1
|
A T, M U K, H R, F M, D A B. The role of coating layers in gold nanorods' radioenhancement: a Monte Carlo analysis. NANOSCALE ADVANCES 2025; 7:3293-3307. [PMID: 40212448 PMCID: PMC11980082 DOI: 10.1039/d5na00220f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/03/2025] [Indexed: 05/29/2025]
Abstract
Gold nanoparticles are promising radiosensitizing agents for nanoparticle-enhanced radiotherapy (NPRT). The coating layer on these nanoparticles can significantly influence their physicochemical characteristics and biological behavior. This study investigates the influence of various coating layers on the radioenhancement efficiency of gold nanorods by modeling the physical interactions and chemical reactions involved. We conducted Monte Carlo simulations using the TOPAS code to model secondary electron generation in gold nanorods exposed to 100 kVp X-rays. Through a multiscale approach, the dose contribution, electron spectrum, and G-values of radiolytic species were determined. Four conventional coating materials were examined and compared to a non-coated nanorod. The simulation results indicate that the addition of coating layers decreases the additional dose due to the gold nanorods by up to 7% across all materials. The assessment of electron spectra revealed that 1% to 8% of electrons with energies below 3.5 keV were absorbed within the various coating layers. In contrast, higher-energy electrons were mainly unaffected. The total G-values for all radiolytic species remained generally unchanged with the addition of the coating layer, regardless of the material used. However, increasing the coating thickness slightly increased the relative yield of chemical species at times beyond 10 ns post-irradiation. While the addition of a coating layer generally resulted in a decrease in electron fluence and dose contribution, the reduction was not as substantial as expected from results previously reported in the literature. This suggests that, from the physics perspective, the influence of coating layers on radioenhancement may be less pronounced than previously believed. Additionally, the observed increase in total G-values with thicker coatings emphasizes the need for further investigation into the effects of coatings on radiolytic species.
Collapse
Affiliation(s)
- Taheri A
- Applied Physics and Radiation Technologies Group, CCDCU, Faculty of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
| | - Khandaker M U
- Applied Physics and Radiation Technologies Group, CCDCU, Faculty of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
- Faculty of Graduate Studies, Daffodil International University Daffodil Smart City Birulia Savar Dhaka 1216 Bangladesh
- Department of Physics, College of Science, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Rabus H
- Physikalisch-Technische Bundesanstalt (PTB) 10587 Berlin Germany
| | - Moradi F
- Radiation Dosimetry Research Group, Faculty of Engineering, Multimedia University Jalan Multimedia 63100 Cyberjaya Malaysia
| | - Bradley D A
- Applied Physics and Radiation Technologies Group, CCDCU, Faculty of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
- School of Mathematics and Physics, University of Surrey Guildford GU27XH UK
| |
Collapse
|
2
|
Okada S, Murakami K, Kusumoto T, Hirano Y, Amako K, Sasaki T. Recent updates of the MPEXS2.1-DNA Monte Carlo code for simulations of water radiolysis under ion irradiation. Sci Rep 2025; 15:16534. [PMID: 40360565 PMCID: PMC12075733 DOI: 10.1038/s41598-025-00875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
To improve radiotherapy, especially that with ion beams such as proton and carbon ion beams, the mechanisms of interactions induced by ionizing radiation must be understood. MPEXS2.1-DNA is a Monte Carlo simulation code developed for water radiolysis studies and DNA damage simulations that uses GPU devices for fast computation. However, the original chemistry model in MPEXS2.1-DNA did not include detailed chemical reactions for reactive oxygen species (ROS), e.g., O•-, O2, O2•-, HO2•, HO2-. In the present study, drawing the former work on the step-by-step (SBS) model for the RITRACKS code, we implemented an alternative SBS model into MPEXS2.1-DNA to increase the capabilities and computational speed of water radiolysis simulations under ion irradiation. This model is based on the theory of Green's function of the diffusion equation (GFDE-SBS). Also, we implemented multiple ionization processes which enhance ROS generation under high-LET irradiation. We compared the simulation results obtained by GFDE-SBS with experimental data from previous studies. The validation results demonstrated that the GFDE-SBS model accurately reproduced the measured radiation chemical yields of major species, such as hydroxyl radicals and hydrogen peroxide. Furthermore, the computational speed of GFDE-SBS was increased approximately ten times faster than the original model due to the changes in time stepping. Additionally, simulations using a Fricke dosimeter confirmed that this model is reliable for long-term simulations over seconds. These improvements enable simulations of radiation interactions and can help in the study of DNA damage mechanisms.
