1
|
Moura AO, Silva TCF, Caetano AR, Kussano NR, Dode MAN, Franco MM. Characterization of DNA methylation profile of the entire CpG island spanning the 5' untranslated region to intron 1 of the Oct4/POU5F1 gene in bovine gametes, embryos, and somatic cells. Anim Genet 2025; 56:e70002. [PMID: 39953930 DOI: 10.1111/age.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/14/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Stem cells are undifferentiated cells that exhibit a bivalent chromatin state that determines their fate. These cells have potential applications in human and animal health and livestock production. Somatic cell nuclear transfer or cloning is currently being used to produce genetically edited animals. A highly differentiated genome is the main obstacle to correcting epigenetic reprogramming by enucleated oocytes during cloning. Activation of pluripotency genes in the somatic genome is a promising strategy to contribute to more efficient epigenetic reprogramming, improving this technique. Recently, epigenome editing has emerged as a new generation of clustered regularly interspaced short palindromic repeats-clustered regularly interspaced short palindromic repeats-associated protein 9 technology with the aim of modifying the cellular epigenome to turn genes on or off without modifying DNA. Here, we characterize the DNA methylation profile of the CpG island spanning the 5' untranslated region to intron 1 of the bovine octamer-binding transcription factor (Oct4) gene in gametes, embryos, and fibroblasts. DNA methylation patterns were categorized into three levels: low (0%-20%), moderate (21%-50%), and high (51%-100%). Sperm and embryos showed a hypomethylation pattern, whereas oocytes exhibited a hypo- to moderate methylation pattern. Fetal and adult skin fibroblasts were hypomethylated and moderately methylated, respectively. These results are essential for future studies aimed at manipulating the expression of Oct4. Thus, epigenome editing can be used to turn on the Oct4 in somatic cells to generate induced pluripotent stem cells. This strategy could potentially convert a fully differentiated cell into a cell with certain degree of pluripotency, facilitating nuclear reprogramming by the enucleated oocyte and improving cloning success rates.
Collapse
Affiliation(s)
- Amanda Oliveira Moura
- School of Veterinary Medicine, Federal University of Uberlândia (FAMEV-UFU), Uberlândia, Minas Gerais, Brazil
- EMBRAPA Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Maurício Machaim Franco
- School of Veterinary Medicine, Federal University of Uberlândia (FAMEV-UFU), Uberlândia, Minas Gerais, Brazil
- EMBRAPA Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| |
Collapse
|
2
|
Moradi-Hajidavaloo R, Jafarpour F, Hajian M, Rahimi Andani M, Rouhollahi Varnosfaderani S, Nasr-Esfahani MH. Oct-4 activating compound 1 (OAC1) could improve the quality of somatic cell nuclear transfer embryos in the bovine. Theriogenology 2023; 198:75-86. [PMID: 36565671 DOI: 10.1016/j.theriogenology.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Previous studies described aberrant nuclear reprogramming in somatic cell nuclear transfer (SCNT) embryos that is distinctly different from fertilized embryos. This abnormal nuclear reprogramming hampers the proper pre- and/or post-implantation development. It has been demonstrated that SCNT blastocysts aberrantly expressed POU5F1 and POU5F1-related genes. With regard to this, it has been postulated that promoting the expression of POU5F1 in SCNT embryos may enhance reprogramming in SCNT embryos. In this study, we treated either fibroblast donor cells or SCNT embryos with OAC1 as a novel small molecule that has been reported to induce POU5F1 expression. Quantitative results from the MTS assay revealed that lower concentrations of OAC1 (1, 1.5, and 3 μM) are non-toxic after 2, 4, and 6 days, but higher concentrations (6, 8, 10, and 12 μM) are toxic and reduced the proliferation of cells after 6 days. No enhancement in the expression of endogenous POU5F1 was observed when both mouse and bovine fibroblast cells were treated with 1.5 and 3 μM OAC1 for up to 6 consecutive days. Subsequently, we treated either fibroblast as donor cells in the SCNT procedure (BFF-OAC1 group) or SCNT embryos [for 4 days (IVC-OAC1: D4-D7 group) or 7 days (IVC-OAC1: D0-D7 group)] with 1.5 μM OAC1. We observed that neither treatment of fibroblast donor cells nor SCNT embryos improved the cleavage and blastocyst rates. Interestingly, we observed that treatment of SCNT embryos all throughout the in vitro culture (IVC) (IVC-OAC1: D0-D7) with 1.5 μM OAC1 improves the quality of derived blastocyst which was indexed by morphological grading, blastomere allocation, epigenetic marks and mRNA expression of target genes. In conclusion, our results showed that supplementation of IVC medium with 1.5 μM OAC1 (D0-D7) accelerates SCNT reprogramming in bovine species.
Collapse
Affiliation(s)
- Reza Moradi-Hajidavaloo
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahimi Andani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Shiva Rouhollahi Varnosfaderani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
3
|
Cuthbert JM, Russell SJ, Polejaeva IA, Meng Q, White KL, Benninghoff AD. Comparing mRNA and sncRNA profiles during the maternal-to-embryonic transition in bovine IVF and scNT embryos. Biol Reprod 2021; 105:1401-1415. [PMID: 34514499 DOI: 10.1093/biolre/ioab169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Production of embryos with high developmental competence by somatic cell nuclear transfer (scNT) is far less efficient than for in vitro fertilized (IVF) embryos, likely due to an accumulation of errors in genome reprogramming that results in aberrant expression of RNA transcripts, including messenger RNAs (mRNA) and, possibly, microRNAs (miRNA). Thus, our objectives were to use RNAseq to determine the dynamics of mRNA expression in early developing scNT and IVF embryos in the context of the maternal-to-embryonic transition (MET) and to correlate apparent transcriptional dysregulation in cloned embryos with miRNA expression profiles. Comparisons between scNT and IVF embryos indicated large scale transcriptome differences, which were most evident at the 8-cell and morula stages for genes associated with biological functions critical for the MET. For two miRNAs previously identified as differentially expressed in scNT morulae, miR-34a and miR-345, negative correlations with some predicted mRNA targets were apparent, though not widespread among the majority of predicted targets. Moreover, although large-scale aberrations in expression of mRNAs were evident during the MET in cattle scNT embryos, these changes were not consistently correlated with aberrations in miRNA expression at the same developmental stage, suggesting that other mechanisms controlling gene expression may be involved.
Collapse
Affiliation(s)
- Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Stewart J Russell
- CReATe Fertility Centre, 790 Bay St. #1100, Toronto, M5G 1N8, Canada
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
4
|
Wang X, Zhao J, Zhu Z. Exogenous Expression of pou5f3 Facilitates the Development of Somatic Cell Nuclear Transfer Embryos in Zebrafish at the Early Stage. Cell Reprogram 2021; 23:191-197. [PMID: 34101505 DOI: 10.1089/cell.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Enucleated oocytes can reprogram differentiated nuclei to totipotency after somatic cell nuclear transfer (SCNT), which is valuable in understanding nuclear reprogramming and generating genetically modified animals. To date, reprogramming efficiency is low and the development of SCNT embryos is not going as well as anticipated. To further disclose the reprogramming mechanisms during SCNT zebrafish embryo development, we examined the expression patterns of transcription regulation factors and regulated them by mRNA and morpholino microinjection. In this study, we show that stem cell-related transcription factors are downregulated in zebrafish SCNT embryos at the blastula stage. Exogenous expression of pou5f3 at the single-cell stage improves SCNT embryo development from the blastula to the gastrula stage. We also found that exogenous expression of klf4 or sox2 decreases SCNT embryo development from the blastula to the gastrula stage, while expression of nanog is necessary for the development of SCNT embryos. Our results conclude that zebrafish pou5f3 facilitates the development of SCNT embryos from the blastula to gastrula stage.
Collapse
Affiliation(s)
- Xuegeng Wang
- College of Life Sciences, Peking University, Beijing, P.R. China.,Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou, P.R. China
| | - Jue Zhao
- College of Life Sciences, Peking University, Beijing, P.R. China
| | - Zuoyan Zhu
- College of Life Sciences, Peking University, Beijing, P.R. China
| |
Collapse
|
5
|
Feng Y, Zhao X, Li Z, Luo C, Ruan Z, Xu J, Shen P, Deng Y, Jiang J, Shi D, Lu F. Histone Demethylase KDM4D Could Improve the Developmental Competence of Buffalo ( Bubalus Bubalis) Somatic Cell Nuclear Transfer (SCNT) Embryos. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:409-419. [PMID: 33478599 DOI: 10.1017/s1431927620024964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Somatic cell nuclear transfer (SCNT) holds vast potential in agriculture. However, its applications are still limited by its low efficiency. Histone 3 lysine 9 trimethylation (H3K9me3) was identified as an epigenetic barrier for this. Histone demethylase KDM4D could regulate the level of H3K9me3. However, its effects on buffalo SCNT embryos are still unclear. Thus, we performed this study to explore the effects and underlying mechanism of KDM4D on buffalo SCNT embryos. The results revealed that compared with the IVF embryos, the expression level of KDM4D in SCNT embryos was significantly lower at 8- and 16-cell stage, while the level of H3K9me3 in SCNT embryos was significantly higher at 2-cell, 8-cell, and blastocyst stage. Microinjection of KDM4D mRNA could promote the developmental ability of buffalo SCNT embryos. Furthermore, the expression level of ZGA-related genes such as ZSCAN5B, SNAI1, eIF-3a, and TRC at the 8-cell stage was significantly increased. Meanwhile, the pluripotency-related genes like POU5F1, SOX2, and NANOG were also significantly promoted at the blastocyst stage. The results were reversed after KDM4D was inhibited. Altogether, these results revealed that KDM4D could correct the H3K9me3 level, increase the expression level of ZGA and pluripotency-related genes, and finally, promote the developmental competence of buffalo SCNT embryos.
