Zuoying Dist., Kaohsiung City 813414, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, No. 70, Lien-hai Rd., Kaohsiung City 804, Taiwan
| | - Hsin-Li Liang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd., Zuoying Dist., Kaohsiung City 813414, Taiwan
| | - Hui-Li Lin
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung City 812301, Taiwan
| | - Chi-Long Hao
- Division of Cardiology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung 900, Taiwan
| | - Yu-Hsiu Tseng
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung City 812301, Taiwan
| | - Yi-Chen Tu
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung City 812301, Taiwan
| | - Bor-Chun Yeh
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung City 812301, Taiwan
| | - Kuo-Ping Shen
- Department of Nursing, Meiho University, No. 23, Pingkuang Rd., Neipu, Pingtung 912, Taiwan
| |
Collapse
|
27
|
Prentice RL, Pettinger M, Zheng C, Neuhouser ML, Raftery D, Gowda GAN, Huang Y, Tinker LF, Howard BV, Manson JE, Van Horn L, Wallace R, Mossavar-Rahmani Y, Johnson KC, Snetselaar L, Lampe JW. Biomarkers for Components of Dietary Protein and Carbohydrate with Application to Chronic Disease Risk in Postmenopausal Women. J Nutr 2022; 152:1107-1117. [PMID: 35015878 PMCID: PMC8970980 DOI: 10.1093/jn/nxac004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We recently developed protein and carbohydrate intake biomarkers using metabolomics profiles in serum and urine, and used them to correct self-reported dietary data for measurement error. Biomarker-calibrated carbohydrate density was inversely associated with chronic disease risk, whereas protein density associations were mixed. OBJECTIVES To elucidate and extend this earlier work through biomarker development for protein and carbohydrate components, including animal protein and fiber. METHODS Prospective disease association analyses were undertaken in Women's Health Initiative (WHI) cohorts of postmenopausal US women, aged 50-79 y when enrolled at 40 US clinical centers. Biomarkers were developed using an embedded human feeding study (n = 153). Calibration equations for protein and carbohydrate components were developed using a WHI nutritional biomarker study (n = 436). Calibrated intakes were associated with chronic disease incidence in WHI cohorts (n = 81,954) over a 20-y (median) follow-up period, using HR regression methods. RESULTS Previously reported elevations in cardiovascular disease (CVD) with higher-protein diets tended to be explained by animal protein density. For example, for coronary heart disease a 20% increment in animal protein density had an HR of 1.20 (95% CI: 1.02, 1.42) relative to the HR for total protein density. In comparison, cancer and diabetes risk showed little association with animal protein density beyond that attributable to total protein density. Inverse carbohydrate density associations with total CVD were mostly attributable to fiber density, with a 20% increment HR factor of 0.89 (95% CI: 0.83, 0.94). Cancer risk showed little association with fiber density, whereas diabetes risk had a 20% increment HR of 0.93 (95% CI: 0.88, 0.98) relative to the HRs for total carbohydrate density. CONCLUSIONS In a population of postmenopausal US women, CVD risk was associated with high-animal-protein and low-fiber diets, cancer risk was associated with low-carbohydrate diets, and diabetes risk was associated with low-fiber/low-carbohydrate diets.