Collapse
Affiliation(s)
- Shogo Okada
- High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki, 305-0801, Japan.
| | - Koichi Murakami
- High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Tamon Kusumoto
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yoshiyuki Hirano
- Graduate School of Medicine, Biomedical Imaging Sciences, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya City, Aichi Prefecture, Japan
| | - Katsuya Amako
- High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Takashi Sasaki
- High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, Ibaraki, 305-0801, Japan
| |
Collapse
|
3
|
Arce P, Archer JW, Arsini L, Bagulya A, Bolst D, Brown JMC, Caccia B, Chacon A, Cirrone GAP, Cortés‐Giraldo MA, Cutajar D, Cuttone G, Dondero P, Dotti A, Faddegon B, Fattori S, Fedon C, Guatelli S, Haga A, Incerti S, Ivanchenko V, Konstantinov D, Kyriakou I, Le A, Li Z, Maire M, Malaroda A, Mancini‐Terracciano C, Mantero A, Michelet C, Milluzzo G, Nicolanti F, Novak M, Omachi C, Pandola L, Pensavalle JH, Perales Á, Perrot Y, Petringa G, Pozzi S, Quesada JM, Ramos‐Méndez J, Romano F, Rosenfeld AB, Safavi‐Naeini M, Sakata D, Sarmiento LG, Sasaki T, Sato Y, Sciuto A, Sechopoulos I, Simpson EC, Stanzani R, Tomal A, Toshito T, Tran HN, White C, Wright DH. Results of a Geant4 benchmarking study for bio-medical applications, performed with the G4-Med system. Med Phys 2025; 52:2707-2761. [PMID: 39981742 PMCID: PMC12059550 DOI: 10.1002/mp.17678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Geant4, a Monte Carlo Simulation Toolkit extensively used in bio-medical physics, is in continuous evolution to include newest research findings to improve its accuracy and to respond to the evolving needs of a very diverse user community. In 2014, the G4-Med benchmarking system was born from the effort of the Geant4 Medical Simulation Benchmarking Group, to benchmark and monitor the evolution of Geant4 for medical physics applications. The G4-Med system was first described in our Medical Physics Special Report published in 2021. Results of the tests were reported for Geant4 10.5. PURPOSE In this work, we describe the evolution of the G4-Med benchmarking system. METHODS The G4-Med benchmarking suite currently includes 23 tests, which benchmark Geant4 from the calculation of basic physical quantities to the simulation of more clinically relevant set-ups. New tests concern the benchmarking of Geant4-DNA physics and chemistry components for regression testing purposes, dosimetry for brachytherapy with a125 I $^{125}I$ source, dosimetry for external x-ray and electron FLASH radiotherapy, experimental microdosimetry for proton therapy, and in vivo PET for carbon and oxygen beams. Regression testing has been performed between Geant4 10.5 and 11.1. Finally, a simple Geant4 simulation has been developed and used to compare Geant4 EM physics constructors and physics lists in terms of execution times. RESULTS In summary, our EM tests show that the parameters of the multiple scattering in the Geant4 EM constructor G4EmStandardPhysics_option3 in Geant4 11.1, while improving the modeling of the electron backscattering in high atomic number targets, are not adequate for dosimetry for clinical x-ray and electron beams. Therefore, these parameters have been reverted back to those of Geant4 10.5 in Geant4 11.2.1. The x-ray radiotherapy test shows significant differences in the modeling of the bremsstrahlung process, especially between G4EmPenelopePhysics and the other constructors under study (G4EmLivermorePhysics, G4EmStandardPhysics_option3, and G4EmStandardPhysics_option4). These differences will be studied in an in-depth investigation within our Group. Improvement in Geant4 11.1 has been observed for the modeling of the proton and carbon ion Bragg peak with energies of clinical interest, thanks to the adoption of ICRU90 to calculate the low energy proton stopping powers in water and of the Linhard-Sorensen ion model, available in Geant4 since version 11.0. Nuclear fragmentation tests of interest for carbon ion therapy show differences between Geant4 10.5 and 11.1 in terms of fragment yields. In particular, a higher production of boron fragments is observed with Geant4 11.1, leading to a better agreement with reference data for this fragment. CONCLUSIONS Based on the overall results of our tests, we recommend to use G4EmStandardPhysics_option4 as EM constructor and QGSP_BIC_HP with G4EmStandardPhysics_option4, for hadrontherapy applications. The Geant4-DNA physics lists report differences in modeling electron interactions in water, however, the tests have a pure regression testing purpose so no recommendation can be formulated.
