1
|
Zheng D, Preuss K, Milano MT, He X, Gou L, Shi Y, Marples B, Wan R, Yu H, Du H, Zhang C. Mathematical modeling in radiotherapy for cancer: a comprehensive narrative review. Radiat Oncol 2025; 20:49. [PMID: 40186295 PMCID: PMC11969940 DOI: 10.1186/s13014-025-02626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
Mathematical modeling has long been a cornerstone of radiotherapy for cancer, guiding treatment prescription, planning, and delivery through versatile applications. As we enter the era of medical big data, where the integration of molecular, imaging, and clinical data at both the tumor and patient levels could promise more precise and personalized cancer treatment, the role of mathematical modeling has become even more critical. This comprehensive narrative review aims to summarize the main applications of mathematical modeling in radiotherapy, bridging the gap between classical models and the latest advancements. The review covers a wide range of applications, including radiobiology, clinical workflows, stereotactic radiosurgery/stereotactic body radiotherapy (SRS/SBRT), spatially fractionated radiotherapy (SFRT), FLASH radiotherapy (FLASH-RT), immune-radiotherapy, and the emerging concept of radiotherapy digital twins. Each of these areas is explored in depth, with a particular focus on how newer trends and innovations are shaping the future of radiation cancer treatment. By examining these diverse applications, this review provides a comprehensive overview of the current state of mathematical modeling in radiotherapy. It also highlights the growing importance of these models in the context of personalized medicine and multi-scale, multi-modal data integration, offering insights into how they can be leveraged to enhance treatment precision and patient outcomes. As radiotherapy continues to evolve, the insights gained from this review will help guide future research and clinical practice, ensuring that mathematical modeling continues to propel innovations in radiation cancer treatment.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA.
| | | | - Michael T Milano
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Xiuxiu He
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Lang Gou
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Yu Shi
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, USA
| | - Brian Marples
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Raphael Wan
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, USA
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, USA
| |
Collapse
|
2
|
Li M, Zhang L, Gao A, Xu J, Wang X, Liu X, Yan D, Zou D, Wu S, Sun B, Dong G, Wang C. Molecular mechanisms of lung injury from ultra high and conventional dose rate pulsed radiation based on 4D DIA proteomics study. Sci Rep 2025; 15:5425. [PMID: 39948392 PMCID: PMC11825874 DOI: 10.1038/s41598-025-87247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
To investigate the mechanism of ultra-high dose rate pulsed radiation in radiation-induced lung injury (RILI), providing an experimental and theoretical basis for the application of FLASH-RT (FLASH-radiotherapy) in radiotherapy. C57BL/6J mice were randomly divided into three groups: a sham group, a FLASH-irradiated group, and a CONV-irradiated group. A whole-body irradiation with a single dose of 3 Gy (200 Gy/s for FLASH group and 0.3 Gy/s for CONV group) using electron rays was used to establish models of lung injury. After 3 months, lung tissues were stained with HE and Masson stains to observe pathological changes in lung tissue and subjected to 4D-Fast DIA quantitative proteomics, with the sequencing data validated by Western blot and immunofluorescence. The mice in FLASH group had less lung tissue damage and lower levels of fibrosis compared to the CONV group. Proteomic sequencing showed significant differences in CCT6b protein expression between the two irradiation groups. As verified by the WB and immunofluorescence assays, the expression level of CCT6b was significantly reduced in the CONV group of mice compared with the SHAM and FLASH groups. With the down-regulation of CCT6b, there was a notable decrease in the expression of E-cadherin, accompanied by an increase in the expression of α-smooth muscle actin and Vimentin. The differential response in the level of lung fibrosis caused by the two types of radiation may be related to the level of CCT6b expression, but the specific mechanism of action needs to be further investigated.
Collapse
Affiliation(s)
- MengHua Li
- Basic Medical College of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian, Beijing, 100850, People's Republic of China
| | - LiHui Zhang
- Basic Medical College of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian, Beijing, 100850, People's Republic of China
| | - AnNing Gao
- Basic Medical College of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian, Beijing, 100850, People's Republic of China
| | - Jing Xu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian, Beijing, 100850, People's Republic of China
| | - XinYu Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian, Beijing, 100850, People's Republic of China
| | - XiaoMan Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian, Beijing, 100850, People's Republic of China
| | - DongFei Yan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian, Beijing, 100850, People's Republic of China
| | - DongFang Zou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian, Beijing, 100850, People's Republic of China
| | - Shuang Wu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian, Beijing, 100850, People's Republic of China
| | - Bin Sun
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian, Beijing, 100850, People's Republic of China
| | - GuoFu Dong
- Basic Medical College of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian, Beijing, 100850, People's Republic of China.
| | - ChangZhen Wang
- Basic Medical College of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian, Beijing, 100850, People's Republic of China.
| |
Collapse
|
3
|
Li M, Zhou S, Dong G, Wang C. Emergence of FLASH‑radiotherapy across the last 50 years (Review). Oncol Lett 2024; 28:602. [PMID: 39493433 PMCID: PMC11529378 DOI: 10.3892/ol.2024.14735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/02/2024] [Indexed: 11/05/2024] Open
Abstract
A novel radiotherapy (RT) approach termed FLASH-RT, which irradiates areas at ultra-high dose rates, is of current interest to medical researchers. FLASH-RT can maintain equivalent antitumor effects while sparing healthy tissue compared with conventional RT (CONV-RT), which uses low dose rates. The sparing effect on healthy tissue after FLASH-RT is known as the FLASH effect. Owing to the FLASH effect, FLASH-RT can raise the maximum tolerable dose to control tumor growth or eradicate the tumor and provide a new strategy for clinical RT. However, definitive irradiation conditions for reproducing the FLASH effect and the biological mechanism of the FLASH effect have not yet been fully elucidated. The efficacy of FLASH-RT is controversial despite its successful application in clinical RT. The present review recapitulates the progression of FLASH-RT and critically comments on the hypothesis of the FLASH effect. In addition, the review expounds on the current issues with regard to the differential phenomena between in vitro and in vivo studies, and elaborates on the challenges for the application of FLASH-RT that need to be addressed in the future.