Collapse
Affiliation(s)
- Ross L Prentice
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Mary Pettinger
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cheng Zheng
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Marian L Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - G A Nagana Gowda
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Ying Huang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Barbara V Howard
- Department of Medicine, Georgetown University Medical Center, and MedStar Health Research Institute, Hyattsville, MD, USA
| | - JoAnn E Manson
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Robert Wallace
- College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Karen C Johnson
- Department of Preventive Medicine, University of Tennessee Health Center, Memphis, TN, USA
| | - Linda Snetselaar
- College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Johanna W Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
28
|
Phytochemical Characterization, Antioxidant Activity, and Cytotoxicity of Methanolic Leaf Extract of Chlorophytum Comosum (Green Type) (Thunb.) Jacq. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030762. [PMID: 35164026 PMCID: PMC8840168 DOI: 10.3390/molecules27030762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
Abstract
Chlorophytum genus has been extensively studied due to its diverse biological activities. We evaluated the methanolic extract of leaves of Chlorophytum comosum (Green type) (Thunb.) Jacques, the species that is less studied compared to C. borivilianum. The aim was to identify phytoconstituents of the methanolic extract of leaves of C. comosum and biological properties of its different fractions. Water fraction was analyzed with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Nineteen compounds belonging to different chemical classes were identified in the methanolic extract of leaves of C. comosum (Green type) (Thunb.) Jacques. In addition to several fatty acids, isoprenoid and steroid compounds were found among the most abundant constituents. One of the identified compounds, 4'-methylphenyl-1C-sulfonyl-β-d-galactoside, was not detected earlier in Chlorophytum extracts. The water fraction was toxic to HeLa cells but not to Vero cells. Our data demonstrate that methanolic extract of leaves of C. comosum can be a valuable source of bioactive constituents. The water fraction of the extract exhibited promising antitumor potential based on a high ratio of HeLa vs. Vero cytotoxicity.
Collapse
|
29
|
Impacts of polyols and temperature on the micellization, interaction and thermodynamics behavior of the mixture of tetradecyltrimethylammonium bromide and polyvinyl alcohol. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2021-3065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Herein, the aggregation manner of the mixture of polyvinyl alcohol (PVA) and tetradecyltrimethylammonium bromide (TTAB) was performed in polyols (glucose, maltose and galactose) media over 300.55–320.55 K temperatures range with 5 K interval through conductivity measurement method. The micelle formation of TTAB + PVA mixture was identified by the assessment of critical micelle concentration (CMC) from the plots of specific conductivity (κ) versus TTAB concentration. The degree of micelle ionization (α), the extent of bound counter ions (β) as well as thermodynamic properties (
Δ
G
m
0
${\Delta}{G}_{m}^{0}$
,
Δ
H
m
0
${\Delta}{H}_{m}^{0}$
and
Δ
S
m
0
${\Delta}{S}_{m}^{0}$
) of TTAB + PVA systems have been estimated. The CMC values reveal that the micelle formation of TTAB + PVA mixture experience an enhancement in the manifestation of polyols. The values of free energy of micellization (
Δ
G
m
0
${\Delta}{G}_{m}^{0}$
) are negative for the TTAB + PVA system in aqueous polyols media, suggesting a spontaneous aggregation phenomenon. The
Δ
H
m
0
${\Delta}{H}_{m}^{0}$
and
Δ
S
m
0
${\Delta}{S}_{m}^{0}$
values of TTAB + PVA systems direct that the PVA molecule interacts with TTAB through the exothermic, ion-dipole, and hydrophobic interactions. The thermodynamic properties of transfer were also determined for the move of TTAB + PVA mixture from H2O to water + polyols mixed solvents. The values of compensation temperature (T
c) and intrinsic enthalpy gain (
Δ
H
m
0
,
∗
${\Delta}{H}_{m}^{0,\ast }$
) were evaluated and discussed for the studied system.
Collapse
|
30
|
Cansino S, Torres-Trejo F, Estrada-Manilla C, Flores-Mendoza A, Ramírez-Pérez G, Ruiz-Velasco S. Influence of Dietary Nutrient Intake on Episodic Memory Across the Adult Life Span. Front Aging Neurosci 2021; 13:724595. [PMID: 34526891 PMCID: PMC8435902 DOI: 10.3389/fnagi.2021.724595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to identify nutrients that have the ability to impact brain functioning and, as a consequence, influence episodic memory. In particular, we examined recollection, the ability to recall details of previous experiences, which is the episodic memory process most affected as age advances. A sample of 1,550 healthy participants between 21 and 80 years old participated in the study. Nutritional intake was examined through a food frequency questionnaire and software developed to determine the daily consumption of 64 nutrients based on food intake during the last year. Recollection was measured through a computerized source memory paradigm. First, we identified which nutrients influence recollection across the entire adult life span. Then, moderator analyses were conducted by dividing the sample into young (21–40 years old), middle-aged (41–60 years old) and older (61–80 years old) adults to establish in which life stage nutrients influence episodic memory. Across the adult life span, recollection accuracy was shown to benefit from the intake of sodium, heme, vitamin E, niacin, vitamin B6, cholesterol, alcohol, fat, protein, and palmitic, stearic, palmitoleic, oleic, gadoleic, alpha-linoleic and linoleic acid. The effects of energy, maltose, lactose, calcium and several saturated fatty acids on recollection were modulated by age; in older adults, the consumption of these nutrients negatively influenced episodic memory performance, and in middle-aged adults, only lactose had negative effects. Several brain mechanisms that support episodic memory were influenced by specific nutrients, demonstrating the ability of food to enhance or deteriorate episodic memory.