Collapse
Affiliation(s)
| | - Jay W. Archer
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
| | - Lorenzo Arsini
- Sapienza, University of RomeRomeItaly
- INFN, Roma1 SectionRomeItaly
| | | | - David Bolst
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
| | | | | | - Andrew Chacon
- Australian Nuclear Science and Technology OrganisationLucas HeightsNew South WalesAustralia
| | | | | | - Dean Cutajar
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
| | | | | | - Andrea Dotti
- SLAC National Accelerator LaboratoryStanfordCaliforniaUSA
| | | | | | - Christian Fedon
- Nuclear Research and Consultancy Group (NRG)LE PettenThe Netherlands
| | - Susanna Guatelli
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
| | | | | | | | | | | | - Albert Le
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
| | - Zhuxin Li
- CNRS, Univ. Bordeaux, LP2I Bordeaux, UMR5797GradignanFrance
| | | | - Alessandra Malaroda
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
- Medical Imaging DepartmentNepean Blue Mountains LHDSydneyNew South WalesAustralia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Anatoly B. Rosenfeld
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
| | - Mitra Safavi‐Naeini
- Australian Nuclear Science and Technology OrganisationLucas HeightsNew South WalesAustralia
| | | | | | | | | | | | - Ioannis Sechopoulos
- Radboud University Medical CenterNijmegenThe Netherlands
- Dutch Expert Center for Screening (LRCB)NijmegenThe Netherlands
| | - Edward C. Simpson
- Department of Nuclear Physics and Accelerator ApplicationsResearch School of PhysicsAustralian National UniversityCanberraAustralia
| | | | | | | | | | - Christopher White
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
| | | |
Collapse
|
4
|
Vafapour H, Rafiepour P, Moradgholi J, Mortazavi S. Evaluating the biological impact of shelters on astronaut health during different solar particle events: a Geant4-DNA simulation study. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2025; 64:137-150. [PMID: 39873783 DOI: 10.1007/s00411-025-01111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/18/2025] [Indexed: 01/30/2025]
Abstract
Mechanistic Monte Carlo simulations have proven invaluable in tackling complex challenges in radiobiology, for example for protecting astronauts from solar particle events (SPEs) during deep space missions which remains an underexplored area. In this study, the Geant4-DNA Monte Carlo code was used to assess the DNA damage caused by SPEs and evaluate the protective effectiveness of a multilayer shelter. By examining the February 1956 and October 1989 SPEs-two extreme cases-the results showed that the proposed shelter reduced DNA damage by up to 57.9% for the October 1989 SPE and 36.7% for the February 1956 SPE. Cell repair and survival modeling further revealed enhanced cell survival with the shelter, reducing lethal DNA damage by up to 64.3% and 88.2% for February 1956 and October 1989 SPEs, respectively. The results presented here highlight the crucial importance of developing effective radiation shielding to protect astronauts during solar storms and emphasizes the need to improve predictions of solar particle events to optimize shelter design.
Collapse
Affiliation(s)
- Hassan Vafapour
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payman Rafiepour
- Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Javad Moradgholi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Smj Mortazavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Chatzipapas KP, Tran HN, Dordevic M, Sakata D, Incerti S, Visvikis D, Bert J. Development of a novel computational technique to create DNA and cell geometrical models for Geant4-DNA. Phys Med 2024; 127:104839. [PMID: 39461070 DOI: 10.1016/j.ejmp.2024.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND This study aimed to develop a novel human cell geometry for the Geant4-DNA simulation toolkit that explicitly incorporates all 23 chromosome pairs of the human cell. This approach contrasts with the existing, default human cell, geometrical model, which utilizes a continuous Hilbert curve. METHODS A Python-based tool named "complexDNA" was developed to facilitate the design of both simple and complex DNA geometries. This tool was employed to construct a human cell geometry with individual pairs of chromosomes. Subsequently, the performance of this chromosomal model was compared to the standard human cell model provided in the "molecularDNA" Geant4-DNA example. RESULTS Simulations using the new chromosomal model revealed minimal discrepancies in DNA damage yield and fragment size distribution compared to the default human cell model. Notably, the chromosomal model demonstrated significant computational efficiency, requiring approximately three times less simulation time to achieve equivalent results. CONCLUSIONS This work highlights the importance of incorporating chromosomal structure into human cell models for radiation biology research. The "complexDNA" tool offers a valuable resource for creating intricate DNA structures for future studies. Further refinements, such as implementing smaller voxels for euchromatin regions, are proposed to enhance the model's accuracy.
Collapse
Affiliation(s)
| | - Hoang Ngoc Tran
- University of Bordeaux, CNRS, LP2i Bordeaux, UMR 5797, F-33170 Gradignan, France
| | - Milos Dordevic
- Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Sebastien Incerti
- University of Bordeaux, CNRS, LP2i Bordeaux, UMR 5797, F-33170 Gradignan, France
| | | | - Julien Bert
- University of Brest, INSERM, LaTIM, UMR 1101, F-29200 Brest, France
| |
Collapse
|
6
|
García García OR, Ortiz R, Moreno-Barbosa E, D-Kondo N, Faddegon B, Ramos-Méndez J. TOPAS-Tissue: A Framework for the Simulation of the Biological Response to Ionizing Radiation at the Multi-Cellular Level. Int J Mol Sci 2024; 25:10061. [PMID: 39337547 PMCID: PMC11431975 DOI: 10.3390/ijms251810061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This work aims to develop and validate a framework for the multiscale simulation of the biological response to ionizing radiation in a population of cells forming a tissue. We present TOPAS-Tissue, a framework to allow coupling two Monte Carlo (MC) codes: TOPAS with the TOPAS-nBio extension, capable of handling the track-structure simulation and subsequent chemistry, and CompuCell3D, an agent-based model simulator for biological and environmental behavior of a population of cells. We verified the implementation by simulating the experimental conditions for a clonogenic survival assay of a 2-D PC-3 cell culture model (10 cells in 10,000 µm2) irradiated by MV X-rays at several absorbed dose values from 0-8 Gy. The simulation considered cell growth and division, irradiation, DSB induction, DNA repair, and cellular response. The survival was obtained by counting the number of colonies, defined as a surviving primary (or seeded) cell with progeny, at 2.7 simulated days after irradiation. DNA repair was simulated with an MC implementation of the two-lesion kinetic model and the cell response with a p53 protein-pulse model. The simulated survival curve followed the theoretical linear-quadratic response with dose. The fitted coefficients α = 0.280 ± 0.025/Gy and β = 0.042 ± 0.006/Gy2 agreed with published experimental data within two standard deviations. TOPAS-Tissue extends previous works by simulating in an end-to-end way the effects of radiation in a cell population, from irradiation and DNA damage leading to the cell fate. In conclusion, TOPAS-Tissue offers an extensible all-in-one simulation framework that successfully couples Compucell3D and TOPAS for multiscale simulation of the biological response to radiation.
