1
|
Moran K, Poole C, Barrett S. Evaluating deep learning auto-contouring for lung radiation therapy: A review of accuracy, variability, efficiency and dose, in target volumes and organs at risk. Phys Imaging Radiat Oncol 2025; 33:100736. [PMID: 40104215 PMCID: PMC11914827 DOI: 10.1016/j.phro.2025.100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025] Open
Abstract
Background and purpose Delineation of target volumes (TVs) and organs at risk (OARs) is a resource intensive process in lung radiation therapy and, despite the introduction of some auto-contouring, inter-observer variability remains a challenge. Deep learning algorithms may prove an efficient alternative and this review aims to map the evidence base on the use of deep learning algorithms for TV and OAR delineation in the radiation therapy planning process for lung cancer patients. Materials and methods A literature search identified studies relating to deep learning. Manual contouring and deep learning auto-contours were evaluated against one another for accuracy, inter-observer variability, contouring time and dose-volume effects. A total of 40 studies were included for review. Results Thirty nine out of 40 studies investigated the accuracy of deep learning auto-contours and determined that they were of a comparable accuracy to manual contours. Inter-observer variability outcomes were heterogeneous in the seven relevant studies identified. Twenty-four studies analysed the time saving associated with deep learning auto-contours and reported a significant time reduction in comparison to manual contours. The eight studies that conducted a dose-volume metric evaluation on deep learning auto-contours identified negligible effect on treatment plans. Conclusion The accuracy and time-saving capacity of deep learning auto-contours in comparison to manual contours has been extensively studied. However, additional research is required in the areas of inter-observer variability and dose-volume metric evaluation to further substantiate its clinical use.
Collapse
Affiliation(s)
- Keeva Moran
- Applied Radiation Therapy Trinity, Trinity St. James's Cancer Institute, Discipline of Radiation Therapy, Trinity College, Dublin, Ireland
| | - Claire Poole
- Applied Radiation Therapy Trinity, Trinity St. James's Cancer Institute, Discipline of Radiation Therapy, Trinity College, Dublin, Ireland
| | - Sarah Barrett
- Applied Radiation Therapy Trinity, Trinity St. James's Cancer Institute, Discipline of Radiation Therapy, Trinity College, Dublin, Ireland
| |
Collapse
|
2
|
Shao Y, Guo J, Wang J, Huang Y, Gan W, Zhang X, Wu G, Sun D, Gu Y, Gu Q, Yue NJ, Yang G, Xie G, Xu Z. Novel in-house knowledge-based automated planning system for lung cancer treated with intensity-modulated radiotherapy. Strahlenther Onkol 2024; 200:967-982. [PMID: 37603050 PMCID: PMC11527916 DOI: 10.1007/s00066-023-02126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
PURPOSE The goal of this study was to propose a knowledge-based planning system which could automatically design plans for lung cancer patients treated with intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS From May 2018 to June 2020, 612 IMRT treatment plans of lung cancer patients were retrospectively selected to construct a planning database. Knowledge-based planning (KBP) architecture named αDiar was proposed in this study. It consisted of two parts separated by a firewall. One was the in-hospital workstation, and the other was the search engine in the cloud. Based on our previous study, A‑Net in the in-hospital workstation was used to generate predicted virtual dose images. A search engine including a three-dimensional convolutional neural network (3D CNN) was constructed to derive the feature vectors of dose images. By comparing the similarity of the features between virtual dose images and the clinical dose images in the database, the most similar feature was found. The optimization parameters (OPs) of the treatment plan corresponding to the most similar feature were assigned to the new plan, and the design of a new treatment plan was automatically completed. After αDiar was developed, we performed two studies. The first retrospective study was conducted to validate whether this architecture was qualified for clinical practice and involved 96 patients. The second comparative study was performed to investigate whether αDiar could assist dosimetrists in improving the quality of planning for the patients. Two dosimetrists were involved and designed plans for only one trial with and without αDiar; 26 patients were involved in this study. RESULTS The first study showed that about 54% (52/96) of the automatically generated plans would achieve the dosimetric constraints of the Radiation Therapy Oncology Group (RTOG) and about 93% (89/96) of the automatically generated plans would achieve the dosimetric constraints of the National Comprehensive Cancer Network (NCCN). The second study showed that the quality of treatment planning designed by junior dosimetrists was improved with the help of αDiar. CONCLUSIONS Our results showed that αDiar was an effective tool to improve planning quality. Over half of the patients' plans could be designed automatically. For the remaining patients, although the automatically designed plans did not fully meet the clinical requirements, their quality was also better than that of manual plans.
Collapse
Affiliation(s)
- Yan Shao
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jindong Guo
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyong Wang
- Shanghai Pulse Medical Technology Inc., Shanghai, China
| | - Ying Huang
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wutian Gan
- School of Physics and Technology, University of Wuhan, Wuhan, China
| | - Xiaoying Zhang
- School of Information Science and Engineering, Xiamen University, Xiamen, China
| | - Ge Wu
- Ping An Healthcare Technology Co. Ltd., Shanghai, China
| | - Dong Sun
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Gu
- School of Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qingtao Gu
- School of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Ning Jeff Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Guanli Yang
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, China.
| | - Guotong Xie
- Ping An Healthcare Technology Co. Ltd., Shanghai, China.
- Ping An Health Cloud Company Limited, Shanghai, China.
- Ping An International Smart City Technology Co., Ltd., Shanghai, China.
| | - Zhiyong Xu
- Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Cho MJ, Hwang D, Yie SY, Lee JS. Multi-modal co-learning with attention mechanism for head and neck tumor segmentation on 18FDG PET-CT. EJNMMI Phys 2024; 11:67. [PMID: 39052194 PMCID: PMC11272764 DOI: 10.1186/s40658-024-00670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE Effective radiation therapy requires accurate segmentation of head and neck cancer, one of the most common types of cancer. With the advancement of deep learning, people have come up with various methods that use positron emission tomography-computed tomography to get complementary information. However, these approaches are computationally expensive because of the separation of feature extraction and fusion functions and do not make use of the high sensitivity of PET. We propose a new deep learning-based approach to alleviate these challenges. METHODS We proposed a tumor region attention module that fully exploits the high sensitivity of PET and designed a network that learns the correlation between the PET and CT features using squeeze-and-excitation normalization (SE Norm) without separating the feature extraction and fusion functions. In addition, we introduce multi-scale context fusion, which exploits contextual information from different scales. RESULTS The HECKTOR challenge 2021 dataset was used for training and testing. The proposed model outperformed the state-of-the-art models for medical image segmentation; in particular, the dice similarity coefficient increased by 8.78% compared to U-net. CONCLUSION The proposed network segmented the complex shape of the tumor better than the state-of-the-art medical image segmentation methods, accurately distinguishing between tumor and non-tumor regions.
Collapse
Affiliation(s)
- Min Jeong Cho
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul, 03080, South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Integrated Major in Innovative Medical Science, Seoul National Graduate School, Seoul, South Korea
| | - Donghwi Hwang
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Si Young Yie
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul, 03080, South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
- Integrated Major in Innovative Medical Science, Seoul National Graduate School, Seoul, South Korea
| | - Jae Sung Lee
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul, 03080, South Korea.
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
- Integrated Major in Innovative Medical Science, Seoul National Graduate School, Seoul, South Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Brightonix Imaging Inc, Seoul, 04782, South Korea.
| |
Collapse
|
4
|
Zheng M, Guo C, Zhu Y, Gang X, Fu C, Wang S. Segmentation model of soft tissue sarcoma based on self-supervised learning. Front Oncol 2024; 14:1247396. [PMID: 39011486 PMCID: PMC11246874 DOI: 10.3389/fonc.2024.1247396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/27/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Soft tissue sarcomas, similar in incidence to cervical and esophageal cancers, arise from various soft tissues like smooth muscle, fat, and fibrous tissue. Effective segmentation of sarcomas in imaging is crucial for accurate diagnosis. Methods This study collected multi-modal MRI images from 45 patients with thigh soft tissue sarcoma, totaling 8,640 images. These images were annotated by clinicians to delineate the sarcoma regions, creating a comprehensive dataset. We developed a novel segmentation model based on the UNet framework, enhanced with residual networks and attention mechanisms for improved modality-specific information extraction. Additionally, self-supervised learning strategies were employed to optimize feature extraction capabilities of the encoders. Results The new model demonstrated superior segmentation performance when using multi-modal MRI images compared to single-modal inputs. The effectiveness of the model in utilizing the created dataset was validated through various experimental setups, confirming the enhanced ability to characterize tumor regions across different modalities. Discussion The integration of multi-modal MRI images and advanced machine learning techniques in our model significantly improves the segmentation of soft tissue sarcomas in thigh imaging. This advancement aids clinicians in better diagnosing and understanding the patient's condition, leveraging the strengths of different imaging modalities. Further studies could explore the application of these techniques to other types of soft tissue sarcomas and additional anatomical sites.
Collapse
Affiliation(s)
- Minting Zheng
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Software, Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Taiyuan, China
| | - Chenhua Guo
- School of Software, Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Taiyuan, China
| | - Yifeng Zhu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xiaoming Gang
- Cardiovascular Department, Anshan Municipal Central Hospital, Anshan, China
| | - Chongyang Fu
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shaowu Wang
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Zou Z, Zou B, Kui X, Chen Z, Li Y. DGCBG-Net: A dual-branch network with global cross-modal interaction and boundary guidance for tumor segmentation in PET/CT images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108125. [PMID: 38631130 DOI: 10.1016/j.cmpb.2024.108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND AND OBJECTIVES Automatic tumor segmentation plays a crucial role in cancer diagnosis and treatment planning. Computed tomography (CT) and positron emission tomography (PET) are extensively employed for their complementary medical information. However, existing methods ignore bilateral cross-modal interaction of global features during feature extraction, and they underutilize multi-stage tumor boundary features. METHODS To address these limitations, we propose a dual-branch tumor segmentation network based on global cross-modal interaction and boundary guidance in PET/CT images (DGCBG-Net). DGCBG-Net consists of 1) a global cross-modal interaction module that extracts global contextual information from PET/CT images and promotes bilateral cross-modal interaction of global feature; 2) a shared multi-path downsampling module that learns complementary features from PET/CT modalities to mitigate the impact of misleading features and decrease the loss of discriminative features during downsampling; 3) a boundary prior-guided branch that extracts potential boundary features from CT images at multiple stages, assisting the semantic segmentation branch in improving the accuracy of tumor boundary segmentation. RESULTS Extensive experiments are conducted on STS and Hecktor 2022 datasets to evaluate the proposed method. The average Dice scores of our DGCB-Net on the two datasets are 80.33% and 79.29%, with average IOU scores of 67.64% and 70.18%. DGCB-Net outperformed the current state-of-the-art methods with a 1.77% higher Dice score and a 2.12% higher IOU score. CONCLUSIONS Extensive experimental results demonstrate that DGCBG-Net outperforms existing segmentation methods, and is competitive to state-of-arts.
