1
|
Boldrini L, Charles-Davies D, Romano A, Mancino M, Nacci I, Tran HE, Bono F, Boccia E, Gambacorta MA, Chiloiro G. Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:109463. [PMID: 39562260 DOI: 10.1016/j.ejso.2024.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/26/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Predicting pathological complete response (pCR) from pre or post-treatment features could be significant in improving the process of making clinical decisions and providing a more personalized treatment approach for better treatment outcomes. However, the lack of external validation of predictive models, missing in several published articles, is a major issue that can potentially limit the reliability and applicability of predictive models in clinical settings. Therefore, this systematic review described different externally validated methods of predicting response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients and how they could improve clinical decision-making. METHOD An extensive search for eligible articles was performed on PubMed, Cochrane, and Scopus between 2018 and 2023, using the keywords: (Response OR outcome) prediction AND (neoadjuvant OR chemoradiotherapy) treatment in 'locally advanced Rectal Cancer'. INCLUSION CRITERIA (i) Studies including patients diagnosed with LARC (T3/4 and N- or any T and N+) by pre-medical imaging and pathological examination or as stated by the author (ii) Standardized nCRT completed. (iii) Treatment with long or short course radiotherapy. (iv) Studies reporting on the prediction of response to nCRT with pathological complete response (pCR) as the primary outcome. (v) Studies reporting external validation results for response prediction. (vi) Regarding language restrictions, only articles in English were accepted. EXCLUSION CRITERIA (i) We excluded case report studies, conference abstracts, reviews, studies reporting patients with distant metastases at diagnosis. (ii) Studies reporting response prediction with only internally validated approaches. DATA COLLECTION AND QUALITY ASSESSMENT Three researchers (DC-D, FB, HT) independently reviewed and screened titles and abstracts of all articles retrieved after de-duplication. Possible disagreements were resolved through discussion among the three researchers. If necessary, three other researchers (LB, GC, MG) were consulted to make the final decision. The extraction of data was performed using the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) template and quality assessment was done using the Prediction model Risk Of Bias Assessment Tool (PROBAST). RESULTS A total of 4547 records were identified from the three databases. After excluding 392 duplicate results, 4155 records underwent title and abstract screening. Three thousand and eight hundred articles were excluded after title and abstract screening and 355 articles were retrieved. Out of the 355 retrieved articles, 51 studies were assessed for eligibility. Nineteen reports were then excluded due to lack of reports on external validation, while 4 were excluded due to lack of evaluation of pCR as the primary outcome. Only Twenty-eight articles were eligible and included in this systematic review. In terms of quality assessment, 89 % of the models had low concerns in the participants domain, while 11 % had an unclear rating. 96 % of the models were of low concern in both the predictors and outcome domains. The overall rating showed high applicability potential of the models with 82 % showing low concern, while 18 % were deemed unclear. CONCLUSION Most of the external validated techniques showed promising performances and the potential to be applied in clinical settings, which is a crucial step towards evidence-based medicine. However, more studies focused on the external validations of these models in larger cohorts is necessary to ensure that they can reliably predict outcomes in diverse populations.
Collapse
Affiliation(s)
- Luca Boldrini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Diepriye Charles-Davies
- Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
| | - Angela Romano
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Matteo Mancino
- Istituto di Radiologia, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Ilaria Nacci
- Istituto di Radiologia, Università Cattolica Del Sacro Cuore, Rome, Italy; Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Huong Elena Tran
- Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesco Bono
- Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Edda Boccia
- Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Antonietta Gambacorta
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Istituto di Radiologia, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giuditta Chiloiro
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
2
|
Patharia P, Sethy PK, Nanthaamornphong A. Advancements and Challenges in the Image-Based Diagnosis of Lung and Colon Cancer: A Comprehensive Review. Cancer Inform 2024; 23:11769351241290608. [PMID: 39483315 PMCID: PMC11526153 DOI: 10.1177/11769351241290608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Image-based diagnosis has become a crucial tool in the identification and management of various cancers, particularly lung and colon cancer. This review delves into the latest advancements and ongoing challenges in the field, with a focus on deep learning, machine learning, and image processing techniques applied to X-rays, CT scans, and histopathological images. Significant progress has been made in imaging technologies like computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), which, when combined with machine learning and artificial intelligence (AI) methodologies, have greatly enhanced the accuracy of cancer detection and characterization. These advances have enabled early detection, more precise tumor localization, personalized treatment plans, and overall improved patient outcomes. However, despite these improvements, challenges persist. Variability in image interpretation, the lack of standardized diagnostic protocols, unequal access to advanced imaging technologies, and concerns over data privacy and security within AI-based systems remain major obstacles. Furthermore, integrating imaging data with broader clinical information is crucial to achieving a more comprehensive approach to cancer diagnosis and treatment. This review provides valuable insights into the recent developments and challenges in image-based diagnosis for lung and colon cancers, underscoring both the remarkable progress and the hurdles that still need to be overcome to optimize cancer care.
Collapse
Affiliation(s)
- Pragati Patharia
- Department of Electronics and Communication Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Prabira Kumar Sethy
- Department of Electronics and Communication Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
- Department of Electronics, Sambalpur University, Burla, Odisha, India
| | | |
Collapse
|
3
|
Li Y, Liu X, Gu M, Xu T, Ge C, Chang P. Significance of MRI-based radiomics in predicting pathological complete response to neoadjuvant chemoradiotherapy of locally advanced rectal cancer: A narrative review. Cancer Radiother 2024; 28:390-401. [PMID: 39174361 DOI: 10.1016/j.canrad.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 08/24/2024]
Abstract
Neoadjuvant chemoradiotherapy is the standard treatment for patients with locally advanced rectal cancers owing to its ability to downstage primary tumours. Some patients can achieve pathological complete response after neoadjuvant therapy, and can adopt a "watch and wait" treatment strategy to avoid overtreatment. Therefore, it is essential to develop strategies for predicting responses to neoadjuvant therapy. Radiomics has shown great potential in extracting tumour features from high-throughput medical images for the construction of mathematics models for predicting the effects of anticancerous therapies. Herein, we explored MRI-based radiomics and found that it can predict responses of locally advanced rectal cancers to chemoradiation. Efficient radiomics model allow early-stage prediction of the effect of neoadjuvant chemoradiotherapy on locally advanced rectal cancers. It helps clinicians to make informed therapeutic decisions. In this review, we discuss the workflow of radiomics, and summarize the clinical application of MRI-based radiomics in predicting pathological complete response to neoadjuvant chemoradiotherapy of locally advanced rectal cancer.
Collapse
Affiliation(s)
- Y Li
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - X Liu
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - M Gu
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - T Xu
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - C Ge
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
| | - P Chang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Shen Y, Wen Y, Bi L, Yang X, Gong X, Deng X, Meng W, Wang Z. Do treated rectal tumors appear differently on MRI after chemotherapy versus chemoradiotherapy? Abdom Radiol (NY) 2024; 49:774-782. [PMID: 37999742 DOI: 10.1007/s00261-023-04115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE Increasing studies have focused on neoadjuvant chemotherapy (NCT) in rectal cancer. However, few studies explored the differences in radiographic variation between patients treated with NCT and neoadjuvant chemoradiotherapy (NCRT). METHODS Stage II/III rectal cancer patients from March 2016 to December 2019 meeting the criteria treated with NCRT or NCT were included. MRI features, including tumor location, longitudinal length, DWI signal, MRI tumor regression grade (mrTRG), and radiomic texture features, before and after neoadjuvant treatments were reviewed. RESULTS 116 patients with NCRT and 61 with NCT were analyzed. Among these patients, 46 patients in the NCRT group and 18 in the NCT group were responders with pathological TRG0-1. Within these responders, the mean tumor longitudinal length regression rate (TLRR) of the NCT group was 60.08 ± 11.17%, which was significantly higher than the 50.73 ± 15.28% of the NCRT group (p = 0.010). The proportion of high signal in the DWI image after NCT was higher than that of the NCRT group (88.89% vs 50.00%, p = 0.004). NCT responders had significantly higher median change rates than those of NCRT responders in 11 radiomic features, especially those shape features. CONCLUSION MRI images change differently between responders treated with NCRT and those with NCT in rectal cancer. The tumor volumetry and some radiomic features change more obviously in NCT responders, and the tumor signal changes more obviously in NCRT responders. During the evaluation of the response of the tumor to the neoadjuvant treatments, images of patients should be treated differently.