Collapse
Affiliation(s)
- Menghua Li
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
- Department of Biochemistry, Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sen Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Guofu Dong
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
- Department of Biochemistry, Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Changzhen Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
- Department of Biochemistry, Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
4
|
Gao F, Lin B, Yang Y, Xiao D, Zhou Z, Zhang Y, Feng G, Li J, Wu D, Du X, Shi Q. Effects of ultra-high dose rate radiotherapy with different fractions and dose rate on acute and chronic lung injury in mice. Heliyon 2024; 10:e40298. [PMID: 39641017 PMCID: PMC11617221 DOI: 10.1016/j.heliyon.2024.e40298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/27/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Ultra-high dose rate radiotherapy (FLASH radiation) can naturally render normal tissues around the tumor tissue resistant to radiotherapy. In contrast, the tumor tissue remains sensitive to radiation under the same conditions. However, the effects of different fractions and dose rates on FLASH radiation remain unclear. This study aimed to determine the optimal dose rate and fraction of FLASH radiation for thoracic radiotherapy. Female Balb/c mice aged 6-8 weeks were irradiated with different dose rates (100 Gy/s or 250 Gy/s) and fractions (1, 2, or 4). Survival was observed in mice receiving 30Gy, with lung tissue examined for acute radiation damage 48 h post-radiation. Late radiation pneumonia and survival rates were monitored in mice irradiated with 20 Gy. The median overall survival (OS) was not reached on the 95th day for mice irradiated with 250 Gy/s FLASH radiation, while it was 89.5 days for those irradiated with 100 Gy/s (P = 0.0436). Mice irradiated with 30 Gy/2 Fr and 250 Gy/s FLASH had shorter median OS than those with 30 Gy/1F (P = 0.0132). However, there was no significant difference in OS between mice irradiated with 30 Gy/2 F and 30 Gy/4 F. Survival curves for mice receiving 20 Gy showed no significant difference in toxicity between different dose rates and fractions. FLASH radiation at 250 Gy/s reduced the incidence of acute radiation pneumonitis in mice compared to 100 Gy/s. Different fractions of irradiation influenced survival in mice, but they were only observed in acute radiation reactions and not chronic radiation reactions. Among the tested fraction methods, fraction 2 had the worst impact on the survival of mice, while fractions 1 and 4 showed similar effects and improved survival compared to fraction 2.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, 621000, China
| | - Binwei Lin
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, 621000, China
| | - Yiwei Yang
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Dexin Xiao
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Zheng Zhou
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Yu Zhang
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, 621000, China
| | - Gang Feng
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, 621000, China
| | - Jie Li
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, 621000, China
| | - Dai Wu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Xiaobo Du
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, 621000, China
| | - Qiuling Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
5
|
van Marlen P, van de Water S, Slotman BJ, Dahele M, Verbakel W. Technical note: Dosimetry and FLASH potential of UHDR proton PBS for small lung tumors: Bragg-peak-based delivery versus transmission beam and IMPT. Med Phys 2024; 51:7580-7588. [PMID: 38795376 DOI: 10.1002/mp.17185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND High-energy transmission beams (TBs) are currently the main delivery method for proton pencil beam scanning ultrahigh dose-rate (UHDR) FLASH radiotherapy. TBs place the Bragg-peaks behind the target, outside the patient, making delivery practical and achievement of high dose-rates more likely. However, they lead to higher integral dose compared to conventional intensity-modulated proton therapy (IMPT), in which Bragg-peaks are placed within the tumor. It is hypothesized that, when energy changes are not required and high beam currents are possible, Bragg-peak-based beams can not only achieve more conformal dose distributions than TBs, but also have more FLASH-potential. PURPOSE This works aims to verify this hypothesis by taking three different Bragg-peak-based delivery techniques and comparing them with TB and IMPT-plans in terms of dosimetry and FLASH-potential for single-fraction lung stereotactic body radiotherapy (SBRT). METHODS For a peripherally located lung target of various sizes, five different proton plans were made using "matRad" and inhouse-developed algorithms for spot/energy-layer/beam reduction and minimum monitor unit maximization: (1) IMPT-plan, reference for dosimetry, (2) TB-plan, reference for FLASH-amount, (3) pristine Bragg-peak plan (non-depth-modulated Bragg-peaks), (4) Bragg-peak plan using generic ridge filter, and (5) Bragg-peak plan using 3D range-modulated ridge filter. RESULTS Bragg-peak-based plans are able to achieve sufficient plan quality and high dose-rates. IMPT-plans resulted in lowest OAR-dose and integral dose (also after a FLASH sparing-effect of 30%) compared to both TB-plans and Bragg-peak-based plans. Bragg-peak-based plans vary only slightly between themselves and generally achieve lower integral dose than TB-plans. However, TB-plans nearly always resulted in lower mean lung dose than Bragg-peak-based plans and due to a higher amount of FLASH-dose for TB-plans, this difference increased after including a FLASH sparing-effect. CONCLUSION This work indicates that there is no benefit in using Bragg-peak-based beams instead of TBs for peripherally located, UHDR stereotactic lung radiotherapy, if lung dose is the priority.
Collapse
Affiliation(s)
- Patricia van Marlen
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Steven van de Water
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
6
|
Taylor E, Létourneau D. How quickly does FLASH need to be delivered? A theoretical study of radiolytic oxygen depletion kinetics in tissues. Phys Med Biol 2024; 69:115008. [PMID: 38608644 DOI: 10.1088/1361-6560/ad3e5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Purpose. Radiation delivered over ultra-short timescales ('FLASH' radiotherapy) leads to a reduction in normal tissue toxicities for a range of tissues in the preclinical setting. Experiments have shown this reduction occurs for total delivery times less than a 'critical' time that varies by two orders of magnitude between brain (∼0.3 s) and skin (⪆10 s), and three orders of magnitude across different bowel experiments, from ∼0.01 to ⪆(1-10) s. Understanding the factors responsible for this broad variation may be important for translation of FLASH into the clinic and understanding the mechanisms behind FLASH.Methods.Assuming radiolytic oxygen depletion (ROD) to be the primary driver of FLASH effects, oxygen diffusion, consumption, and ROD were evaluated numerically for simulated tissues with pseudorandom vasculatures for a range of radiation delivery times, capillary densities, and oxygen consumption rates (OCR's). The resulting time-dependent oxygen partial pressure distribution histograms were used to estimate cell survival in these tissues using the linear quadratic model, modified to incorporate oxygen-enhancement ratio effects.Results. Independent of the capillary density, there was a substantial increase in predicted cell survival when the total delivery time was less than the capillary oxygen tension (mmHg) divided by the OCR (expressed in units of mmHg/s), setting the critical delivery time for FLASH in simulated tissues. Using literature OCR values for different normal tissues, the predicted range of critical delivery times agreed well with experimental values for skin and brain and, modifying our model to allow for fluctuating perfusion, bowel.Conclusions. The broad three-orders-of-magnitude variation in critical irradiation delivery times observed inin vivopreclinical experiments can be accounted for by the ROD hypothesis and differences in the OCR amongst simulated normal tissues. Characterization of these may help guide future experiments and open the door to optimized tissue-specific clinical protocols.
Collapse
Affiliation(s)
- Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Daniel Létourneau
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Shiraishi Y, Matsuya Y, Fukunaga H. Possible mechanisms and simulation modeling of FLASH radiotherapy. Radiol Phys Technol 2024; 17:11-23. [PMID: 38184508 DOI: 10.1007/s12194-023-00770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/08/2024]
Abstract
FLASH radiotherapy (FLASH-RT) has great potential to improve patient outcomes. It delivers radiation doses at an ultra-high dose rate (UHDR: ≥ 40 Gy/s) in a single instant or a few pulses. Much higher irradiation doses can be administered to tumors with FLASH-RT than with conventional dose rate (0.01-0.40 Gy/s) radiotherapy. UHDR irradiation can suppress toxicity in normal tissues while sustaining antitumor efficiency, which is referred to as the FLASH effect. However, the mechanisms underlying the effects of the FLASH remain unclear. To clarify these mechanisms, the development of simulation models that can contribute to treatment planning for FLASH-RT is still underway. Previous studies indicated that transient oxygen depletion or augmented reactions between secondary reactive species produced by irradiation may be involved in this process. To discuss the possible mechanisms of the FLASH effect and its clinical potential, we summarized the physicochemical, chemical, and biological perspectives as well as the development of simulation modeling for FLASH-RT.