Collapse
Affiliation(s)
- Omar Rodrigo García García
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (O.R.G.G.); (E.M.-B.)
| | - Ramon Ortiz
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (R.O.); (N.D.-K.); (B.F.)
| | - Eduardo Moreno-Barbosa
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (O.R.G.G.); (E.M.-B.)
| | - Naoki D-Kondo
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (R.O.); (N.D.-K.); (B.F.)
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (R.O.); (N.D.-K.); (B.F.)
| | - Jose Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (R.O.); (N.D.-K.); (B.F.)
| |
Collapse
|
7
|
Tran HN, Archer J, Baldacchino G, Brown JMC, Chappuis F, Cirrone GAP, Desorgher L, Dominguez N, Fattori S, Guatelli S, Ivantchenko V, Méndez JR, Nieminen P, Perrot Y, Sakata D, Santin G, Shin WG, Villagrasa C, Zein S, Incerti S. Review of chemical models and applications in Geant4-DNA: Report from the ESA BioRad III Project. Med Phys 2024; 51:5873-5889. [PMID: 38889367 PMCID: PMC11489035 DOI: 10.1002/mp.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
A chemistry module has been implemented in Geant4-DNA since Geant4 version 10.1 to simulate the radiolysis of water after irradiation. It has been used in a number of applications, including the calculation of G-values and early DNA damage, allowing the comparison with experimental data. Since the first version, numerous modifications have been made to the module to improve the computational efficiency and extend the simulation to homogeneous kinetics in bulk solution. With these new developments, new applications have been proposed and released as Geant4 examples, showing how to use chemical processes and models. This work reviews the models implemented and application developments for modeling water radiolysis in Geant4-DNA as reported in the ESA BioRad III Project.
Collapse
Affiliation(s)
| | - Jay Archer
- Centre For Medical and Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Gérard Baldacchino
- Université Paris-Saclay, CEA, LIDYL, Gif-sur-Yvette, France
- CY Cergy Paris Université, CEA, LIDYL, Gif-sur-Yvette, France
| | - Jeremy M C Brown
- Optical Sciences Centre, Department of Physics and Astronomy, School of Science, Swinburne University of Technology, Melbourne, Australia
| | - Flore Chappuis
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Antonio Pablo Cirrone
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS), Catania, Italy
- Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania, Italy
| | - Laurent Desorgher
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Naoki Dominguez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Serena Fattori
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali del Sud (LNS), Catania, Italy
| | - Susanna Guatelli
- Centre For Medical and Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - José-Ramos Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | | | - Yann Perrot
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Dousatsu Sakata
- Centre For Medical and Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
- Division of Health Sciences, Osaka University, Osaka, Japan
- School of Physics, University of Bristol, Bristol, UK
| | | | - Wook-Geun Shin
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts, USA
| | - Carmen Villagrasa
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Sara Zein
- Univ. Bordeaux, CNRS, LP2I, UMR 5797, Gradignan, France
| | | |
Collapse
|
8
|
Tuan Anh L, Ngoc Hoang T, Thibaut Y, Chatzipapas K, Sakata D, Incerti S, Villagrasa C, Perrot Y. "dsbandrepair" - An updated Geant4-DNA simulation tool for evaluating the radiation-induced DNA damage and its repair. Phys Med 2024; 124:103422. [PMID: 38981169 DOI: 10.1016/j.ejmp.2024.103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/07/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
PURPOSE Interdisciplinary scientific communities have shown large interest to achieve a mechanistic description of radiation-induced biological damage, aiming to predict biological results produced by different radiation quality exposures. Monte Carlo track-structure simulations are suitable and reliable for the study of early DNA damage induction used as input for assessing DNA damage. This study presents the most recent improvements of a Geant4-DNA simulation tool named "dsbandrepair". METHODS "dsbandrepair" is a Monte Carlo simulation tool based on a previous code (FullSim) that estimates the induction of early DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). It uses DNA geometries generated by the DNAFabric computational tool for simulating the induction of early single-strand breaks (SSBs) and double-strand breaks (DSBs). Moreover, the new tool includes some published radiobiological models for survival fraction and un-rejoined DSB. Its application for a human fibroblast cell and human umbilical vein endothelial cell containing both heterochromatin and euchromatin was conducted. In addition, this new version offers the possibility of using the new IRT-syn method for computing the chemical stage. RESULTS The direct and indirect strand breaks, SSBs, DSBs, and damage complexity obtained in this work are equivalent to those obtained with the previously published simulation tool when using the same configuration in the physical and chemical stages. Simulation results on survival fraction and un-rejoined DSB are in reasonable agreement with experimental data. CONCLUSIONS "dsbandrepair" is a tool for simulating DNA damage and repair, benchmarked against experimental data. It has been released as an advanced example in Geant4.11.2.