Collapse
Affiliation(s)
- Yu Shen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guo Xue Street, Chengdu, 610041, Sichuan, China
| | - Yanqiong Wen
- Operating Room, Department of Anesthesiology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Liang Bi
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guo Xue Street, Chengdu, 610041, Sichuan, China
- Department of Colorectal Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xuyang Yang
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guo Xue Street, Chengdu, 610041, Sichuan, China
| | - Xiaoling Gong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangbing Deng
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guo Xue Street, Chengdu, 610041, Sichuan, China.
| | - Wenjian Meng
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guo Xue Street, Chengdu, 610041, Sichuan, China.
| | - Ziqiang Wang
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, No. 37, Guo Xue Street, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Newby D, Orgeta V, Marshall CR, Lourida I, Albertyn CP, Tamburin S, Raymont V, Veldsman M, Koychev I, Bauermeister S, Weisman D, Foote IF, Bucholc M, Leist AK, Tang EYH, Tai XY, Llewellyn DJ, Ranson JM. Artificial intelligence for dementia prevention. Alzheimers Dement 2023; 19:5952-5969. [PMID: 37837420 PMCID: PMC10843720 DOI: 10.1002/alz.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 10/16/2023]
Abstract
INTRODUCTION A wide range of modifiable risk factors for dementia have been identified. Considerable debate remains about these risk factors, possible interactions between them or with genetic risk, and causality, and how they can help in clinical trial recruitment and drug development. Artificial intelligence (AI) and machine learning (ML) may refine understanding. METHODS ML approaches are being developed in dementia prevention. We discuss exemplar uses and evaluate the current applications and limitations in the dementia prevention field. RESULTS Risk-profiling tools may help identify high-risk populations for clinical trials; however, their performance needs improvement. New risk-profiling and trial-recruitment tools underpinned by ML models may be effective in reducing costs and improving future trials. ML can inform drug-repurposing efforts and prioritization of disease-modifying therapeutics. DISCUSSION ML is not yet widely used but has considerable potential to enhance precision in dementia prevention. HIGHLIGHTS Artificial intelligence (AI) is not widely used in the dementia prevention field. Risk-profiling tools are not used in clinical practice. Causal insights are needed to understand risk factors over the lifespan. AI will help personalize risk-management tools for dementia prevention. AI could target specific patient groups that will benefit most for clinical trials.
Collapse
Affiliation(s)
- Danielle Newby
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Vasiliki Orgeta
- Division of Psychiatry, University College London, London, W1T 7BN, UK
| | - Charles R Marshall
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 4NS, UK
- Department of Neurology, Royal London Hospital, London, E1 1BB, UK
| | - Ilianna Lourida
- Population Health Sciences Institute, Newcastle University, Newcastle, NE2 4AX, UK
- University of Exeter Medical School, Exeter, EX1 2HZ, UK
| | - Christopher P Albertyn
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, 37129, Italy
| | - Vanessa Raymont
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Michele Veldsman
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Ivan Koychev
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Sarah Bauermeister
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - David Weisman
- Abington Neurological Associates, Abington, PA 19001, USA
| | - Isabelle F Foote
- Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 4NS, UK
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Magda Bucholc
- Cognitive Analytics Research Lab, School of Computing, Engineering & Intelligent Systems, Ulster University, Derry, BT48 7JL, UK
| | - Anja K Leist
- Institute for Research on Socio-Economic Inequality (IRSEI), Department of Social Sciences, University of Luxembourg, L-4365, Luxembourg
| | - Eugene Y H Tang
- Population Health Sciences Institute, Newcastle University, Newcastle, NE2 4AX, UK
| | - Xin You Tai
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX3 9DU, UK
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, OX3 9DU, UK
| | | | - David J. Llewellyn
- University of Exeter Medical School, Exeter, EX1 2HZ, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | | |
Collapse
|
6
|
Li Z, Raldow AC, Weidhaas JB, Zhou Q, Qi XS. Prediction of Radiation Treatment Response for Locally Advanced Rectal Cancer via a Longitudinal Trend Analysis Framework on Cone-Beam CT. Cancers (Basel) 2023; 15:5142. [PMID: 37958316 PMCID: PMC10647315 DOI: 10.3390/cancers15215142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Locally advanced rectal cancer (LARC) presents a significant challenge in terms of treatment management, particularly with regards to identifying patients who are likely to respond to radiation therapy (RT) at an individualized level. Patients respond to the same radiation treatment course differently due to inter- and intra-patient variability in radiosensitivity. In-room volumetric cone-beam computed tomography (CBCT) is widely used to ensure proper alignment, but also allows us to assess tumor response during the treatment course. In this work, we proposed a longitudinal radiomic trend (LRT) framework for accurate and robust treatment response assessment using daily CBCT scans for early detection of patient response. The LRT framework consists of four modules: (1) Automated registration and evaluation of CBCT scans to planning CT; (2) Feature extraction and normalization; (3) Longitudinal trending analyses; and (4) Feature reduction and model creation. The effectiveness of the framework was validated via leave-one-out cross-validation (LOOCV), using a total of 840 CBCT scans for a retrospective cohort of LARC patients. The trending model demonstrates significant differences between the responder vs. non-responder groups with an Area Under the Curve (AUC) of 0.98, which allows for systematic monitoring and early prediction of patient response during the RT treatment course for potential adaptive management.
Collapse
Affiliation(s)
- Zirong Li
- Manteia Medical Technologies Co., Milwaukee, WI 53226, USA;
| | - Ann C. Raldow
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.C.R.); (J.B.W.)
| | - Joanne B. Weidhaas
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.C.R.); (J.B.W.)
| | - Qichao Zhou
- Manteia Medical Technologies Co., Milwaukee, WI 53226, USA;
| | - X. Sharon Qi
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA; (A.C.R.); (J.B.W.)
| |
Collapse
|
7
|
Kimura C, Crowder SE, Kin C. Is It Really Gone? Assessing Response to Neoadjuvant Therapy in Rectal Cancer. J Gastrointest Cancer 2023; 54:703-711. [PMID: 36417142 DOI: 10.1007/s12029-022-00889-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Non-operative management of rectal cancer is a feasible and appealing treatment option for patients who develop a complete response after neoadjuvant therapy. However, identifying patients who are complete responders is often a challenge. This review aims to present and discuss current evidence and recommendations regarding the assessment of treatment response in rectal cancer. METHODS A review of the current literature on rectal cancer restaging was performed. Studies included in this review explored the optimal interval between the end of neoadjuvant therapy and restaging, as well as modalities of assessment and their diagnostic performance. RESULTS The current standard for restaging rectal cancer is a multimodal assessment with the digital rectal examination, endoscopy, and T2-weighted MRI with diffusion-weighted imaging. Other diagnostic procedures under investigation are PET/MRI, radiomics, confocal laser endomicroscopy, artificial intelligence-assisted endoscopy, cell-free DNA, and prediction models incorporating one or more of the above-mentioned exams. CONCLUSION Non-operative management of rectal cancer requires a multidisciplinary approach. Understanding of the robustness and limitations of each exam is critical to inform patient selection for that treatment strategy.
Collapse
Affiliation(s)
- Cintia Kimura
- Department of Surgery, Division of General Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, H3680K94305, USA
| | - Sarah Elizabeth Crowder
- Department of Surgery, Division of General Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, H3680K94305, USA
- Brigham Young University, Provo, UT, USA
| | - Cindy Kin
- Department of Surgery, Division of General Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, H3680K94305, USA.
| |
Collapse
|
8
|
Sabouri M, Hajianfar G, Hosseini Z, Amini M, Mohebi M, Ghaedian T, Madadi S, Rastgou F, Oveisi M, Bitarafan Rajabi A, Shiri I, Zaidi H. Myocardial Perfusion SPECT Imaging Radiomic Features and Machine Learning Algorithms for Cardiac Contractile Pattern Recognition. J Digit Imaging 2023; 36:497-509. [PMID: 36376780 PMCID: PMC10039187 DOI: 10.1007/s10278-022-00705-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
A U-shaped contraction pattern was shown to be associated with a better Cardiac resynchronization therapy (CRT) response. The main goal of this study is to automatically recognize left ventricular contractile patterns using machine learning algorithms trained on conventional quantitative features (ConQuaFea) and radiomic features extracted from Gated single-photon emission computed tomography myocardial perfusion imaging (GSPECT MPI). Among 98 patients with standard resting GSPECT MPI included in this study, 29 received CRT therapy and 69 did not (also had CRT inclusion criteria but did not receive treatment yet at the time of data collection, or refused treatment). A total of 69 non-CRT patients were employed for training, and the 29 were employed for testing. The models were built utilizing features from three distinct feature sets (ConQuaFea, radiomics, and ConQuaFea + radiomics (combined)), which were chosen using Recursive feature elimination (RFE) feature selection (FS), and then trained using seven different machine learning (ML) classifiers. In addition, CRT outcome prediction was assessed by different treatment inclusion criteria as the study's final phase. The MLP classifier had the highest performance among ConQuaFea models (AUC, SEN, SPE = 0.80, 0.85, 0.76). RF achieved the best performance in terms of AUC, SEN, and SPE with values of 0.65, 0.62, and 0.68, respectively, among radiomic models. GB and RF approaches achieved the best AUC, SEN, and SPE values of 0.78, 0.92, and 0.63 and 0.74, 0.93, and 0.56, respectively, among the combined models. A promising outcome was obtained when using radiomic and ConQuaFea from GSPECT MPI to detect left ventricular contractile patterns by machine learning.
