1
|
Ruden DM, Rappolee DA. Effects of gravity, microgravity or microgravity simulation on early mouse embryogenesis: A review of the first two space embryo studies. MECHANOBIOLOGY IN MEDICINE 2024; 2:100081. [PMID: 39697609 PMCID: PMC11654910 DOI: 10.1016/j.mbm.2024.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Many simulated micro-gravity (micro-G) experiments on earth suggest that micro-G conditions are not compatible with early mammalian embryo development. Recently, the first two "space embryo" studies have been published showing that early mouse embryo development can occur in real microgravity (real micro-G) conditions in orbit. In the first of these studies, published in 2020, Lei and collaborators developed automated mini-incubator (AMI) devices for mouse embryos facilitating cultivation, microscopic observation, and fixation1. Within these AMI apparatuses, 3400 non-frozen 2-cell embryos were launched in a recoverable satellite, experiencing sustained microgravity (~0.001G) for 64 h post-orbit before fixation in space and recovery on earth. In a subsequent study, in 2023, Wakayama and colleagues2 devised Embryo Thawing and Culturing (ETC) devices, enabling manual thawing, cultivation, and fixation of frozen 2-cell mouse embryos by a trained astronaut aboard the International Space Station (ISS). Within the ETCs, a total of 720 2-cell mouse embryos underwent thawing and cultivation for 4 days on the ISS, subject to either microgravity (n = 360) and simulated-1G (n = 360) conditions. The primary findings from both space embryo experiments indicate that mouse embryos can progress through embryogenesis from the 2-cell stage to the blastocyst stage under real micro-G conditions with few defects. Collectively, these studies propose the potential for mammalian reproduction under real micro-G conditions, challenging earlier simulated micro-G research suggesting otherwise.
Collapse
Affiliation(s)
- Douglas M. Ruden
- C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Daniel A. Rappolee
- C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
2
|
Dobruskin M, Toner G, Kander R. Optimizing cryopreservation strategies for scalable cell therapies: A comprehensive review with insights from iPSC-derived therapies. Biotechnol Prog 2024; 40:e3504. [PMID: 39268839 DOI: 10.1002/btpr.3504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Off-the-shelf cell therapies hold significant curative potential for conditions, such as Parkinson's disease and heart failure. However, these therapies face unique cryopreservation challenges, especially when novel routes of administration, such as intracerebral or epicardial injection, require cryopreservation media that are safe for direct post-thaw administration. Current practices often involve post-thaw washing to remove dimethyl sulfoxide (Me2SO), a cytotoxic cryoprotective agent, which complicates the development and clinical translation of off-the-shelf therapies. To overcome these obstacles, there is a critical need to explore Me2SO-free cryopreservation methods. While such methods typically yield suboptimal post-thaw viability with conventional slow-freeze protocols, optimizing freezing profiles offers a promising strategy to enhance their performance. This comprehensive review examines the latest advancements in cryopreservation techniques across various cell therapy platforms, with a specific case study of iPSC-derived therapies used to illustrate the scalability challenges. By identifying key thermodynamic and biochemical phenomena that occur during freezing, this review aims to identify cell-type independent approaches to improve the efficiency and efficacy of cryopreservation strategies, thereby supporting the widespread adoption and clinical success of off-the-shelf cell therapies.