Collapse
Affiliation(s)
- Yuta Shiraishi
- Graduate School of Health Sciences, Hokkaido University, N12 W5 Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan
- Faculty of Health Sciences, Japan Healthcare University, 3-11-1-50 Tsukisamu-Higashi, Toyohira-Ku, Sapporo, Hokkaido, 062-0053, Japan
| | - Yusuke Matsuya
- Faculty of Health Sciences, Hokkaido University, N12 W5 Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Hisanori Fukunaga
- Faculty of Health Sciences, Hokkaido University, N12 W5 Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
8
|
Clements N, Esplen N, Bateman J, Robertson C, Dosanjh M, Korysko P, Farabolini W, Corsini R, Bazalova-Carter M. Mini-GRID radiotherapy on the CLEAR very-high-energy electron beamline: collimator optimization, film dosimetry, and Monte Carlo simulations. Phys Med Biol 2024; 69:055003. [PMID: 38295408 DOI: 10.1088/1361-6560/ad247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Objective.Spatially-fractionated radiotherapy (SFRT) delivered with a very-high-energy electron (VHEE) beam and a mini-GRID collimator was investigated to achieve synergistic normal tissue-sparing through spatial fractionation and the FLASH effect.Approach.A tungsten mini-GRID collimator for delivering VHEE SFRT was optimized using Monte Carlo (MC) simulations. Peak-to-valley dose ratios (PVDRs), depths of convergence (DoCs, PVDR ≤ 1.1), and peak and valley doses in a water phantom from a simulated 150 MeV VHEE source were evaluated. Collimator thickness, hole width, and septal width were varied to determine an optimal value for each parameter that maximized PVDR and DoC. The optimized collimator (20 mm thick rectangular prism with a 15 mm × 15 mm face with a 7 × 7 array of 0.5 mm holes separated by 1.1 mm septa) was 3D-printed and used for VHEE irradiations with the CERN linear electron accelerator for research beam. Open beam and mini-GRID irradiations were performed at 140, 175, and 200 MeV and dose was recorded with radiochromic films in a water tank. PVDR, central-axis (CAX) and valley dose rates and DoCs were evaluated.Main results.Films demonstrated peak and valley dose rates on the order of 100 s of MGy/s, which could promote FLASH-sparing effects. Across the three energies, PVDRs of 2-4 at 13 mm depth and DoCs between 39 and 47 mm were achieved. Open beam and mini-GRID MC simulations were run to replicate the film results at 200 MeV. For the mini-GRID irradiations, the film CAX dose was on average 15% higher, the film valley dose was 28% higher, and the film PVDR was 15% lower than calculated by MC.Significance.Ultimately, the PVDRs and DoCs were determined to be too low for a significant potential for SFRT tissue-sparing effects to be present, particularly at depth. Further beam delivery optimization and investigations of new means of spatial fractionation are warranted.
Collapse
Affiliation(s)
- Nathan Clements
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Joseph Bateman
- Department of Physics, University of Oxford, Oxford, United Kingdom
| | | | - Manjit Dosanjh
- Department of Physics, University of Oxford, Oxford, United Kingdom
- CERN, Geneva, Switzerland
| | - Pierre Korysko
- Department of Physics, University of Oxford, Oxford, United Kingdom
- CERN, Geneva, Switzerland
| | | | | | | |
Collapse
|
9
|
Zhu H, Schuemann J, Zhang Q, Gerweck LE. Modeling the impact of tissue oxygen profiles and oxygen depletion parameter uncertainties on biological response and therapeutic benefit of FLASH. Med Phys 2024; 51:670-681. [PMID: 36939370 PMCID: PMC10509320 DOI: 10.1002/mp.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Ultra-high dose rate (FLASH) radiation has been reported to efficiently suppress tumor growth while sparing normal tissue; however, the mechanism of the differential tissue sparing effect is still not known. Oxygen has long been known to profoundly impact radiobiological responses, and radiolytic oxygen depletion has been considered to be a possible cause or contributor to the FLASH phenomenon. PURPOSE This work investigates the impact of tissue pO2 profiles, oxygen depletion per unit dose (g), and the oxygen concentration yielding half-maximum radiosensitization (the average of its maximum value and one) (k) in tumor and normal tissue. METHODS We developed a model that considers the dependent relationship between oxygen depletion and change of radiosensitivity by FLASH irradiation. The model assumed that FLASH irradiation depletes intracellular oxygen more rapidly than it diffuses into the cell from the extracellular environment. Cell survival was calculated based on the linear quadratic-linear model and the radiosensitivity related parameters were adjusted in 1 Gy increments of the administered dose. The model reproduced published experimental data that were obtained with different cell lines and oxygen concentrations, and was used to analyze the impact of parameter uncertainties on the radiobiological responses. This study expands the oxygen depletion analysis of FLASH to normal human tissue and tumor based on clinically determined aggregate and individual patient pO2 profiles. RESULTS The results show that the pO2 profile is the most essential factor that affects biological response and analyses based on the median pO2 rather than the full pO2 profile can be unreliable and misleading. Additionally, the presence of a small fraction of cells on the threshold of radiobiologic hypoxia substantially alters biological response due to FLASH oxygen depletion. We found that an increment in the k value is generally more protective of tumor than normal tissue due to a higher frequency of lower pO2 values in tumors. Variation in the g value affects the dose at which oxygen depletion impacts response, but does not alter the dose-dependent response trends, if the g value is identical in both tumor and normal tissue. CONCLUSIONS The therapeutic efficacy of FLASH oxygen depletion is likely patient and tissue-dependent. For breast cancer, FLASH is beneficial in a minority of cases; however, in a subset of well oxygenated tumors, a therapeutic gain may be realized due to induced normal tissue hypoxia.
Collapse
Affiliation(s)
- Hongyu Zhu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Qixian Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Leo E Gerweck
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| |
Collapse
|
10
|
Shukla S, Saha T, Rama N, Acharya A, Le T, Bian F, Donovan J, Tan LA, Vatner R, Kalinichenko V, Mascia A, Perentesis JP, Kalin TV. Ultra-high dose-rate proton FLASH improves tumor control. Radiother Oncol 2023; 186:109741. [PMID: 37315577 PMCID: PMC10527231 DOI: 10.1016/j.radonc.2023.109741] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND PURPOSE Proton radiotherapy (PRT) offers potential benefits over other radiation modalities, including photon and electron radiotherapy. Increasing the rate at which proton radiation is delivered may provide a therapeutic advantage. Here, we compared the efficacy of conventional proton therapy (CONVpr) to ultrahigh dose-rate proton therapy, FLASHpr, in a mouse model of non-small cell lung cancers (NSCLC). MATERIALS AND METHODS Mice bearing orthotopic lung tumors received thoracic radiation therapy using CONVpr (<0.05 Gy/s) and FLASHpr (>60 Gy/s) dose rates. RESULTS Compared to CONVpr, FLASHpr was more effective in reducing tumor burden and decreasing tumor cell proliferation. Furthermore, FLASHpr was more efficient in increasing the infiltration of cytotoxic CD8+ T-lymphocytes inside the tumor while simultaneously reducing the percentage of immunosuppressive regulatory T-cells (Tregs) among T-lymphocytes. Also, compared to CONVpr, FLASHpr was more effective in decreasing pro-tumorigenic M2-like macrophages in lung tumors, while increasing infiltration of anti-tumor M1-like macrophages. Finally, FLASHpr treatment reduced expression of checkpoint inhibitors in lung tumors, indicating reduced immune tolerance. CONCLUSIONS Our results suggest that FLASH dose-rate proton delivery modulates the immune system to improve tumor control and might thus be a promising new alternative to conventional dose rates for NSCLC treatment.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Taniya Saha
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Nihar Rama
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Anusha Acharya
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Tien Le
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Fenghua Bian
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Johnny Donovan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Lin Abigail Tan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Ralph Vatner
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Kalinichenko
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Neonatology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Anthony Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John P Perentesis
- Cincinnati Children's Hospital Medical Center, Division of Oncology, Division of Experimental Hematology, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Neonatology, the Perinatal Institute of Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, United States.