Collapse
Affiliation(s)
- Yun Feng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Xin Zhao
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
- Center of Reproductive Medicine, Guangxi Maternal and Child Health Hospital, Nanning530003, P.R. China
| | - Zhengda Li
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Chan Luo
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Ziyun Ruan
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Jie Xu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Penglei Shen
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Yanfei Deng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Jianrong Jiang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| | - Fenghua Lu
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning530005, P.R. China
| |
Collapse
|
6
|
Wang X, Qu J, Li J, He H, Liu Z, Huan Y. Epigenetic Reprogramming During Somatic Cell Nuclear Transfer: Recent Progress and Future Directions. Front Genet 2020; 11:205. [PMID: 32256519 PMCID: PMC7093498 DOI: 10.3389/fgene.2020.00205] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) has broad applications but is limited by low cloning efficiency. In this review, we mainly focus on SCNT-mediated epigenetic reprogramming in livestock and also describe mice data for reference. This review presents the factors contributing to low cloning efficiency, demonstrates that incomplete epigenetic reprogramming leads to the low developmental potential of cloned embryos, and further describes the regulation of epigenetic reprogramming by long non-coding RNAs, which is a new research perspective in the field of SCNT-mediated epigenetic reprogramming. In conclusion, this review provides new insights into the epigenetic regulatory mechanism during SCNT-mediated nuclear reprogramming, which could have great implications for improving cloning efficiency.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiadan Qu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Department of Cadre Health Care, Qingdao Municipal Hospital, Qingdao, China
| | - Hongbin He
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhonghua Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yanjun Huan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Liu Y, Wu F, Zhang L, Wu X, Li D, Xin J, Xie J, Kong F, Wang W, Wu Q, Zhang D, Wang R, Gao S, Li W. Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing. BMC Genomics 2018; 19:734. [PMID: 30305014 PMCID: PMC6180508 DOI: 10.1186/s12864-018-5091-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/19/2018] [Indexed: 11/25/2022] Open
Abstract
Background Nuclear reprogramming reinstates totipotency or pluripotency in somatic cells by changing their gene transcription profile. This technology is widely used in medicine, animal husbandry and other industries. However, certain deficiencies severely restrict the applications of this technology. Results Using single-embryo RNA-seq, our study provides complete transcriptome blueprints of embryos generated by cumulus cell (CC) donor nuclear transfer (NT), embryos generated by mouse embryonic fibroblast (MEF) donor NT and in vivo embryos at each stage (zygote, 2-cell, 4-cell, 8-cell, morula, and blastocyst). According to the results from further analyses, NT embryos exhibit RNA processing and translation initiation defects during the zygotic genome activation (ZGA) period, and protein kinase activity and protein phosphorylation are defective during blastocyst formation. Two thousand three constant genes are not able to be reprogrammed in CCs and MEFs. Among these constant genes, 136 genes are continuously mis-transcribed throughout all developmental stages. These 136 differential genes may be reprogramming barrier genes (RBGs) and more studies are needed to identify. Conclusions These embryonic transcriptome blueprints provide new data for further mechanistic studies of somatic nuclear reprogramming. These findings may improve the efficiency of somatic cell nuclear transfer. Electronic supplementary material The online version of this article (10.1186/s12864-018-5091-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Fengrui Wu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Ling Zhang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Xiaoqing Wu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Dengkun Li
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Jing Xin
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Juan Xie
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Feng Kong
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Wenying Wang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Qiaoqin Wu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Di Zhang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Rong Wang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Shaorong Gao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Wenyong Li
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China.
| |
Collapse
|
8
|
Han C, Deng R, Mao T, Luo Y, Wei B, Meng P, Zhao L, Zhang Q, Quan F, Liu J, Zhang Y. Overexpression of Tet3 in donor cells enhances goat somatic cell nuclear transfer efficiency. FEBS J 2018; 285:2708-2723. [PMID: 29791079 DOI: 10.1111/febs.14515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/31/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022]
Abstract
Ten-eleven translocation 3 (TET3) mediates active DNA demethylation of paternal genomes during mouse embryonic development. However, the mechanism of DNA demethylation in goat embryos remains unknown. In addition, aberrant DNA methylation reprogramming prevalently occurs in embryos cloned by somatic cell nuclear transfer (SCNT). In this study, we reported that TET3 is a key factor in DNA demethylation in goat pre-implantation embryos. Knockdown of Tet3 hindered DNA demethylation at the two- to four-cell stage in goat embryos and decreased Nanog expression in blastocysts. Overexpression of Tet3 in somatic cells can initiate DNA demethylation, reduce 5-methylcytosine level, increase 5-hydroxymethylcytosine level and promote the expression of key pluripotency genes. After SCNT, overexpression of Tet3 in donor cells corrected abnormal DNA hypermethylation of cloned embryos and significantly enhanced in vitro and in vivo developmental rate (P < 0.05). We conclude that overexpression of Tet3 in donor cells significantly improves goat SCNT efficiency.
Collapse
Affiliation(s)
- Chengquan Han
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ruizhi Deng
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Tingchao Mao
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yan Luo
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Biao Wei
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Peng Meng
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Lu Zhao
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Qing Zhang
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology, College of Veterinary Medicine, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Canon E, Jouneau L, Blachère T, Peynot N, Daniel N, Boulanger L, Maulny L, Archilla C, Voisin S, Jouneau A, Godet M, Duranthon V. Progressive methylation of POU5F1 regulatory regions during blastocyst development. Reproduction 2018; 156:145-161. [PMID: 29866767 DOI: 10.1530/rep-17-0689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/01/2018] [Indexed: 01/14/2023]
Abstract
The POU5F1 gene encodes one of the 'core' transcription factors necessary to establish and maintain pluripotency in mammals. Its function depends on its precise level of expression, so its transcription has to be tightly regulated. To date, few conserved functional elements have been identified in its 5' regulatory region: a distal and a proximal enhancer, and a minimal promoter, epigenetic modifications of which interfere with POU5F1 expression and function in in vitro-derived cell lines. Also, its permanent inactivation in differentiated cells depends on de novo methylation of its promoter. However, little is known about the epigenetic regulation of POU5F1 expression in the embryo itself. We used the rabbit blastocyst as a model to analyze the methylation dynamics of the POU5F1 5' upstream region, relative to its regulated expression in different compartments of the blastocyst over a 2-day period of development. We evidenced progressive methylation of the 5' regulatory region and the first exon accompanying differentiation and the gradual repression of POU5F1 Methylation started in the early trophectoderm before complete transcriptional inactivation. Interestingly, the distal enhancer, which is known to be active in naïve pluripotent cells only, retained a very low level of methylation in primed pluripotent epiblasts and remained less methylated in differentiated compartments than the proximal enhancer. This detailed study identified CpGs with the greatest variations in methylation, as well as groups of CpGs showing a highly correlated behavior, during differentiation. Moreover, our findings evidenced few CpGs with very specific behavior during this period of development.
Collapse
Affiliation(s)
- E Canon
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - L Jouneau
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - T Blachère
- Univ LyonUniversité Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - N Peynot
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - N Daniel
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - L Boulanger
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - L Maulny
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - C Archilla
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - S Voisin
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - A Jouneau
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - M Godet
- Univ LyonUniversité Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - V Duranthon
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| |
Collapse
|
10
|
Yeo CD, Kang N, Choi SY, Kim BN, Park CK, Kim JW, Kim YK, Kim SJ. The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: a possible link to epigenetic regulation. Korean J Intern Med 2017; 32:589-599. [PMID: 28704917 PMCID: PMC5511947 DOI: 10.3904/kjim.2016.302] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/15/2017] [Indexed: 02/08/2023] Open
Abstract
A hypoxic microenvironment leads to cancer progression and increases the metastatic potential of cancer cells within tumors via epithelial-mesenchymal transition (EMT) and cancer stemness acquisition. The hypoxic response pathway can occur under oxygen tensions of < 40 mmHg through hypoxia-inducible factors (HIFs), which are considered key mediators in the adaptation to hypoxia. Previous studies have shown that cellular responses to hypoxia are required for EMT and cancer stemness maintenance through HIF-1α and HIF-2α. The principal transcription factors of EMT include Twist, Snail, Slug, Sip1 (Smad interacting protein 1), and ZEB1 (zinc finger E-box-binding homeobox 1). HIFs bind to hypoxia response elements within the promoter region of these genes and also target cancer stem cell-associated genes and mediate transcriptional responses to hypoxia during stem cell differentiation. Acquisition of stemness characteristics in epithelial cells can be induced by activation of the EMT process. The mechanism of these phenotypic changes includes epigenetic alterations, such as DNA methylation, histone modification, chromatin remodeling, and microRNAs. Increased expression of EMT and pluripotent genes also play a role through demethylation of their promoters. In this review, we summarize the role of hypoxia on the acquisition of EMT and cancer stemness and the possible association with epigenetic regulation, as well as their therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Seung Joon Kim
- Correspondence to Seung Joon Kim, M.D. Division of Pulmonology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpodaero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6063 Fax: +82-2-599-3589 E-mail:
| |
Collapse
|
11
|
Huang Y, Jiang X, Yu M, Huang R, Yao J, Li M, Zheng F, Yang X. Beneficial effects of diazepin-quinazolin-amine derivative (BIX-01294) on preimplantation development and molecular characteristics of cloned mouse embryos. Reprod Fertil Dev 2017; 29:1260-1269. [DOI: 10.1071/rd15463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 06/04/2016] [Indexed: 12/19/2022] Open
Abstract
Somatic cell nuclear transfer is frequently associated with abnormal epigenetic modifications that may lead to the developmental failure of cloned embryos. BIX-01294 (a diazepine–quinazoline–amine derivative) is a specific inhibitor of the histone methyltransferase G9a. The aim of the present study was to investigate the effects of BIX-01294 on development, dimethylation of histone H3 at lysine 9 (H3K9), DNA methylation and the expression of imprinted genes in cloned mouse preimplantation embryos. There were no significant differences in blastocyst rates of cloned embryos treated with or without 0.1 μM BIX-01294. Relative to clone embryos treated without 0.1 μM BIX-01294, exposure of embryos to BIX-01294 decreased histone H3K9 dimethylation and DNA methylation in cloned embryos to levels that were similar to those of in vivo-fertilised embryos at the 2-cell and blastocyst stages. Cloned embryos had lower expression of octamer-binding transcription factor 4 (Oct4) and small nuclear ribonucleoprotein N (Snrpn), but higher expression of imprinted maternally expressed transcript (non-protein coding) (H19) and growth factor receptor-bound protein 10 (Grb10) compared with in vivo-fertilised counterparts. The addition of 0.1 μM BIX-01294 to the activation and culture medium resulted in lower H19 expression and higher cyclin dependent kinase inhibitor 1C (Cdkn1c) and delta-like 1 homolog (Dlk1) expression, but had no effect on the expression of Oct4, Snrpn and Grb10. The loss of methylation at the Grb10 cytosine–phosphorous–guanine (CpG) islands in cloned embryos was partially corrected by BIX-01294. These results indicate that BIX-01294 treatment of cloned embryos has beneficial effects in terms of correcting abnormal epigenetic modifications, but not on preimplantation development.