Collapse
Affiliation(s)
- Maziar Sabouri
- Department of Medical Physics, School of Medicine, Iran University of Medical Science, Tehran, Iran
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ghasem Hajianfar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Zahra Hosseini
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mehdi Amini
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Mobin Mohebi
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Tahereh Ghaedian
- Nuclear Medicine and Molecular Imaging Research Center, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Madadi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Fereydoon Rastgou
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mehrdad Oveisi
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Department of Computer Science, University of British Columbia, Vancouver BC, Canada
| | - Ahmad Bitarafan Rajabi
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Cardiovascular Interventional Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.
- Geneva University Neurocenter, Geneva University, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
9
|
Wang K, Dohopolski M, Zhang Q, Sher D, Wang J. Towards reliable head and neck cancers locoregional recurrence prediction using delta-radiomics and learning with rejection option. Med Phys 2023; 50:2212-2223. [PMID: 36484346 PMCID: PMC10121744 DOI: 10.1002/mp.16132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE A reliable locoregional recurrence (LRR) prediction model is important for the personalized management of head and neck cancers (HNC) patients who received radiotherapy. This work aims to develop a delta-radiomics feature-based multi-classifier, multi-objective, and multi-modality (Delta-mCOM) model for post-treatment HNC LRR prediction. Furthermore, we aim to adopt a learning with rejection option (LRO) strategy to boost the reliability of Delta-mCOM model by rejecting prediction for samples with high prediction uncertainties. METHODS In this retrospective study, we collected PET/CT image and clinical data from 224 HNC patients who received radiotherapy (RT) at our institution. We calculated the differences between radiomics features extracted from PET/CT images acquired before and after radiotherapy and used them in conjunction with pre-treatment radiomics features as the input features. Using clinical parameters, PET radiomics features, and CT radiomics features, we built and optimized three separate single-modality models. We used multiple classifiers for model construction and employed sensitivity and specificity simultaneously as the training objectives for each of them. Then, for testing samples, we fused the output probabilities from all these single-modality models to obtain the final output probabilities of the Delta-mCOM model. In the LRO strategy, we estimated the epistemic and aleatoric uncertainties when predicting with a trained Delta-mCOM model and identified patients associated with prediction of higher reliability (low uncertainty estimates). The epistemic and aleatoric uncertainties were estimated using an AutoEncoder-style anomaly detection model and test-time augmentation (TTA) with predictions made from the Delta-mCOM model, respectively. Predictions with higher epistemic uncertainty or higher aleatoric uncertainty than given thresholds were deemed unreliable, and they were rejected before providing a final prediction. In this study, different thresholds corresponding to different low-reliability prediction rejection ratios were applied. Their values are based on the estimated epistemic and aleatoric uncertainties distribution of the validation data. RESULTS The Delta-mCOM model performed significantly better than the single-modality models, whether trained with pre-, post-treatment radiomics features or concatenated BaseLine and Delta-Radiomics Features (BL-DRFs). It was numerically superior to the PET and CT fused BL-DRF model (nonstatistically significant). Using the LRO strategy for the Delta-mCOM model, most of the evaluation metrics improved as the rejection ratio increased from 0% to around 25%. Utilizing both epistemic and aleatoric uncertainty for rejection yielded nonstatistically significant improved metrics compared to each alone at approximately a 25% rejection ratio. Metrics were significantly better than the no-rejection method when the reject ratio was higher than 50%. CONCLUSIONS The inclusion of the delta-radiomics feature improved the accuracy of HNC LRR prediction, and the proposed Delta-mCOM model can give more reliable predictions by rejecting predictions for samples of high uncertainty using the LRO strategy.
Collapse
Affiliation(s)
- Kai Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Dohopolski
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiongwen Zhang
- Department of Head and Neck Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Sher
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jing Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Chiesa-Estomba CM, Mayo-Yanez M, Guntinas-Lichius O, Vander-Poorten V, Takes RP, de Bree R, Halmos GB, Saba NF, Nuyts S, Ferlito A. Radiomics in Hypopharyngeal Cancer Management: A State-of-the-Art Review. Biomedicines 2023; 11:805. [PMID: 36979783 PMCID: PMC10045560 DOI: 10.3390/biomedicines11030805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
(1) Background: Hypopharyngeal squamous cell carcinomas usually present with locally advanced disease and a correspondingly poor prognosis. Currently, efforts are being made to improve tumor characterization and provide insightful information for outcome prediction. Radiomics is an emerging area of study that involves the conversion of medical images into mineable data; these data are then used to extract quantitative features based on shape, intensity, texture, and other parameters; (2) Methods: A systematic review of the peer-reviewed literature was conducted; (3) Results: A total of 437 manuscripts were identified. Fifteen manuscripts met the inclusion criteria. The main targets described were the evaluation of textural features to determine tumor-programmed death-ligand 1 expression; a surrogate for microvessel density and heterogeneity of perfusion; patient stratification into groups at high and low risk of progression; prediction of early recurrence, 1-year locoregional failure and survival outcome, including progression-free survival and overall survival, in patients with locally advanced HPSCC; thyroid cartilage invasion, early disease progression, recurrence, induction chemotherapy response, treatment response, and prognosis; and (4) Conclusions: our findings suggest that radiomics represents a potentially useful tool in the diagnostic workup as well as during the treatment and follow-up of patients with HPSCC. Large prospective studies are essential to validate this technology in these patients.
Collapse
Affiliation(s)
- Carlos M. Chiesa-Estomba
- Otorhinolaryngology-Head & Neck Surgery Department, Hospital Universitario Donostia, Biodonostia Research Institute, Faculty of Medicine, Deusto University, 20014 San Sebastian, Spain
| | - Miguel Mayo-Yanez
- Otorhinolaryngology-Head and Neck Surgery Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain
| | | | - Vincent Vander-Poorten
- Section Head and Neck Oncology, Department of Oncology, KU Leuven—University of Leuven, 3000 Leuven, Belgium
| | - Robert P. Takes
- Department of Otolaryngology/Head and Neck Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Gyorgy B. Halmos
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, The Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Sandra Nuyts
- Department of Radiation Oncology, University Hospitals Leuven, KU Leuven—University of Leuven, 3000 Leuven, Belgium
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35125 Padua, Italy
| |
Collapse
|
11
|
Wang L, Wu X, Tian R, Ma H, Jiang Z, Zhao W, Cui G, Li M, Hu Q, Yu X, Xu W. MRI-based pre-Radiomics and delta-Radiomics models accurately predict the post-treatment response of rectal adenocarcinoma to neoadjuvant chemoradiotherapy. Front Oncol 2023; 13:1133008. [PMID: 36925913 PMCID: PMC10013156 DOI: 10.3389/fonc.2023.1133008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Objectives To develop and validate magnetic resonance imaging (MRI)-based pre-Radiomics and delta-Radiomics models for predicting the treatment response of local advanced rectal cancer (LARC) to neoadjuvant chemoradiotherapy (NCRT). Methods Between October 2017 and August 2022, 105 LARC NCRT-naïve patients were enrolled in this study. After careful evaluation, data for 84 patients that met the inclusion criteria were used to develop and validate the NCRT response models. All patients received NCRT, and the post-treatment response was evaluated by pathological assessment. We manual segmented the volume of tumors and 105 radiomics features were extracted from three-dimensional MRIs. Then, the eXtreme Gradient Boosting algorithm was implemented for evaluating and incorporating important tumor features. The predictive performance of MRI sequences and Synthetic Minority Oversampling Technique (SMOTE) for NCRT response were compared. Finally, the optimal pre-Radiomics and delta-Radiomics models were established respectively. The predictive performance of the radionics model was confirmed using 5-fold cross-validation, 10-fold cross-validation, leave-one-out validation, and independent validation. The predictive accuracy of the model was based on the area under the receiver operator characteristic (ROC) curve (AUC). Results There was no significant difference in clinical factors between patients with good and poor reactions. Integrating different MRI modes and the SMOTE method improved the performance of the radiomics model. The pre-Radiomics model (train AUC: 0.93 ± 0.06; test AUC: 0.79) and delta-Radiomcis model (train AUC: 0.96 ± 0.03; test AUC: 0.83) all have high NCRT response prediction performance by LARC. Overall, the delta-Radiomics model was superior to the pre-Radiomics model. Conclusion MRI-based pre-Radiomics model and delta-Radiomics model all have good potential to predict the post-treatment response of LARC to NCRT. Delta-Radiomics analysis has a huge potential for clinical application in facilitating the provision of personalized therapy.