| |
Collapse
|
11
|
Clements N, Esplen N, Bazalova-Carter M. A feasibility study of ultra-high dose rate mini-GRID therapy using very-high-energy electron beams for a simulated pediatric brain case. Phys Med 2023; 112:102637. [PMID: 37454482 DOI: 10.1016/j.ejmp.2023.102637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Ultra-high dose rate (UHDR, >40 Gy/s), spatially-fractionated minibeam GRID (mini-GRID) therapy using very-high-energy electrons (VHEE) was investigated using Monte Carlo simulations. Multi-directional VHEE treatments with and without mini-GRID-fractionation were compared to a clinical 6 MV volumetric modulated arc therapy (VMAT) plan for a pediatric glioblastoma patient using dose-volume histograms, volume-averaged dose rates in critical patient structures, and planning target volume D98s. Peak-to-valley dose ratios (PVDRs) and dose rates in organs at risk (OARs) were evaluated due to their relevance for normal-tissue sparing in FLASH and spatially-fractionated techniques. Depths of convergence, defined where the PVDR is first ≤1.1, and depths at which dose rates fall below the UHDR threshold were also evaluated. In a water phantom, the VHEE mini-GRID treatments presented a surface (5 mm depth) PVDR of (51±2) and a depth of convergence of 42 mm at 150 MeV and a surface PVDR of (33±1) with a depth of convergence of 57 mm at 250 MeV. For a pediatric GBM case, VHEE treatments without mini-GRID-fractionation produced 25% and 22% lower volume-averaged doses to OARs compared to the 6 MV VMAT plan and 8/9 and 9/9 of the patient structures were exposed to volume-averaged dose rates >40 Gy/s for the 150 MeV and 250 MeV plans, respectively. The 150 MeV and 250 MeV mini-GRID treatments produced 17% and 38% higher volume-averaged doses to OARs and 3/9 patient structures had volume-averaged dose rates above 40 Gy/s. VHEE mini-GRID plans produced many comparable dose metrics to the clinical VMAT plan, encouraging further optimization.
Collapse
Affiliation(s)
- Nathan Clements
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada.
| | - Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
12
|
Dai Y, Liang R, Wang J, Zhang J, Wu D, Zhao R, Liu Z, Chen F. Fractionated FLASH radiation in xenografted lung tumors induced FLASH effect at a split dose of 2 Gy. Int J Radiat Biol 2023; 99:1542-1549. [PMID: 36952604 DOI: 10.1080/09553002.2023.2194403] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE To explore the minimum split dose of FLASH radiotherapy (FLASH). MATERIAL AND METHODS Lungs of nude mice were used to verify the capacity of normal tissue sparing of FLASH, while tumor-bearing nude mice were used to evaluate the curative power. Xenografted tumor models were established in Balb/c-nu mice using A549 cells at a concentration of 5 × 10 6 / 100 μ L . With the same total dose (20 Gy), the dose rate of FLASH was 200 Gy/s when conventional radiotherapy(CONV) was 0.033 Gy/s. Two schemes of FLASH irradiations were applied: single pulse (FLASH1) and ten pulses (FLASH10). Then, according to the different tissue types and irradiation schemes, mice were divided into eight groups: Control-T, CONV-T, FLASH1-T, FLASH10-T (T for tumor) and Control-L, CONV-L, FLASH1-L, FLASH10-L (L for lung). Evaluation of FLASH effect was based on the changes in tumor volume and pathological analysis of tumor and lung tissues before and after irradiation. RESULTS Compared to control group, the mean volume of tumors in nude mice increased slowly or decreased after irradiation with both FLASH and CONV (Control-T: 233.6± 55.19 mm3, CONV-T: 146.1± 50.62 mm3, FLASH1-T: 148± 18.83 mm3, FLASH10-T: 119.1± 50.62 mm3, p ≤ . 05) . Tumor cells of irradiated groups had similar degrees of dissolution damage and inflammation, while the acute radiation pneumonia induced by FLASH was less severe. The pulmonary pathology of FLASH1-L and FLASH10-L were similar, and only a few neutrophils were observed. In addition to inflammatory cells, slight thickening of alveolar septum and obvious interstitial hemorrhage were also observed in the CONV-L group. CONCLUSION The FLASH effect was successfully reproduced in both single and fractionated irradiation, with 2 Gy being the minimum split dose to achieve the FLASH effect in existing experiments. It is suggested that the transient oxygen depletion might not be the only mechanism behind the FLASH effect.
Collapse
Affiliation(s)
- Yuling Dai
- Nuclear and Radiation Frontier Technology Research Center, China Institute for Radiation Protection, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| | - Runcheng Liang
- Nuclear and Radiation Frontier Technology Research Center, China Institute for Radiation Protection, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| | - Jianxin Wang
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Jing Zhang
- Nuclear and Radiation Frontier Technology Research Center, China Institute for Radiation Protection, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| | - Dai Wu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Ri Zhao
- Nuclear and Radiation Frontier Technology Research Center, China Institute for Radiation Protection, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| | - Zhaoxing Liu
- Nuclear and Radiation Frontier Technology Research Center, China Institute for Radiation Protection, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| | - Faguo Chen
- Nuclear and Radiation Frontier Technology Research Center, China Institute for Radiation Protection, Taiyuan, China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, China
| |
Collapse
|
13
|
Lv Y, Lv Y, Wang Z, Lan T, Feng X, Chen H, Zhu J, Ma X, Du J, Hou G, Liao W, Yuan K, Wu H. FLASH radiotherapy: A promising new method for radiotherapy. Oncol Lett 2022; 24:419. [PMID: 36284652 PMCID: PMC9580247 DOI: 10.3892/ol.2022.13539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/06/2022] Open
Abstract
Among the treatments for malignant tumors, radiotherapy is of great significance both as a main treatment and as an adjuvant treatment. Radiation therapy damages cancer cells with ionizing radiation, leading to their death. However, radiation-induced toxicity limits the dose delivered to the tumor, thereby constraining the control effect of radiotherapy on tumor growth. In addition, the delayed toxicity caused by radiotherapy significantly harms the physical and mental health of patients. FLASH-RT, an emerging class of radiotherapy, causes a phenomenon known as the 'FLASH effect', which delivers radiotherapy at an ultra-high dose rate with lower toxicity to normal tissue than conventional radiotherapy to achieve local tumor control. Although its mechanism remains to be fully elucidated, this modality constitutes a potential new approach to treating malignant tumors. In the present review, the current research progress of FLASH-RT and its various particular effects are described, including the status of research on FLASH-RT and its influencing factors. The hypothetic mechanism of action of FLASH-RT is also summarized, providing insight into future tumor treatments.