Collapse
Affiliation(s)
- Le Tuan Anh
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17, 92262 Fontenay-aux-Roses, France
| | - Tran Ngoc Hoang
- CNRS/IN2P3, CENBG, UMR 5797, Bordeaux University, 33170 Gradignan, France
| | - Yann Thibaut
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17, 92262 Fontenay-aux-Roses, France
| | | | | | - Sébastien Incerti
- CNRS/IN2P3, CENBG, UMR 5797, Bordeaux University, 33170 Gradignan, France
| | - Carmen Villagrasa
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17, 92262 Fontenay-aux-Roses, France
| | - Yann Perrot
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17, 92262 Fontenay-aux-Roses, France
| |
Collapse
|
9
|
Liu Y, Zhu K, Peng X, Luo S, Zhu J, Xiao W, He L, Wang X. Proton relative biological effectiveness for the induction of DNA double strand breaks based on Geant4. Biomed Phys Eng Express 2024; 10:035018. [PMID: 38181453 DOI: 10.1088/2057-1976/ad1bb9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Uncertainties in the relative biological effectiveness (RBE) of proton remains a major barrier to the biological optimization of proton therapy. A large amount of experimental data suggest that proton RBE is variable. As an evolving Monte Carlo code toolkit, Geant4-DNA is able to simulate the initial DNA damage caused by particle beams through physical and chemical interactions at the nanometer scale over a short period of time. This contributes to evaluating the radiobiological effects induced by ionizing radiation. Based on the Geant4-DNA toolkit, this study constructed a DNA geometric model containing 6.32Gbp, simulated the relationship between radiochemical yields (G-values) and their corresponding chemical constructors, and calculated a detailed calculation of the sources of damage and the complexity of damage in DNA strand breaks. The damage model constructed in this study can simulate the relative biological effectiveness (RBE) in the proton Bragg peak region. The results indicate that: (1) When the electron energy is below 400 keV, the yield of OH·account for 18.1% to 25.3% of the total water radiolysis yields. (2) Under the influence of histone clearance function, the yield of indirect damage account for over 72.93% of the yield of DNA strand breaks (SBs). When linear energy transfer (LET) increased from 29.79 (keV/μm) to 64.29 (keV/μm), the yield of double strand breaks (DSB) increased from 17.27% to 32.65%. (3) By investigating the effect of proton Bragg peak depth on the yield of direct DSB (DSBdirect) and total DSB (DSBtotal), theRBEDSBtotandRBEDSBdirlevels of cells show that the RBE value of protons reaches 2.2 in the Bragg peak region.
Collapse
Affiliation(s)
- Yuchen Liu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Kun Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoyu Peng
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Siyuan Luo
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Jin Zhu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Wancheng Xiao
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Lie He
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Xiaodong Wang
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| |
Collapse
|
10
|
Chatzipapas KP, Tran NH, Dordevic M, Zivkovic S, Zein S, Shin W, Sakata D, Lampe N, Brown JMC, Ristic‐Fira A, Petrovic I, Kyriakou I, Emfietzoglou D, Guatelli S, Incerti S. Simulation of DNA damage using Geant4-DNA: an overview of the "molecularDNA" example application. PRECISION RADIATION ONCOLOGY 2023; 7:4-14. [PMID: 40336619 PMCID: PMC11935086 DOI: 10.1002/pro6.1186] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 05/09/2025] Open
Abstract
Purpose The scientific community shows great interest in the study of DNA damage induction, DNA damage repair, and the biological effects on cells and cellular systems after exposure to ionizing radiation. Several in silico methods have been proposed so far to study these mechanisms using Monte Carlo simulations. This study outlines a Geant4-DNA example application, named "molecularDNA", publicly released in the 11.1 version of Geant4 (December 2022). Methods It was developed for novice Geant4 users and requires only a basic understanding of scripting languages to get started. The example includes two different DNA-scale geometries of biological targets, namely "cylinders" and "human cell". This public version is based on a previous prototype and includes new features, such as: the adoption of a new approach for the modeling of the chemical stage, the use of the standard DNA damage format to describe radiation-induced DNA damage, and upgraded computational tools to estimate DNA damage response. Results Simulation data in terms of single-strand break and double-strand break yields were produced using each of the available geometries. The results were compared with the literature, to validate the example, producing less than 5% difference in all cases. Conclusion: "molecularDNA" is a prototype tool that can be applied in a wide variety of radiobiology studies, providing the scientific community with an open-access base for DNA damage quantification calculations. New DNA and cell geometries for the "molecularDNA" example will be included in future versions of Geant4-DNA.