Collapse
Affiliation(s)
- Likun Wang
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Department of Ultrasound Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Graduate School, Tianjin Medical University, Tianjin, China.,Department of Gastrointestinal Surgery, Tianjin Medical University Nankai Hospital, Tianjin, China
| | - Ruoxi Tian
- Department of Colorectal Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongqing Ma
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zekun Jiang
- College of Computer Science, Sichuan University, Chengdu, China
| | - Weixin Zhao
- College of Computer Science, Sichuan University, Chengdu, China
| | - Guoqing Cui
- Medical Image Center, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Meng Li
- Graduate School, Hebei North University, Zhangjiakou, China
| | - Qinsheng Hu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangyang Yu
- Department of Gastrointestinal Surgery, Tianjin Medical University Nankai Hospital, Tianjin, China
| | - Wengui Xu
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
12
|
Farhadi F, Rajagopal JR, Veziroglu EM, Abdollahi H, Shiri I, Nikpanah M, Morris MA, Zaidi H, Rahmim A, Saboury B. Multi-Scale Temporal Imaging: From Micro- and Meso- to Macro-scale-time Nuclear Medicine. PET Clin 2023; 18:135-148. [DOI: 10.1016/j.cpet.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Tabari A, Chan SM, Omar OMF, Iqbal SI, Gee MS, Daye D. Role of Machine Learning in Precision Oncology: Applications in Gastrointestinal Cancers. Cancers (Basel) 2022; 15:cancers15010063. [PMID: 36612061 PMCID: PMC9817513 DOI: 10.3390/cancers15010063] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) cancers, consisting of a wide spectrum of pathologies, have become a prominent health issue globally. Despite medical imaging playing a crucial role in the clinical workflow of cancers, standard evaluation of different imaging modalities may provide limited information. Accurate tumor detection, characterization, and monitoring remain a challenge. Progress in quantitative imaging analysis techniques resulted in "radiomics", a promising methodical tool that helps to personalize diagnosis and treatment optimization. Radiomics, a sub-field of computer vision analysis, is a bourgeoning area of interest, especially in this era of precision medicine. In the field of oncology, radiomics has been described as a tool to aid in the diagnosis, classification, and categorization of malignancies and to predict outcomes using various endpoints. In addition, machine learning is a technique for analyzing and predicting by learning from sample data, finding patterns in it, and applying it to new data. Machine learning has been increasingly applied in this field, where it is being studied in image diagnosis. This review assesses the current landscape of radiomics and methodological processes in GI cancers (including gastric, colorectal, liver, pancreatic, neuroendocrine, GI stromal, and rectal cancers). We explain in a stepwise fashion the process from data acquisition and curation to segmentation and feature extraction. Furthermore, the applications of radiomics for diagnosis, staging, assessment of tumor prognosis and treatment response according to different GI cancer types are explored. Finally, we discussed the existing challenges and limitations of radiomics in abdominal cancers and investigate future opportunities.
Collapse
Affiliation(s)
- Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| | - Shin Mei Chan
- Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA
| | - Omar Mustafa Fathy Omar
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Shams I. Iqbal
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Michael S. Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Adeoye J, Akinshipo A, Koohi-Moghadam M, Thomson P, Su YX. Construction of machine learning-based models for cancer outcomes in low and lower-middle income countries: A scoping review. Front Oncol 2022; 12:976168. [PMID: 36531037 PMCID: PMC9751812 DOI: 10.3389/fonc.2022.976168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/14/2022] [Indexed: 01/31/2025] Open
Abstract
Background The impact and utility of machine learning (ML)-based prediction tools for cancer outcomes including assistive diagnosis, risk stratification, and adjunctive decision-making have been largely described and realized in the high income and upper-middle-income countries. However, statistical projections have estimated higher cancer incidence and mortality risks in low and lower-middle-income countries (LLMICs). Therefore, this review aimed to evaluate the utilization, model construction methods, and degree of implementation of ML-based models for cancer outcomes in LLMICs. Methods PubMed/Medline, Scopus, and Web of Science databases were searched and articles describing the use of ML-based models for cancer among local populations in LLMICs between 2002 and 2022 were included. A total of 140 articles from 22,516 citations that met the eligibility criteria were included in this study. Results ML-based models from LLMICs were often based on traditional ML algorithms than deep or deep hybrid learning. We found that the construction of ML-based models was skewed to particular LLMICs such as India, Iran, Pakistan, and Egypt with a paucity of applications in sub-Saharan Africa. Moreover, models for breast, head and neck, and brain cancer outcomes were frequently explored. Many models were deemed suboptimal according to the Prediction model Risk of Bias Assessment tool (PROBAST) due to sample size constraints and technical flaws in ML modeling even though their performance accuracy ranged from 0.65 to 1.00. While the development and internal validation were described for all models included (n=137), only 4.4% (6/137) have been validated in independent cohorts and 0.7% (1/137) have been assessed for clinical impact and efficacy. Conclusion Overall, the application of ML for modeling cancer outcomes in LLMICs is increasing. However, model development is largely unsatisfactory. We recommend model retraining using larger sample sizes, intensified external validation practices, and increased impact assessment studies using randomized controlled trial designs. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=308345, identifier CRD42022308345.
Collapse
Affiliation(s)
- John Adeoye
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong, Hong Kong, SAR, China
- Oral Cancer Research Theme, Faculty of Dentistry, University of Hong Kong, Hong Kong, Hong Kong, SAR, China
| | - Abdulwarith Akinshipo
- Department of Oral and Maxillofacial Pathology and Biology, Faculty of Dentistry, University of Lagos, Lagos, Nigeria
| | - Mohamad Koohi-Moghadam
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, University of Hong Kong, Hong Kong, Hong Kong, SAR, China
- Clinical Artificial Intelligence Research Theme, Faculty of Dentistry, University of Hong Kong, Hong Kong, Hong Kong, SAR, China
| | - Peter Thomson
- College of Medicine and Dentistry, James Cook University, Cairns, Queensland, Australia
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Hong Kong, Hong Kong, Hong Kong, SAR, China
- Oral Cancer Research Theme, Faculty of Dentistry, University of Hong Kong, Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
15
|
Chen R, Fu Y, Yi X, Pei Q, Zai H, Chen BT. Application of Radiomics in Predicting Treatment Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer: Strategies and Challenges. JOURNAL OF ONCOLOGY 2022; 2022:1590620. [PMID: 36471884 PMCID: PMC9719428 DOI: 10.1155/2022/1590620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 08/01/2023]
Abstract
Neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision is the standard treatment for locally advanced rectal cancer (LARC). A noninvasive preoperative prediction method should greatly assist in the evaluation of response to nCRT and for the development of a personalized strategy for patients with LARC. Assessment of nCRT relies on imaging and radiomics can extract valuable quantitative data from medical images. In this review, we examined the status of radiomic application for assessing response to nCRT in patients with LARC and indicated a potential direction for future research.