Collapse
Affiliation(s)
- Ziwei Zou
- School of Computer Science and Engineering, Central South University, No. 932, Lushan South Road, ChangSha, 410083, China
| | - Beiji Zou
- School of Computer Science and Engineering, Central South University, No. 932, Lushan South Road, ChangSha, 410083, China
| | - Xiaoyan Kui
- School of Computer Science and Engineering, Central South University, No. 932, Lushan South Road, ChangSha, 410083, China.
| | - Zhi Chen
- School of Computer Science and Engineering, Central South University, No. 932, Lushan South Road, ChangSha, 410083, China
| | - Yang Li
- School of Informatics, Hunan University of Chinese Medicine, No. 300, Xueshi Road, ChangSha, 410208, China
| |
Collapse
|
6
|
Yuan L, An L, Zhu Y, Duan C, Kong W, Jiang P, Yu QQ. Machine Learning in Diagnosis and Prognosis of Lung Cancer by PET-CT. Cancer Manag Res 2024; 16:361-375. [PMID: 38699652 PMCID: PMC11063459 DOI: 10.2147/cmar.s451871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
As a disease with high morbidity and high mortality, lung cancer has seriously harmed people's health. Therefore, early diagnosis and treatment are more important. PET/CT is usually used to obtain the early diagnosis, staging, and curative effect evaluation of tumors, especially lung cancer, due to the heterogeneity of tumors and the differences in artificial image interpretation and other reasons, it also fails to entirely reflect the real situation of tumors. Artificial intelligence (AI) has been applied to all aspects of life. Machine learning (ML) is one of the important ways to realize AI. With the help of the ML method used by PET/CT imaging technology, there are many studies in the diagnosis and treatment of lung cancer. This article summarizes the application progress of ML based on PET/CT in lung cancer, in order to better serve the clinical. In this study, we searched PubMed using machine learning, lung cancer, and PET/CT as keywords to find relevant articles in the past 5 years or more. We found that PET/CT-based ML approaches have achieved significant results in the detection, delineation, classification of pathology, molecular subtyping, staging, and response assessment with survival and prognosis of lung cancer, which can provide clinicians a powerful tool to support and assist in critical daily clinical decisions. However, ML has some shortcomings such as slightly poor repeatability and reliability.
Collapse
Affiliation(s)
- Lili Yuan
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Lin An
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Yandong Zhu
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Chongling Duan
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Weixiang Kong
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Qing-Qing Yu
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| |
Collapse
|
7
|
Shao M, Cheng C, Hu C, Zheng J, Zhang B, Wang T, Jin G, Liu Z, Zuo C. Semisupervised 3D segmentation of pancreatic tumors in positron emission tomography/computed tomography images using a mutual information minimization and cross-fusion strategy. Quant Imaging Med Surg 2024; 14:1747-1765. [PMID: 38415108 PMCID: PMC10895119 DOI: 10.21037/qims-23-1153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/08/2023] [Indexed: 02/29/2024]
Abstract
Background Accurate segmentation of pancreatic cancer tumors using positron emission tomography/computed tomography (PET/CT) multimodal images is crucial for clinical diagnosis and prognosis evaluation. However, deep learning methods for automated medical image segmentation require a substantial amount of manually labeled data, making it time-consuming and labor-intensive. Moreover, addition or simple stitching of multimodal images leads to redundant information, failing to fully exploit the complementary information of multimodal images. Therefore, we developed a semisupervised multimodal network that leverages limited labeled samples and introduces a cross-fusion and mutual information minimization (MIM) strategy for PET/CT 3D segmentation of pancreatic tumors. Methods Our approach combined a cross multimodal fusion (CMF) module with a cross-attention mechanism. The complementary multimodal features were fused to form a multifeature set to enhance the effectiveness of feature extraction while preserving specific features of each modal image. In addition, we designed an MIM module to mitigate redundant high-level modal information and compute the latent loss of PET and CT. Finally, our method employed the uncertainty-aware mean teacher semi-supervised framework to segment regions of interest from PET/CT images using a small amount of labeled data and a large amount of unlabeled data. Results We evaluated our combined MIM and CMF semisupervised segmentation network (MIM-CMFNet) on a private dataset of pancreatic cancer, yielding an average Dice coefficient of 73.14%, an average Jaccard index score of 60.56%, and an average 95% Hausdorff distance (95HD) of 6.30 mm. In addition, to verify the broad applicability of our method, we used a public dataset of head and neck cancer, yielding an average Dice coefficient of 68.71%, an average Jaccard index score of 57.72%, and an average 95HD of 7.88 mm. Conclusions The experimental results demonstrate the superiority of our MIM-CMFNet over existing semisupervised techniques. Our approach can achieve a performance similar to that of fully supervised segmentation methods while significantly reducing the data annotation cost by 80%, suggesting it is highly practicable for clinical application.
Collapse
Affiliation(s)
- Min Shao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Chao Cheng
- Department of Nuclear Medicine, the First Affiliated Hospital (Changhai Hospital) of Naval Medical University, Shanghai, China
| | - Chengyuan Hu
- Department of AI Algorithm, Shenzhen Poros Technology Co., Ltd., Shenzhen, China
| | - Jian Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Bo Zhang
- Department of Radiology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Wang
- Department of Nuclear Medicine, the First Affiliated Hospital (Changhai Hospital) of Naval Medical University, Shanghai, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, the First Affiliated Hospital (Changhai Hospital) of Naval Medical University, Shanghai, China
| | - Zhaobang Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Changjing Zuo
- Department of Nuclear Medicine, the First Affiliated Hospital (Changhai Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Panagiotidis E, Papachristou K, Makridou A, Zoglopitou LA, Paschali A, Kalathas T, Chatzimarkou M, Chatzipavlidou V. Review of artificial intelligence clinical applications in Nuclear Medicine. Nucl Med Commun 2024; 45:24-34. [PMID: 37901920 DOI: 10.1097/mnm.0000000000001786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
This paper provides an in-depth analysis of the clinical applications of artificial intelligence (AI) in Nuclear Medicine, focusing on three key areas: neurology, cardiology, and oncology. Beginning with neurology, specifically Alzheimer's disease and Parkinson's disease, the paper examines reviews on diagnosis and treatment planning. The same pattern is followed in cardiology studies. In the final section on oncology, the paper explores the various AI applications in multiple cancer types, including lung, head and neck, lymphoma, and pancreatic cancer.
Collapse
Affiliation(s)
| | | | - Anna Makridou
- Medical Physics Department, Cancer Hospital of Thessaloniki 'Theagenio', Thessaloniki, Greece
| | | | - Anna Paschali
- Nuclear Medicine Department, Cancer Hospital of Thessaloniki 'Theagenio' and
| | - Theodoros Kalathas
- Nuclear Medicine Department, Cancer Hospital of Thessaloniki 'Theagenio' and
| | - Michael Chatzimarkou
- Medical Physics Department, Cancer Hospital of Thessaloniki 'Theagenio', Thessaloniki, Greece
| | | |
Collapse
|
9
|
Alshmrani GM, Ni Q, Jiang R, Muhammed N. Hyper-Dense_Lung_Seg: Multimodal-Fusion-Based Modified U-Net for Lung Tumour Segmentation Using Multimodality of CT-PET Scans. Diagnostics (Basel) 2023; 13:3481. [PMID: 37998617 PMCID: PMC10670323 DOI: 10.3390/diagnostics13223481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The majority of cancer-related deaths globally are due to lung cancer, which also has the second-highest mortality rate. The segmentation of lung tumours, treatment evaluation, and tumour stage classification have become significantly more accessible with the advent of PET/CT scans. With the advent of PET/CT scans, it is possible to obtain both functioning and anatomic data during a single examination. However, integrating images from different modalities can indeed be time-consuming for medical professionals and remains a challenging task. This challenge arises from several factors, including differences in image acquisition techniques, image resolutions, and the inherent variations in the spectral and temporal data captured by different imaging modalities. Artificial Intelligence (AI) methodologies have shown potential in the automation of image integration and segmentation. To address these challenges, multimodal fusion approach-based U-Net architecture (early fusion, late fusion, dense fusion, hyper-dense fusion, and hyper-dense VGG16 U-Net) are proposed for lung tumour segmentation. Dice scores of 73% show that hyper-dense VGG16 U-Net is superior to the other four proposed models. The proposed method can potentially aid medical professionals in detecting lung cancer at an early stage.
Collapse
Affiliation(s)
- Goram Mufarah Alshmrani
- School of Computing and Commutations, Lancaster University, Lancaster LA1 4YW, UK; (Q.N.); (R.J.)
- College of Computing and Information Technology, University of Bisha, Bisha 67714, Saudi Arabia
| | - Qiang Ni
- School of Computing and Commutations, Lancaster University, Lancaster LA1 4YW, UK; (Q.N.); (R.J.)
| | - Richard Jiang
- School of Computing and Commutations, Lancaster University, Lancaster LA1 4YW, UK; (Q.N.); (R.J.)
| | - Nada Muhammed
- Computers and Control Engineering Department, Faculty of Engineering, Tanta University, Tanta 31733, Egypt;
| |
Collapse
|
10
|
Quiñones R, Samal A, Das Choudhury S, Muñoz-Arriola F. OSC-CO 2: coattention and cosegmentation framework for plant state change with multiple features. FRONTIERS IN PLANT SCIENCE 2023; 14:1211409. [PMID: 38023863 PMCID: PMC10644038 DOI: 10.3389/fpls.2023.1211409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Cosegmentation and coattention are extensions of traditional segmentation methods aimed at detecting a common object (or objects) in a group of images. Current cosegmentation and coattention methods are ineffective for objects, such as plants, that change their morphological state while being captured in different modalities and views. The Object State Change using Coattention-Cosegmentation (OSC-CO2) is an end-to-end unsupervised deep-learning framework that enhances traditional segmentation techniques, processing, analyzing, selecting, and combining suitable segmentation results that may contain most of our target object's pixels, and then displaying a final segmented image. The framework leverages coattention-based convolutional neural networks (CNNs) and cosegmentation-based dense Conditional Random Fields (CRFs) to address segmentation accuracy in high-dimensional plant imagery with evolving plant objects. The efficacy of OSC-CO2 is demonstrated using plant growth sequences imaged with infrared, visible, and fluorescence cameras in multiple views using a remote sensing, high-throughput phenotyping platform, and is evaluated using Jaccard index and precision measures. We also introduce CosegPP+, a dataset that is structured and can provide quantitative information on the efficacy of our framework. Results show that OSC-CO2 out performed state-of-the art segmentation and cosegmentation methods by improving segementation accuracy by 3% to 45%.
Collapse
Affiliation(s)
- Rubi Quiñones
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
- Computer Science Department, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Ashok Samal
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sruti Das Choudhury
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Francisco Muñoz-Arriola
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
11
|
He J, Zhang Y, Chung M, Wang M, Wang K, Ma Y, Ding X, Li Q, Pu Y. Whole-body tumor segmentation from PET/CT images using a two-stage cascaded neural network with camouflaged object detection mechanisms. Med Phys 2023; 50:6151-6162. [PMID: 37134002 DOI: 10.1002/mp.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 03/25/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Whole-body Metabolic Tumor Volume (MTVwb) is an independent prognostic factor for overall survival in lung cancer patients. Automatic segmentation methods have been proposed for MTV calculation. Nevertheless, most of existing methods for patients with lung cancer only segment tumors in the thoracic region. PURPOSE In this paper, we present a Two-Stage cascaded neural network integrated with Camouflaged Object Detection mEchanisms (TS-Code-Net) for automatic segmenting tumors from whole-body PET/CT images. METHODS Firstly, tumors are detected from the Maximum Intensity Projection (MIP) images of PET/CT scans, and tumors' approximate localizations along z-axis are identified. Secondly, the segmentations are performed on PET/CT slices that contain tumors identified by the first step. Camouflaged object detection mechanisms are utilized to distinguish the tumors from their surrounding regions that have similar Standard Uptake Values (SUV) and texture appearance. Finally, the TS-Code-Net is trained by minimizing the total loss that incorporates the segmentation accuracy loss and the class imbalance loss. RESULTS The performance of the TS-Code-Net is tested on a whole-body PET/CT image data-set including 480 Non-Small Cell Lung Cancer (NSCLC) patients with five-fold cross-validation using image segmentation metrics. Our method achieves 0.70, 0.76, and 0.70, for Dice, Sensitivity and Precision, respectively, which demonstrates the superiority of the TS-Code-Net over several existing methods related to metastatic lung cancer segmentation from whole-body PET/CT images. CONCLUSIONS The proposed TS-Code-Net is effective for whole-body tumor segmentation of PET/CT images. Codes for TS-Code-Net are available at: https://github.com/zyj19/TS-Code-Net.