Collapse
Affiliation(s)
- Yinghao Lv
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Yue Lv
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Zhen Wang
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Tian Lan
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xuping Feng
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Hao Chen
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Jiang Zhu
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xiao Ma
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Jinpeng Du
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Guimin Hou
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Wenwei Liao
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Kefei Yuan
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Hong Wu
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
14
|
Zou W, Kim H, Diffenderfer ES, Carlson DJ, Koch CJ, Xiao Y, Teo BK, Kim MM, Metz JM, Fan Y, Maity A, Koumenis C, Busch TM, Wiersma R, Cengel KA, Dong L. A phenomenological model of proton FLASH oxygen depletion effects depending on tissue vasculature and oxygen supply. Front Oncol 2022; 12:1004121. [PMID: 36518319 PMCID: PMC9742361 DOI: 10.3389/fonc.2022.1004121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Radiation-induced oxygen depletion in tissue is assumed as a contributor to the FLASH sparing effects. In this study, we simulated the heterogeneous oxygen depletion in the tissue surrounding the vessels and calculated the proton FLASH effective-dose-modifying factor (FEDMF), which could be used for biology-based treatment planning. Methods The dose and dose-weighted linear energy transfer (LET) of a small animal proton irradiator was simulated with Monte Carlo simulation. We deployed a parabolic partial differential equation to account for the generalized radiation oxygen depletion, tissue oxygen diffusion, and metabolic processes to investigate oxygen distribution in 1D, 2D, and 3D solution space. Dose and dose rates, particle LET, vasculature spacing, and blood oxygen supplies were considered. Using a similar framework for the hypoxic reduction factor (HRF) developed previously, the FEDMF was derived as the ratio of the cumulative normoxic-equivalent dose (CNED) between CONV and UHDR deliveries. Results Dynamic equilibrium between oxygen diffusion and tissue metabolism can result in tissue hypoxia. The hypoxic region displayed enhanced radio-resistance and resulted in lower CNED under UHDR deliveries. In 1D solution, comparing 15 Gy proton dose delivered at CONV 0.5 and UHDR 125 Gy/s, 61.5% of the tissue exhibited ≥20% FEDMF at 175 μm vasculature spacing and 18.9 μM boundary condition. This percentage reduced to 34.5% and 0% for 8 and 2 Gy deliveries, respectively. Similar trends were observed in the 3D solution space. The FLASH versus CONV differential effect remained at larger vasculature spacings. A higher FLASH dose rate showed an increased region with ≥20% FEDMF. A higher LET near the proton Bragg peak region did not appear to alter the FLASH effect. Conclusion We developed 1D, 2D, and 3D oxygen depletion simulation process to obtain the dynamic HRF and derive the proton FEDMF related to the dose delivery parameters and the local tissue vasculature information. The phenomenological model can be used to simulate or predict FLASH effects based on tissue vasculature and oxygen concentration data obtained from other experiments.
Collapse
|
15
|
Clements N, Bazalova-Carter M, Esplen N. Monte Carlo optimization of a GRID collimator for preclinical megavoltage ultra-high dose rate spatially-fractionated radiation therapy. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8c1a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. A 2-dimensional pre-clinical SFRT (GRID) collimator was designed for use on the ultra-high dose rate (UHDR) 10 MV ARIEL beamline at TRIUMF. TOPAS Monte Carlo simulations were used to determine optimal collimator geometry with respect to various dosimetric quantities. Approach. The GRID-averaged peak-to-valley dose ratio (PVDR) and mean dose rate of the peaks were investigated with the intent of maximizing both values in a given design. The effects of collimator thickness, focus position, septal width, and hole width on these metrics were found by testing a range of values for each parameter on a cylindrical GRID collimator. For each tested collimator geometry, photon beams with energies of 10, 5, and 1 MV were transported through the collimator and dose rates were calculated at various depths in a water phantom located 1.0 cm from the collimator exit. Main results. In our optimization, hole width proved to be the only collimator parameter which increased both PVDR and peak dose rates. From the optimization results, it was determined that our optimized design would be one which achieves the maximum dose rate for a PVDR
≥
5
at 10 MV. Ultimately, this was achieved using a collimator with a thickness of 75 mm, 0.8 mm septal and hole widths, and a focus position matched to the beam divergence. This optimized collimator maintained the PVDR of 5 in the phantom between water depths of 0–10 cm at 10 MV and had a mean peak dose rate of
3.06
±
0.02
Gy
s
−
1
at 0–1 cm depth. Significance. We have investigated the impact of various GRID-collimator design parameters on the dose rate and spatial fractionation of 10, 5, and 1 MV photon beams. The optimized collimator design for the 10 MV ultra-high dose rate photon beam could become a useful tool for radiobiology studies synergizing the effects of ultra-high dose rate (FLASH) delivery and spatial fractionation.
Collapse
|
16
|
Rothwell B, Lowe M, Traneus E, Krieger M, Schuemann J. Treatment planning considerations for the development of FLASH proton therapy. Radiother Oncol 2022; 175:222-230. [PMID: 35963397 DOI: 10.1016/j.radonc.2022.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
With increasing focus on the translation of the observed FLASH effect into clinical practice, this paper presents treatment planning considerations for its development using proton therapy. Potential requirements to induce a FLASH effect are discussed along with the properties of existing proton therapy delivery systems and the changes in planning and delivery approaches required to satisfy these prerequisites. For the exploration of treatment planning approaches for FLASH, developments in treatment planning systems are needed. Flexibility in adapting to new information will be important in such an evolving area. Variations in definitions, threshold values and assumptions can make it difficult to compare different published studies and to interpret previous studies in the context of new information. Together with the fact that much is left to be understood about the underlying mechanism behind the FLASH effect, a systematic and comprehensive approach to information storage is encouraged. Collecting and retaining more detailed information on planned and realised dose delivery as well as reporting the assumptions made in planning studies creates the potential for research to be revisited and re-evaluated in the light of future improvements in understanding. Forward thinking at the time of study development can help facilitate retrospective analysis. This, we hope, will increase the available evidence and accelerate the translation of the FLASH effect into clinical benefit.