Collapse
|
12
|
Derivation and application of pluripotent stem cells for regenerative medicine. SCIENCE CHINA-LIFE SCIENCES 2016; 59:576-83. [DOI: 10.1007/s11427-016-5066-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/21/2023]
|
13
|
Olariu V, Lövkvist C, Sneppen K. Nanog, Oct4 and Tet1 interplay in establishing pluripotency. Sci Rep 2016; 6:25438. [PMID: 27146218 PMCID: PMC4857071 DOI: 10.1038/srep25438] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/18/2016] [Indexed: 01/12/2023] Open
Abstract
A few central transcription factors inside mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are believed to control the cells’ pluripotency. Characterizations of pluripotent state were put forward on both transcription factor and epigenetic levels. Whereas core players have been identified, it is desirable to map out gene regulatory networks which govern the reprogramming of somatic cells as well as the early developmental decisions. Here we propose a multiple level model where the regulatory network of Oct4, Nanog and Tet1 includes positive feedback loops involving DNA-demethylation around the promoters of Oct4 and Tet1. We put forward a mechanistic understanding of the regulatory dynamics which account for i) Oct4 overexpression is sufficient to induce pluripotency in somatic cell types expressing the other Yamanaka reprogramming factors endogenously; ii) Tet1 can replace Oct4 in reprogramming cocktail; iii) Nanog is not necessary for reprogramming however its over-expression leads to enhanced self-renewal; iv) DNA methylation is the key to the regulation of pluripotency genes; v) Lif withdrawal leads to loss of pluripotency. Overall, our paper proposes a novel framework combining transcription regulation with DNA methylation modifications which, takes into account the multi-layer nature of regulatory mechanisms governing pluripotency acquisition through reprogramming.
Collapse
Affiliation(s)
- Victor Olariu
- Centre for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,Computational Biology and Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Cecilia Lövkvist
- Centre for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kim Sneppen
- Centre for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,Centre for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Zou C, Fu Y, Li C, Liu H, Li G, Li J, Zhang H, Wu Y, Li C. Genome-wide gene expression and DNA methylation differences in abnormally cloned and normally natural mating piglets. Anim Genet 2016; 47:436-50. [DOI: 10.1111/age.12436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 01/24/2023]
Affiliation(s)
- C. Zou
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - Y. Fu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - C. Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - H. Liu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - G. Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - J. Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - H. Zhang
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - Y. Wu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - C. Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| |
Collapse
|
15
|
ZHOU XY, LIU LL, JIA WC, PAN CY. Methylation profile of bovine Oct4 gene coding region in relation to three germ layers. JOURNAL OF INTEGRATIVE AGRICULTURE : JIA 2016; 15:618-628. [PMID: 32288951 PMCID: PMC7128269 DOI: 10.1016/s2095-3119(15)61100-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/23/2015] [Indexed: 06/11/2023]
Abstract
Previous studies have shown that octamer-binding transcription factor 4 (Oct4) plays a significant role in early embryonic development of mammalian animals, and different Oct4 expression levels induce multi-lineage differentiation which are regulated by DNA methylation. To explore the relationship between the methylation pattern of Oct4 gene exon 1 and embryonic development, in this work, five different tissues (heart, liver, lung, cerebrum and cerebellum) from three germ layers were chosen from low age (50-60 d) and advanced age (60-70 d) of fetal cattle and the differences between tissues or ages were analyzed, respectively. The result showed that the DNA methylation level of Oct4 gene exon 1 was significant different (P<0.01) between any two of three germ layers in low age (<60 d), but kept steady of advanced age (P>0.05) (>60 d), suggesting that 60-d post coital was an important boundary for embryonic development. In addition, in ectoderm (cerebrum and cerebellum), there was no significant methylation difference of Oct4 gene exon 1 between low age and advanced age (P>0.05), but the result of endoderm (liver and lung) and mesoderm (heart) were on the contrary (P<0.01), which indicated the development of ectoderm was earlier than endoderm and mesoderm. The methylation differences from the 3rd, 5th and 9th CpG-dinucleotide loci of Oct4 gene exon 1 were significantly different between each two of three germ layers (P<0.05), indicating that these three loci may have important influence on bovine embryonic development. This study showed that bovine germ layers differentiation was significantly related to the DNA methylation status of Oct4 gene exon 1. This work firstly identified the DNA methylation profile of bovine Oct4 gene exon 1 and its association with germ layers development in fetus and adult of cattle. Moreover, the work also provided epigenetic information for further studying bovine embryonic development and cellular reprogramming.
Collapse
Affiliation(s)
- Xin-yu ZHOU
- College of Life Sciences, Northwest A&F University, Yangling 712100, P.R. China
| | - Liang-liang LIU
- School of Computer Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P.R. China
| | - Wen-chao JIA
- College of Animal Science and Technology, Northwest A&F University/Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, P.R. China
| | - Chuan-ying PAN
- College of Life Sciences, Northwest A&F University, Yangling 712100, P.R. China
- College of Animal Science and Technology, Northwest A&F University/Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, P.R. China
| |
Collapse
|
16
|
Hypermethylation of FOXD3 suppresses cell proliferation, invasion and metastasis in hepatocellular carcinoma. Exp Mol Pathol 2015; 99:374-82. [DOI: 10.1016/j.yexmp.2015.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 11/18/2022]
|
17
|
A Cell Electrofusion Chip for Somatic Cells Reprogramming. PLoS One 2015; 10:e0131966. [PMID: 26177036 PMCID: PMC4503441 DOI: 10.1371/journal.pone.0131966] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 06/08/2015] [Indexed: 11/23/2022] Open
Abstract
Cell fusion is a potent approach to explore the mechanisms of somatic cells reprogramming. However, previous fusion methods, such as polyethylene glycol (PEG) mediated cell fusion, are often limited by poor fusion yields. In this study, we developed a simplified cell electrofusion chip, which was based on a micro-cavity/ discrete microelectrode structure to improve the fusion efficiency and to reduce multi-cell electrofusion. Using this chip, we could efficiently fuse NIH3T3 cells and mouse embryonic stem cells (mESCs) to induce somatic cells reprogramming. We also found that fused cells demethylated gradually and 5-hydroxymethylcytosine (5hmC) was involved in the demethylation during the reprogramming. Thus, the cell electrofusion chip would facilitate reprogramming mechanisms research by improving efficiency of cell fusion and reducing workloads.
Collapse
|
18
|
Pfeiffer MJ, Esteves TC, Balbach ST, Araúzo-Bravo MJ, Stehling M, Jauch A, Houghton FD, Schwarzer C, Boiani M. Reprogramming of two somatic nuclei in the same ooplasm leads to pluripotent embryonic stem cells. Stem Cells 2014; 31:2343-53. [PMID: 23922292 DOI: 10.1002/stem.1497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/24/2013] [Accepted: 07/07/2013] [Indexed: 11/10/2022]
Abstract
The conversion of the nuclear program of a somatic cell from a differentiated to an undifferentiated state can be accomplished by transplanting its nucleus to an enucleated oocyte (somatic cell nuclear transfer [SCNT]) in a process termed "reprogramming." This process achieves pluripotency and occasionally also totipotency. Exploiting the obstacle of tetraploidy to full development in mammals, we show that mouse ooplasts transplanted with two somatic nuclei simultaneously (double SCNT) support preimplantation development and derivation of novel tetraploid SCNT embryonic stem cells (tNT-ESCs). Although the double SCNT embryos do not recapitulate the expression pattern of the pluripotency-associated gene Oct4 in fertilized embryos, derivative tNT-ESCs have characteristics of genuine pluripotency: in vitro they differentiate into neurons, cardiomyocytes, and endodermal cells; in vivo, tNT-ESCs form teratomas, albeit at reduced rates compared to diploid counterparts. Global transcriptome analysis revealed only few specific alterations, for example, in the quantitative expression of gastrulation-associated genes. In conclusion, we have shown that the oocyte's reprogramming capacity is in excess of a single nucleus and that double nucleus-transplanted embryos and derivative ESCs are very similar to their diploid counterparts. These results have key implications for reprogramming studies based on pluripotency: while reprogramming in the tetraploid state was known from fusion-mediated reprogramming and from fetal and adult hepatocyte-derived induced pluripotent stem cells, we have now accomplished it with enucleated oocytes.