Collapse
Affiliation(s)
- Jiangping He
- Department of Electronic Engineering, Lanzhou University of Finance and Economics, Lanzhou, Gansu, China
| | - Yangjie Zhang
- Department of Electronic Engineering, Lanzhou University of Finance and Economics, Lanzhou, Gansu, China
| | - Maggie Chung
- Department of Radiology, University of California, San Francisco, California, USA
| | - Michael Wang
- Department of Pathology, University of California, San Francisco, California, USA
| | - Kun Wang
- Department of Electronic Engineering, Lanzhou University of Finance and Economics, Lanzhou, Gansu, China
| | - Yan Ma
- Department of Electronic Engineering, Lanzhou University of Finance and Economics, Lanzhou, Gansu, China
| | - Xiaoyang Ding
- Department of Electronic Engineering, Lanzhou University of Finance and Economics, Lanzhou, Gansu, China
| | - Qiang Li
- Department of Electronic Engineering, Lanzhou University of Finance and Economics, Lanzhou, Gansu, China
| | - Yonglin Pu
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Yu X, He L, Wang Y, Dong Y, Song Y, Yuan Z, Yan Z, Wang W. A deep learning approach for automatic tumor delineation in stereotactic radiotherapy for non-small cell lung cancer using diagnostic PET-CT and planning CT. Front Oncol 2023; 13:1235461. [PMID: 37601687 PMCID: PMC10437048 DOI: 10.3389/fonc.2023.1235461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Accurate delineation of tumor targets is crucial for stereotactic body radiation therapy (SBRT) for non-small cell lung cancer (NSCLC). This study aims to develop a deep learning-based segmentation approach to accurately and efficiently delineate NSCLC targets using diagnostic PET-CT and SBRT planning CT (pCT). Methods The diagnostic PET was registered to pCT using the transform matrix from registering diagnostic CT to the pCT. We proposed a 3D-UNet-based segmentation method to segment NSCLC tumor targets on dual-modality PET-pCT images. This network contained squeeze-and-excitation and Residual blocks in each convolutional block to perform dynamic channel-wise feature recalibration. Furthermore, up-sampling paths were added to supplement low-resolution features to the model and also to compute the overall loss function. The dice similarity coefficient (DSC), precision, recall, and the average symmetric surface distances were used to assess the performance of the proposed approach on 86 pairs of diagnostic PET and pCT images. The proposed model using dual-modality images was compared with both conventional 3D-UNet architecture and single-modality image input. Results The average DSC of the proposed model with both PET and pCT images was 0.844, compared to 0.795 and 0.827, when using 3D-UNet and nnUnet. It also outperformed using either pCT or PET alone with the same network, which had DSC of 0.823 and 0.732, respectively. Discussion Therefore, our proposed segmentation approach is able to outperform the current 3D-UNet network with diagnostic PET and pCT images. The integration of two image modalities helps improve segmentation accuracy.
Collapse
Affiliation(s)
- Xuyao Yu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin Medical University, Tianjin, China
| | - Lian He
- Perception Vision Medical Technologies Co Ltd, Guangzhou, China
| | - Yuwen Wang
- Department of Radiotherapy, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Yang Dong
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yongchun Song
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ziye Yan
- Perception Vision Medical Technologies Co Ltd, Guangzhou, China
| | - Wei Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
13
|
Yao Y, Chen Y, Gou S, Chen S, Zhang X, Tong N. Auto-segmentation of pancreatic tumor in multi-modal image using transferred DSMask R-CNN network. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Wang F, Cheng C, Cao W, Wu Z, Wang H, Wei W, Yan Z, Liu Z. MFCNet: A multi-modal fusion and calibration networks for 3D pancreas tumor segmentation on PET-CT images. Comput Biol Med 2023; 155:106657. [PMID: 36791551 DOI: 10.1016/j.compbiomed.2023.106657] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
In clinical diagnosis, positron emission tomography and computed tomography (PET-CT) images containing complementary information are fused. Tumor segmentation based on multi-modal PET-CT images is an important part of clinical diagnosis and treatment. However, the existing current PET-CT tumor segmentation methods mainly focus on positron emission tomography (PET) and computed tomography (CT) feature fusion, which weakens the specificity of the modality. In addition, the information interaction between different modal images is usually completed by simple addition or concatenation operations, but this has the disadvantage of introducing irrelevant information during the multi-modal semantic feature fusion, so effective features cannot be highlighted. To overcome this problem, this paper propose a novel Multi-modal Fusion and Calibration Networks (MFCNet) for tumor segmentation based on three-dimensional PET-CT images. First, a Multi-modal Fusion Down-sampling Block (MFDB) with a residual structure is developed. The proposed MFDB can fuse complementary features of multi-modal images while retaining the unique features of different modal images. Second, a Multi-modal Mutual Calibration Block (MMCB) based on the inception structure is designed. The MMCB can guide the network to focus on a tumor region by combining different branch decoding features using the attention mechanism and extracting multi-scale pathological features using a convolution kernel of different sizes. The proposed MFCNet is verified on both the public dataset (Head and Neck cancer) and the in-house dataset (pancreas cancer). The experimental results indicate that on the public and in-house datasets, the average Dice values of the proposed multi-modal segmentation network are 74.14% and 76.20%, while the average Hausdorff distances are 6.41 and 6.84, respectively. In addition, the experimental results show that the proposed MFCNet outperforms the state-of-the-art methods on the two datasets.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China; Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Chao Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University(Changhai Hospital), Shanghai, 200433, China
| | - Weiwei Cao
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhongyi Wu
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Heng Wang
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Wenting Wei
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Zhuangzhi Yan
- Institute of Biomedical Engineering, School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China.
| | - Zhaobang Liu
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
15
|
Wang S, Mahon R, Weiss E, Jan N, Taylor RJ, McDonagh PR, Quinn B, Yuan L. Automated Lung Cancer Segmentation Using a PET and CT Dual-Modality Deep Learning Neural Network. Int J Radiat Oncol Biol Phys 2023; 115:529-539. [PMID: 35934160 DOI: 10.1016/j.ijrobp.2022.07.2312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 06/16/2022] [Accepted: 07/28/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To develop an automated lung tumor segmentation method for radiation therapy planning based on deep learning and dual-modality positron emission tomography (PET) and computed tomography (CT) images. METHODS AND MATERIALS A 3-dimensional (3D) convolutional neural network using inputs from diagnostic PETs and simulation CTs was constructed with 2 parallel convolution paths for independent feature extraction at multiple resolution levels and a single deconvolution path. At each resolution level, the extracted features from the convolution arms were concatenated and fed through the skip connections into the deconvolution path that produced the tumor segmentation. Our network was trained/validated/tested by a 3:1:1 split on 290 pairs of PET and CT images from patients with lung cancer treated at our clinic, with manual physician contours as the ground truth. A stratified training strategy based on the magnitude of the gross tumor volume (GTV) was investigated to improve performance, especially for small tumors. Multiple radiation oncologists assessed the clinical acceptability of the network-produced segmentations. RESULTS The mean Dice similarity coefficient, Hausdorff distance, and bidirectional local distance comparing manual versus automated contours were 0.79 ± 0.10, 5.8 ± 3.2 mm, and 2.8 ± 1.5 mm for the unstratified 3D dual-modality model. Stratification delivered the best results when the model for the large GTVs (>25 mL) was trained with all-size GTVs and the model for the small GTVs (<25 mL) was trained with small GTVs only. The best combined Dice similarity coefficient, Hausdorff distance, and bidirectional local distance from the 2 stratified models on their corresponding test data sets were 0.83 ± 0.07, 5.9 ± 2.5 mm, and 2.8 ± 1.4 mm, respectively. In the multiobserver review, 91.25% manual versus 88.75% automatic contours were accepted or accepted with modifications. CONCLUSIONS By using an expansive clinical PET and CT image database and a dual-modality architecture, the proposed 3D network with a novel GTVbased stratification strategy generated clinically useful lung cancer contours that were highly acceptable on physician review.
Collapse
Affiliation(s)
- Siqiu Wang
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Rebecca Mahon
- Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Nuzhat Jan
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Ross James Taylor
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Philip Reed McDonagh
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Bridget Quinn
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Lulin Yuan
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
16
|
Zhou Y, Jiang H, Diao Z, Tong G, Luan Q, Li Y, Li X. MRLA-Net: A tumor segmentation network embedded with a multiple receptive-field lesion attention module in PET-CT images. Comput Biol Med 2023; 153:106538. [PMID: 36646023 DOI: 10.1016/j.compbiomed.2023.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
The tumor image segmentation is an important basis for doctors to diagnose and formulate treatment planning. PET-CT is an extremely important technology for recognizing the systemic situation of diseases due to the complementary advantages of their respective modal information. However, current PET-CT tumor segmentation methods generally focus on the fusion of PET and CT features. The fusion of features will weaken the characteristics of the modality itself. Therefore, enhancing the modal features of the lesions can obtain optimized feature sets, which is extremely necessary to improve the segmentation results. This paper proposed an attention module that integrates the PET-CT diagnostic visual field and the modality characteristics of the lesion, that is, the multiple receptive-field lesion attention module. This paper made full use of the spatial domain, frequency domain, and channel attention, and proposed a large receptive-field lesion localization module and a small receptive-field lesion enhancement module, which together constitute the multiple receptive-field lesion attention module. In addition, a network embedded with a multiple receptive-field lesion attention module has been proposed for tumor segmentation. This paper conducted experiments on a private liver tumor dataset as well as two publicly available datasets, the soft tissue sarcoma dataset, and the head and neck tumor segmentation dataset. The experimental results showed that the proposed method achieves excellent performance on multiple datasets, and has a significant improvement compared with DenseUNet, and the tumor segmentation results on the above three PET/CT datasets were improved by 7.25%, 6.5%, 5.29% in Dice per case. Compared with the latest PET-CT liver tumor segmentation research, the proposed method improves by 8.32%.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Software College, Northeastern University, Shenyang 110819, China
| | - Huiyan Jiang
- Department of Software College, Northeastern University, Shenyang 110819, China.
| | - Zhaoshuo Diao
- Department of Software College, Northeastern University, Shenyang 110819, China
| | - Guoyu Tong
- Department of Software College, Northeastern University, Shenyang 110819, China
| | - Qiu Luan
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yaming Li
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xuena Li
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
17
|
Jarabek L, Jamsek J, Cuderman A, Rep S, Hocevar M, Kocjan T, Jensterle M, Spiclin Z, Macek Lezaic Z, Cvetko F, Lezaic L. Detection and localization of hyperfunctioning parathyroid glands on [ 18F]fluorocholine PET/ CT using deep learning - model performance and comparison to human experts. Radiol Oncol 2022; 56:440-452. [PMID: 36503715 PMCID: PMC9784363 DOI: 10.2478/raon-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In the setting of primary hyperparathyroidism (PHPT), [18F]fluorocholine PET/CT (FCH-PET) has excellent diagnostic performance, with experienced practitioners achieving 97.7% accuracy in localising hyperfunctioning parathyroid tissue (HPTT). Due to the relative triviality of the task for human readers, we explored the performance of deep learning (DL) methods for HPTT detection and localisation on FCH-PET images in the setting of PHPT. PATIENTS AND METHODS We used a dataset of 93 subjects with PHPT imaged using FCH-PET, of which 74 subjects had visible HPTT while 19 controls had no visible HPTT on FCH-PET. A conventional Resnet10 as well as a novel mPETResnet10 DL model were trained and tested to detect (present, not present) and localise (upper left, lower left, upper right or lower right) HPTT. Our mPETResnet10 architecture also contained a region-of-interest masking algorithm that we evaluated qualitatively in order to try to explain the model's decision process. RESULTS The models detected the presence of HPTT with an accuracy of 83% and determined the quadrant of HPTT with an accuracy of 74%. The DL methods performed statistically worse (p < 0.001) in both tasks compared to human readers, who localise HPTT with the accuracy of 97.7%. The produced region-of-interest mask, while not showing a consistent added value in the qualitative evaluation of model's decision process, had correctly identified the foreground PET signal. CONCLUSIONS Our experiment is the first reported use of DL analysis of FCH-PET in PHPT. We have shown that it is possible to utilize DL methods with FCH-PET to detect and localize HPTT. Given our small dataset of 93 subjects, results are nevertheless promising for further research.