Collapse
Affiliation(s)
- Michael Dobruskin
- Jefferson Institute for Bioprocessing, Thomas Jefferson University, Spring House, Pennsylvania, USA
| | - Geoffrey Toner
- Jefferson Institute for Bioprocessing, Thomas Jefferson University, Spring House, Pennsylvania, USA
| | - Ronald Kander
- Jefferson Institute for Bioprocessing, Thomas Jefferson University, Spring House, Pennsylvania, USA
| |
Collapse
|
3
|
Kidder BL, Ruden X, Singh A, Marben TA, Rass L, Chakravarty A, Xie Y, Puscheck EE, Awonuga AO, Harris S, Ruden DM, Rappolee DA. Novel high throughput screen reports that benzo(a)pyrene overrides mouse trophoblast stem cell multipotency, inducing SAPK activity, HAND1 and differentiated trophoblast giant cells. Placenta 2024; 152:72-85. [PMID: 38245404 DOI: 10.1016/j.placenta.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
INTRODUCTION Cultured mouse trophoblast stem cells (mTSC) maintain proliferation/normal stemness (NS) under FGF4, which when removed, causes normal differentiation (ND). Hypoxic, or hyperosmotic stress forces trophoblast giant cells (TGC) differentiate. Hypoxic, hyperosmotic, and genotoxic benzo(a)pyrene (BaP), which is found in tobacco smoke, force down-regulation of inhibitor of differentiation (Id)2, enabling TGC differentiation. Hypoxic and hyperosmotic stress induce TGC by SAPK-dependent HAND1 increase. Here we test whether BaP forces mTSC-to-TGC while inducing SAPK and HAND1. METHODS Hand1 and SAPK activity were assayed by immunoblot, mTSC-to-TGC growth and differentiation were assayed at Tfinal after 72hr exposure of BaP, NS, ND, Retinoic acid (RA), or sorbitol. Nuclear-stained cells were micrographed automatically by a live imager, and assayed by ImageJ/FIJI, Biotek Gen 5, AIVIA proprietary artificial intelligence (AI) software or open source, CellPose artificial intelligence/AI software. RESULTS BaP (0.05-1μM) activated SAPK and HAND1 without diminishing growth. TSC-to-TGC differentiation was assayed with increasingly accuracy for 2-4 N cycling nuclei and >4 N differentiating TGC nuclei, using ImageJ/FIJI, Gen 5, AIVIA, or CellPose AI software. The AIVIA and Cellpose AI software matches human accuracy. The lowest BaP effects on SAPK activation/HAND1 increase are >10-fold more sensitive than similar effects for mESC. RA induces 44-47% 1st lineage TGC differentiation, but the same RA dose induces only 1% 1st lineage mESC differentiation. DISCUSSION First, these pilot data suggest that mTSC can be used in high throughput screens (HTS) to predict toxicant exposures that force TGC differentiation. Second, mTSC differentiated more cells than mESC for similar stress exposures, Third, open source AI can replace human micrograph quantitation and enable a miscarriage-predicting HTS.
Collapse
Affiliation(s)
- B L Kidder
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - X Ruden
- CS Mott Center/WSU Ob/gyn Department, USA; Reproductive Stress Inc, Grosse Pointe Farms, MI, USA
| | - A Singh
- CS Mott Center/WSU Ob/gyn Department, USA; WSU CMMG, USA
| | - T A Marben
- University of Detroit, Mercy (NIH Build Fellow), USA
| | - L Rass
- Barber Foundation Fellows/WSU, USA
| | | | - Y Xie
- Western Fertility, Los Angeles, CA, USA
| | - E E Puscheck
- CS Mott Center/WSU Ob/gyn Department, USA; Invia Infertility, Chicago, IL, USA
| | | | - S Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - D M Ruden
- CS Mott Center/WSU Ob/gyn Department, USA; IEHS, WSU, USA
| | - D A Rappolee
- CS Mott Center/WSU Ob/gyn Department, USA; Reproductive Stress Inc, Grosse Pointe Farms, MI, USA; Dept of Physiology, WSU, USA.
| |
Collapse
|
4
|
Pioltine EM, Costa CB, Franchi FF, dos Santos PH, Nogueira MFG. Tauroursodeoxycholic Acid Supplementation in In Vitro Culture of Indicine Bovine Embryos: Molecular and Cellular Effects on the In Vitro Cryotolerance. Int J Mol Sci 2023; 24:14060. [PMID: 37762363 PMCID: PMC10531190 DOI: 10.3390/ijms241814060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
During embryo development, the endoplasmic reticulum (ER) acts as an important site for protein biosynthesis; however, in vitro culture (IVC) can negatively affect ER homeostasis. Therefore, the aim of our study was to evaluate the effects of the supplementation of tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, in the IVC of bovine embryos. Two experiments were carried out: Exp. 1: an evaluation of blastocyst rate, hatching kinetics, and gene expression of hatched embryos after being treated with different concentrations of TUDCA (50, 200, or 1000 μM) in the IVC; Exp. 2: an evaluation of the re-expansion, hatching, and gene expression of hatched embryos previously treated with 200 µM of TUDCA at IVC and submitted to vitrification. There was no increase in the blastocyst and hatched blastocyst rates treated with TUDCA in the IVC. However, embryos submitted to vitrification after treatment with 200 µM of TUDCA underwent an increased hatching rate post-warming together with a down-regulation in the expression of ER stress-related genes and the accumulation of lipids. In conclusion, this work showed that the addition of TUDCA during in vitro culture can improve the cryotolerance of the bovine blastocyst through the putative modulation of ER and oxidative stress.