Collapse
Affiliation(s)
- Rui Chen
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yan Fu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Qian Pei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hongyan Zai
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bihong T. Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
16
|
MRI-based radiomics to predict neoadjuvant chemoradiotherapy outcomes in locally advanced rectal cancer: A multicenter study. Clin Transl Radiat Oncol 2022; 38:175-182. [DOI: 10.1016/j.ctro.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
|
17
|
Liu X, Long M, Sun C, Yang Y, Lin P, Shen Z, Xia S, Shen W. CT-based radiomics signature analysis for evaluation of response to induction chemotherapy and progression-free survival in locally advanced hypopharyngeal carcinoma. Eur Radiol 2022; 32:7755-7766. [PMID: 35608663 DOI: 10.1007/s00330-022-08859-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/28/2022] [Accepted: 05/01/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To establish and validate a CT radiomics model for prediction of induction chemotherapy (IC) response and progression-free survival (PFS) among patients with locally advanced hypopharyngeal carcinoma (LAHC). METHODS One hundred twelve patients with LAHC (78 in training cohort and 34 in validation cohort) who underwent contrast-enhanced CT (CECT) scans prior to IC were enrolled. Least absolute shrinkage and selection operator (LASSO) was used to select the crucial radiomic features in the training cohort. Radiomics signature and clinical data were used to build a radiomics nomogram to predict individual response to IC. Kaplan-Meier analysis and log-rank test were used to evaluate ability of radiomics signature in progression-free survival risk stratification. RESULTS The radiomics signature consisted of 6 selected features from the arterial and venous phases of CECT images and demonstrated good performance in predicting the IC response in both two cohorts. The radiomics nomogram showed good discriminative performance, and the C-index of nomogram was 0.899 (95% confidence interval (CI), 0.831-0.967) and 0.775 (95% CI, 0.591-0.959) in the training and validation cohorts, respectively. Survival analysis indicated that low-risk and high-risk groups defined by the value of radiomics signature had significant difference in PFS (3-year PFS 66.4% vs 29.7%, p < 0.001). CONCLUSIONS Multiparametric CT-based radiomics model could be useful for predicting treatment response and PFS in patients with LAHC who underwent IC. KEY POINTS • CT radiomics can predict IC response and progression-free survival in hypopharyngeal carcinoma. • We combined significant radiomics signature with clinical predictors to establish a nomogram to predict individual response to IC. • Radiomics signature could divide patients into the high-risk and low-risk groups based on the PFS.
Collapse
Affiliation(s)
- Xiaobin Liu
- Department of Radiology, Tianjin Medical Imaging Institute, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, 300192, Tianjin, China
| | - Miaomiao Long
- Department of Radiology, Tianjin Medical Imaging Institute, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, 300192, Tianjin, China
| | - Chuanqi Sun
- Department of Biomedical Engineering, Guangzhou Medical University, Xinzao Road No. 1, Panyu District, Guangzhou, 511436, China
| | - Yining Yang
- Department of Radiotherapy, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, Tianjin, 300192, China
| | - Peng Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, Tianjin, 300192, China
| | - Zhiwei Shen
- Philips Healthcare, World Profit Centre, 100125, Tianze Road No. 16, Chaoyang District, Beijing, China
| | - Shuang Xia
- Department of Radiology, Tianjin Medical Imaging Institute, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, 300192, Tianjin, China.
| | - Wen Shen
- Department of Radiology, Tianjin Medical Imaging Institute, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, 300192, Tianjin, China.
| |
Collapse
|
18
|
Yuan H, Peng Y, Xu X, Tu S, Wei Y, Ma Y. A Tumoral and Peritumoral CT-Based Radiomics and Machine Learning Approach to Predict the Microsatellite Instability of Rectal Carcinoma. Cancer Manag Res 2022; 14:2409-2418. [PMID: 35971393 PMCID: PMC9375564 DOI: 10.2147/cmar.s377138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To predict the status of microsatellite instability (MSI) of rectal carcinoma (RC) using different machine learning algorithms based on tumoral and peritumoral radiomics combined with clinicopathological characteristics. Methods There were 497 RC patients enrolled in this retrospective study. The tumoral and peritumoral CT-based radiomic features were calculated after tumor segmentation. The radiomic features from two radiologists were compared by way of inter-observer correlation coefficient (ICC). After methods of variance, correlation, and dimension reduction, six machine learning algorithms of logistic regression (LR), Bayes, support vector machine, random forest, k-nearest neighbor, and decision tree were conducted to develop models for predicting MSI status of RC. The relative standard deviation (RSD) was quantified. The radiomics and significant clinicopathological variables constituted the radiomics-clinicopathological nomogram. The receiver operator curve (ROC) was made by DeLong test, and the area under curve (AUC) with 95% confidence interval (95% CI) was calculated to evaluate the performance of the model. Results The venous phase of CT examination was selected for further analysis because the proportion of radiomic features with ICC greater than 0.75 was higher. The tumoral and peritumoral model by LR algorithm (M-LR) with minimal RSD showed good performance in predicting MSI status of RC with the AUCs of 0.817 and 0.726 in the training and validation set. The radiomic-clinicopathological nomogram performed better in both the training and validation set with AUCs of 0.843 and 0.737. Conclusion The radiomics-clinicopathological nomogram demonstrated better predictive performance in evaluating the MSI status of RC.
Collapse
Affiliation(s)
- Hang Yuan
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital of Hangzhou Medical College), Hangzhou, People's Republic of China
| | - Yu Peng
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital of Hangzhou Medical College), Hangzhou, People's Republic of China
| | - Xiren Xu
- Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital of Hangzhou Medical College), Hangzhou, People's Republic of China
| | - Shiliang Tu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital of Hangzhou Medical College), Hangzhou, People's Republic of China
| | - Yuguo Wei
- GE Healthcare, Precision Health Institution, Hangzhou, People's Republic of China
| | - Yanqing Ma
- Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital of Hangzhou Medical College), Hangzhou, People's Republic of China
| |
Collapse
|
19
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
20
|
Ability of Delta Radiomics to Predict a Complete Pathological Response in Patients with Loco-Regional Rectal Cancer Addressed to Neoadjuvant Chemo-Radiation and Surgery. Cancers (Basel) 2022; 14:cancers14123004. [PMID: 35740669 PMCID: PMC9221458 DOI: 10.3390/cancers14123004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The present study aimed to investigate the possible use of MRI delta texture analysis (D-TA) in order to predict the extent of pathological response in patients with locally advanced rectal cancer addressed to neoadjuvant chemo-radiotherapy (C-RT) followed by surgery. We found that D-TA may really predict the frequency of pCR in this patient setting and, thus, it may be investigated as a potential item to identify candidate patients who may benefit from an aggressive radical surgery. Abstract We performed a pilot study to evaluate the use of MRI delta texture analysis (D-TA) as a methodological item able to predict the frequency of complete pathological responses and, consequently, the outcome of patients with locally advanced rectal cancer addressed to neoadjuvant chemoradiotherapy (C-RT) and subsequently, to radical surgery. In particular, we carried out a retrospective analysis including 100 patients with locally advanced rectal adenocarcinoma who received C-RT and then radical surgery in three different oncological institutions between January 2013 and December 2019. Our experimental design was focused on the evaluation of the gross tumor volume (GTV) at baseline and after C-RT by means of MRI, which was contoured on T2, DWI, and ADC sequences. Multiple texture parameters were extracted by using a LifeX Software, while D-TA was calculated as percentage of variations in the two time points. Both univariate and multivariate analysis (logistic regression) were, therefore, carried out in order to correlate the above-mentioned TA parameters with the frequency of pathological responses in the examined patients’ population focusing on the detection of complete pathological response (pCR, with no viable cancer cells: TRG 1) as main statistical endpoint. ROC curves were performed on three different datasets considering that on the 21 patients, only 21% achieved an actual pCR. In our training dataset series, pCR frequency significantly correlated with ADC GLCM-Entropy only, when univariate and binary logistic analysis were performed (AUC for pCR was 0.87). A confirmative binary logistic regression analysis was then repeated in the two remaining validation datasets (AUC for pCR was 0.92 and 0.88, respectively). Overall, these results support the hypothesis that D-TA may have a significant predictive value in detecting the occurrence of pCR in our patient series. If confirmed in prospective and multicenter trials, these results may have a critical role in the selection of patients with locally advanced rectal cancer who may benefit form radical surgery after neoadjuvant chemoradiotherapy.