Collapse
Affiliation(s)
- Leon Jarabek
- Department of Radiology, General Hospital Novo Mesto, Novo MestoSlovenia
| | - Jan Jamsek
- Department for Nuclear Medicine, University Medical CentreLjubljana, Slovenia
| | - Anka Cuderman
- Department for Nuclear Medicine, University Medical CentreLjubljana, Slovenia
| | - Sebastijan Rep
- Department for Nuclear Medicine, University Medical CentreLjubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Hocevar
- Department of Surgical Oncology, Institute of Oncology, LjubljanaSlovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaz Kocjan
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department for Endocrinology, Diabetes and Metabolic Diseases, University Medical CentreLjubljana, Slovenia
| | - Mojca Jensterle
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department for Endocrinology, Diabetes and Metabolic Diseases, University Medical CentreLjubljana, Slovenia
| | - Ziga Spiclin
- Faculty of Electrical Engineering, University of Ljubljana, LjubljanaSlovenia
| | | | - Filip Cvetko
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Lezaic
- Department for Nuclear Medicine, University Medical CentreLjubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Wang L. Deep Learning Techniques to Diagnose Lung Cancer. Cancers (Basel) 2022; 14:5569. [PMID: 36428662 PMCID: PMC9688236 DOI: 10.3390/cancers14225569] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
Medical imaging tools are essential in early-stage lung cancer diagnostics and the monitoring of lung cancer during treatment. Various medical imaging modalities, such as chest X-ray, magnetic resonance imaging, positron emission tomography, computed tomography, and molecular imaging techniques, have been extensively studied for lung cancer detection. These techniques have some limitations, including not classifying cancer images automatically, which is unsuitable for patients with other pathologies. It is urgently necessary to develop a sensitive and accurate approach to the early diagnosis of lung cancer. Deep learning is one of the fastest-growing topics in medical imaging, with rapidly emerging applications spanning medical image-based and textural data modalities. With the help of deep learning-based medical imaging tools, clinicians can detect and classify lung nodules more accurately and quickly. This paper presents the recent development of deep learning-based imaging techniques for early lung cancer detection.
Collapse
Affiliation(s)
- Lulu Wang
- Biomedical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
19
|
Yuan C, Shi Q, Huang X, Wang L, He Y, Li B, Zhao W, Qian D. Multimodal deep learning model on interim [ 18F]FDG PET/CT for predicting primary treatment failure in diffuse large B-cell lymphoma. Eur Radiol 2022; 33:77-88. [PMID: 36029345 DOI: 10.1007/s00330-022-09031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The prediction of primary treatment failure (PTF) is necessary for patients with diffuse large B-cell lymphoma (DLBCL) since it serves as a prominent means for improving front-line outcomes. Using interim 18F-fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) imaging data, we aimed to construct multimodal deep learning (MDL) models to predict possible PTF in low-risk DLBCL. METHODS Initially, 205 DLBCL patients undergoing interim [18F]FDG PET/CT scans and the front-line standard of care were included in the primary dataset for model development. Then, 44 other patients were included in the external dataset for generalization evaluation. Based on the powerful backbone of the Conv-LSTM network, we incorporated five different multimodal fusion strategies (pixel intermixing, separate channel, separate branch, quantitative weighting, and hybrid learning) to make full use of PET/CT features and built five corresponding MDL models. Moreover, we found the best model, that is, the hybrid learning model, and optimized it by integrating the contrastive training objective to further improve its prediction performance. RESULTS The final model with contrastive objective optimization, named the contrastive hybrid learning model, performed best, with an accuracy of 91.22% and an area under the receiver operating characteristic curve (AUC) of 0.926, in the primary dataset. In the external dataset, its accuracy and AUC remained at 88.64% and 0.925, respectively, indicating its good generalization ability. CONCLUSIONS The proposed model achieved good performance, validated the predictive value of interim PET/CT, and holds promise for directing individualized clinical treatment. KEY POINTS • The proposed multimodal models achieved accurate prediction of primary treatment failure in DLBCL patients. • Using an appropriate feature-level fusion strategy can make the same class close to each other regardless of the modal heterogeneity of the data source domain and positively impact the prediction performance. • Deep learning validated the predictive value of interim PET/CT in a way that exceeded human capabilities.
Collapse
Affiliation(s)
- Cheng Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200040, China
| | - Qing Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyun Huang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Dahong Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200040, China.
| |
Collapse
|
20
|
Manimegalai P, Suresh Kumar R, Valsalan P, Dhanagopal R, Vasanth Raj PT, Christhudass J. 3D Convolutional Neural Network Framework with Deep Learning for Nuclear Medicine. SCANNING 2022; 2022:9640177. [PMID: 35924105 PMCID: PMC9308558 DOI: 10.1155/2022/9640177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 05/15/2023]
Abstract
Though artificial intelligence (AI) has been used in nuclear medicine for more than 50 years, more progress has been made in deep learning (DL) and machine learning (ML), which have driven the development of new AI abilities in the field. ANNs are used in both deep learning and machine learning in nuclear medicine. Alternatively, if 3D convolutional neural network (CNN) is used, the inputs may be the actual images that are being analyzed, rather than a set of inputs. In nuclear medicine, artificial intelligence reimagines and reengineers the field's therapeutic and scientific capabilities. Understanding the concepts of 3D CNN and U-Net in the context of nuclear medicine provides for a deeper engagement with clinical and research applications, as well as the ability to troubleshoot problems when they emerge. Business analytics, risk assessment, quality assurance, and basic classifications are all examples of simple ML applications. General nuclear medicine, SPECT, PET, MRI, and CT may benefit from more advanced DL applications for classification, detection, localization, segmentation, quantification, and radiomic feature extraction utilizing 3D CNNs. An ANN may be used to analyze a small dataset at the same time as traditional statistical methods, as well as bigger datasets. Nuclear medicine's clinical and research practices have been largely unaffected by the introduction of artificial intelligence (AI). Clinical and research landscapes have been fundamentally altered by the advent of 3D CNN and U-Net applications. Nuclear medicine professionals must now have at least an elementary understanding of AI principles such as neural networks (ANNs) and convolutional neural networks (CNNs).
Collapse
Affiliation(s)
- P. Manimegalai
- Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - R. Suresh Kumar
- Center for System Design, Chennai Institute of Technology, Chennai, India
| | - Prajoona Valsalan
- Department of Electrical and Computer Engineering, Dhofar University, Salalah, Oman
| | - R. Dhanagopal
- Center for System Design, Chennai Institute of Technology, Chennai, India
| | - P. T. Vasanth Raj
- Center for System Design, Chennai Institute of Technology, Chennai, India
| | - Jerome Christhudass
- Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
21
|
Wang R, Guo J, Zhou Z, Wang K, Gou S, Xu R, Sher D, Wang J. Locoregional recurrence prediction in head and neck cancer based on multi-modality and multi-view feature expansion. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac72f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/24/2022] [Indexed: 12/09/2022]
Abstract
Abstract
Objective. Locoregional recurrence (LRR) is one of the leading causes of treatment failure in head and neck (H&N) cancer. Accurately predicting LRR after radiotherapy is essential to achieving better treatment outcomes for patients with H&N cancer through developing personalized treatment strategies. We aim to develop an end-to-end multi-modality and multi-view feature extension method (MMFE) to predict LRR in H&N cancer. Approach. Deep learning (DL) has been widely used for building prediction models and has achieved great success. Nevertheless, 2D-based DL models inherently fail to utilize the contextual information from adjacent slices, while complicated 3D models have a substantially larger number of parameters, which require more training samples, memory and computing resources. In the proposed MMFE scheme, through the multi-view feature expansion and projection dimension reduction operations, we are able to reduce the model complexity while preserving volumetric information. Additionally, we designed a multi-modality convolutional neural network that can be trained in an end-to-end manner and can jointly optimize the use of deep features of CT, PET and clinical data to improve the model’s prediction ability. Main results. The dataset included 206 eligible patients, of which, 49 had LRR while 157 did not. The proposed MMFE method obtained a higher AUC value than the other four methods. The best prediction result was achieved when using all three modalities, which yielded an AUC value of 0.81. Significance. Comparison experiments demonstrated the superior performance of the MMFE as compared to other 2D/3D-DL-based methods. By combining CT, PET and clinical features, the MMFE could potentially identify H&N cancer patients at high risk for LRR such that personalized treatment strategy can be developed accordingly.
Collapse
|
22
|
Manafi-Farid R, Askari E, Shiri I, Pirich C, Asadi M, Khateri M, Zaidi H, Beheshti M. [ 18F]FDG-PET/CT radiomics and artificial intelligence in lung cancer: Technical aspects and potential clinical applications. Semin Nucl Med 2022; 52:759-780. [PMID: 35717201 DOI: 10.1053/j.semnuclmed.2022.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Molecular imaging using [18F]fluorodeoxyglucose Positron Emission Tomography and/or Computed Tomography ([18F]FDG-PET/CT) plays an essential role in the diagnosis, evaluation of response to treatment, and prediction of outcomes. The images are evaluated using qualitative and conventional quantitative indices. However, there is far more information embedded in the images, which can be extracted by sophisticated algorithms. Recently, the concept of uncovering and analyzing the invisible data extracted from medical images, called radiomics, is gaining more attention. Currently, [18F]FDG-PET/CT radiomics is growingly evaluated in lung cancer to discover if it enhances the diagnostic performance or implication of [18F]FDG-PET/CT in the management of lung cancer. In this review, we provide a short overview of the technical aspects, as they are discussed in different articles of this special issue. We mainly focus on the diagnostic performance of the [18F]FDG-PET/CT-based radiomics and the role of artificial intelligence in non-small cell lung cancer, impacting the early detection, staging, prediction of tumor subtypes, biomarkers, and patient's outcomes.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Emran Askari
- Department of Nuclear Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Khateri
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
23
|
Astley JR, Wild JM, Tahir BA. Deep learning in structural and functional lung image analysis. Br J Radiol 2022; 95:20201107. [PMID: 33877878 PMCID: PMC9153705 DOI: 10.1259/bjr.20201107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The recent resurgence of deep learning (DL) has dramatically influenced the medical imaging field. Medical image analysis applications have been at the forefront of DL research efforts applied to multiple diseases and organs, including those of the lungs. The aims of this review are twofold: (i) to briefly overview DL theory as it relates to lung image analysis; (ii) to systematically review the DL research literature relating to the lung image analysis applications of segmentation, reconstruction, registration and synthesis. The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. 479 studies were initially identified from the literature search with 82 studies meeting the eligibility criteria. Segmentation was the most common lung image analysis DL application (65.9% of papers reviewed). DL has shown impressive results when applied to segmentation of the whole lung and other pulmonary structures. DL has also shown great potential for applications in image registration, reconstruction and synthesis. However, the majority of published studies have been limited to structural lung imaging with only 12.9% of reviewed studies employing functional lung imaging modalities, thus highlighting significant opportunities for further research in this field. Although the field of DL in lung image analysis is rapidly expanding, concerns over inconsistent validation and evaluation strategies, intersite generalisability, transparency of methodological detail and interpretability need to be addressed before widespread adoption in clinical lung imaging workflow.