Collapse
|
19
|
LONG CHARLESR, WESTHUSIN MARKE, GOLDING MICHAELC. Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol Reprod Dev 2014; 81:183-93. [PMID: 24167064 PMCID: PMC3953569 DOI: 10.1002/mrd.22271] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/20/2013] [Indexed: 12/11/2022]
Abstract
Somatic-cell nuclear transfer (SCNT) experiments have paved the way to the field of cellular reprogramming. The demonstrated ability to clone over 20 different species to date has proven that the technology is robust but very inefficient, and is prone to developmental anomalies. Yet, the offspring from cloned animals exhibit none of the abnormalities of their parents, suggesting the low efficiency and high developmental mortality are epigenetic in origin. The epigenetic barriers to reprogramming somatic cells into a totipotent embryo capable of developing into a viable offspring are significant and varied. Despite their intimate relationship, chromatin structure and transcription are often not uniformly reprogramed after nuclear transfer, and many cloned embryos develop gene expression profiles that are hybrids between the donor cell and an embryonic blastomere. Recent advances in cellular reprogramming suggest that alteration of donor-cell chromatin structure towards that found in an normal embryo is actually the rate-limiting step in successful development of SCNT embryos. Here we review the literature relevant to the transformation of a somatic-cell nucleus into an embryo capable of full-term development. Interestingly, while resetting somatic transcription and associated epigenetic marks are absolutely required for development of SCNT embryos, life does not demand perfection.
Collapse
Affiliation(s)
- CHARLES R. LONG
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - MARK E. WESTHUSIN
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - MICHAEL C. GOLDING
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
20
|
Miyamoto K, Gurdon JB. Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins. Cell Mol Life Sci 2013; 70:3289-302. [PMID: 23275942 PMCID: PMC3753470 DOI: 10.1007/s00018-012-1235-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022]
Abstract
Proper regulation of transcription is essential for cells to acquire and maintain cell identity. Transcriptional activation plays a central role in gene regulation and can be modulated by introducing transcriptional activators such as transcription factors. Activators act on their specific target genes to induce transcription. Reprogramming experiments have revealed that as cells become differentiated, some genes are highly silenced and even introduction of activators that target these silenced genes does not induce transcription. This can be explained by chromatin-based repression that restricts access of transcriptional activators to silenced genes. Transcriptional activation from these genes can be accomplished by opening chromatin, in addition to providing activators. Once a de novo transcription network is established, cells are differentiated or reprogrammed to a new cell type. Emerging evidence suggests that actin in the nucleus (nuclear actin) and nuclear actin-binding proteins are implicated in these transcriptional regulatory processes. This review summarizes roles of nuclear actin and actin-binding proteins in transcriptional regulation. We also discuss possible functions of nuclear actin during reprogramming in the context of transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Kei Miyamoto
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | | |
Collapse
|
21
|
Huan YJ, Zhu J, Xie BT, Wang JY, Liu SC, Zhou Y, Kong QR, He HB, Liu ZH. Treating cloned embryos, but not donor cells, with 5-aza-2'-deoxycytidine enhances the developmental competence of porcine cloned embryos. J Reprod Dev 2013; 59:442-9. [PMID: 23748715 PMCID: PMC3934119 DOI: 10.1262/jrd.2013-026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The efficiency of cloning by somatic cell nuclear transfer (SCNT) has remained low.
In most cloned embryos, epigenetic reprogramming is incomplete, and usually the
genome is hypermethylated. The DNA methylation inhibitor 5-aza-2’-deoxycytidine
(5-aza-dC) could improve the developmental competence of cow, pig, cat and human SCNT
embryos in previous studies. However, the parameters of 5-aza-dC treatment among
species are different, and whether 5-aza-dC could enhance the developmental
competence of porcine cloned embryos has still not been well studied. Therefore, in
this study, we treated porcine fetal fibroblasts (PFF) that then were used as donor
nuclei for nuclear transfer or fibroblast-derived reconstructed embryos with
5-aza-dC, and the concentration- and time-dependent effects of 5-aza-dC on porcine
cloned embryos were investigated by assessing pseudo-pronucleus formation,
developmental potential and pluripotent gene expression of these reconstructed
embryos. Our results showed that 5-aza-dC significantly reduced the DNA methylation
level in PFF (0 nM vs. 10 nM vs. 25 nM
vs. 50 nM, 58.70% vs. 37.37%
vs. 45.43% vs. 39.53%, P<0.05), but did not
improve the blastocyst rate of cloned embryos derived from these cells. Treating
cloned embryos with 25 nM 5-aza-dC for 24 h significantly enhanced the blastocyst
rate compared with that of the untreated group. Furthermore, treating cloned embryos,
but not donor cells, significantly promoted pseudo-pronucleus formation at 4 h post
activation (51% for cloned embryos treated, 34% for donor cells treated and 36% for
control, respectively, P<0.05) and enhanced the expression levels of pluripotent
genes (Oct4, Nanog and Sox2) up to
those of in vitro fertilized embryos during embryo development. In
conclusion, treating cloned embryos, but not donor cells, with 5-aza-dC enhanced the
developmental competence of porcine cloned embryos by promotion of pseudo-pronucleus
formation and improvement of pluripotent gene expression.
Collapse
Affiliation(s)
- Yan Jun Huan
- College of Life Science, Northeast Agricultural University, Haerbin 150030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Teperek M, Miyamoto K. Nuclear reprogramming of sperm and somatic nuclei in eggs and oocytes. Reprod Med Biol 2013; 12:133-149. [PMID: 24273450 PMCID: PMC3824936 DOI: 10.1007/s12522-013-0155-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022] Open
Abstract
Eggs and oocytes have a prominent ability to reprogram sperm nuclei for ensuring embryonic development. The reprogramming activity that eggs/oocytes intrinsically have towards sperm is utilised to reprogram somatic nuclei injected into eggs/oocytes in nuclear transfer (NT) embryos. NT embryos of various species can give rise to cloned animals, demonstrating that eggs/oocytes can confer totipotency even to somatic nuclei. However, many studies indicate that reprogramming of somatic nuclei is not as efficient as that of sperm nuclei. In this review, we explain how and why sperm and somatic nuclei are differentially reprogrammed in eggs/oocytes. Recent studies have shown that sperm chromatin is epigenetically modified to be adequate for early embryonic development, while somatic nuclei do not have such modifications. Moreover, epigenetic memories encoded in sperm chromatin are transgenerationally inherited, implying unique roles of sperm. We also discuss whether somatic nuclei can be artificially modified to acquire sperm-like chromatin states in order to increase the efficiency of nuclear reprogramming.
Collapse
Affiliation(s)
- Marta Teperek
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, CB2 1QN Cambridge, United Kingdom ; Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
23
|
Synergistic effect of trichostatin A and scriptaid on the development of cloned rabbit embryos. Theriogenology 2013; 79:1284-93. [PMID: 23566670 DOI: 10.1016/j.theriogenology.2013.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 12/18/2022]
Abstract
The first successful rabbit SCNT was achieved more than one decade ago, yet rabbits remain one of the most difficult species to clone. The present study was designed to evaluate the effects of two histone deacetylase inhibitors (HDACis), namely trichostatin A (TSA) and scriptaid (SCP), on cloning efficiency in rabbits. The in vitro development, acetylation levels of histone H4 lysine 5 (H4K5), and octamer-binding transcription factor 4 (Oct-4) expression patterns of cloned embryos were systemically examined after various HDACi treatments. Supplementation of TSA (50 nM) or SCP (250 nM) in the culture medium for 6 hours improved blastocyst development rates of cloned embryos compared with the treatment without HDACi. The combined treatment with TSA (50 nM) and SCP (250 nM) further enhanced morula (58.6%) and blastocyst (49.4%) rates in vitro. More importantly, compared with single HDACi treatments, embryos with the combined treatment had a higher level of H4K5 and an increased total cell number (203.7 ± 14.4 vs. 158.9 ± 9.0 or 162.1 ± 8.2; P < 0.05) with a better Oct-4 expression pattern in hatching blastocysts, indicating substantially improved embryo quality. This was apparently the first report regarding Oct-4 expression in cloned rabbit embryos. We inferred that most cloned rabbit embryos had an aberrant inner cell mass (ICM) structure accompanied with abnormal spatial distribution of Oct-4 signals. This study demonstrated a synergistic effect of TSA and SCP treatments on cloned rabbit embryos, which might be useful to improve cloning efficiency in rabbits.