Collapse
|
21
|
Manafi-Farid R, Askari E, Shiri I, Pirich C, Asadi M, Khateri M, Zaidi H, Beheshti M. [ 18F]FDG-PET/CT radiomics and artificial intelligence in lung cancer: Technical aspects and potential clinical applications. Semin Nucl Med 2022; 52:759-780. [PMID: 35717201 DOI: 10.1053/j.semnuclmed.2022.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Molecular imaging using [18F]fluorodeoxyglucose Positron Emission Tomography and/or Computed Tomography ([18F]FDG-PET/CT) plays an essential role in the diagnosis, evaluation of response to treatment, and prediction of outcomes. The images are evaluated using qualitative and conventional quantitative indices. However, there is far more information embedded in the images, which can be extracted by sophisticated algorithms. Recently, the concept of uncovering and analyzing the invisible data extracted from medical images, called radiomics, is gaining more attention. Currently, [18F]FDG-PET/CT radiomics is growingly evaluated in lung cancer to discover if it enhances the diagnostic performance or implication of [18F]FDG-PET/CT in the management of lung cancer. In this review, we provide a short overview of the technical aspects, as they are discussed in different articles of this special issue. We mainly focus on the diagnostic performance of the [18F]FDG-PET/CT-based radiomics and the role of artificial intelligence in non-small cell lung cancer, impacting the early detection, staging, prediction of tumor subtypes, biomarkers, and patient's outcomes.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Emran Askari
- Department of Nuclear Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Khateri
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
22
|
Shiri I, Salimi Y, Pakbin M, Hajianfar G, Avval AH, Sanaat A, Mostafaei S, Akhavanallaf A, Saberi A, Mansouri Z, Askari D, Ghasemian M, Sharifipour E, Sandoughdaran S, Sohrabi A, Sadati E, Livani S, Iranpour P, Kolahi S, Khateri M, Bijari S, Atashzar MR, Shayesteh SP, Khosravi B, Babaei MR, Jenabi E, Hasanian M, Shahhamzeh A, Foroghi Ghomi SY, Mozafari A, Teimouri A, Movaseghi F, Ahmari A, Goharpey N, Bozorgmehr R, Shirzad-Aski H, Mortazavi R, Karimi J, Mortazavi N, Besharat S, Afsharpad M, Abdollahi H, Geramifar P, Radmard AR, Arabi H, Rezaei-Kalantari K, Oveisi M, Rahmim A, Zaidi H. COVID-19 prognostic modeling using CT radiomic features and machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 patients. Comput Biol Med 2022; 145:105467. [PMID: 35378436 PMCID: PMC8964015 DOI: 10.1016/j.compbiomed.2022.105467] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND We aimed to analyze the prognostic power of CT-based radiomics models using data of 14,339 COVID-19 patients. METHODS Whole lung segmentations were performed automatically using a deep learning-based model to extract 107 intensity and texture radiomics features. We used four feature selection algorithms and seven classifiers. We evaluated the models using ten different splitting and cross-validation strategies, including non-harmonized and ComBat-harmonized datasets. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were reported. RESULTS In the test dataset (4,301) consisting of CT and/or RT-PCR positive cases, AUC, sensitivity, and specificity of 0.83 ± 0.01 (CI95%: 0.81-0.85), 0.81, and 0.72, respectively, were obtained by ANOVA feature selector + Random Forest (RF) classifier. Similar results were achieved in RT-PCR-only positive test sets (3,644). In ComBat harmonized dataset, Relief feature selector + RF classifier resulted in the highest performance of AUC, reaching 0.83 ± 0.01 (CI95%: 0.81-0.85), with a sensitivity and specificity of 0.77 and 0.74, respectively. ComBat harmonization did not depict statistically significant improvement compared to a non-harmonized dataset. In leave-one-center-out, the combination of ANOVA feature selector and RF classifier resulted in the highest performance. CONCLUSION Lung CT radiomics features can be used for robust prognostic modeling of COVID-19. The predictive power of the proposed CT radiomics model is more reliable when using a large multicentric heterogeneous dataset, and may be used prospectively in clinical setting to manage COVID-19 patients.
Collapse
Affiliation(s)
- Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland
| | - Yazdan Salimi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland
| | - Masoumeh Pakbin
- Imaging Department, Qom University of Medical Sciences, Qum, Iran
| | - Ghasem Hajianfar
- Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Science, Tehran, Iran
| | | | - Amirhossein Sanaat
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland
| | - Shayan Mostafaei
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Azadeh Akhavanallaf
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland
| | - Abdollah Saberi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland
| | - Zahra Mansouri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland
| | - Dariush Askari
- Department of Radiology Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Ghasemian
- Department of Radiology, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qum, Iran
| | - Ehsan Sharifipour
- Neuroscience Research Center, Qom University of Medical Sciences, Qum, Iran
| | - Saleh Sandoughdaran
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Sohrabi
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Sadati
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Somayeh Livani
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pooya Iranpour
- Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahriar Kolahi
- Department of Radiology, School of Medicine, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Khateri
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Tehran, Iran
| | - Salar Bijari
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Sajad P Shayesteh
- Department of Physiology, Pharmacology and Medical Physics, Alborz University of Medical Sciences, Karaj, Iran
| | - Bardia Khosravi
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Babaei
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Jenabi
- Research Centre for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasanian
- Department of Radiology, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Shahhamzeh
- Clinical Research Development Center, Qom University of Medical Sciences, Qum, Iran
| | - Seyaed Yaser Foroghi Ghomi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University Of Medical Sciences, Qom, Iran
| | - Abolfazl Mozafari
- Department of Medical Sciences, Qom Branch, Islamic Azad University, Qum, Iran
| | - Arash Teimouri
- Medical Imaging Research Center, Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Movaseghi
- Department of Medical Sciences, Qom Branch, Islamic Azad University, Qum, Iran
| | - Azin Ahmari
- Ayatolah Khansary Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Neda Goharpey
- Department of Radiation Oncology, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rama Bozorgmehr
- Clinical Research Development Unit, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Roozbeh Mortazavi
- Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jalal Karimi
- Department of Infectious Disease, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Nazanin Mortazavi
- Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Besharat
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mandana Afsharpad
- Cancer Control Research Center, Cancer Control Foundation, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiologic Technology, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Parham Geramifar
- Research Centre for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Radmard
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland
| | - Kiara Rezaei-Kalantari
- Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mehrdad Oveisi
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, 1211, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
23
|
Abstract
Chinese Ludo, also known as Aeroplan Chess, has been a very popular board game for several decades. However, there is no mature algorithm existing for human–machine gambling. The major challenge is the high randomness of the dice rolls, where the algorithm must ensure that the machine is smarter than a human in order to guarantee that the owner of the game machines makes a profit. This paper presents a fast Chinese Ludo algorithm (named “Threat Matrix”) that we have recently developed. Unlike from most chess programs, which rely on high performance computing machines, the evaluation function in our program is only a linear sum of four factors. For fast and low-cost computation, we innovatively construct the concept of the threat matrix, by which we can easily obtain the threat between any two dice on any two positions. The threat matrix approach greatly reduces the required amount of calculations, enabling the program to run on a 32-bit 80 × 86 SCM with a 100 MHz CPU while supporting a recursive algorithms to search plies. Statistics compiled from matches against human game players show that our threat matrix has an average win rate of 92% with no time limit, 95% with a time limit of 10 s, and 98% with a time limit of 5 s. Furthermore, the threat matrix can reduce the computation cost by nearly 90% compared to real-time computing; memory consumption drops and is stable, which increases the evaluation speed by 58% compared to real-time computing.