Collapse
Affiliation(s)
| | - Ngoc Hoang Tran
- University of Bordeaux, CNRS, LP2I Bordeaux, UMR 5797GradignanFrance
| | - Milos Dordevic
- Vinca Institute of Nuclear Sciences, National Institute of the Republic of SerbiaUniversity of Belgrade, VincaBelgradeSerbia
| | - Sara Zivkovic
- Vinca Institute of Nuclear Sciences, National Institute of the Republic of SerbiaUniversity of Belgrade, VincaBelgradeSerbia
| | - Sara Zein
- University of Bordeaux, CNRS, LP2I Bordeaux, UMR 5797GradignanFrance
| | - Wook‐Geun Shin
- Physics Division, Department of Radiation OncologyMassachusetts General Hospital & Harvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Jeremy M. C. Brown
- Department of Physics and AstronomySwinburne University of TechnologyMelbourneAustralia
| | - Aleksandra Ristic‐Fira
- Vinca Institute of Nuclear Sciences, National Institute of the Republic of SerbiaUniversity of Belgrade, VincaBelgradeSerbia
| | - Ivan Petrovic
- Vinca Institute of Nuclear Sciences, National Institute of the Republic of SerbiaUniversity of Belgrade, VincaBelgradeSerbia
| | - Ioanna Kyriakou
- Medical Physics LaboratoryDepartment of MedicineUniversity of IoanninaIoanninaGreece
| | - Dimitris Emfietzoglou
- Medical Physics LaboratoryDepartment of MedicineUniversity of IoanninaIoanninaGreece
| | - Susanna Guatelli
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNew South WalesAustralia
| | - Sébastien Incerti
- University of Bordeaux, CNRS, LP2I Bordeaux, UMR 5797GradignanFrance
| |
Collapse
|
11
|
Bui A, Bekerat H, Childress L, Sankey J, Seuntjens J, Enger SA. Effects of incoming particle energy and cluster size on the G-value of hydrated electrons. Phys Med 2023; 107:102540. [PMID: 36804695 DOI: 10.1016/j.ejmp.2023.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
In hydrated electron (e-aq) dosimetry, absorbed radiation dose to water is measured by monitoring the concentration of radiation-induced e-aq. However, to obtain accurate dose, the radiation chemical yield of e-aq, G(e-aq), is needed for the radiation quality/setup under investigation. The aim of this study was to investigate the time-evolution of the G-values for the main generated reactive species during water radiolysis using GEANT4-DNA. The effects of cluster size and linear energy transfer (LET) on G(e-aq) were examined. Validity of GEANT4-DNA for calculation of G(e-aq) for clinically relevant energies was studied. Three scenarios were investigated with different phantom sizes and incoming electron energies (1 keV to 1 MeV). The time evolution of G(e-aq) was in good agreement with published data and did not change with decreasing phantom size. The time-evolution of the G-values increases with increasing LET for all radiolytic species. The particle tracks formed with high-energy electrons are separated and the resulting reactive species develop independently in time. With decreasing energy, the mean separation distance between reactive species decreases. The particle tracks might not initially overlap but will overlap shortly thereafter due to diffusion of reactive species, increasing the probability of e-aq recombination with other species. This also explains the decrease of G(e-aq) with cluster size and LET. Finally, if all factors are kept constant, as the incoming electron energy increases to clinically relevant energies, G(e-aq) remains similar to its value at 1 MeV, hence GEANT4-DNA can be used for clinically relevant energies.
Collapse
Affiliation(s)
- Alaina Bui
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada.
| | - Hamed Bekerat
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada; Radiation Oncology Department, Jewish General Hospital, Montréal, Quebec, Canada
| | - Lilian Childress
- Department of Physics, McGill University, Montréal, Quebec, Canada
| | - Jack Sankey
- Department of Physics, McGill University, Montréal, Quebec, Canada
| | - Jan Seuntjens
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Shirin A Enger
- Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Quebec, Canada
| |
Collapse
|
12
|
Espinosa-Rodriguez A, Sanchez-Parcerisa D, Ibáñez P, Vera-Sánchez JA, Mazal A, Fraile LM, Manuel Udías J. Radical Production with Pulsed Beams: Understanding the Transition to FLASH. Int J Mol Sci 2022; 23:13484. [PMID: 36362271 PMCID: PMC9656621 DOI: 10.3390/ijms232113484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Ultra-high dose rate (UHDR) irradiation regimes have the potential to spare normal tissue while keeping equivalent tumoricidal capacity than conventional dose rate radiotherapy (CONV-RT). This has been called the FLASH effect. In this work, we present a new simulation framework aiming to study the production of radical species in water and biological media under different irradiation patterns. The chemical stage (heterogeneous phase) is based on a nonlinear reaction-diffusion model, implemented in GPU. After the first 1 μs, no further radical diffusion is assumed, and radical evolution may be simulated over long periods of hundreds of seconds. Our approach was first validated against previous results in the literature and then employed to assess the influence of different temporal microstructures of dose deposition in the expected biological damage. The variation of the Normal Tissue Complication Probability (NTCP), assuming the model of Labarbe et al., where the integral of the peroxyl radical concentration over time (AUC-ROO) is taken as surrogate for biological damage, is presented for different intra-pulse dose rate and pulse frequency configurations, relevant in the clinical scenario. These simulations yield that overall, mean dose rate and the dose per pulse are the best predictors of biological effects at UHDR.