Collapse
|
24
|
Zhao MT, Rivera RM, Prather RS. Locus-specific DNA methylation reprogramming during early porcine embryogenesis. Biol Reprod 2013; 88:48. [PMID: 23303676 DOI: 10.1095/biolreprod.112.104471] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During early mammalian embryogenesis, there is a wave of DNA demethylation postfertilization and de novo methylation around implantation. The paternal genome undergoes active DNA demethylation, whereas the maternal genome is passively demethylated after fertilization in most mammals except for sheep and rabbits. However, the emerging genome-wide DNA methylation landscape has revealed a regulatory and locus-specific DNA methylation reprogramming pattern in mammalian preimplantation embryos. Here we optimized a bisulfite sequencing protocol to draw base-resolution DNA methylation profiles of several selected genes in gametes, early embryos, and somatic tissue. We observed locus-specific DNA methylation reprogramming in early porcine embryos. First, some pluripotency genes (POU5F1 and NANOG) followed a typical wave of DNA demethylation and remethylation, whereas CpG-rich regions of SOX2 and CDX2 loci were hypomethylated throughout development. Second, a differentially methylated region of an imprint control region in the IGF2/H19 locus exhibited differential DNA methylation which was maintained in porcine early embryos. Third, a centromeric repeat element retained a moderate DNA methylation level in gametes, early embryos, and somatic tissue. The diverse DNA methylation reprogramming during early embryogenesis is thought to be possibly associated with the multiple functions of DNA methylation in transcriptional regulation, genome stability and genomic imprinting. The latest technology such as oxidative bisulfite sequencing to identify 5-hydroxymethylcytosine will further clarify the DNA methylation reprogramming during porcine embryonic development.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
25
|
Al-Khtib M, Blachère T, Guérin JF, Lefèvre A. Methylation profile of the promoters of Nanog and Oct4 in ICSI human embryos. Hum Reprod 2012; 27:2948-54. [PMID: 22914767 DOI: 10.1093/humrep/des284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION What is the methylation status of the Nanog and Oct4 promoters in human gametes and ICSI embryos and is abnormal reprogramming of their methylation associated with developmental failure of ICSI embryos? SUMMARY ANSWER Developmental failure of human ICSI embryos is associated with high methylation of the Oct4 promoter. WHAT IS KNOWN ALREADY Nanog and Oct4 genes play critical roles in the establishment and maintenance of pluripotency during normal early embryonic development, and both are negatively regulated through the methylation of their promoters. STUDY DESIGN, SIZE AND DURATION We analysed the methylation profile of Nanog and Oct4 promoters in 5 control sperm from normally fertile men, 70 metaphase II oocytes, 21 4-cell control ICSI embryos, 7 control blastocysts and 45 ICSI embryos arrested at 2- to 8-cell stage following prolonged culture. PARTICIPANTS, MATERIALS, SETTING AND METHODS Embryos and gametes were donated for research by patients from the Department of Reproductive Medicine at the Hôpital Femme Mère Enfant (Bron, France) and the Clinique du Tonkin (Villeurbanne, France) after giving their informed consent. MAIN RESULTS For both promoters, high methylation was observed in sperm cells. Although, in general, the promoters were unmethylated in oocytes, the methylation of some alleles was observed, particularly in oocytes from women with known infertility. Both gene promoters were hypomethylated in control blastocyst ICM (inner cell mass) and in control 2-8-cells embryos obtained from 6 out of 8 couples. However, they appeared highly methylated in embryos obtained from the other two couples. In most arrested ICSI embryos, the Nanog promoter was unmethylated while the Oct4 promoter was highly methylated. High methylation of the Oct4 promoter was significantly more pronounced in embryos from couples where a male factor was the only known cause of infertility. When the embryos were heterozygous for a G/A single nucleotide polymorphism, both alleles could be methylated, each likely representing a paternally inherited or a maternally inherited copy. LIMITATIONS AND REASONS FOR CAUTION The study was done on a limited number of oocytes and embryos and the gametes of the couples were not available. WIDER IMPLICATIONS OF THE FINDINGS These results provide new insight regarding the roles of epigenetic abnormalities in early developmental failure in humans. STUDY FUNDING/COMPETING INTEREST(S) No external funding was obtained for this study. There was no competing interest.
Collapse
Affiliation(s)
- M Al-Khtib
- INSERM U846, Institut Cellule Souche et Cerveau, 18 Av Doyen Lépine, Bron 69500, France
| | | | | | | |
Collapse
|
26
|
Gu P, Xu X, Le Menuet D, Chung ACK, Cooney AJ. Differential recruitment of methyl CpG-binding domain factors and DNA methyltransferases by the orphan receptor germ cell nuclear factor initiates the repression and silencing of Oct4. Stem Cells 2011; 29:1041-51. [PMID: 21608077 PMCID: PMC3468724 DOI: 10.1002/stem.652] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The pluripotency gene Oct4 encodes a key transcription factor that maintains self-renewal of embryonic stem cell (ESC) and is downregulated upon differentiation of ESCs and silenced in somatic cells. A combination of cis elements, transcription factors, and epigenetic modifications, such as DNA methylation, mediates Oct4 gene expression. Here, we show that the orphan nuclear receptor germ cell nuclear factor (GCNF) initiates Oct4 repression and DNA methylation by the differential recruitment of methyl-CpG binding domain (MBD) and DNA methyltransferases (Dnmts) to the Oct4 promoter. When compared with wild-type ESCs and gastrulating embryos, Oct4 repression is lost and its proximal promoter is significantly hypomethylated in retinoic acid (RA)-differentiated GCNF−/− ESCs and GCNF−/− embryos. Efforts to characterize mediators of GCNF's repressive function and DNA methylation of the Oct4 promoter identified MBD3, MBD2, and de novo Dnmts as GCNF interacting factors. Upon differentiation, endogenous GCNF binds to the Oct4 proximal promoter and differentially recruits MBD3 and MBD2 as well as Dnmt3A. In differentiated GCNF−/− ESCs, recruitment of MBD3 and MBD2 as well as Dnmt3A to Oct4 promoter is lost and subsequently Oct4 repression and DNA methylation failed to occur. Hypomethylation of the Oct4 promoter is also observed in RA-differentiated MBD3−/− and Dnmt3A−/− ESCs, but not in MBD2−/− and Dnmt3B−/− ESCs. Thus, recruitment of MBD3, MBD2, and Dnmt3A by GCNF links two events: gene-specific repression and DNA methylation, which occur differentially at the Oct4 promoter. GCNF initiates the repression and epigenetic modification of Oct4 gene during ESC differentiation. Stem Cells 2011;29:1041–1051
Collapse
Affiliation(s)
- Peili Gu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
27
|
Cheng X, Meng S, Deng J, Lai W, Wang H. Identification and characterization of the Oct4 extended transcriptional regulatory region in Guanzhong dairy goat. Genome 2011; 54:812-8. [PMID: 21929360 DOI: 10.1139/g11-047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The octamer-binding transcription factor 4 gene (Oct4) plays a critical role in maintaining pluripotency during early mammalian embryonic development and self-renewal of embryonic stem (ES) cells. In this study, we cloned the Oct4 cDNA and 2.8-kb regulatory region upstream of the start codon in Guanzhong dairy goat ( Capra hircus ). The comparative sequence analysis of Oct4 cDNA showed that it was highly conserved among six mammalian species. The goat Oct4 5' regulatory regions were homologous to the corresponding regions of Oct4 in other species and were functional in directing the expression of luciferase in mouse P19 embryonic carcinoma cells and mouse J1 ES cells. Furthermore, the methylation levels in the goat Oct4 minimal promoter and proximal enhancer in the fetal genital ridge were lower than those in the heart. Additionally, two processed pseudogenes that shared high homology with goat Oct4 cDNA were identified and characterized.
Collapse
Affiliation(s)
- Xiang Cheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | |
Collapse
|
28
|
Chua SJ, Casper RF, Rogers IM. Toward transgene-free induced pluripotent stem cells: lessons from transdifferentiation studies. Cell Reprogram 2011; 13:273-80. [PMID: 21599518 DOI: 10.1089/cell.2010.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract Regenerative medicine has received much attention over the years due to its clinical and commercial potential. The excitement around regenerative medicine waxes and wanes as new discoveries add to its foundation but are not immediately clinically applicable. The recent discovery of induced pluripotent stem cells has lead to a sustained effort from many research groups to develop clinically relevant regenerative medicine therapies. A major focus of cellular reprogramming is to generate safe cellular products through the use of proteins or small molecules instead of transgenes. The successful reprogramming of somatic nuclei to generate pluripotential cells capable of embryo development was pioneered over 50 years ago by Briggs and King and followed by Gurdon in the early 1960s. The success of these studies, the cloning of Dolly, and more current studies involving adult stem cells and transdifferentiation provide us with a large repository of potential candidate molecules and experimental systems that will assist in the generation of safe, transgene-free pluripotential cells.