Collapse
Affiliation(s)
- Elisa Mariano Pioltine
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
| | - Camila Bortoliero Costa
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
- Laboratory of Embryonic Micromanipulation, Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Assis 19806-900, Brazil
| | - Fernanda Fagali Franchi
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
| | - Priscila Helena dos Santos
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
- Laboratory of Embryonic Micromanipulation, Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Assis 19806-900, Brazil
| |
Collapse
|
5
|
Wang X, Zhang S, Gu Y, Ma S, Peng Y, Gong F, Tan H, Lin G. The impact of blastocyst freezing and biopsy on the association of blastocyst morphological parameters with live birth and singleton birthweight. Fertil Steril 2023; 119:56-66. [PMID: 36404157 DOI: 10.1016/j.fertnstert.2022.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To explore whether the associations of 3 blastocyst morphological parameters, namely, degree of blastocyst expansion (expansion), appearance of trophectoderm (TE) and inner cell mass, with live birth and singleton birth weight are influenced by blastocyst freezing and biopsy. DESIGN A retrospective study. SETTING An assisted reproductive technology center. PATIENT(S) 28,515 single blastocyst transfer cycles between January 2014 and August 2019. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) Live birth and singleton birth weight. RESULT(S) Blastocyst transfer cycles were divided into 4 groups: biopsied blastocyst cycles (biopsied-blast), thawed blastocyst cycles (thawed-blast), blastocyst from thawed cleavage embryo cycles (blast-thawed-D3), and fresh blastocyst cycles (fresh-blast). Subgroup analyses by blastocyst stage (day 5 and day 6) were performed in thawed-blast and blast-thawed-D3. Because almost all blastocysts were biopsied on day 6 and fresh blastocysts were transferred on day 5, the biopsied-blast and fresh-blast were not divided into subgroups. First, the associations between blastocyst morphological parameters and live birth were analyzed. To explore the effect of freezing, we compared day-5 frozen cycles (thawed-blast) vs. day-5 fresh cycles (including fresh-blast and blast-thawed-D3) and day 6 frozen cycles (thawed-blast) vs. day-6 fresh cycles (blast-thawed-D3). Inner cell mass and TE were associated with live birth for day 5 embryos, and only TE affected live birth for day-6 embryos. The associations were the same in frozen cycles and fresh cycles. To explore the effect of biopsy, we compared day-6 biopsied cycles (biopsied-blast) vs. day-6 nonbiopsied cycles (including thawed-blast and blast-thawed-D3). All the 3 parameters were associated with live birth in biopsied-blast, whereas only TE was associated with live birth in nonbiopsied cycles. In addition, the associations between blastocyst morphological parameters and singleton birthweight were analyzed. In the 6 subgroups, expansion stage of day-6 embryos in biopsied-blast and TE grade of day-6 embryos in thawed-blast were associated with birth weight, and there are no associations in other subgroups. CONCLUSION(S) The association of blastocyst morphological parameters with live birth may be affected by blastocyst biopsy and/or genetic testing, and its association with birth weight may be affected by blastocyst freezing and biopsy and/or genetic testing.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, People's Republic of China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China
| | - Shuoping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China
| | - Yifan Gu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China
| | - Shujuan Ma
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China
| | - Yangqin Peng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, Key Laboratory of National Health and Family Planning Commission, Central South University, Changsha, Hunan, People's Republic of China
| | - Hongzhuan Tan
- Department of Epidemiology and Health Statistics, School of Public Health, Central South University, Changsha, Hunan, People's Republic of China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, People's Republic of China; Laboratory of Reproductive and Stem Cell Engineering, Key Laboratory of National Health and Family Planning Commission, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Fu B, Ma H, Zhang DJ, Wang L, Li ZQ, Guo ZH, Liu ZG, Wu SH, Meng XR, Wang F, Chen WG, Liu D. Porcine oviductal extracellular vesicles facilitate early embryonic development via relief of endoplasmic reticulum stress. Cell Biol Int 2021; 46:300-310. [PMID: 34854517 DOI: 10.1002/cbin.11730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/02/2021] [Accepted: 11/28/2021] [Indexed: 11/06/2022]
Abstract