Collapse
Affiliation(s)
- Selene Cansino
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Frine Torres-Trejo
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Cinthya Estrada-Manilla
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Adriana Flores-Mendoza
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Gerardo Ramírez-Pérez
- Laboratory of NeuroCognition, Faculty of Psychology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Silvia Ruiz-Velasco
- Applied Mathematics and Systems Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
31
|
|
32
|
Abstract
Like many biological compounds, proteins are found primarily in their homochiral form. However, homochirality is not guaranteed throughout life. Determining their chiral proteinogenic sequence is a complex analytical challenge. This is because certain d-amino acids contained in proteins play a role in human health and disease. This is the case, for example, with d-Asp in elastin, β-amyloid and α-crystallin which, respectively, have an action on arteriosclerosis, Alzheimer’s disease and cataracts. Sequence-dependent and sequence-independent are the two strategies for detecting the presence and position of d-amino acids in proteins. These methods rely on enzymatic digestion by a site-specific enzyme and acid hydrolysis in a deuterium or tritium environment to limit the natural racemization of amino acids. In this review, chromatographic and electrophoretic techniques, such as LC, SFC, GC and CE, will be recently developed (2018–2020) for the enantioseparation of amino acids and peptides. For future work, the discovery and development of new chiral stationary phases and derivatization reagents could increase the resolution of chiral separations.
Collapse
|
33
|
Abstract
Although the probiotic Lactobacillus acidophilus LA14 is used worldwide, its effect on liver diseases remains unelucidated. Here, 32 rats were divided into four groups, gavaged with L. acidophilus LA14 (3 × 109 CFU) or phosphate-buffered saline for 7 days, and then intraperitoneally injected with d-galactosamine or saline. After 24 h, blood, liver, ileum, and feces samples were collected for liver injury, inflammation, intestinal barrier, gut microbiota, metabolome, and transcriptome analyses. Pretreatment with L. acidophilus LA14 alleviated the d-galactosamine-induced elevation of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and bile acids; mitigated the histological injury to the liver and gut; and suppressed the inflammatory cytokines macrophage inflammatory protein 1α (MIP-1α), MIP-3α, and MCP-1. L. acidophilus LA14 also ameliorated the d-galactosamine-induced dysbiosis of the gut microbiota and metabolism, such as the enrichment of Bacteroides sp. strain dnLKV3 and the depletion of Streptococcus, butanoic acid, and N-acetyl-d-glucosamine. The underlying mechanism of L. acidophilus LA14 included prevention of not only the d-galactosamine-induced upregulation of infection- and tumor-related pathways but also the d-galactosamine-induced downregulation of antioxidation-related pathways during this process, as reflected by the liver transcriptome and proteome analyses. Furthermore, the administration of L. acidophilus LA14 to healthy rats did not alter the tested liver indicators but significantly enriched the beneficial Lactobacillus and Bifidobacterium species, promoted metabolism and regulated pathways to improve immunity. The ability of L. acidophilus LA14 to alleviate liver injury was further confirmed with an acetaminophen-induced mouse model. These results might provide a reference for future studies on the application of L. acidophilus LA14 for the prevention of liver injury. IMPORTANCE The probiotic Lactobacillus acidophilus LA14 is widely used, but its effect on liver diseases has not been elucidated. We explored the protective effect of L. acidophilus LA14 on the liver using rats with d-galactosamine-induced liver injury. Pretreatment with L. acidophilus LA14 alleviated the d-galactosamine-induced elevation of serum ALT, AST, ALP, and bile acids, mitigated the histological injury to the liver and gut, and suppressed the inflammatory cytokines MIP-1α, MIP-3α, and MCP-1. These effects were correlated with the modulations of the gut microbiome, metabolome, and hepatic gene expression induced by L. acidophilus LA14. Moreover, the ability of L. acidophilus LA14 to alleviate liver injury was further confirmed with an acetaminophen-induced mouse model. These results might provide a reference for future studies on the application of L. acidophilus LA14 for the prevention of liver injury.