Collapse
Affiliation(s)
- Andrea Espinosa-Rodriguez
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Daniel Sanchez-Parcerisa
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Paula Ibáñez
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | - Luis Mario Fraile
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - José Manuel Udías
- Grupo de Física Nuclear, EMFTEL & IPARCOS, Universidad Complutense de Madrid, CEI Moncloa, 28040 Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
13
|
Wardman P. Approaches to modeling chemical reaction pathways in radiobiology. Int J Radiat Biol 2022; 98:1399-1413. [DOI: 10.1080/09553002.2022.2033342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Wardman
- 20 Highover Park, Amersham, Buckinghamshire HP7 0BN, United Kingdom
| |
Collapse
|
14
|
Simulation of Biochemical Reactions with ANN-Dependent Kinetic Parameter Extraction Method. ELECTRONICS 2022. [DOI: 10.3390/electronics11020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The measurement of thermodynamic properties of chemical or biological reactions were often confined to experimental means, which produced overall measurements of properties being investigated, but were usually susceptible to pitfalls of being too general. Among the thermodynamic properties that are of interest, reaction rates hold the greatest significance, as they play a critical role in reaction processes where speed is of essence, especially when fast association may enhance binding affinity of reaction molecules. Association reactions with high affinities often involve the formation of a intermediate state, which can be demonstrated by a hyperbolic reaction curve, but whose low abundance in reaction mixture often preclude the possibility of experimental measurement. Therefore, we resorted to computational methods using predefined reaction models that model the intermediate state as the reaction progresses. Here, we present a novel method called AKPE (ANN-Dependent Kinetic Parameter Extraction), our goal is to investigate the association/dissociation rate constants and the concentration dynamics of lowly-populated states (intermediate states) in the reaction landscape. To reach our goal, we simulated the chemical or biological reactions as system of differential equations, employed artificial neural networks (ANN) to model experimentally measured data, and utilized Particle Swarm Optimization (PSO) algorithm to obtain the globally optimum parameters in both the simulation and data fitting. In the Results section, we have successfully modeled a protein association reaction using AKPE, obtained the kinetic rate constants of the reaction, and constructed a full concentration versus reaction time curve of the intermediate state during the reaction. Furthermore, judging from the various validation methods that the method proposed in this paper has strong robustness and accuracy.
Collapse
|
15
|
Review of the Geant4-DNA Simulation Toolkit for Radiobiological Applications at the Cellular and DNA Level. Cancers (Basel) 2021; 14:cancers14010035. [PMID: 35008196 PMCID: PMC8749997 DOI: 10.3390/cancers14010035] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary A brief description of the methodologies to simulate ionizing radiation transport in biologically relevant matter is presented. Emphasis is given to the physical, chemical, and biological models of Geant4-DNA that enable mechanistic radiobiological modeling at the cellular and DNA level, important to improve the efficacy of existing and novel radiotherapeutic modalities for the treatment of cancer. Abstract The Geant4-DNA low energy extension of the Geant4 Monte Carlo (MC) toolkit is a continuously evolving MC simulation code permitting mechanistic studies of cellular radiobiological effects. Geant4-DNA considers the physical, chemical, and biological stages of the action of ionizing radiation (in the form of x- and γ-ray photons, electrons and β±-rays, hadrons, α-particles, and a set of heavier ions) in living cells towards a variety of applications ranging from predicting radiotherapy outcomes to radiation protection both on earth and in space. In this work, we provide a brief, yet concise, overview of the progress that has been achieved so far concerning the different physical, physicochemical, chemical, and biological models implemented into Geant4-DNA, highlighting the latest developments. Specifically, the “dnadamage1” and “molecularDNA” applications which enable, for the first time within an open-source platform, quantitative predictions of early DNA damage in terms of single-strand-breaks (SSBs), double-strand-breaks (DSBs), and more complex clustered lesions for different DNA structures ranging from the nucleotide level to the entire genome. These developments are critically presented and discussed along with key benchmarking results. The Geant4-DNA toolkit, through its different set of models and functionalities, offers unique capabilities for elucidating the problem of radiation quality or the relative biological effectiveness (RBE) of different ionizing radiations which underlines nearly the whole spectrum of radiotherapeutic modalities, from external high-energy hadron beams to internal low-energy gamma and beta emitters that are used in brachytherapy sources and radiopharmaceuticals, respectively.