Collapse
Affiliation(s)
| | - Jim M Wild
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
24
|
Kao YS, Yang J. Deep learning-based auto-segmentation of lung tumor PET/CT scans: a systematic review. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Li M, Lian F, Guo S. Multi-scale Selection and Multi-channel Fusion Model for Pancreas Segmentation Using Adversarial Deep Convolutional Nets. J Digit Imaging 2022; 35:47-55. [PMID: 34921356 PMCID: PMC8854512 DOI: 10.1007/s10278-021-00563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023] Open
Abstract
Organ segmentation from existing imaging is vital to the medical image analysis and disease diagnosis. However, the boundary shapes and area sizes of the target region tend to be diverse and flexible. And the frequent applications of pooling operations in traditional segmentor result in the loss of spatial information which is advantageous to segmentation. All these issues pose challenges and difficulties for accurate organ segmentation from medical imaging, particularly for organs with small volumes and variable shapes such as the pancreas. To offset aforesaid information loss, we propose a deep convolutional neural network (DCNN) named multi-scale selection and multi-channel fusion segmentation model (MSC-DUnet) for pancreas segmentation. This proposed model contains three stages to collect detailed cues for accurate segmentation: (1) increasing the consistency between the distributions of the output probability maps from the segmentor and the original samples by involving the adversarial mechanism that can capture spatial distributions, (2) gathering global spatial features from several receptive fields via multi-scale field selection (MSFS), and (3) integrating multi-level features located in varying network positions through the multi-channel fusion module (MCFM). Experimental results on the NIH Pancreas-CT dataset show that our proposed MSC-DUnet obtains superior performance to the baseline network by achieving an improvement of 5.1% in index dice similarity coefficient (DSC), which adequately indicates that MSC-DUnet has great potential for pancreas segmentation.
Collapse
Affiliation(s)
- Meiyu Li
- College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Fenghui Lian
- School of Aviation Operations and Services, Air Force Aviation University, Changchun, 130000, China
| | - Shuxu Guo
- College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| |
Collapse
|
26
|
Sahli H, Ben Slama A, Labidi S. U-Net: A valuable encoder-decoder architecture for liver tumors segmentation in CT images. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:45-56. [PMID: 34806644 DOI: 10.3233/xst-210993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study proposes a new predictive segmentation method for liver tumors detection using computed tomography (CT) liver images. In the medical imaging field, the exact localization of metastasis lesions after acquisition faces persistent problems both for diagnostic aid and treatment effectiveness. Therefore, the improvement in the diagnostic process is substantially crucial in order to increase the success chance of the management and the therapeutic follow-up. The proposed procedure highlights a computerized approach based on an encoder-decoder structure in order to provide volumetric analysis of pathologic tumors. Specifically, we developed an automatic algorithm for the liver tumors defect segmentation through the Seg-Net and U-Net architectures from metastasis CT images. In this study, we collected a dataset of 200 pathologically confirmed metastasis cancer cases. A total of 8,297 CT image slices of these cases were used developing and optimizing the proposed segmentation architecture. The model was trained and validated using 170 and 30 cases or 85% and 15% of the CT image data, respectively. Study results demonstrate the strength of the proposed approach that reveals the superlative segmentation performance as evaluated using following indices including F1-score = 0.9573, Recall = 0.9520, IOU = 0.9654, Binary cross entropy = 0.0032 and p-value <0.05, respectively. In comparison to state-of-the-art techniques, the proposed method yields a higher precision rate by specifying metastasis tumor position.
Collapse
Affiliation(s)
- Hanene Sahli
- Laboratory of Signal Image and Energy Mastery (SIME), LR13ES03, University of Tunis, ENSIT, 1008, Tunis, Tunisia
| | - Amine Ben Slama
- Laboratory of Biophysics and Medical Technologies, LR13ES07, University of Tunis EL Manar, ISTMT, 1006, Tunis, Tunisia
| | - Salam Labidi
- Laboratory of Biophysics and Medical Technologies, LR13ES07, University of Tunis EL Manar, ISTMT, 1006, Tunis, Tunisia
| |
Collapse
|
27
|
Yu X, Jin F, Luo H, Lei Q, Wu Y. Gross Tumor Volume Segmentation for Stage III NSCLC Radiotherapy Using 3D ResSE-Unet. Technol Cancer Res Treat 2022; 21:15330338221090847. [PMID: 35443832 PMCID: PMC9047806 DOI: 10.1177/15330338221090847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Radiotherapy is one of the most effective ways to treat lung cancer. Accurately delineating the gross target volume is a key step in the radiotherapy process. In current clinical practice, the target area is still delineated manually by radiologists, which is time-consuming and laborious. However, these problems can be better solved by deep learning-assisted automatic segmentation methods. METHODS In this paper, a 3D CNN model named 3D ResSE-Unet is proposed for gross tumor volume segmentation for stage III NSCLC radiotherapy. This model is based on 3D Unet and combines residual connection and channel attention mechanisms. Three-dimensional convolution operation and encoding-decoding structure are used to mine three-dimensional spatial information of tumors from computed tomography data. Inspired by ResNet and SE-Net, residual connection and channel attention mechanisms are used to improve segmentation performance. A total of 214 patients with stage III NSCLC were collected selectively and 148 cases were randomly selected as the training set, 30 cases as the validation set, and 36 cases as the testing set. The segmentation performance of models was evaluated by the testing set. In addition, the segmentation results of different depths of 3D Unet were analyzed. And the performance of 3D ResSE-Unet was compared with 3D Unet, 3D Res-Unet, and 3D SE-Unet. RESULTS Compared with other depths, 3D Unet with four downsampling depths is more suitable for our work. Compared with 3D Unet, 3D Res-Unet, and 3D SE-Unet, 3D ResSE-Unet can obtain superior results. Its dice similarity coefficient, 95th-percentile of Hausdorff distance, and average surface distance can reach 0.7367, 21.39mm, 4.962mm, respectively. And the average time cost of 3D ResSE-Unet to segment a patient is only about 10s. CONCLUSION The method proposed in this study provides a new tool for GTV auto-segmentation and may be useful for lung cancer radiotherapy.
Collapse
Affiliation(s)
- Xinhao Yu
- College of Bioengineering, 47913Chongqing University, Chongqing, China.,Department of radiation oncology, 605425Chongqing University Cancer Hospital, Chongqing, China
| | - Fu Jin
- Department of radiation oncology, 605425Chongqing University Cancer Hospital, Chongqing, China
| | - HuanLi Luo
- Department of radiation oncology, 605425Chongqing University Cancer Hospital, Chongqing, China
| | - Qianqian Lei
- Department of radiation oncology, 605425Chongqing University Cancer Hospital, Chongqing, China
| | - Yongzhong Wu
- Department of radiation oncology, 605425Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
28
|
Shiri I, AmirMozafari Sabet K, Arabi H, Pourkeshavarz M, Teimourian B, Ay MR, Zaidi H. Standard SPECT myocardial perfusion estimation from half-time acquisitions using deep convolutional residual neural networks. J Nucl Cardiol 2021; 28:2761-2779. [PMID: 32347527 DOI: 10.1007/s12350-020-02119-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The purpose of this work was to assess the feasibility of acquisition time reduction in MPI-SPECT imaging using deep leering techniques through two main approaches, namely reduction of the acquisition time per projection and reduction of the number of angular projections. METHODS SPECT imaging was performed using a fixed 90° angle dedicated dual-head cardiac SPECT camera. This study included a prospective cohort of 363 patients with various clinical indications (normal, ischemia, and infarct) referred for MPI-SPECT. For each patient, 32 projections for 20 seconds per projection were acquired using a step and shoot protocol from the right anterior oblique to the left posterior oblique view. SPECT projection data were reconstructed using the OSEM algorithm (6 iterations, 4 subsets, Butterworth post-reconstruction filter). For each patient, four different datasets were generated, namely full time (20 seconds) projections (FT), half-time (10 seconds) acquisition per projection (HT), 32 full projections (FP), and 16 half projections (HP). The image-to-image transformation via the residual network was implemented to predict FT from HT and predict FP from HP images in the projection domain. Qualitative and quantitative evaluations of the proposed framework was performed using a tenfold cross validation scheme using the root mean square error (RMSE), absolute relative error (ARE), structural similarity index, peak signal-to-noise ratio (PSNR) metrics, and clinical quantitative parameters. RESULTS The results demonstrated that the predicted FT had better image quality than the predicted FP images. Among the generated images, predicted FT images resulted in the lowest error metrics (RMSE = 6.8 ± 2.7, ARE = 3.1 ± 1.1%) and highest similarity index and signal-to-noise ratio (SSIM = 0.97 ± 1.1, PSNR = 36.0 ± 1.4). The highest error metrics (RMSE = 32.8 ± 12.8, ARE = 16.2 ± 4.9%) and the lowest similarity and signal-to-noise ratio (SSIM = 0.93 ± 2.6, PSNR = 31.7 ± 2.9) were observed for HT images. The RMSE decreased significantly (P value < .05) for predicted FT (8.0 ± 3.6) relative to predicted FP (6.8 ± 2.7). CONCLUSION Reducing the acquisition time per projection significantly increased the error metrics. The deep neural network effectively recovers image quality and reduces bias in quantification metrics. Further research should be undertaken to explore the impact of time reduction in gated MPI-SPECT.
Collapse
Affiliation(s)
- Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | | | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Mozhgan Pourkeshavarz
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
- Department of Computer Engineering, Shahid Beheshti University, Tehran, Iran
| | - Behnoosh Teimourian
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ay
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland.
- Geneva University Neurocenter, Geneva University, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
29
|
Xue Z, Li P, Zhang L, Lu X, Zhu G, Shen P, Ali Shah SA, Bennamoun M. Multi-Modal Co-Learning for Liver Lesion Segmentation on PET-CT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3531-3542. [PMID: 34133275 DOI: 10.1109/tmi.2021.3089702] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liver lesion segmentation is an essential process to assist doctors in hepatocellular carcinoma diagnosis and treatment planning. Multi-modal positron emission tomography and computed tomography (PET-CT) scans are widely utilized due to their complementary feature information for this purpose. However, current methods ignore the interaction of information across the two modalities during feature extraction, omit the co-learning of the feature maps of different resolutions, and do not ensure that shallow and deep features complement each others sufficiently. In this paper, our proposed model can achieve feature interaction across multi-modal channels by sharing the down-sampling blocks between two encoding branches to eliminate misleading features. Furthermore, we combine feature maps of different resolutions to derive spatially varying fusion maps and enhance the lesions information. In addition, we introduce a similarity loss function for consistency constraint in case that predictions of separated refactoring branches for the same regions vary a lot. We evaluate our model for liver tumor segmentation using a PET-CT scans dataset, compare our method with the baseline techniques for multi-modal (multi-branches, multi-channels and cascaded networks) and then demonstrate that our method has a significantly higher accuracy ( ) than the baseline models.