Collapse
Affiliation(s)
- Shawn J Chua
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
29
|
Hai T, Hao J, Wang L, Jouneau A, Zhou Q. Pluripotency maintenance in mouse somatic cell nuclear transfer embryos and its improvement by treatment with the histone deacetylase inhibitor TSA. Cell Reprogram 2011; 13:47-56. [PMID: 21241188 DOI: 10.1089/cell.2010.0042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Reprogramming of somatic cells to pluripotency can be achieved by nuclear transfer into enucleated oocytes (SCNT). A key event of this process is the demethylation of the Oct4 gene and its temporally and spatially regulated expression. Different studies have shown that it occurs abnormally in some SCNT embryos. TSA is a histone deacetylase inhibitor known to increase the efficiency of development to term of SCNT embryos, but its impact on the developmental features of SCNT embryos is poorly understood. Here, we have followed the fate of the pluripotent cells within SCNT embryos, from the late blastocyst to the early epiblast prior to gastrulation. Our data show a delay in development correlated with a defect in forming and maintaining a correct number of Oct4 expressing ICM and epiblast cells in SCNT embryos. As a consequence, during the outgrowth phase of embryonic stem cell derivation as well as during diapause in vivo, part of the SCNT blastocysts completely lose their ICM cells. Meanwhile, the others display a correctly reprogrammed ICM compatible with the derivation of ES cells and development of the epiblast. Our data also indicate that TSA favors the establishment of pluripotency in SCNT embryos.
Collapse
Affiliation(s)
- Tang Hai
- State Key Laboratory of Reproductive Biology, Institute of Zoology , Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
WHITWORTH KRISTINM, PRATHER RANDALLS. Somatic cell nuclear transfer efficiency: how can it be improved through nuclear remodeling and reprogramming? Mol Reprod Dev 2010; 77:1001-15. [PMID: 20931660 PMCID: PMC4718708 DOI: 10.1002/mrd.21242] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/23/2010] [Indexed: 01/01/2023]
Abstract
Fertile offspring from somatic cell nuclear transfer (SCNT) is the goal of most cloning laboratories. For this process to be successful, a number of events must occur correctly. First the donor nucleus must be in a state that is amenable to remodeling and subsequent genomic reprogramming. The nucleus must be introduced into an oocyte cytoplasm that is capable of facilitating the nuclear remodeling. The oocyte must then be adequately stimulated to initiate development. Finally the resulting embryo must be cultured in an environment that is compatible with the development of that particular embryo. Much has been learned about the incredible changes that occur to a nucleus after it is placed in the cytoplasm of an oocyte. While we think that we are gaining an understanding of the reorganization that occurs to proteins in the donor nucleus, the process of cloning is still very inefficient. Below we will introduce the procedures for SCNT, discuss nuclear remodeling and reprogramming, and review techniques that may improve reprogramming. Finally we will briefly touch on other aspects of SCNT that may improve the development of cloned embryos.
Collapse
Affiliation(s)
| | - RANDALL S. PRATHER
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
31
|
Miyanari Y, Torres-Padilla ME. Epigenetic regulation of reprogramming factors towards pluripotency in mouse preimplantation development. Curr Opin Endocrinol Diabetes Obes 2010; 17:500-6. [PMID: 20962633 DOI: 10.1097/med.0b013e3283405325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Pluripotency is the ability of a cell to give rise to all the tissues of the adult body. During development, both genetic and epigenetic mechanisms are proposed to be involved in the establishment of the pluripotent state in the cells of the epiblast. Here, we review recent findings on the biological function and epigenetic regulation of reprogramming factors with a particular focus on the early mouse embryo. RECENT FINDINGS A number of functional studies have identified a group of transcription factors required for reprogramming during mouse preimplantation development. Among these transcription factors, Oct4, Sox2, and Nanog are also crucial for establishment and/or maintenance of pluripotency in vivo. Genome-wide studies with ES cells have highlighted the colocalization of these factors onto ES cell chromatin and the existence of a transcriptional network that might direct pluripotency. Furthermore, recent studies on transcription factor-mediated induced reprogramming to induced pluripotent stem cells have revealed roles of these transcription factors on reprogramming. SUMMARY Oct4, Sox2, and Nanog seem to work at different times of the reprogramming process in vivo. Elucidating the regulatory mechanisms of these factors provides not only insights into the reprogramming mechanisms but also in the regulation of mouse preimplantation development.
Collapse
Affiliation(s)
- Yusuke Miyanari
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM U964, Université de Strasbourg, Illkirch Cedex, France
| | | |
Collapse
|
32
|
Cloning efficiency following ES cell nuclear transfer is influenced by the methylation state of the donor nucleus altered by mutation of DNA methyltransferase 3a and 3b. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11515-010-0840-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Pasque V, Miyamoto K, Gurdon JB. Efficiencies and mechanisms of nuclear reprogramming. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2010; 75:189-200. [PMID: 21047900 PMCID: PMC3833051 DOI: 10.1101/sqb.2010.75.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The differentiated state of somatic cells is highly stable, but it can be experimentally reversed. The resulting cells can then be redirected into many different pathways. Nuclear reprogramming has been achieved by nuclear transfer to eggs, cell fusion, and overexpression of transcription factors. The mechanisms of nuclear reprogramming are not understood, but some insight into them is provided by comparing the efficiencies of different reprogramming strategies. Here, we compare these efficiencies by describing the frequency and rapidity with which reprogramming is induced and by the proportion of cells and level of expression in which reprogramming is achieved. We comment on the mechanisms that lead to successful somatic-cell reprogramming and on those that resist in helping to maintain the differentiated state of somatic cells.
Collapse
Affiliation(s)
- V Pasque
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | | | | |
Collapse
|
34
|
Wang K, Chen Y, Chang EA, Knott JG, Cibelli JB. Dynamic epigenetic regulation of the Oct4 and Nanog regulatory regions during neural differentiation in rhesus nuclear transfer embryonic stem cells. CLONING AND STEM CELLS 2010; 11:483-96. [PMID: 20025521 DOI: 10.1089/clo.2009.0019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oct4 and Nanog are crucial for maintaining pluripotency in embryonic stem (ES) cells and early-stage embryos. In the present study, the status of DNA methylation and of histone modifications in the regulatory regions of Oct4 and Nanog in rhesus nuclear transfer-derived ES (ntES) cells was compared with in vitro fertilized embryo-derived ES (IVFES) cell counterparts. Dynamic changes in DNA methylation during differentiation into neural lineage were also monitored and correlated with mRNA abundance and protein levels of both genes. In ntES cells Oct4 exhibited mono-allelic methylation along with relatively lower mRNA levels, and its transcription was seen predominantly from the unmethylated allele. In contrast, in IVFES cells Oct4 was hypomethylated on both alleles and had relatively higher transcript levels, suggesting incomplete reprogramming of DNA methylation on the Oct4 gene following somatic cell nuclear transfer. During neuronal differentiation, Oct4 underwent biallelic methylation and reduced amounts of Oct4 mRNA were detected in both types of ES cells. Analysis of Nanog regulatory regions revealed that both alleles were hypomethylated and similar levels of Nanog transcripts were expressed in ntES cells and IVFES cells. During neuronal differentiation both alleles were methylated and reduced amounts of Nanog mRNA were detected. Other epigenetic modifications including histone 3 lysine 4, 9, and 27 trimethylation (H3K4me3, H3K9me3, and H3K27me3) showed similar patterns around the regulatory regions of Oct4 and Nanog in both kinds of ES cells. During neural differentiation, dramatic enrichment of H3K27me3 and H3K9me3 (repressive marks) was observed on Oct4 and Nanog regulatory regions. Differentiation of ntES and IVFES cells correlated with the silencing of Oct4 and Nanog, reactivation of the neural marker genes Pax6, N-Oct3, and Olig2, and dynamic changes in histone modifications in the upstream regions of Pax6 and N-Oct3. In short, although ES cells derived from somatic cell nuclear transfer showed a different epigenetic status in the Oct4 regulatory region than the IVF-derived counterparts, based on the parameters tested, the neural differentiation potential of ntES and IVFES cells is equivalent.
Collapse
Affiliation(s)
- Kai Wang
- Michigan State University , East Lansing, Michigan, USA
| | | | | | | | | |
Collapse
|
35
|
ZHANG Y, SHI FY, GAO SR, LIN AX. Spatio-temporal Expression of Heterologous Oct-4 Promoter in Preimplantation Embryos of Pig, Rabbit and Mouse*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Iqbal K, Barg-Kues B, Broll S, Bode J, Niemann H, Kues W. Cytoplasmic injection of circular plasmids allows targeted expression in mammalian embryos. Biotechniques 2010; 47:959-68. [PMID: 20041849 DOI: 10.2144/000113270] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Injection of linearized DNA constructs into the pronuclei of fertilized mammalian eggs is a standard method for producing transgenic embryos and animals. Here, we show that injection of covalently closed circular (ccc) plasmids into the cytoplasm of fertilized bovine and murine eggs is a highly efficient and simple alternative for ectopic expression of foreign DNA in embryos. A broad range of plasmids could be successfully expressed in preimplantation stages, including plasmids and minicircles with a scaffold/matrix attachment region (S/MAR), conventional plasmids, and bacterial artificial chromosomes (BACs). Although the foreign DNA plasmids are mainly maintained as episomal entities during preimplantation development, they accurately behave like nuclear DNA. Onset of transcription of an Oct4 promoter-controlled marker gene coincided with the species-specific time points of major embryonic genome activation, and could be modulated by in vitro DNA-methylation. This approach allows an experimental access to reprogramming events in early mammalian embryos.