Collapse
|
16
|
A Geant4-DNA Evaluation of Radiation-Induced DNA Damage on a Human Fibroblast. Cancers (Basel) 2021; 13:cancers13194940. [PMID: 34638425 PMCID: PMC8508455 DOI: 10.3390/cancers13194940] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary DNA damage caused by ionizing radiation in a human fibroblast cell evaluated by the Geant4-DNA Monte Carlo toolkit is presented. A validation study using a computational geometric human DNA model was then carried out, and the calculated DNA damage as a function of particle type and energy is presented. The results of this work showed a significant improvement on past work and were consistent with recent radiobiological experimental data, such as damage yields. This work and the developed methodology could impact a broad number of research fields in which the understanding of radiation effects is crucial, such as cancer radiotherapy, space science, and medical physics. Abstract Accurately modeling the radiobiological mechanisms responsible for the induction of DNA damage remains a major scientific challenge, particularly for understanding the effects of low doses of ionizing radiation on living beings, such as the induction of carcinogenesis. A computational approach based on the Monte Carlo technique to simulate track structures in a biological medium is currently the most reliable method for calculating the early effects induced by ionizing radiation on DNA, the primary cellular target of such effects. The Geant4-DNA Monte Carlo toolkit can simulate not only the physical, but also the physico-chemical and chemical stages of water radiolysis. These stages can be combined with simplified geometric models of biological targets, such as DNA, to assess direct and indirect early DNA damage. In this study, DNA damage induced in a human fibroblast cell was evaluated using Geant4-DNA as a function of incident particle type (gammas, protons, and alphas) and energy. The resulting double-strand break yields as a function of linear energy transfer closely reproduced recent experimental data. Other quantities, such as fragment length distribution, scavengeable damage fraction, and time evolution of damage within an analytical repair model also supported the plausibility of predicting DNA damage using Geant4-DNA.The complete simulation chain application “molecularDNA”, an example for users of Geant4-DNA, will soon be distributed through Geant4.
Collapse
|
17
|
Ramos-Méndez J, LaVerne JA, Domínguez-Kondo N, Milligan J, Štěpán V, Stefanová K, Perrot Y, Villagrasa C, Shin WG, Incerti S, McNamara A, Paganetti H, Perl J, Schuemann J, Faddegon B. TOPAS-nBio validation for simulating water radiolysis and DNA damage under low-LET irradiation. Phys Med Biol 2021; 66. [PMID: 34412044 DOI: 10.1088/1361-6560/ac1f39] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
The chemical stage of the Monte Carlo track-structure simulation code Geant4-DNA has been revised and validated. The root-mean-square (RMS) empirical parameter that dictates the displacement of water molecules after an ionization and excitation event in Geant4-DNA has been shortened to better fit experimental data. The pre-defined dissociation channels and branching ratios were not modified, but the reaction rate coefficients for simulating the chemical stage of water radiolysis were updated. The evaluation of Geant4-DNA was accomplished with TOPAS-nBio. For that, we compared predicted time-dependentGvalues in pure liquid water for·OH, e-aq, and H2with published experimental data. For H2O2and H·, simulation of added scavengers at different concentrations resulted in better agreement with measurements. In addition, DNA geometry information was integrated with chemistry simulation in TOPAS-nBio to realize reactions between radiolytic chemical species and DNA. This was used in the estimation of the yield of single-strand breaks (SSB) induced by137Csγ-ray radiolysis of supercoiled pUC18 plasmids dissolved in aerated solutions containing DMSO. The efficiency of SSB induction by reaction between radiolytic species and DNA used in the simulation was chosen to provide the best agreement with published measurements. An RMS displacement of 1.24 nm provided agreement with measured data within experimental uncertainties for time-dependentGvalues and under the presence of scavengers. SSB efficiencies of 24% and 0.5% for·OH and H·, respectively, led to an overall agreement of TOPAS-nBio results within experimental uncertainties. The efficiencies obtained agreed with values obtained with published non-homogeneous kinetic model and step-by-step Monte Carlo simulations but disagreed by 12% with published direct measurements. Improvement of the spatial resolution of the DNA damage model might mitigate such disagreement. In conclusion, with these improvements, Geant4-DNA/TOPAS-nBio provides a fast, accurate, and user-friendly tool for simulating DNA damage under low linear energy transfer irradiation.
Collapse
Affiliation(s)
- J Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, United States of America
| | - J A LaVerne
- Radiation Laboratory and Department of Physics, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - N Domínguez-Kondo
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico
| | - J Milligan
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, United States of America
| | - V Štěpán
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| | - K Stefanová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| | - Y Perrot
- Laboratoire de Dosimétrie des Rayonnements Ionisants, Institut de Radioprotection et Sûreté Nucléaire, Fontenay aux Roses, BP. 17, F-92262, France
| | - C Villagrasa
- Laboratoire de Dosimétrie des Rayonnements Ionisants, Institut de Radioprotection et Sûreté Nucléaire, Fontenay aux Roses, BP. 17, F-92262, France
| | - W-G Shin
- Department of Radiation Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - S Incerti
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - A McNamara
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - H Paganetti
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - J Perl
- SLAC National Accelerator Laboratory, Menlo Park, CA, United States of America
| | - J Schuemann
- Department of Radiation Oncology, Physics Division, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - B Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, United States of America
| |
Collapse
|