Collapse
|
24
|
Xi Y, Ge X, Ji H, Wang L, Duan S, Chen H, Wang M, Hu H, Jiang F, Ding Z. Prediction of Response to Induction Chemotherapy Plus Concurrent Chemoradiotherapy for Nasopharyngeal Carcinoma Based on MRI Radiomics and Delta Radiomics: A Two-Center Retrospective Study. Front Oncol 2022; 12:824509. [PMID: 35530350 PMCID: PMC9074388 DOI: 10.3389/fonc.2022.824509] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/23/2022] [Indexed: 12/03/2022] Open
Abstract
Objective We aimed to establish an MRI radiomics model and a Delta radiomics model to predict tumor retraction after induction chemotherapy (IC) combined with concurrent chemoradiotherapy (CCRT) for primary nasopharyngeal carcinoma (NPC) in non-endemic areas and to validate its efficacy. Methods A total of 272 patients (155 in the training set, 66 in the internal validation set, and 51 in the external validation set) with biopsy pathologically confirmed primary NPC who were screened for pretreatment MRI were retrospectively collected. The NPC tumor was delineated as a region of interest in the two sequenced images of MRI before treatment and after IC, followed by radiomics feature extraction. With the use of maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) algorithms, logistic regression was performed to establish pretreatment MRI radiomics and pre- and post-IC Delta radiomics models. The optimal Youden’s index was taken; the receiver operating characteristic (ROC) curve, calibration curve, and decision curve were drawn to evaluate the predictive efficacy of different models. Results Seven optimal feature subsets were selected from the pretreatment MRI radiomics model, and twelve optimal subsets were selected from the Delta radiomics model. The area under the ROC curve, accuracy, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the MRI radiomics model were 0.865, 0.827, 0.837, 0.813, 0.776, and 0.865, respectively; the corresponding indicators of the Delta radiomics model were 0.941, 0.883, 0.793, 0.968, 0.833, and 0.958, respectively. Conclusion The pretreatment MRI radiomics model and pre- and post-IC Delta radiomics models could predict the IC-CCRT response of NPC in non-epidemic areas.
Collapse
Affiliation(s)
- Yuzhen Xi
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Department of Radiology, 903rd Hospital of PLA, Hangzhou, China
| | - Xiuhong Ge
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiming Ji
- Department of Radiology, Liangzhu Hospital, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Haonan Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengze Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital Affiliated to Medical College Zhejiang University, Hangzhou, China
| | - Feng Jiang
- Department of Head and Neck Radiotherapy, Zhejiang Cancer Hospital/Zhejiang Province Key Laboratory of Radiation Oncology, Hangzhou, China
- *Correspondence: Feng Jiang, ; Zhongxiang Ding,
| | - Zhongxiang Ding
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Feng Jiang, ; Zhongxiang Ding,
| |
Collapse
|
25
|
Impact of feature harmonization on radiogenomics analysis: Prediction of EGFR and KRAS mutations from non-small cell lung cancer PET/CT images. Comput Biol Med 2022; 142:105230. [DOI: 10.1016/j.compbiomed.2022.105230] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
|
26
|
Radiomic Phenotypes for Improving Early Prediction of Survival in Stage III Non-Small Cell Lung Cancer Adenocarcinoma after Chemoradiation. Cancers (Basel) 2022; 14:cancers14030700. [PMID: 35158971 PMCID: PMC8833400 DOI: 10.3390/cancers14030700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
We evaluate radiomic phenotypes derived from CT scans as early predictors of overall survival (OS) after chemoradiation in stage III primary lung adenocarcinoma. We retrospectively analyzed 110 thoracic CT scans acquired between April 2012-October 2018. Patients received a median radiation dose of 66.6 Gy at 1.8 Gy/fraction delivered with proton (55.5%) and photon (44.5%) beam treatment, as well as concurrent chemotherapy (89%) with carboplatin-based (55.5%) and cisplatin-based (36.4%) doublets. A total of 56 death events were recorded. Using manual tumor segmentations, 107 radiomic features were extracted. Feature harmonization using ComBat was performed to mitigate image heterogeneity due to the presence or lack of intravenous contrast material and variability in CT scanner vendors. A binary radiomic phenotype to predict OS was derived through the unsupervised hierarchical clustering of the first principal components explaining 85% of the variance of the radiomic features. C-scores and likelihood ratio tests (LRT) were used to compare the performance of a baseline Cox model based on ECOG status and age, with a model integrating the radiomic phenotype with such clinical predictors. The model integrating the radiomic phenotype (C-score = 0.69, 95% CI = (0.62, 0.77)) significantly improved (p<0.005) upon the baseline model (C-score = 0.65, CI = (0.57, 0.73)). Our results suggest that harmonized radiomic phenotypes can significantly improve OS prediction in stage III NSCLC after chemoradiation.
Collapse
|
27
|
Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection. Comput Biol Med 2021; 141:105145. [PMID: 34929466 DOI: 10.1016/j.compbiomed.2021.105145] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Robust differentiation between infarcted and normal tissue is important for clinical diagnosis and precision medicine. The aim of this work is to investigate the radiomic features and to develop a machine learning algorithm for the differentiation of myocardial infarction (MI) and viable tissues/normal cases in the left ventricular myocardium on non-contrast Cine Cardiac Magnetic Resonance (Cine-CMR) images. METHODS Seventy-two patients (52 with MI and 20 healthy control patients) were enrolled in this study. MR imaging was performed on a 1.5 T MRI using the following parameters: TR = 43.35 ms, TE = 1.22 ms, flip angle = 65°, temporal resolution of 30-40 ms. N4 bias field correction algorithm was applied to correct the inhomogeneity of images. All images were segmented and verified simultaneously by two cardiac imaging experts in consensus. Subsequently, features extraction was performed within the whole left ventricular myocardium (3D volume) in end-diastolic volume phase. Re-sampling to 1 × 1 × 1 mm3 voxels was performed for MR images. All intensities within the VOI of MR images were discretized to 64 bins. Radiomic features were normalized to obtain Z-scores, followed by Student's t-test statistical analysis for comparison. A p-value < 0.05 was used as a threshold for statistically significant differences and false discovery rate (FDR) correction performed to report q-value (FDR adjusted p-value). The extracted features were ranked using the MSVM-RFE algorithm, then Spearman correlation between features was performed to eliminate highly correlated features (R2 > 0.80). Ten different machine learning algorithms were used for classification and different metrics used for evaluation and various parameters used for models' evaluation. RESULTS In univariate analysis, the highest area under the curve (AUC) of receiver operating characteristic (ROC) value was achieved for the Maximum 2D diameter slice (M2DS) shape feature (AUC = 0.88, q-value = 1.02E-7), while the average of univariate AUCs was 0.62 ± 0.08. In multivariate analysis, Logistic Regression (AUC = 0.93 ± 0.03, Accuracy = 0.86 ± 0.05, Recall = 0.87 ± 0.1, Precision = 0.93 ± 0.03 and F1 Score = 0.90 ± 0.04) and SVM (AUC = 0.92 ± 0.05, Accuracy = 0.85 ± 0.04, Recall = 0.92 ± 0.01, Precision = 0.88 ± 0.04 and F1 Score = 0.90 ± 0.02) yielded optimal performance as the best machine learning algorithm for this radiomics analysis. CONCLUSION This study demonstrated that using radiomics analysis on non-contrast Cine-CMR images enables to accurately detect MI, which could potentially be used as an alternative diagnostic method for Late Gadolinium Enhancement Cardiac Magnetic Resonance (LGE-CMR).
Collapse
|
28
|
Nardone V, Reginelli A, Grassi R, Boldrini L, Vacca G, D'Ippolito E, Annunziata S, Farchione A, Belfiore MP, Desideri I, Cappabianca S. Delta radiomics: a systematic review. Radiol Med 2021; 126:1571-1583. [PMID: 34865190 DOI: 10.1007/s11547-021-01436-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Radiomics can provide quantitative features from medical imaging that can be correlated with various biological features and clinical endpoints. Delta radiomics, on the other hand, consists in the analysis of feature variation at different acquisition time points, usually before and after therapy. The aim of this study was to provide a systematic review of the different delta radiomics approaches. METHODS Eligible articles were searched in Embase, PubMed, and ScienceDirect using a search string that included free text and/or Medical Subject Headings (MeSH) with three key search terms: "radiomics", "texture", and "delta". Studies were analysed using QUADAS-2 and the RQS tool. RESULTS Forty-eight studies were finally included. The studies were divided into preclinical/methodological (five studies, 10.4%); rectal cancer (six studies, 12.5%); lung cancer (twelve studies, 25%); sarcoma (five studies, 10.4%); prostate cancer (three studies, 6.3%), head and neck cancer (six studies, 12.5%); gastrointestinal malignancies excluding rectum (seven studies, 14.6%), and other disease sites (four studies, 8.3%). The median RQS of all studies was 25% (mean 21% ± 12%), with 13 studies (30.2%) achieving a quality score < 10% and 22 studies (51.2%) < 25%. CONCLUSIONS Delta radiomics shows potential benefit for several clinical endpoints in oncology (differential diagnosis, prognosis and prediction of treatment response, and evaluation of side effects). Nevertheless, the studies included in this systematic review suffer from the bias of overall low quality, so that the conclusions are currently heterogeneous, not robust, and not replicable. Further research with prospective and multicentre studies is needed for the clinical validation of delta radiomics approaches.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Luca Boldrini
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giovanna Vacca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Emma D'Ippolito
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Salvatore Annunziata
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Alessandra Farchione
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
29
|
Yousefirizi F, Pierre Decazes, Amyar A, Ruan S, Saboury B, Rahmim A. AI-Based Detection, Classification and Prediction/Prognosis in Medical Imaging:: Towards Radiophenomics. PET Clin 2021; 17:183-212. [PMID: 34809866 DOI: 10.1016/j.cpet.2021.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Artificial intelligence (AI) techniques have significant potential to enable effective, robust, and automated image phenotyping including the identification of subtle patterns. AI-based detection searches the image space to find the regions of interest based on patterns and features. There is a spectrum of tumor histologies from benign to malignant that can be identified by AI-based classification approaches using image features. The extraction of minable information from images gives way to the field of "radiomics" and can be explored via explicit (handcrafted/engineered) and deep radiomics frameworks. Radiomics analysis has the potential to be used as a noninvasive technique for the accurate characterization of tumors to improve diagnosis and treatment monitoring. This work reviews AI-based techniques, with a special focus on oncological PET and PET/CT imaging, for different detection, classification, and prediction/prognosis tasks. We also discuss needed efforts to enable the translation of AI techniques to routine clinical workflows, and potential improvements and complementary techniques such as the use of natural language processing on electronic health records and neuro-symbolic AI techniques.