Collapse
Affiliation(s)
- Bethany Rothwell
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | - Matthew Lowe
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Miriam Krieger
- Varian Medical Systems Particle Therapy GmbH & Co. KG, Troisdorf, Germany
| | - Jan Schuemann
- Division of Physics, Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Böhlen TT, Germond JF, Bourhis J, Vozenin MC, Ozsahin EM, Bochud F, Bailat C, Moeckli R. Normal tissue sparing by FLASH as a function of single fraction dose: A quantitative analysis. Int J Radiat Oncol Biol Phys 2022; 114:1032-1044. [PMID: 35810988 DOI: 10.1016/j.ijrobp.2022.05.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The FLASH effect designates normal tissue sparing by ultra-high dose rate (UHDR) compared to conventional dose rate (CONV) irradiation without compromising tumor control. Understanding the magnitude of this effect and its dependency on dose are essential requirements for an optimized clinical translation of FLASH radiation therapy. In this context, we evaluated available experimental data on the magnitudes of normal tissue sparing provided by the FLASH effect as a function of dose, and followed a phenomenological data-driven approach for its parameterization. METHODS We gathered available in vivo data of the normal tissue sparing of CONV compared to UHDR single fraction doses and converted it to a common scale using isoeffect dose ratios, hereafter referred to as FLASH modifying factors (FMF). We then evaluated the suitability of a piecewise linear function with two pieces to parametrize FMF × D as a function of dose D. RESULTS We found that the magnitude of FMF generally decreases (i.e., sparing increases) as function of single fraction dose and that individual data series can be described by the piecewise linear function. The sparing magnitude appears organ specific. Pooled skin reaction data followed a consistent trend as a function of dose. Average FMF values and their standard deviations were 0.95±0.11 for all data below 10 Gy, 0.92±0.06 for mouse gut data between 10-25 Gy, and 0.96±0.07 and 0.71±0.06 for mammalian skin reaction data between 10-25 Gy and >25 Gy, respectively. CONCLUSIONS The magnitude of normal tissue sparing by FLASH is increasing with dose and is dependent on the irradiated tissue. A piecewise linear function can parameterize currently available individual data series.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Esat Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland..
| |
Collapse
|
18
|
van Marlen P, Verbakel WF, Slotman BJ, Dahele M. Single-fraction 34 Gy Lung Stereotactic Body Radiation Therapy Using Proton Transmission Beams: FLASH-dose Calculations and the Influence of Different Dose-rate Methods and Dose/Dose-rate Thresholds. Adv Radiat Oncol 2022; 7:100954. [PMID: 35634574 PMCID: PMC9130077 DOI: 10.1016/j.adro.2022.100954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Research suggests that in addition to the dose-rate, a dose threshold is also important for the reduction in normal tissue toxicity with similar tumor control after ultrahigh dose-rate radiation therapy (UHDR-RT). In this analysis we aimed to identify factors that might limit the ability to achieve this "FLASH"-effect in a scenario attractive for UHDR-RT (high fractional beam dose, small target, few organs-at-risk): single-fraction 34 Gy lung stereotactic body radiation therapy. Methods and Materials Clinical volumetric-modulated arc therapy (VMAT) plans, intensity modulated proton therapy (IMPT) plans and transmission beam (TB) plans were compared for 6 small and 1 large lung lesion. The TB-plan dose-rate was calculated using 4 methods and the FLASH-percentage (percentage of dose delivered at dose-rates ≥40/100 Gy/s and ≥4/8 Gy) was determined for various variables: a minimum spot time (minST) of 0.5/2 ms, maximum nozzle current (maxN) of 200/40 0nA, and 2 gantry current (GC) techniques (energy-layer based, spot-based [SB]). Results Based on absolute doses 5-beam TB and VMAT-plans are similar, but TB-plans have higher rib, skin, and ipsilateral lung dose than IMPT. Dose-rate calculation methods not considering scanning achieve FLASH-percentages between ∼30% to 80%, while methods considering scanning often achieve <30%. FLASH-percentages increase for lower minST/higher maxN and when using SB GC instead of energy-layer based GC, often approaching the percentage of dose exceeding the dose-threshold. For the small lesions average beam irradiation times (including scanning) varied between 0.06 to 0.31 seconds and total irradiation times between 0.28 to 1.57 seconds, for the large lesion beam times were between 0.16 to 1.47 seconds with total irradiation times of 1.09 to 5.89 seconds. Conclusions In a theoretically advantageous scenario for FLASH we found that TB-plan dosimetry was similar to that of VMAT, but inferior to that of IMPT, and that decreasing minST or using SB GC increase the estimated amount of FLASH. For the appropriate machine/delivery parameters high enough dose-rates can be achieved regardless of calculation method, meaning that a possible FLASH dose-threshold will likely be the primary limiting factor.
Collapse
Affiliation(s)
- Patricia van Marlen
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Wilko F.A.R. Verbakel
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ben J. Slotman
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Rodríguez FG, Gonzalez-Castaño DM, Fernández NG, Pardo-Montero J, Schüller A, Gasparini A, Vanreusel V, Verellen D, Felici G, Kranzer R, Paz-Martín J. Development of an ultra-thin parallel plate ionization chamber for dosimetry in flash radiotherapy. Med Phys 2022; 49:4705-4714. [PMID: 35416306 PMCID: PMC9545838 DOI: 10.1002/mp.15668] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Background Conventional air ionization chambers (ICs) exhibit ion recombination correction factors that deviate substantially from unity when irradiated with dose per pulse magnitudes higher than those used in conventional radiotherapy. This fact makes these devices unsuitable for the dosimetric characterization of beams in ultra‐high dose per pulse as used for FLASH radiotherapy. Purpose We present the design, development, and characterization of an ultra‐thin parallel plate IC that can be used in ultra‐high dose rate (UHDR) deliveries with minimal recombination. Methods The charge collection efficiency (CCE) of parallel plate ICs was modeled through a numerical solution of the coupled differential equations governing the transport of charged carriers produced by ionizing radiation. It was used to find out the optimal parameters for the purpose of designing an IC capable of exhibiting a linear response with dose (deviation less than 1%) up to 10 Gy per pulse at 4
μs pulse duration. As a proof of concept, two vented parallel plate IC prototypes have been built and tested in different ultra‐high pulse dose rate electron beams. Results It has been found that by reducing the distance between electrodes to a value of 0.25 mm it is possible to extend the dose rate operating range of parallel plate ICs to ultra‐high dose per pulse range, at standard voltage of clinical grade electrometers, well into several Gy per pulse. The two IC prototypes exhibit behavior as predicted by the numerical simulation. One of the so‐called ultra‐thin parallel plate ionization chamber (UTIC) prototypes was able to measure up to 10 Gy per pulse, 4
μs pulse duration, operated at 300 V with no significant deviation from linearity within the uncertainties (ElectronFlash Linac, SIT). The other prototype was tested up to 5.4 Gy per pulse, 2.5
μs pulse duration, operated at 250 V with CCE higher than 98.6% (Metrological Electron Accelerator Facility, MELAF at Physikalisch‐Technische Bundesanstalt, PTB). Conclusions This work demonstrates the ability to extend the dose rate operating range of ICs to ultra‐high dose per pulse range by reducing the spacing between electrodes. The results show that UTICs are suitable for measurement in UHDR electron beams.