Collapse
Affiliation(s)
- Khursheed Iqbal
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute Biotechnology, Mariensee, Neustadt, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Allelic expression and DNA methylation profiles of promoters at the parental Oct4 and Nanog genes in Mus musculus ES cell/Mus caroli splenocyte hybrid cells. Cell Tissue Res 2009; 337:439-48. [PMID: 19609564 DOI: 10.1007/s00441-009-0835-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/22/2009] [Indexed: 12/14/2022]
Abstract
Expression of the parental Oct4 and Nanog alleles and DNA methylation of their promoters were studied in a set of Mus musculus embryonic stem (ES) cell/M. caroli splenocyte hybrid cells containing a variable ratio of parental chromosomes 6 and 17. The transcripts of the reactivated splenocyte Oct4 and Nanog genes were revealed in all hybrid cell clones positive for M. caroli chromosomes 6 and 17. We found that 11 CpG sites in the Oct4 promoter were heavily methylated in M. caroli splenocytes (>80%), whereas M. musculus ES cells were essentially unmethylated (<1%). Analysis of the methylation status of the Oct4 promoter in seven hybrid cell clones showed that the splenocyte-derived promoter sequence lost DNA methylation so that its methylation level was comparable with that of the ES cells. Additionally, no preferential de novo methylation was seen in the Oct4 promoters of M. musculus and M. caroli in teratomas developed from two independent hybrid clones. The upstream region of Nanog was heavily methylated in mouse embryonic fibroblasts (66%) and less methylated in M. caroli splenocytes (24%). The Nanog promoter region was completely unmethylated in M. musculus ES cells. We found that both parental alleles of the Nanog gene promoter were essentially unmethylated in five examined hybrid clones. Thus, we have demonstrated that (1) the Oct4 and Nanog genes of splenocytes are activated, and their promoters undergo demethylation in ES cell hybrids; (2) these events are independent of the number and ratio of parental chromosomes carrying these genes.
Collapse
|
38
|
Zhang M, Wang F, Kou Z, Zhang Y, Gao S. Defective chromatin structure in somatic cell cloned mouse embryos. J Biol Chem 2009; 284:24981-7. [PMID: 19602512 DOI: 10.1074/jbc.m109.011973] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epigenetic reprogramming plays a central role in the development of cloned embryos generated by somatic cell nuclear transfer, and it is believed that aberrant reprogramming leads to the abnormal development of most cloned embryos. Recent studies show that trimethylation of H3K27 (H3K27me3) contributes to the maintenance of embryonic stem cell pluripotency because the differentiation genes are always occupied by nucleosomes trimethylated at H3K27, which represses gene expression. Here, we provide evidence that differential H3K27me3 modification exists between normal fertilization-produced blastocysts and somatic cell nuclear transfer cloned blastocysts; H3K27me3 was specifically found in cells of the inner cell mass (ICM) of normal blastocysts, whereas there was no modification of H3K27me3 in the ICM of cloned blastocysts. Subsequently, we demonstrated that the differentiation-related genes, which are marked by H3K27me3 in embryonic stem cells, were expressed at significantly higher levels in cloned embryos than in normal embryos. The polycomb repressive complex 2 (PRC2) component genes (Eed, Ezh2, and Suz12), which are responsible for the generation of H3K27me3, were expressed at lower levels in the cloned embryos. Our results suggest that reduced expression of PRC2 component genes in cloned embryos results in defective modification of H3K27me3 to the differentiation-related genes in pluripotent ICM cells. This results in premature expression of developmental genes and death of somatic cloned embryos shortly after implantation. Taken together, these studies suggest that H3K27me3 might be an important epigenetic marker with which to evaluate the developmental potential of cloned embryos.
Collapse
Affiliation(s)
- Miao Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | |
Collapse
|
39
|
He H, McHaney M, Hong J, Weiss ML. Cloning and Characterization of 3.1kb Promoter Region of the Oct4 Gene from the Fischer 344 Rat. ACTA ACUST UNITED AC 2009; 1:30-39. [PMID: 22347989 DOI: 10.2174/1876893800901010030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here, the role of methylation in regulation of rat Oct4 gene was evaluated during embryonic development, in adult tissues and in embryo-derived cells. First, the region 3.1 kb upstream to the rat Oct4 ATG site was cloned and sequenced. The rat Oct4 upstream sequence was similar to that in bovine, mouse and human with two upstream elements: proximal (PE) and distal enhancers (DE) and four homology conserved regions (CR1-4). The conserved regions in the rat have 69% - 96% homology with bovine, human, mouse sequences. Next, the methylation pattern in the promoter was determined during embryonic development, in adult tissues, in rat embryonic stem cell (ESC)-like cells and umbilical cord-derived cells (the feeder for ESC-like cells) using the bisulfite method and DNA sequencing. The promoter was methylated in adult and fetal tissues, and in days post coitus (DPC) 10.5 and 12.5 embryos and hypomethylated in DPC4.5 embryos and in rat ESC-like cells. The expression of Oct4 was evaluated by qRT-PCR. DPC4.5 embryos and rat ESC-like cells had higher expression of the Oct4 gene compared to DPC10.5 and 12.5 embryos, adult tissues and embryoid bodies derived from rat ESC-like cells. Thus, the methylation status correlated with the qRT-PCR results. These results indicate that the rat Oct4 3.1kb promoter region is organized and contains transcription binding and regulatory sites similar to those described for bovine, mouse and human. The rat Oct4 promoter is methylated during embryonic development after 4.5 DPC and during differentiation of rat ESC-like cells to embryoid bodies.
Collapse
Affiliation(s)
- Hong He
- Department of Anatomy and Physiology and the Midwest Institute for Comparative Stem Cell Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
40
|
Kawasumi M, Unno Y, Matsuoka T, Nishiwaki M, Anzai M, Amano T, Mitani T, Kato H, Saeki K, Hosoi Y, Iritani A, Kishigami S, Matsumoto K. Abnormal DNA methylation of the Oct-4 enhancer region in cloned mouse embryos. Mol Reprod Dev 2009; 76:342-50. [PMID: 18932201 DOI: 10.1002/mrd.20966] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oct-4 is essential for normal embryonic development, and abnormal Oct-4 expression in cloned embryos contributes to cloning inefficiency. However, the causes of abnormal Oct-4 expression in cloned embryos are not well understood. As DNA methylation in regulatory regions is known to control transcriptional activity, we investigated the methylation status of three transcriptional regulatory regions of the Oct-4 gene in cloned mouse embryos--the distal enhancer (DE), the proximal enhancer (PE), and the promoter regions. We also investigated the level of Oct-4 gene expression in cloned embryos. Immunochemistry revealed that 85% of cloned blastocysts expressed Oct-4 in both trophectoderm and inner cell mass cells. DNA methylation analysis revealed that the PE region methylation was greater in cloned morulae than in normal morulae. However, the same region was less methylated in cloned blastocysts than in normal blastocysts. We found abnormal expression of de novo methyltransferase 3b in cloned blastocysts. These results indicate that cloned embryos have aberrant DNA methylation in the CpG sites of the PE region of Oct-4, and this may contribute directly to abnormal expression of this gene in cloned embryos.
Collapse
Affiliation(s)
- Miyuri Kawasumi
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang K, Beyhan Z, Rodriguez RM, Ross PJ, Iager AE, Kaiser GG, Chen Y, Cibelli JB. Bovine Ooplasm Partially Remodels Primate Somatic Nuclei following Somatic Cell Nuclear Transfer. CLONING AND STEM CELLS 2009; 11:187-202. [DOI: 10.1089/clo.2008.0061] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kai Wang
- Michigan State University, East Lansing, Michigan
| | - Zeki Beyhan
- Michigan State University, East Lansing, Michigan
| | | | | | - Amy E. Iager
- Michigan State University, East Lansing, Michigan
| | | | - Ying Chen
- Michigan State University, East Lansing, Michigan
| | - Jose B. Cibelli
- Michigan State University, East Lansing, Michigan
- Programa Andaluz de Terapia Celular, Andalucia, Spain
| |
Collapse
|
42
|
Iager AE, Ragina NP, Ross PJ, Beyhan Z, Cunniff K, Rodriguez RM, Cibelli JB. Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. CLONING AND STEM CELLS 2008; 10:371-9. [PMID: 18419249 DOI: 10.1089/clo.2007.0002] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Epigenetic aberrancies likely preclude correct and complete nuclear reprogramming following somatic cell nuclear transfer (SCNT), and may underlie the observed reduced viability of cloned embryos. In the present study, we tested the effects of the histone deacetylase inhibitor (HDACi), trichostatin A (TSA), on development and histone acetylation of cloned bovine preimplantation embryos. Our results indicated that treating activated reconstructed SCNT embryos with 50 nM TSA for 13 h produced eight-cell embryos with levels of acetylation of histone H4 at lysine 5 (AcH4K5) similar to fertilized counterparts and significantly greater than in control NT embryos (p < 0.005). Further, TSA treatment resulted in SCNT embryos with preimplantation developmental potential similar to fertilized counterparts, as no difference was observed in cleavage and blastocyst rates or in blastocyst total cell number (p > 0.05). Measurement of eight selected developmentally important genes in single blastocysts showed a similar expression profile among the three treatment groups, with the exception of Nanog, Cdx2, and DNMT3b, whose expression levels were higher in TSA-treated NT than in in vitro fertilized (IVF) embryos. Data presented herein demonstrate that TSA can improve at least one epigenetic mark in early cloned bovine embryos. However, evaluation of development to full-term is necessary to ascertain whether this effect reflects a true increase in developmental potential.