Collapse
Affiliation(s)
- Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.
| | - Pierre Decazes
- Department of Nuclear Medicine, Henri Becquerel Centre, Rue d'Amiens - CS 11516 - 76038 Rouen Cedex 1, France; QuantIF-LITIS, Faculty of Medicine and Pharmacy, Research Building - 1st floor, 22 boulevard Gambetta, 76183 Rouen Cedex, France
| | - Amine Amyar
- QuantIF-LITIS, Faculty of Medicine and Pharmacy, Research Building - 1st floor, 22 boulevard Gambetta, 76183 Rouen Cedex, France; General Electric Healthcare, Buc, France
| | - Su Ruan
- QuantIF-LITIS, Faculty of Medicine and Pharmacy, Research Building - 1st floor, 22 boulevard Gambetta, 76183 Rouen Cedex, France
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Overall Survival Prediction in Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical Information. J Digit Imaging 2021; 34:1086-1098. [PMID: 34382117 PMCID: PMC8554934 DOI: 10.1007/s10278-021-00500-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
The aim of this work is to investigate the applicability of radiomic features alone and in combination with clinical information for the prediction of renal cell carcinoma (RCC) patients’ overall survival after partial or radical nephrectomy. Clinical studies of 210 RCC patients from The Cancer Imaging Archive (TCIA) who underwent either partial or radical nephrectomy were included in this study. Regions of interest (ROIs) were manually defined on CT images. A total of 225 radiomic features were extracted and analyzed along with the 59 clinical features. An elastic net penalized Cox regression was used for feature selection. Accelerated failure time (AFT) with the shared frailty model was used to determine the effects of the selected features on the overall survival time. Eleven radiomic and twelve clinical features were selected based on their non-zero coefficients. Tumor grade, tumor malignancy, and pathology t-stage were the most significant predictors of overall survival (OS) among the clinical features (p < 0.002, < 0.02, and < 0.018, respectively). The most significant predictors of OS among the selected radiomic features were flatness, area density, and median (p < 0.02, < 0.02, and < 0.05, respectively). Along with important clinical features, such as tumor heterogeneity and tumor grade, imaging biomarkers such as tumor flatness, area density, and median are significantly correlated with OS of RCC patients.
Collapse
|
31
|
Khodabakhshi Z, Mostafaei S, Arabi H, Oveisi M, Shiri I, Zaidi H. Non-small cell lung carcinoma histopathological subtype phenotyping using high-dimensional multinomial multiclass CT radiomics signature. Comput Biol Med 2021; 136:104752. [PMID: 34391002 DOI: 10.1016/j.compbiomed.2021.104752] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to identify the most important features and assess their discriminative power in the classification of the subtypes of NSCLC. METHODS This study involved 354 pathologically proven NSCLC patients including 134 squamous cell carcinoma (SCC), 110 large cell carcinoma (LCC), 62 not other specified (NOS), and 48 adenocarcinoma (ADC). In total, 1433 radiomics features were extracted from 3D volumes of interest drawn on the malignant lesion identified on CT images. Wrapper algorithm and multivariate adaptive regression splines were implemented to identify the most relevant/discriminative features. A multivariable multinomial logistic regression was employed with 1000 bootstrapping samples based on the selected features to classify four main subtypes of NSCLC. RESULTS The results revealed that the texture features, specifically gray level size zone matrix features (GLSZM), were the significant indicators of NSCLC subtypes. The optimized classifier achieved an average precision, recall, F1-score, and accuracy of 0.710, 0.703, 0.706, and 0.865, respectively, based on the selected features by the wrapper algorithm. CONCLUSIONS Our CT radiomics approach demonstrated impressive potential for the classification of the four main histological subtypes of NSCLC, It is anticipated that CT radiomics could be useful in treatment planning and precision medicine.
Collapse
Affiliation(s)
- Zahra Khodabakhshi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Shayan Mostafaei
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
| | - Mehrdad Oveisi
- Department of Computer Science, University of British Columbia, Vancouver BC, Canada; Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
32
|
Zhang K, Ren Y, Xu S, Lu W, Xie S, Qu J, Wang X, Shen B, Pang P, Cai X, Sun J. A clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer. Med Phys 2021; 48:4872-4882. [PMID: 34042185 DOI: 10.1002/mp.15001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Lymphovascular invasion (LVI) and perineural invasion (PNI) are independent prognostic factors in patients with colorectal cancer (CRC). In this study, we aimed to develop and validate a preoperative predictive model based on high-throughput radiomic features and clinical factors for accurate prediction of LVI/PNI in these patients. METHODS Two hundred and sixty-three patients who underwent colorectal resection for histologically confirmed CRC between 1 February 2011 and 30 June 2020 were retrospectively enrolled. Between 1 February 2011 and 30 September 2018, 213 patients were randomly divided into a training cohort (n = 149) and a validation cohort (n = 64) by a ratio of 7:3. We used a 10000-iteration bootstrap analysis to estimate the prediction error and confidence interval for two cohorts. The independent test cohort consisted of 50 patients between 1 October 2018 and 30 June 2020. Regions of interest (ROIs) were manually delineated in high-resolution T2-weighted and diffusion-weighted images using ITK-SNAP software on each CRC tumor slice. In total, 3356 radiomic features were extracted from each ROI. Next, we used the maximum relevance minimum redundancy and least absolute shrinkage and selection operator algorithms to select the strongest of these features to establish a clinical-radiomics model for predicting LVI/PNI. Receiver-operating characteristic and calibration curves were then plotted to evaluate the predictive performance of the model in the training, validation, and independent test cohorts. RESULTS A multiparametric clinical-radiomics model combining MRI-reported extramural vascular invasion (EMVI) status and a Radiomics score for the LVI/PNI estimation was established. This model had significant predictive power in the training cohort (area under the curve [AUC] 0.91; 95% confidence interval [CI]: 0.85-0.97), validation cohort (AUC: 0.88; 95% CI: 0.79-89), and independent test cohorts (AUC 0.83, 95% CI 0.72-0.95). The model performed well in the independent test cohort with sensitivity of 0.818, specificity of 0.714, and accuracy of 0.760. Calibration curve and decision curve analysis demonstrated clinical benefits. CONCLUSION Multiparametric clinical-radiomics models can accurately predict LVI/PNI in patients with CRC. Our model has predictive ability that should improve preoperative diagnostic performance and allow more individualized treatment decisions.
Collapse
Affiliation(s)
- Ke Zhang
- Shaoxing University School of Medicine, Shaoxing, China.,Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yiyue Ren
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shufeng Xu
- Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Radiology, People's Hospital of Quzhou, Quzhou Hospital affiliated to Wenzhou Medical University, Quzhou, China
| | - Wei Lu
- Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Shengnan Xie
- Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiali Qu
- Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaoyan Wang
- Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Bo Shen
- Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Peipei Pang
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Hangzhou, China
| | - Xiujun Cai
- Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jihong Sun
- Shaoxing University School of Medicine, Shaoxing, China.,Department of Radiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|