Collapse
|
30
|
Shiri I, Arabi H, Sanaat A, Jenabi E, Becker M, Zaidi H. Fully Automated Gross Tumor Volume Delineation From PET in Head and Neck Cancer Using Deep Learning Algorithms. Clin Nucl Med 2021; 46:872-883. [PMID: 34238799 DOI: 10.1097/rlu.0000000000003789] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The availability of automated, accurate, and robust gross tumor volume (GTV) segmentation algorithms is critical for the management of head and neck cancer (HNC) patients. In this work, we evaluated 3 state-of-the-art deep learning algorithms combined with 8 different loss functions for PET image segmentation using a comprehensive training set and evaluated its performance on an external validation set of HNC patients. PATIENTS AND METHODS 18F-FDG PET/CT images of 470 patients presenting with HNC on which manually defined GTVs serving as standard of reference were used for training (340 patients), evaluation (30 patients), and testing (100 patients from different centers) of these algorithms. PET image intensity was converted to SUVs and normalized in the range (0-1) using the SUVmax of the whole data set. PET images were cropped to 12 × 12 × 12 cm3 subvolumes using isotropic voxel spacing of 3 × 3 × 3 mm3 containing the whole tumor and neighboring background including lymph nodes. We used different approaches for data augmentation, including rotation (-15 degrees, +15 degrees), scaling (-20%, 20%), random flipping (3 axes), and elastic deformation (sigma = 1 and proportion to deform = 0.7) to increase the number of training sets. Three state-of-the-art networks, including Dense-VNet, NN-UNet, and Res-Net, with 8 different loss functions, including Dice, generalized Wasserstein Dice loss, Dice plus XEnt loss, generalized Dice loss, cross-entropy, sensitivity-specificity, and Tversky, were used. Overall, 28 different networks were built. Standard image segmentation metrics, including Dice similarity, image-derived PET metrics, first-order, and shape radiomic features, were used for performance assessment of these algorithms. RESULTS The best results in terms of Dice coefficient (mean ± SD) were achieved by cross-entropy for Res-Net (0.86 ± 0.05; 95% confidence interval [CI], 0.85-0.87), Dense-VNet (0.85 ± 0.058; 95% CI, 0.84-0.86), and Dice plus XEnt for NN-UNet (0.87 ± 0.05; 95% CI, 0.86-0.88). The difference between the 3 networks was not statistically significant (P > 0.05). The percent relative error (RE%) of SUVmax quantification was less than 5% in networks with a Dice coefficient more than 0.84, whereas a lower RE% (0.41%) was achieved by Res-Net with cross-entropy loss. For maximum 3-dimensional diameter and sphericity shape features, all networks achieved a RE ≤ 5% and ≤10%, respectively, reflecting a small variability. CONCLUSIONS Deep learning algorithms exhibited promising performance for automated GTV delineation on HNC PET images. Different loss functions performed competitively when using different networks and cross-entropy for Res-Net, Dense-VNet, and Dice plus XEnt for NN-UNet emerged as reliable networks for GTV delineation. Caution should be exercised for clinical deployment owing to the occurrence of outliers in deep learning-based algorithms.
Collapse
Affiliation(s)
- Isaac Shiri
- From the Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Hossein Arabi
- From the Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Amirhossein Sanaat
- From the Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Elnaz Jenabi
- Research Centre for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
31
|
Diao Z, Jiang H, Han XH, Yao YD, Shi T. EFNet: evidence fusion network for tumor segmentation from PET-CT volumes. Phys Med Biol 2021; 66. [PMID: 34555816 DOI: 10.1088/1361-6560/ac299a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 11/11/2022]
Abstract
Precise delineation of target tumor from positron emission tomography-computed tomography (PET-CT) is a key step in clinical practice and radiation therapy. PET-CT co-segmentation actually uses the complementary information of two modalities to reduce the uncertainty of single-modal segmentation, so as to obtain more accurate segmentation results. At present, the PET-CT segmentation methods based on fully convolutional neural network (FCN) mainly adopt image fusion and feature fusion. The current fusion strategies do not consider the uncertainty of multi-modal segmentation and complex feature fusion consumes more computing resources, especially when dealing with 3D volumes. In this work, we analyze the PET-CT co-segmentation from the perspective of uncertainty, and propose evidence fusion network (EFNet). The network respectively outputs PET result and CT result containing uncertainty by proposed evidence loss, which are used as PET evidence and CT evidence. Then we use evidence fusion to reduce uncertainty of single-modal evidence. The final segmentation result is obtained based on evidence fusion of PET evidence and CT evidence. EFNet uses the basic 3D U-Net as backbone and only uses simple unidirectional feature fusion. In addition, EFNet can separately train and predict PET evidence and CT evidence, without the need for parallel training of two branch networks. We do experiments on the soft-tissue-sarcomas and lymphoma datasets. Compared with 3D U-Net, our proposed method improves the Dice by 8% and 5% respectively. Compared with the complex feature fusion method, our proposed method improves the Dice by 7% and 2% respectively. Our results show that in PET-CT segmentation methods based on FCN, by outputting uncertainty evidence and evidence fusion, the network can be simplified and the segmentation results can be improved.
Collapse
Affiliation(s)
- Zhaoshuo Diao
- Software College, Northeastern University, Shenyang 110819, People's Republic of China
| | - Huiyan Jiang
- Software College, Northeastern University, Shenyang 110819, People's Republic of China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xian-Hua Han
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi-shi 7538511, Japan
| | - Yu-Dong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken NJ 07030, United States of America
| | - Tianyu Shi
- Software College, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
32
|
Gan W, Wang H, Gu H, Duan Y, Shao Y, Chen H, Feng A, Huang Y, Fu X, Ying Y, Quan H, Xu Z. Automatic segmentation of lung tumors on CT images based on a 2D & 3D hybrid convolutional neural network. Br J Radiol 2021; 94:20210038. [PMID: 34347535 PMCID: PMC9328064 DOI: 10.1259/bjr.20210038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/22/2021] [Accepted: 07/25/2021] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE A stable and accurate automatic tumor delineation method has been developed to facilitate the intelligent design of lung cancer radiotherapy process. The purpose of this paper is to introduce an automatic tumor segmentation network for lung cancer on CT images based on deep learning. METHODS In this paper, a hybrid convolution neural network (CNN) combining 2D CNN and 3D CNN was implemented for the automatic lung tumor delineation using CT images. 3D CNN used V-Net model for the extraction of tumor context information from CT sequence images. 2D CNN used an encoder-decoder structure based on dense connection scheme, which could expand information flow and promote feature propagation. Next, 2D features and 3D features were fused through a hybrid module. Meanwhile, the hybrid CNN was compared with the individual 3D CNN and 2D CNN, and three evaluation metrics, Dice, Jaccard and Hausdorff distance (HD), were used for quantitative evaluation. The relationship between the segmentation performance of hybrid network and the GTV volume size was also explored. RESULTS The newly introduced hybrid CNN was trained and tested on a dataset of 260 cases, and could achieve a median value of 0.73, with mean and stand deviation of 0.72 ± 0.10 for the Dice metric, 0.58 ± 0.13 and 21.73 ± 13.30 mm for the Jaccard and HD metrics, respectively. The hybrid network significantly outperformed the individual 3D CNN and 2D CNN in the three examined evaluation metrics (p < 0.001). A larger GTV present a higher value for the Dice metric, but its delineation at the tumor boundary is unstable. CONCLUSIONS The implemented hybrid CNN was able to achieve good lung tumor segmentation performance on CT images. ADVANCES IN KNOWLEDGE The hybrid CNN has valuable prospect with the ability to segment lung tumor.
Collapse
Affiliation(s)
| | - Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hengle Gu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhua Duan
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Shao
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Chen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Aihui Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Huang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanchen Ying
- Department of Radiation Physics, Zhejiang Cancer Hospital, University of Chinese Academy of Sciences, Zhejiang, China
| | - Hong Quan
- School of Physics and Technology, University of Wuhan, Wuhan, China
| | - Zhiyong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Polymeri E, Kjölhede H, Enqvist O, Ulén J, Poulsen MH, Simonsen JA, Borrelli P, Trägårdh E, Johnsson ÅA, Høilund-Carlsen PF, Edenbrandt L. Artificial intelligence-based measurements of PET/CT imaging biomarkers are associated with disease-specific survival of high-risk prostate cancer patients. Scand J Urol 2021; 55:427-433. [PMID: 34565290 DOI: 10.1080/21681805.2021.1977845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Artificial intelligence (AI) offers new opportunities for objective quantitative measurements of imaging biomarkers from positron-emission tomography/computed tomography (PET/CT). Clinical image reporting relies predominantly on observer-dependent visual assessment and easily accessible measures like SUVmax, representing lesion uptake in a relatively small amount of tissue. Our hypothesis is that measurements of total volume and lesion uptake of the entire tumour would better reflect the disease`s activity with prognostic significance, compared with conventional measurements. METHODS An AI-based algorithm was trained to automatically measure the prostate and its tumour content in PET/CT of 145 patients. The algorithm was then tested retrospectively on 285 high-risk patients, who were examined using 18F-choline PET/CT for primary staging between April 2008 and July 2015. Prostate tumour volume, tumour fraction of the prostate gland, lesion uptake of the entire tumour, and SUVmax were obtained automatically. Associations between these measurements, age, PSA, Gleason score and prostate cancer-specific survival were studied, using a Cox proportional-hazards regression model. RESULTS Twenty-three patients died of prostate cancer during follow-up (median survival 3.8 years). Total tumour volume of the prostate (p = 0.008), tumour fraction of the gland (p = 0.005), total lesion uptake of the prostate (p = 0.02), and age (p = 0.01) were significantly associated with disease-specific survival, whereas SUVmax (p = 0.2), PSA (p = 0.2), and Gleason score (p = 0.8) were not. CONCLUSION AI-based assessments of total tumour volume and lesion uptake were significantly associated with disease-specific survival in this patient cohort, whereas SUVmax and Gleason scores were not. The AI-based approach appears well-suited for clinically relevant patient stratification and monitoring of individual therapy.
Collapse
Affiliation(s)
- Eirini Polymeri
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Radiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Kjölhede
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Urology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Olof Enqvist
- Department of Electrical Engineering, Region Västra Götaland, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Mads H Poulsen
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Jane A Simonsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Pablo Borrelli
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elin Trägårdh
- Clinical Physiology and Nuclear Medicine, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Åse A Johnsson
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Radiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Lars Edenbrandt
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Yousefirizi F, Jha AK, Brosch-Lenz J, Saboury B, Rahmim A. Toward High-Throughput Artificial Intelligence-Based Segmentation in Oncological PET Imaging. PET Clin 2021; 16:577-596. [PMID: 34537131 DOI: 10.1016/j.cpet.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Artificial intelligence (AI) techniques for image-based segmentation have garnered much attention in recent years. Convolutional neural networks have shown impressive results and potential toward fully automated segmentation in medical imaging, and particularly PET imaging. To cope with the limited access to annotated data needed in supervised AI methods, given tedious and prone-to-error manual delineations, semi-supervised and unsupervised AI techniques have also been explored for segmentation of tumors or normal organs in single- and bimodality scans. This work reviews existing AI techniques for segmentation tasks and the evaluation criteria for translational AI-based segmentation efforts toward routine adoption in clinical workflows.