Collapse
Affiliation(s)
- Faustino Gómez Rodríguez
- Department of Particle Physics, University of Santiago, Santiago de Compostela, Spain.,Radiation Physics Laboratory, University of Santiago, Santiago de Compostela, Spain
| | | | | | - Juan Pardo-Montero
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, Spain
| | - Andreas Schüller
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Alessia Gasparini
- Department of Radiotherapy, Iridium Network, Belgium.,Faculty of Medicine and Health sciences, University of Antwerp, Belgium.,SCK CEN, Research in dosimetric applications, Mol, Belgium
| | - Verdi Vanreusel
- Department of Radiotherapy, Iridium Network, Belgium.,Faculty of Medicine and Health sciences, University of Antwerp, Belgium.,SCK CEN, Research in dosimetric applications, Mol, Belgium
| | - Dirk Verellen
- Department of Radiotherapy, Iridium Network, Belgium.,Faculty of Medicine and Health sciences, University of Antwerp, Belgium
| | | | - Rafael Kranzer
- PTW, Freiburg, Germany.,University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, Germany
| | - Jose Paz-Martín
- Department of Particle Physics, University of Santiago, Santiago de Compostela, Spain
| |
Collapse
|
20
|
Farr J, Grilj V, Malka V, Sudharsan S, Schippers M. Ultra‐High dose rate radiation production and delivery systems intended for FLASH. Med Phys 2022; 49:4875-4911. [PMID: 35403262 PMCID: PMC9544515 DOI: 10.1002/mp.15659] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022] Open
Abstract
Higher dose rates, a trend for radiotherapy machines, can be beneficial in shortening treatment times for radiosurgery and mitigating the effects of motion. Recently, even higher doses (e.g., 100 times greater) have become targeted because of their potential to generate the FLASH effect (FE). We refer to these physical dose rates as ultra‐high (UHDR). The complete relationship between UHDR and the FE is unknown. But UHDR systems are needed to explore the relationship further and to deliver clinical UHDR treatments, where indicated. Despite the challenging set of unknowns, the authors seek to make reasonable assumptions to probe how existing and developing technology can address the UHDR conditions needed to provide beam generation capable of producing the FE in preclinical and clinical applications. As a preface, this paper discusses the known and unknown relationships between UHDR and the FE. Based on these, different accelerator and ionizing radiation types are then discussed regarding the relevant UHDR needs. The details of UHDR beam production are discussed for existing and potential future systems such as linacs, cyclotrons, synchrotrons, synchrocyclotrons, and laser accelerators. In addition, various UHDR delivery mechanisms are discussed, along with required developments in beam diagnostics and dose control systems.
Collapse
Affiliation(s)
- Jonathan Farr
- Applications of Detectors and Accelerators to Medicine Meyrin 1217 Switzerland
| | - Veljko Grilj
- Lausanne University Hospital Lausanne 1011 Switzerland
| | - Victor Malka
- Weizmann Institute of Science Rehovot 7610001 Israel
| | | | | |
Collapse
|
21
|
Okoro CM, Schüler E, Taniguchi CM. The Therapeutic Potential of FLASH-RT for Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14051167. [PMID: 35267474 PMCID: PMC8909276 DOI: 10.3390/cancers14051167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Ultra-high dose rate radiation, widely nicknamed FLASH-RT, kills tumors without significantly damaging nearby normal tissues. This selective sparing of normal tissue by FLASH-RT tissue is called the FLASH effect. This review explores some of the proposed mechanisms of the FLASH effect and the current data that might support its use in pancreatic cancer. Since radiation for pancreatic cancer treatment is limited by GI toxicity issues and is a disease with one of the lowest five-year survival rates, FLASH-RT could have a large impact in the treatment of this disease with further study. Abstract Recent preclinical evidence has shown that ionizing radiation given at an ultra-high dose rate (UHDR), also known as FLASH radiation therapy (FLASH-RT), can selectively reduce radiation injury to normal tissue while remaining isoeffective to conventional radiation therapy (CONV-RT) with respect to tumor killing. Unresectable pancreatic cancer is challenging to control without ablative doses of radiation, but this is difficult to achieve without significant gastrointestinal toxicity. In this review article, we explore the propsed mechanisms of FLASH-RT and its tissue-sparing effect, as well as its relevance and suitability for the treatment of pancreatic cancer. We also briefly discuss the challenges with regard to dosimetry, dose rate, and fractionation for using FLASH-RT to treat this disease.
Collapse
Affiliation(s)
- Chidi M. Okoro
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emil Schüler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (E.S.); (C.M.T.)
| | - Cullen M. Taniguchi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (E.S.); (C.M.T.)
| |
Collapse
|
22
|
Moon EJ, Petersson K, Oleina MM. The importance of hypoxia in radiotherapy for the immune response, metastatic potential and FLASH-RT. Int J Radiat Biol 2022; 98:439-451. [PMID: 34726575 PMCID: PMC7612434 DOI: 10.1080/09553002.2021.1988178] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Hypoxia (low oxygen) is a common feature of solid tumors that has been intensely studied for more than six decades. Here we review the importance of hypoxia to radiotherapy with a particular focus on the contribution of hypoxia to immune responses, metastatic potential and FLASH radiotherapy, active areas of research by leading women in the field. CONCLUSION Although hypoxia-driven metastasis and immunosuppression can negatively impact clinical outcome, understanding these processes can also provide tumor-specific vulnerabilities that may be therapeutically exploited. The different oxygen tensions present in tumors and normal tissues may underpin the beneficial FLASH sparing effect seen in normal tissue and represents a perfect example of advances in the field that can leverage tumor hypoxia to improve future radiotherapy treatments.
Collapse
Affiliation(s)
- Eui Jung Moon
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Equal Contribution and to whom correspondence should be addressed. ; :
| | - Kristoffer Petersson
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden,Equal Contribution and to whom correspondence should be addressed. ; :
| | - Monica M. Oleina
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Equal Contribution and to whom correspondence should be addressed. ; :
| |
Collapse
|
23
|
Kacem H, Almeida A, Cherbuin N, Vozenin MC. Understanding the FLASH effect to unravel the potential of ultra-high dose rate irradiation. Int J Radiat Biol 2021; 98:506-516. [PMID: 34788193 DOI: 10.1080/09553002.2021.2004328] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A reemergence of research implementing radiation delivery at ultra-high dose rates (UHDRs) has triggered intense interest in the radiation sciences and has opened a new field of investigation in radiobiology. Much of the promise of UHDR irradiation involves the FLASH effect, an in vivo biological response observed to maintain anti-tumor efficacy without the normal tissue complications associated with standard dose rates. The FLASH effect has been validated primarily, using intermediate energy electron beams able to deliver high doses (>7 Gy) in a very short period of time (<200 ms), but has also been found with photon and proton beams. The clinical implications of this new area of research are highly significant, as FLASH radiotherapy (FLASH-RT) has the potential to enhance the therapeutic index, opening new possibilities for eradicating radio-resistant tumors without toxicity. As pioneers in this field, our group has developed a multidisciplinary research team focused on investigating the mechanisms and clinical translation of the FLASH effect. Here, we review the field of UHDR, from the physico-chemical to the biological mechanisms.