Collapse
|
34
|
Sasaki Y, Lyu X, Zhou Q, Minami T. Indicator Displacement Assay-based Chemosensor Arrays for Saccharides using Off-the-shelf Materials toward Simultaneous On-site Detection on Paper. CHEM LETT 2021. [DOI: 10.1246/cl.200962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
35
|
Qi X, Tester R. Is sugar extracted from plants less healthy than sugar consumed within plant tissues? The sugar anomaly. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2194-2200. [PMID: 33140445 DOI: 10.1002/jsfa.10905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
There are dilemmas in the minds of consumers with respect to sugar consumption - they would like to consume sugars for sweetness, but in a healthy (and perhaps guilt free!) way. In a sense, consumers believe that if sugar does not appear as an ingredient on the product label, but is intrinsic in the food (and will appear as a nutrient), it is 'good'. As an ingredient, however, it is viewed as a 'bad chemical' associated with tooth decay and obesity. The reality is that unless processing induced modifications have occurred, the sugar molecule within a plant tissue is the same molecule structure as present in purified sugar. The same calorific value. However, there is an argument that humans eat too refined food and that if sugars were eaten in their natural context (e.g. within a fruit), their presence and concentration would be in harmony (where different nutrients complement and balance the sugar concentration) with the human body. This reflects the process of eating, satiety, presence of other nutrients (including water) and the associated impact of the indigestible components of plant foods on the transit/nutrient bioavailability control and thus benefits through the gut. The authors explore these issues in this article and seek to provide a scientific basis to different sides of the argument - sugar is good or bad depending on how (in which format and how much/how concentrated) it is consumed. More importantly perhaps, how should sugar consumption - an important nutrient - be managed to optimize the benefits but reduce the disadvantages? © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Qi
- Glycologic Limited, Glasgow, UK
| | | |
Collapse
|
36
|
Lyu X, Hamedpour V, Sasaki Y, Zhang Z, Minami T. 96-Well Microtiter Plate Made of Paper: A Printed Chemosensor Array for Quantitative Detection of Saccharides. Anal Chem 2020; 93:1179-1184. [PMID: 33320543 DOI: 10.1021/acs.analchem.0c04291] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Simple, rapid, and accurate detection methods for saccharides are potentially applicable to various fields such as clinical and food chemistry. However, the practical applications of on-site analytical methods are still limited. To this end, herein, we propose a 96-well microtiter plate made of paper as a paper-based chemosensor array device (PCSAD) for the simultaneous classification of 12 saccharides and the quantification of fructose and glucose among 12 saccharides. The mechanism of the saccharide detection relied on an indicator displacement assay (IDA) on the PCSAD using four types of catechol dyes, 3-nitrophenylboronic acid, and the saccharides. The design of the PCSAD and the experimental conditions for the IDA were optimized using a central composite design. The chemosensors exhibited clear color changes upon the addition of saccharides on the paper because of the competitive boronate esterification. The color changes were employed for the subsequent qualitative, semiquantitative, and quantitative analyses using an automated algorithm combined with pattern recognition for digital images. A qualitative linear discrimination analysis offered discrimination of 12 saccharides with a 100% classification rate. The semiquantitative analysis of fructose in the presence of glucose was carried out from the viewpoint of food analysis utilizing a support vector machine, resulting in clear discrimination of the various concentrations of fructose. Most importantly, the quantitative detection of fructose in two types of commercial soft drinks was also successfully carried out without sample pretreatments. Thus, the proposed PCSAD can be a powerful method for on-site food analyses that can meet the increasing demand from consumers for sensors of saccharides.
Collapse
Affiliation(s)
- Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Vahid Hamedpour
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Zhoujie Zhang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|