Collapse
Affiliation(s)
- Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO 63130, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Julia Brosch-Lenz
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Arman Rahmim
- Department of Radiology, University of British Columbia, BC Cancer, BC Cancer Research Institute, 675 West 10th Avenue, Office 6-112, Vancouver, British Columbia V5Z 1L3, Canada; Department of Physics, University of British Columbia, Senior Scientist & Provincial Medical Imaging Physicist, BC Cancer, BC Cancer Research Institute, 675 West 10th Avenue, Office 6-112, Vancouver, British Columbia V5Z 1L3, Canada
| |
Collapse
|
35
|
Yuan C, Zhang M, Huang X, Xie W, Lin X, Zhao W, Li B, Qian D. Diffuse large B-cell lymphoma segmentation in PET-CT images via hybrid learning for feature fusion. Med Phys 2021; 48:3665-3678. [PMID: 33735451 DOI: 10.1002/mp.14847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Diffuse large B-cell lymphoma (DLBCL) is an aggressive type of lymphoma with high mortality and poor prognosis that especially has a high incidence in Asia. Accurate segmentation of DLBCL lesions is crucial for clinical radiation therapy. However, manual delineation of DLBCL lesions is tedious and time-consuming. Automatic segmentation provides an alternative solution but is difficult for diffuse lesions without the sufficient utilization of multimodality information. Our work is the first study focusing on positron emission tomography and computed tomography (PET-CT) feature fusion for the DLBCL segmentation issue. We aim to improve the fusion performance of complementary information contained in PET-CT imaging with a hybrid learning module in the supervised convolutional neural network. METHODS First, two encoder branches extract single-modality features, respectively. Next, the hybrid learning component utilizes them to generate spatial fusion maps which can quantify the contribution of complementary information. Such feature fusion maps are then concatenated with specific-modality (i.e., PET and CT) feature maps to obtain a representation of the final fused feature maps in different scales. Finally, the reconstruction part of our network creates a prediction map of DLBCL lesions by integrating and up-sampling the final fused feature maps from encoder blocks in different scales. RESULTS The ability of our method was evaluated to detect foreground and segment lesions in three independent body regions (nasopharynx, chest, and abdomen) of a set of 45 PET-CT scans. Extensive ablation experiments compared our method to four baseline techniques for multimodality fusion (input-level (IL) fusion, multichannel (MC) strategy, multibranch (MB) strategy, and quantitative weighting (QW) fusion). The results showed that our method achieved a high detection accuracy (99.63% in the nasopharynx, 99.51% in the chest, and 99.21% in the abdomen) and had the superiority in segmentation performance with the mean dice similarity coefficient (DSC) of 73.03% and the modified Hausdorff distance (MHD) of 4.39 mm, when compared with the baselines (DSC: IL: 53.08%, MC: 63.59%, MB: 69.98%, and QW: 72.19%; MHD: IL: 12.16 mm, MC: 6.46 mm, MB: 4.83 mm, and QW: 4.89 mm). CONCLUSIONS A promising segmentation method has been proposed for the challenging DLBCL lesions in PET-CT images, which improves the understanding of complementary information by feature fusion and may guide clinical radiotherapy. The statistically significant analysis based on P-value calculation has indicated a degree of significant difference between our proposed method and other baselines (almost metrics: P < 0.05). This is a preliminary research using a small sample size, and we will collect data continually to achieve the larger verification study.
Collapse
Affiliation(s)
- Cheng Yuan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200040, China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyun Huang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Xie
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weili Zhao
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dahong Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200040, China
| |
Collapse
|
36
|
Sadaghiani MS, Rowe SP, Sheikhbahaei S. Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: a systematic review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:823. [PMID: 34268436 PMCID: PMC8246218 DOI: 10.21037/atm-20-6162] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
Artificial intelligence (AI) is a growing field of research that is emerging as a promising adjunct to assist physicians in detection and management of patients with cancer. 18F-FDG PET imaging helps physicians in detection and management of patients with cancer. In this study we discuss the possible applications of AI in 18F-FDG PET imaging based on the published studies. A systematic literature review was performed in PubMed on early August 2020 to find the relevant studies. A total of 65 studies were available for review against the inclusion criteria which included studies that developed an AI model based on 18F-FDG PET data in cancer to diagnose, differentiate, delineate, stage, assess response to therapy, determine prognosis, or improve image quality. Thirty-two studies met the inclusion criteria and are discussed in this review. The majority of studies are related to lung cancer. Other studied cancers included breast cancer, cervical cancer, head and neck cancer, lymphoma, pancreatic cancer, and sarcoma. All studies were based on human patients except for one which was performed on rats. According to the included studies, machine learning (ML) models can help in detection, differentiation from benign lesions, segmentation, staging, response assessment, and prognosis determination. Despite the potential benefits of AI in cancer imaging and management, the routine implementation of AI-based models and 18F-FDG PET-derived radiomics in clinical practice is limited at least partially due to lack of standardized, reproducible, generalizable, and precise techniques.
Collapse
Affiliation(s)
- Mohammad S Sadaghiani
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sara Sheikhbahaei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Yakar M, Etiz D. Artificial intelligence in radiation oncology. Artif Intell Med Imaging 2021; 2:13-31. [DOI: 10.35711/aimi.v2.i2.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Melek Yakar
- Department of Radiation Oncology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir 26040, Turkey
- Center of Research and Application for Computer Aided Diagnosis and Treatment in Health, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Durmus Etiz
- Department of Radiation Oncology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir 26040, Turkey
- Center of Research and Application for Computer Aided Diagnosis and Treatment in Health, Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| |
Collapse
|
38
|
Cui Y, Arimura H, Nakano R, Yoshitake T, Shioyama Y, Yabuuchi H. Automated approach for segmenting gross tumor volumes for lung cancer stereotactic body radiation therapy using CT-based dense V-networks. JOURNAL OF RADIATION RESEARCH 2021; 62:346-355. [PMID: 33480438 PMCID: PMC7948852 DOI: 10.1093/jrr/rraa132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/12/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study was to develop an automated segmentation approach for small gross tumor volumes (GTVs) in 3D planning computed tomography (CT) images using dense V-networks (DVNs) that offer more advantages in segmenting smaller structures than conventional V-networks. Regions of interest (ROI) with dimensions of 50 × 50 × 6-72 pixels in the planning CT images were cropped based on the GTV centroids when applying stereotactic body radiotherapy (SBRT) to patients. Segmentation accuracy of GTV contours for 192 lung cancer patients [with the following tumor types: 118 solid, 53 part-solid types and 21 pure ground-glass opacity (pure GGO)], who underwent SBRT, were evaluated based on a 10-fold cross-validation test using Dice's similarity coefficient (DSC) and Hausdorff distance (HD). For each case, 11 segmented GTVs consisting of three single outputs, four logical AND outputs, and four logical OR outputs from combinations of two or three outputs from DVNs were obtained by three runs with different initial weights. The AND output (combination of three outputs) achieved the highest values of average 3D-DSC (0.832 ± 0.074) and HD (4.57 ± 2.44 mm). The average 3D DSCs from the AND output for solid, part-solid and pure GGO types were 0.838 ± 0.074, 0.822 ± 0.078 and 0.819 ± 0.059, respectively. This study suggests that the proposed approach could be useful in segmenting GTVs for planning lung cancer SBRT.
Collapse
Affiliation(s)
- Yunhao Cui
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidetaka Arimura
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Risa Nakano
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshiyuki Shioyama
- Saga International Heavy Ion Cancer Treatment Foundation, 3049 Harakogamachi, Tosu-shi, Saga 841-0071, Japan
| | - Hidetake Yabuuchi
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
39
|
Torres-Velázquez M, Chen WJ, Li X, McMillan AB. Application and Construction of Deep Learning Networks in Medical Imaging. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:137-159. [PMID: 34017931 PMCID: PMC8132932 DOI: 10.1109/trpms.2020.3030611] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deep learning (DL) approaches are part of the machine learning (ML) subfield concerned with the development of computational models to train artificial intelligence systems. DL models are characterized by automatically extracting high-level features from the input data to learn the relationship between matching datasets. Thus, its implementation offers an advantage over common ML methods that often require the practitioner to have some domain knowledge of the input data to select the best latent representation. As a result of this advantage, DL has been successfully applied within the medical imaging field to address problems, such as disease classification and tumor segmentation for which it is difficult or impossible to determine which image features are relevant. Therefore, taking into consideration the positive impact of DL on the medical imaging field, this article reviews the key concepts associated with its evolution and implementation. The sections of this review summarize the milestones related to the development of the DL field, followed by a description of the elements of deep neural network and an overview of its application within the medical imaging field. Subsequently, the key steps necessary to implement a supervised DL application are defined, and associated limitations are discussed.
Collapse
Affiliation(s)
- Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Wei-Jie Chen
- Department of Electrical and Computer Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Xue Li
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Alan B McMillan
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 USA, and also with the Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
40
|
Hadjiiski L, Samala R, Chan HP. Image Processing Analytics: Enhancements and Segmentation. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
41
|
Jin D, Guo D, Ho TY, Harrison AP, Xiao J, Tseng CK, Lu L. DeepTarget: Gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy. Med Image Anal 2020; 68:101909. [PMID: 33341494 DOI: 10.1016/j.media.2020.101909] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/10/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
Gross tumor volume (GTV) and clinical target volume (CTV) delineation are two critical steps in the cancer radiotherapy planning. GTV defines the primary treatment area of the gross tumor, while CTV outlines the sub-clinical malignant disease. Automatic GTV and CTV segmentation are both challenging for distinct reasons: GTV segmentation relies on the radiotherapy computed tomography (RTCT) image appearance, which suffers from poor contrast with the surrounding tissues, while CTV delineation relies on a mixture of predefined and judgement-based margins. High intra- and inter-user variability makes this a particularly difficult task. We develop tailored methods solving each task in the esophageal cancer radiotherapy, together leading to a comprehensive solution for the target contouring task. Specifically, we integrate the RTCT and positron emission tomography (PET) modalities together into a two-stream chained deep fusion framework taking advantage of both modalities to facilitate more accurate GTV segmentation. For CTV segmentation, since it is highly context-dependent-it must encompass the GTV and involved lymph nodes while also avoiding excessive exposure to the organs at risk-we formulate it as a deep contextual appearance-based problem using encoded spatial distances of these anatomical structures. This better emulates the margin- and appearance-based CTV delineation performed by oncologists. Adding to our contributions, for the GTV segmentation we propose a simple yet effective progressive semantically-nested network (PSNN) backbone that outperforms more complicated models. Our work is the first to provide a comprehensive solution for the esophageal GTV and CTV segmentation in radiotherapy planning. Extensive 4-fold cross-validation on 148 esophageal cancer patients, the largest analysis to date, was carried out for both tasks. The results demonstrate that our GTV and CTV segmentation approaches significantly improve the performance over previous state-of-the-art works, e.g., by 8.7% increases in Dice score (DSC) and 32.9mm reduction in Hausdorff distance (HD) for GTV segmentation, and by 3.4% increases in DSC and 29.4mm reduction in HD for CTV segmentation.
Collapse
Affiliation(s)
| | | | | | | | - Jing Xiao
- Ping An Technology, Shenzhen, Guangdong, China
| | | | - Le Lu
- PAII Inc., Bethesda, MD, USA
| |
Collapse
|
42
|
Shiyam Sundar LK, Muzik O, Buvat I, Bidaut L, Beyer T. Potentials and caveats of AI in hybrid imaging. Methods 2020; 188:4-19. [PMID: 33068741 DOI: 10.1016/j.ymeth.2020.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
State-of-the-art patient management frequently mandates the investigation of both anatomy and physiology of the patients. Hybrid imaging modalities such as the PET/MRI, PET/CT and SPECT/CT have the ability to provide both structural and functional information of the investigated tissues in a single examination. With the introduction of such advanced hardware fusion, new problems arise such as the exceedingly large amount of multi-modality data that requires novel approaches of how to extract a maximum of clinical information from large sets of multi-dimensional imaging data. Artificial intelligence (AI) has emerged as one of the leading technologies that has shown promise in facilitating highly integrative analysis of multi-parametric data. Specifically, the usefulness of AI algorithms in the medical imaging field has been heavily investigated in the realms of (1) image acquisition and reconstruction, (2) post-processing and (3) data mining and modelling. Here, we aim to provide an overview of the challenges encountered in hybrid imaging and discuss how AI algorithms can facilitate potential solutions. In addition, we highlight the pitfalls and challenges in using advanced AI algorithms in the context of hybrid imaging and provide suggestions for building robust AI solutions that enable reproducible and transparent research.