Collapse
Affiliation(s)
- Houda Kacem
- Department of Oncology, Laboratory of Radiation Oncology, Radiation Oncology Service, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Aymeric Almeida
- Department of Oncology, Laboratory of Radiation Oncology, Radiation Oncology Service, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Cherbuin
- Department of Medical Radiology, Institute of Radiation Physics, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Department of Oncology, Laboratory of Radiation Oncology, Radiation Oncology Service, CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Liew H, Mein S, Dokic I, Haberer T, Debus J, Abdollahi A, Mairani A. Deciphering Time-Dependent DNA Damage Complexity, Repair, and Oxygen Tension: A Mechanistic Model for FLASH-Dose-Rate Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 110:574-586. [DOI: 10.1016/j.ijrobp.2020.12.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
|
25
|
Vozenin MC, Montay-Gruel P, Limoli C, Germond JF. All Irradiations that are Ultra-High Dose Rate may not be FLASH: The Critical Importance of Beam Parameter Characterization and In Vivo Validation of the FLASH Effect. Radiat Res 2021; 194:571-572. [PMID: 32853355 DOI: 10.1667/rade-20-00141.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pierre Montay-Gruel
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Department of Radiation Oncology, University of California Irvine, Irvine, California
| | - Charles Limoli
- Department of Radiation Oncology, University of California Irvine, Irvine, California
| | - Jean-François Germond
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
26
|
Chabi S, To THV, Leavitt R, Poglio S, Jorge PG, Jaccard M, Petersson K, Petit B, Roméo PH, Pflumio F, Vozenin MC, Uzan B. Ultra-high-dose-rate FLASH and Conventional-Dose-Rate Irradiation Differentially Affect Human Acute Lymphoblastic Leukemia and Normal Hematopoiesis. Int J Radiat Oncol Biol Phys 2021; 109:819-829. [PMID: 33075474 DOI: 10.1016/j.ijrobp.2020.10.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Ultra-high-dose-rate FLASH radiation therapy has been shown to minimize side effects of irradiation in various organs while keeping antitumor efficacy. This property, called the FLASH effect, has caused enthusiasm in the radiation oncology community because it opens opportunities for safe dose escalation and improved radiation therapy outcome. Here, we investigated the impact of ultra-high-dose-rate FLASH versus conventional-dose-rate (CONV) total body irradiation (TBI) on humanized models of T-cell acute lymphoblastic leukemia (T-ALL) and normal human hematopoiesis. METHODS AND MATERIALS We optimized the geometry of irradiation to ensure reproducible and homogeneous procedures using eRT6/Oriatron. Three T-ALL patient-derived xenografts and hematopoietic stem/progenitor cells (HSPCs) and CD34+ cells isolated from umbilical cord blood were transplanted into immunocompromised mice, together or separately. After reconstitution, mice received 4 Gy FLASH and CONV-TBI, and tumor growth and normal hematopoiesis were studied. A retrospective study of clinical and gene-profiling data previously obtained on the 3 T-ALL patient-derived xenografts was performed. RESULTS FLASH-TBI was more efficient than CONV-TBI in controlling the propagation of 2 cases of T-ALL, whereas the third case of T-ALL was more responsive to CONV-TBI. The 2 FLASH-sensitive cases of T-ALL had similar genetic abnormalities, and a putative susceptibility imprint to FLASH-RT was found. In addition, FLASH-TBI was able to preserve some HSPC/CD34+ cell potential. Interestingly, when HSPC and T-ALL were present in the same animals, FLASH-TBI could control tumor development in most (3 of 4) of the secondary grafted animals, whereas among the mice receiving CONV-TBI, treated cells died with high leukemia infiltration. CONCLUSIONS Compared with CONV-TBI, FLASH-TBI reduced functional damage to human blood stem cells and had a therapeutic effect on human T-ALL with a common genetic and genomic profile. The validity of the defined susceptibility imprint needs to be investigated further; however, to our knowledge, the present findings are the first to show benefits of FLASH-TBI on human hematopoiesis and leukemia treatment.
Collapse
Affiliation(s)
- Sara Chabi
- Team Niche and Cancer in Hematopoiesis, Fontenay-aux-Roses, France; Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Service Cellules Souches et Radiations, Fontenay-aux-Roses, France; UMRE008 Stabilité Génétique, Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Thi Hong Van To
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Service Cellules Souches et Radiations, Fontenay-aux-Roses, France; UMRE008 Stabilité Génétique, Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France; Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Ron Leavitt
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Sandrine Poglio
- Team Niche and Cancer in Hematopoiesis, Fontenay-aux-Roses, France; Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Service Cellules Souches et Radiations, Fontenay-aux-Roses, France; UMRE008 Stabilité Génétique, Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Patrik Gonçalves Jorge
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland; Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Maud Jaccard
- Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Kristoffer Petersson
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland; Institute of Radiation Physics/CHUV, Lausanne University Hospital, Switzerland
| | - Benoit Petit
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Paul-Henri Roméo
- Team Niche and Cancer in Hematopoiesis, Fontenay-aux-Roses, France; UMRE008 Stabilité Génétique, Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France; Laboratoire de la Régulation de la Transcription dans les cellules Souches, Service Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Françoise Pflumio
- Team Niche and Cancer in Hematopoiesis, Fontenay-aux-Roses, France; Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Service Cellules Souches et Radiations, Fontenay-aux-Roses, France; UMRE008 Stabilité Génétique, Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Benjamin Uzan
- Team Niche and Cancer in Hematopoiesis, Fontenay-aux-Roses, France; Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Service Cellules Souches et Radiations, Fontenay-aux-Roses, France; UMRE008 Stabilité Génétique, Cellules Souches et Radiations, Université de Paris and Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
27
|
Rothwell BC, Kirkby NF, Merchant MJ, Chadwick AL, Lowe M, Mackay RI, Hendry JH, Kirkby KJ. Determining the parameter space for effective oxygen depletion for FLASH radiation therapy. Phys Med Biol 2021; 66. [PMID: 33535191 PMCID: PMC8208623 DOI: 10.1088/1361-6560/abe2ea] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 01/20/2023]
Abstract
There has been a recent revival of interest in the FLASH effect, after experiments have shown normal tissue sparing capabilities of ultra-high-dose-rate radiation with no compromise on tumour growth restraint. A model has been developed to investigate the relative importance of a number of fundamental parameters considered to be involved in the oxygen depletion paradigm of induced radioresistance. An example eight-dimensional parameter space demonstrates the conditions under which radiation may induce sufficient depletion of oxygen for a diffusion-limited hypoxic cellular response. Initial results support experimental evidence that FLASH sparing is only achieved for dose rates on the order of tens of Gy/s or higher, for a sufficiently high dose, and only for tissue that is slightly hypoxic at the time of radiation. We show that the FLASH effect is the result of a number of biological, radiochemical and delivery parameters. Also, the threshold dose for a FLASH effect occurring would be more prominent when the parameterisation was optimised to produce the maximum effect. The model provides a framework for further FLASH-related investigation and experimental design. An understanding of the mechanistic interactions producing an optimised FLASH effect is essential for its translation into clinical practice.
Collapse
Affiliation(s)
- Bethany Cordelia Rothwell
- Division of Cancer Sciences, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Norman F Kirkby
- Division of Cancer Sciences, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Michael J Merchant
- Division of Cancer Sciences, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Amy L Chadwick
- Division of Cancer Sciences, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Matthew Lowe
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Ranald I Mackay
- Christie Medical Physics and Engineering , The Christie NHS Foundation Trust, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Jolyon H Hendry
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Karen J Kirkby
- Division of Cancer Sciences, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
28
|
Pratx G, Kapp DS. Corrigendum: A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio (2019 Phys. Med. Biol. 64 185005). Phys Med Biol 2020. [DOI: 10.1088/1361-6560/ab8cd7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|