Collapse
Affiliation(s)
- Amy E Iager
- Cellular Reprogramming Laboratory, Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Elucidating nuclear reprogramming mechanisms: taking a synergistic approach. Reprod Biomed Online 2008; 16:41-50. [PMID: 18252046 DOI: 10.1016/s1472-6483(10)60555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nuclear reprogramming is the process by which a differentiated somatic nucleus has developmental potential restored to it. It involves heritable changes in gene expression as well as structural and functional changes to chromatin structure. This process is naturally induced immediately after fertilization, but can also be artificially induced by nuclear transfer, cell fusion and also now by viral transduction with four stem cell genes. However, the frequency of successful reprogramming is low in each system. The highest success rates, those using nuclear transfer, are only of the order of 2-5%. This article briefly reviews these three methods and proposes a synergistic approach where conditions that facilitate reprogramming in one system are transposed to the others. This might increase the incidence of successful reprogramming and identify common steps necessary for the reacquisition of developmental potential.
Collapse
|
44
|
Liu L, Hou J, Lei T, Bai J, Guan H, An X. Aberrant DNA methylation in cloned ovine embryos. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11434-008-0130-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Zhou W, Xiang T, Walker S, Farrar V, Hwang E, Findeisen B, Sadeghieh S, Arenivas F, Abruzzese RV, Polejaeva I. Global gene expression analysis of bovine blastocysts produced by multiple methods. Mol Reprod Dev 2008; 75:744-58. [PMID: 17886272 DOI: 10.1002/mrd.20797] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reproductive efficiency using somatic cell nuclear transfer (SCNT) technology remains suboptimal. Of the various efforts to improve the efficiency, chromatin transfer (CT) and clone-clone aggregation (NTagg) have been reported to produce live cloned animals. To better understand the molecular mechanisms of somatic cell reprogramming during SCNT and assess the various SCNT methods on the molecular level, we performed gene expression analysis on bovine blastocysts produced via standard nuclear transfer (NT), CT, NTagg, in vitro fertilization (IVF), and artificial insemination (AI), as well as on somatic donor cells, using bovine genome arrays. The expression profiles of SCNT (NT, CT, NTagg) embryos were compared with IVF and AI embryos as well as donor cells. NT and CT embryos have indistinguishable gene expression patterns. In comparison to IVF or AI embryos, the number of differentially expressed genes in NTagg embryos is significantly higher than in NT and CT embryos. Genes that were differentially expressed between all the SCNT embryos and IVF or AI embryos are identified. Compared to AI embryos, more than half of the genes found deregulated between SCNT and AI embryos appear to be the result of in vitro culture alone. The results indicate that although SCNT methods have altered differentiated somatic nuclei gene expression to more closely resemble that of embryonic nuclei, combination of insufficient reprogramming and in vitro culture condition compromise the developmental potential of SCNT embryos. This is the first set of comprehensive data for analyzing the molecular impact of various nuclear transfer methods on bovine pre-implantation embryos.
Collapse
|
46
|
Han DW, Do JT, Gentile L, Stehling M, Lee HT, Schöler HR. Pluripotential reprogramming of the somatic genome in hybrid cells occurs with the first cell cycle. Stem Cells 2007; 26:445-54. [PMID: 18065396 DOI: 10.1634/stemcells.2007-0553] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fusion of pluripotent embryonic cells with somatic cells results in reprogramming of the somatic cell genome. Oct4-green fluorescent protein (GFP) transgenes that do not contain the proximal enhancer (PE) region are widely used to visualize reprogramming of the somatic to the pluripotent cell state. The temporal onset of Oct4-GFP activation has been found to occur 40-48 hours postfusion. We asked whether activation of the transgene actually reflects activation of the endogenous Oct4 gene. In the current study, we show that activation of an Oct4-GFP transgene that contains the PE region occurs within 22 hours of fusion. In addition, demethylation of the Oct4-GFP transgene and that of the endogenous Oct4 and Nanog genes was found to occur within 24 hours of fusion. As this timing corresponds with the timing of cell cycle completion in embryonic stem cells and fusion hybrids (approximately 22 hours), we postulate that pluripotential reprogramming of the somatic cell genome begins during the first cell cycle after the fusion of a somatic cell with a pluripotent cell and has been completed by day 2 postfusion.
Collapse
Affiliation(s)
- Dong Wook Han
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Jincho Y, Sotomaru Y, Kawahara M, Ono Y, Ogawa H, Obata Y, Kono T. Identification of genes aberrantly expressed in mouse embryonic stem cell-cloned blastocysts. Biol Reprod 2007; 78:568-76. [PMID: 17978277 DOI: 10.1095/biolreprod.107.064634] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During development, cloned embryos often undergo embryonic arrest at any stage of embryogenesis, leading to diverse morphological abnormalities. The long-term effects resulting from embryo cloning procedures would manifest after birth as early death, obesity, various functional disorders, and so forth. Despite extensive studies, the parameters affecting the developmental features of cloned embryos remain unclear. The present study carried out extensive gene expression analysis to screen a cluster of genes aberrantly expressed in embryonic stem cell-cloned blastocysts. Differential screening of cDNA subtraction libraries revealed 224 differentially expressed genes in the cloned blastocysts: eighty-five were identified by the BLAST search as known genes performing a wide range of functions. To confirm their differential expression, quantitative gene expression analyses were performed by real-time PCR using single blastocysts. The genes Skp1a, Canx, Ctsd, Timd2, and Psmc6 were significantly up-regulated, whereas Aqp3, Ak3l1, Rhot1, Sf3b3, Nid1, mt-Rnr2, mt-Nd1, mt-Cytb, and mt-Co2 were significantly down-regulated in the majority of embryonic stem cell-cloned embryos. Our results suggest that an extraordinarily high frequency of multiple functional disorders caused by the aberrant expression of various genes in the blastocyst stage is involved in developmental arrest and various other disorders in cloned embryos.
Collapse
Affiliation(s)
- Yuko Jincho
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Cavaleri FM, Balbach ST, Gentile L, Jauch A, Böhm-Steuer B, Han YM, Schöler HR, Boiani M. Subsets of cloned mouse embryos and their non-random relationship to development and nuclear reprogramming. Mech Dev 2007; 125:153-66. [PMID: 18054470 DOI: 10.1016/j.mod.2007.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 09/01/2007] [Accepted: 09/19/2007] [Indexed: 12/31/2022]
Abstract
An important question in oocyte-mediated nuclear reprogramming is whether gene expression of the donor nucleus changes randomly or follows a pattern. Since cloned embryos are very heterogeneous and arrest frequently during preimplantation development, a random scenario is generally accepted. In the present study, we resolve the heterogeneity of cumulus cell-derived mouse clones by recognizing structured subsets, and we analyze their relationship to reprogramming of donor nuclei. We utilize live cell imaging of the Oct4 promoter-driven GFP transgene to resolve the populations of cloned and ICSI-fertilized morulae, and we sort them both into three subsets based on different GFP expression. Functionally, subsets of cloned but not ICSI morulae form blastocysts and ES cells proportional to Oct4-GFP expression. Regulatively, the subsets of cloned morulae are characterized by small differences of transcript level for the pluripotency-associated genes Oct4, Nanog and Sox2. Small differences of the level of select mRNAs across subsets suggest a uniform rather than random course of reprogramming from the morula stage on. Since these small differences correspond with substantial differences in developmental competence, we propose that developmental potential of clones relates to levels of gene expression in a different way than fertilized embryos.
Collapse
Affiliation(s)
- Fatima M Cavaleri
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Tong GQ, Heng BC, Ng SC. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model. J Zhejiang Univ Sci B 2007; 8:533-9. [PMID: 17657853 PMCID: PMC1934946 DOI: 10.1631/jzus.2007.b0533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57xCBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 micromol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.
Collapse
Affiliation(s)
- Guo-qing Tong
- Nuclear Reprogramming and Stem Cell Laboratory, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, 119074 Singapore
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, 138672 Singapore
| | - Boon-chin Heng
- Nuclear Reprogramming and Stem Cell Laboratory, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, 119074 Singapore
- Stem Cell Laboratory, Faculty of Dentistry, National University of Singapore, 119074 Singapore
- †E-mail:
| | - Soon-chye Ng
- Nuclear Reprogramming and Stem Cell Laboratory, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, 119074 Singapore
- Embryonics International Pte Ltd., Gleneagles Hospital, 258500 Singapore
| |
Collapse
|
50
|
Campbell KHS, Fisher P, Chen WC, Choi I, Kelly RDW, Lee JH, Xhu J. Somatic cell nuclear transfer: Past, present and future perspectives. Theriogenology 2007; 68 Suppl 1:S214-31. [PMID: 17610946 DOI: 10.1016/j.theriogenology.2007.05.059] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is now over a decade since the birth, in 1996, of Dolly the first animal to be produced by nuclear transfer using an adult derived somatic cell as nuclear donor. Since this time similar techniques have been successfully applied to a range of species producing live offspring and allowing the development of transgenic technologies for agricultural, biotechnological and medical uses. However, though applicable to a range of species, overall, the efficiencies of development of healthy offspring remain low. The low frequency of successful development has been attributed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Many studies have demonstrated that such reprogramming occurs by epigenetic mechanisms not involving alterations in DNA sequence, however, at present the molecular mechanisms underlying reprogramming are poorly defined. Since the birth of Dolly many studies have attempted to improve the frequency of development, this review will discuss the process of animal production by nuclear transfer and in particular changes in the methodology which have increased development and survival, simplified or increased robustness of the technique. Although much of the discussion is applicable across species, for simplicity we will concentrate primarily on published data for cattle, sheep, pigs and mice.
Collapse
Affiliation(s)
- K H S Campbell
- Animal Development and Biotechnology Group, School of Biosciences, University of Nottingham, Sutton Bonnington, Loughborough LE12 5RD, UK.
| | | | | | | | | | | | | |
Collapse
|