Collapse
Affiliation(s)
- Lalith Kumar Shiyam Sundar
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Irène Buvat
- Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm, Institut Curie, Orsay, France
| | - Luc Bidaut
- College of Science, University of Lincoln, Lincoln, UK
| | - Thomas Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
43
|
Krarup MMK, Krokos G, Subesinghe M, Nair A, Fischer BM. Artificial Intelligence for the Characterization of Pulmonary Nodules, Lung Tumors and Mediastinal Nodes on PET/CT. Semin Nucl Med 2020; 51:143-156. [PMID: 33509371 DOI: 10.1053/j.semnuclmed.2020.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of cancer related death around the world although early diagnosis remains vital to enabling access to curative treatment options. This article briefly describes the current role of imaging, in particular 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET/CT, in lung cancer and specifically the role of artificial intelligence with CT followed by a detailed review of the published studies applying artificial intelligence (ie, machine learning and deep learning), on FDG PET or combined PET/CT images with the purpose of early detection and diagnosis of pulmonary nodules, and characterization of lung tumors and mediastinal lymph nodes. A comprehensive search was performed on Pubmed, Embase, and clinical trial databases. The studies were analyzed with a modified version of the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction model Risk Of Bias Assessment Tool (PROBAST) statement. The search resulted in 361 studies; of these 29 were included; all retrospective; none were clinical trials. Twenty-two records evaluated standard machine learning (ML) methods on imaging features (ie, support vector machine), and 7 studies evaluated new ML methods (ie, deep learning) applied directly on PET or PET/CT images. The studies mainly reported positive results regarding the use of ML methods for diagnosing pulmonary nodules, characterizing lung tumors and mediastinal lymph nodes. However, 22 of the 29 studies were lacking a relevant comparator and/or lacking independent testing of the model. Application of ML methods with feature and image input from PET/CT for diagnosing and characterizing lung cancer is a relatively young area of research with great promise. Nevertheless, current published studies are often under-powered and lacking a clinically relevant comparator and/or independent testing.
Collapse
Affiliation(s)
| | - Georgios Krokos
- King's College London & Guy's and St. Thomas' PET Centre, St. Thomas' Hospital, London, UK
| | - Manil Subesinghe
- King's College London & Guy's and St. Thomas' PET Centre, St. Thomas' Hospital, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Arjun Nair
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Barbara Malene Fischer
- Department of Clinical Physiology, Nuclear Medicin and PET, Rigshospitalet, Copenhagen, Denmark; King's College London & Guy's and St. Thomas' PET Centre, St. Thomas' Hospital, London, UK; King's College London & Guy's and St. Thomas' PET Centre, St. Thomas' Hospital, London, UK.
| |
Collapse
|
44
|
Abstract
CLINICAL ISSUE Hybrid imaging enables the precise visualization of cellular metabolism by combining anatomical and metabolic information. Advances in artificial intelligence (AI) offer new methods for processing and evaluating this data. METHODOLOGICAL INNOVATIONS This review summarizes current developments and applications of AI methods in hybrid imaging. Applications in image processing as well as methods for disease-related evaluation are presented and discussed. MATERIALS AND METHODS This article is based on a selective literature search with the search engines PubMed and arXiv. ASSESSMENT Currently, there are only a few AI applications using hybrid imaging data and no applications are established in clinical routine yet. Although the first promising approaches are emerging, they still need to be evaluated prospectively. In the future, AI applications will support radiologists and nuclear medicine radiologists in diagnosis and therapy.
Collapse
Affiliation(s)
- Christian Strack
- AG Computational Radiology, Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Deutschland
- Heidelberg University, Heidelberg, Deutschland
| | - Robert Seifert
- Department of Nuclear Medicine, Medical Faculty, University Hospital Essen, Essen, Deutschland
| | - Jens Kleesiek
- AG Computational Radiology, Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Deutschland.
- German Cancer Consortium (DKTK), Heidelberg, Deutschland.
| |
Collapse
|
45
|
Zhang F, Wang Q, Li H. Automatic Segmentation of the Gross Target Volume in Non-Small Cell Lung Cancer Using a Modified Version of ResNet. Technol Cancer Res Treat 2020. [PMCID: PMC7432983 DOI: 10.1177/1533033820947484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Radiotherapy plays an important role in the treatment of non-small cell lung
cancer. Accurate segmentation of the gross target volume is very important for
successful radiotherapy delivery. Deep learning techniques can obtain fast and
accurate segmentation, which is independent of experts’ experience and saves
time compared with manual delineation. In this paper, we introduce a modified
version of ResNet and apply it to segment the gross target volume in computed
tomography images of patients with non-small cell lung cancer. Normalization was
applied to reduce the differences among images and data augmentation techniques
were employed to further enrich the data of the training set. Two different
residual convolutional blocks were used to efficiently extract the deep features
of the computed tomography images, and the features from all levels of the
ResNet were merged into a single output. This simple design achieved a fusion of
deep semantic features and shallow appearance features to generate dense pixel
outputs. The test loss tended to be stable after 50 training epochs, and the
segmentation took 21 ms per computed tomography image. The average evaluation
metrics were: Dice similarity coefficient, 0.73; Jaccard similarity coefficient,
0.68; true positive rate, 0.71; and false positive rate, 0.0012. Those results
were better than those of U-Net, which was used as a benchmark. The modified
ResNet directly extracted multi-scale context features from original input
images. Thus, the proposed automatic segmentation method can quickly segment the
gross target volume in non-small cell lung cancer cases and be applied to
improve consistency in contouring.
Collapse
Affiliation(s)
- Fuli Zhang
- Radiation Oncology Department, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiusheng Wang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Haipeng Li
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| |
Collapse
|
46
|
Baek S, He Y, Allen BG, Buatti JM, Smith BJ, Tong L, Sun Z, Wu J, Diehn M, Loo BW, Plichta KA, Seyedin SN, Gannon M, Cabel KR, Kim Y, Wu X. Deep segmentation networks predict survival of non-small cell lung cancer. Sci Rep 2019; 9:17286. [PMID: 31754135 PMCID: PMC6872742 DOI: 10.1038/s41598-019-53461-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) represents approximately 80-85% of lung cancer diagnoses and is the leading cause of cancer-related death worldwide. Recent studies indicate that image-based radiomics features from positron emission tomography/computed tomography (PET/CT) images have predictive power for NSCLC outcomes. To this end, easily calculated functional features such as the maximum and the mean of standard uptake value (SUV) and total lesion glycolysis (TLG) are most commonly used for NSCLC prognostication, but their prognostic value remains controversial. Meanwhile, convolutional neural networks (CNN) are rapidly emerging as a new method for cancer image analysis, with significantly enhanced predictive power compared to hand-crafted radiomics features. Here we show that CNNs trained to perform the tumor segmentation task, with no other information than physician contours, identify a rich set of survival-related image features with remarkable prognostic value. In a retrospective study on pre-treatment PET-CT images of 96 NSCLC patients before stereotactic-body radiotherapy (SBRT), we found that the CNN segmentation algorithm (U-Net) trained for tumor segmentation in PET and CT images, contained features having strong correlation with 2- and 5-year overall and disease-specific survivals. The U-Net algorithm has not seen any other clinical information (e.g. survival, age, smoking history, etc.) than the images and the corresponding tumor contours provided by physicians. In addition, we observed the same trend by validating the U-Net features against an extramural data set provided by Stanford Cancer Institute. Furthermore, through visualization of the U-Net, we also found convincing evidence that the regions of metastasis and recurrence appear to match with the regions where the U-Net features identified patterns that predicted higher likelihoods of death. We anticipate our findings will be a starting point for more sophisticated non-intrusive patient specific cancer prognosis determination. For example, the deep learned PET/CT features can not only predict survival but also visualize high-risk regions within or adjacent to the primary tumor and hence potentially impact therapeutic outcomes by optimal selection of therapeutic strategy or first-line therapy adjustment.
Collapse
Affiliation(s)
- Stephen Baek
- University of Iowa, Department of Industrial and Systems Engineering, Iowa City, IA, 52242, United States
- University of Iowa, Department of Radiation Oncology, Iowa City, IA, 52242, United States
- University of Iowa, Department of Electrical and Computer Engineering, Iowa City, IA, 52242, United States
| | - Yusen He
- University of Iowa, Department of Industrial and Systems Engineering, Iowa City, IA, 52242, United States
| | - Bryan G Allen
- University of Iowa, Department of Radiation Oncology, Iowa City, IA, 52242, United States
| | - John M Buatti
- University of Iowa, Department of Radiation Oncology, Iowa City, IA, 52242, United States
| | - Brian J Smith
- University of Iowa, Department of Biostatistics, Iowa City, IA, 52242, United States
| | - Ling Tong
- University of Iowa, Department of Business Analytics, Iowa City, IA, 52242, United States
| | - Zhiyu Sun
- University of Iowa, Department of Industrial and Systems Engineering, Iowa City, IA, 52242, United States
| | - Jia Wu
- Stanford University, Stanford Cancer Institute, Palo Alto, CA, 94304, United States
| | - Maximilian Diehn
- Stanford University, Stanford Cancer Institute, Palo Alto, CA, 94304, United States
| | - Billy W Loo
- Stanford University, Stanford Cancer Institute, Palo Alto, CA, 94304, United States
| | - Kristin A Plichta
- University of Iowa, Department of Radiation Oncology, Iowa City, IA, 52242, United States
| | - Steven N Seyedin
- University of Iowa, Department of Radiation Oncology, Iowa City, IA, 52242, United States
| | - Maggie Gannon
- University of Iowa, Department of Radiation Oncology, Iowa City, IA, 52242, United States
| | - Katherine R Cabel
- University of Iowa, Department of Radiation Oncology, Iowa City, IA, 52242, United States
| | - Yusung Kim
- University of Iowa, Department of Radiation Oncology, Iowa City, IA, 52242, United States.
| | - Xiaodong Wu
- University of Iowa, Department of Radiation Oncology, Iowa City, IA, 52242, United States.
- University of Iowa, Department of Electrical and Computer Engineering, Iowa City, IA, 52242, United States.
| |
Collapse
|
47
|
Nensa F, Demircioglu A, Rischpler C. Artificial Intelligence in Nuclear Medicine. J Nucl Med 2019; 60:29S-37S. [DOI: 10.2967/jnumed.118.220590] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
|
48
|
Hatt M, Le Rest CC, Tixier F, Badic B, Schick U, Visvikis D. Radiomics: Data Are Also Images. J Nucl Med 2019; 60:38S-44S. [DOI: 10.2967/jnumed.118.220582] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
|
49
|
Visvikis D, Cheze Le Rest C, Jaouen V, Hatt M. Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications. Eur J Nucl Med Mol Imaging 2019; 46:2630-2637. [DOI: 10.1007/s00259-019-04373-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
|
50
|
Kumar A, Fulham M, Feng D, Kim J. Co-Learning Feature Fusion Maps from PET-CT Images of Lung Cancer. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 39:204-217. [PMID: 31217099 DOI: 10.1109/tmi.2019.2923601] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The analysis of multi-modality positron emission tomography and computed tomography (PET-CT) images for computer aided diagnosis applications (e.g., detection and segmentation) requires combining the sensitivity of PET to detect abnormal regions with anatomical localization from CT. Current methods for PET-CT image analysis either process the modalities separately or fuse information from each modality based on knowledge about the image analysis task. These methods generally do not consider the spatially varying visual characteristics that encode different information across the different modalities, which have different priorities at different locations. For example, a high abnormal PET uptake in the lungs is more meaningful for tumor detection than physiological PET uptake in the heart. Our aim is to improve fusion of the complementary information in multi-modality PET-CT with a new supervised convolutional neural network (CNN) that learns to fuse complementary information for multi-modality medical image analysis. Our CNN first encodes modality-specific features and then uses them to derive a spatially varying fusion map that quantifies the relative importance of each modality's features across different spatial locations. These fusion maps are then multiplied with the modality-specific feature maps to obtain a representation of the complementary multi-modality information at different locations, which can then be used for image analysis. We evaluated the ability of our CNN to detect and segment multiple regions (lungs, mediastinum, tumors) with different fusion requirements using a dataset of PET-CT images of lung cancer. We compared our method to baseline techniques for multi-modality image fusion (fused inputs (FS), multi-branch (MB) techniques, and multichannel (MC) techniques) and segmentation. Our findings show that our CNN had a significantly higher foreground detection accuracy (99.29%, p < 0:05) than the fusion baselines (FS: 99.00%, MB: 99.08%, TC: 98.92%) and a significantly higher Dice score (63.85%) than recent PET-CT tumor segmentation methods.
Collapse
|