The key to successful in vitro embryo production (IVEP) is to mimic the natural in vivo oviductal microenvironment. Although the chemically defined media in extensive use for the in vitro culture of mammalian embryos is based on the composition of oviductal fluid, the IVEP systems in current use must still bypass the oviduct to produce embryos in vitro. Extracellular vesicles (EVs) in the oviduct are versatile intercellular delivery vehicles for maternal-embryo communication, and a lack of them can be associated with failed early embryonic development under in vitro culture conditions. Herein, we isolated EVs from porcine oviduct fluid and confirmed that oviductal EV supplementation improves the embryonic development of parthenogenetically activated (PA) embryos in terms of blastocyst formation rates and total cell numbers. Our experiments also revealed that a beneficial effect of oviductal EVs on PA embryos was achievable, at least in part, by relieving endoplasmic reticulum stress. These results suggest that the maternal-embryo communication mediated by oviductal EVs benefits early embryonic development. Given the contribution of oviductal EVs to early embryonic development, these findings offer novel insights for the optimization of current IVEP systems.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Dong-Jie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zhong-Qiu Li
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zhen-Hua Guo
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Zi-Guang Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Sai-Hui Wu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xiang-Ren Meng
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Fang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Wen-Gui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China.,Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
7
|
Ochoa E. Alteration of Genomic Imprinting after Assisted Reproductive Technologies and Long-Term Health. Life (Basel) 2021; 11:728. [PMID: 34440472 PMCID: PMC8398258 DOI: 10.3390/life11080728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
Assisted reproductive technologies (ART) are the treatment of choice for some infertile couples and even though these procedures are generally considered safe, children conceived by ART have shown higher reported risks of some perinatal and postnatal complications such as low birth weight, preterm birth, and childhood cancer. In addition, the frequency of some congenital imprinting disorders, like Beckwith-Wiedemann Syndrome and Silver-Russell Syndrome, is higher than expected in the general population after ART. Experimental evidence from animal studies suggests that ART can induce stress in the embryo and influence gene expression and DNA methylation. Human epigenome studies have generally revealed an enrichment of alterations in imprinted regions in children conceived by ART, but no global methylation alterations. ART procedures occur simultaneously with the establishment and maintenance of imprinting during embryonic development, so this may underlie the apparent sensitivity of imprinted regions to ART. The impact in adulthood of imprinting alterations that occurred during early embryonic development is still unclear, but some experimental evidence in mice showed higher risk to obesity and cardiovascular disease after the restriction of some imprinted genes in early embryonic development. This supports the hypothesis that imprinting alterations in early development might induce epigenetic programming of metabolism and affect long-term health. Given the growing use of ART, it is important to determine the impact of ART in genomic imprinting and long-term health.
Collapse
Affiliation(s)
- Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| |
Collapse
|
8
|
Non-coding RNA suppresses FUS aggregation caused by mechanistic shear stress on pipetting in a sequence-dependent manner. Sci Rep 2021; 11:9523. [PMID: 33947944 PMCID: PMC8096841 DOI: 10.1038/s41598-021-89075-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022] Open
Abstract
Fused in sarcoma/translocated in liposarcoma (FUS/TLS) is a multitasking RNA/DNA binding protein. FUS aggregation is implicated in various neurodegenerative diseases. RNA was suggested to modulate phase transition of FUS. Here, we found that FUS transforms into the amorphous aggregation state as an instant response to the shear stress caused by usual pipetting even at a low FUS concentration, 100 nM. It was revealed that non-coding RNA can suppress the transformation of FUS into aggregates. The suppressive effect of RNA on FUS aggregation is sequence-dependent. These results suggested that the non-coding RNA could be a prospective suppressor of FUS aggregation caused by mechanistic stress in cells. Our finding might pave the way for more research on the role of RNAs as aggregation inhibitors, which could facilitate the development of therapies for neurodegenerative diseases.
Collapse
|
9
|
Hawkins J, Miao X, Cui W, Sun Y. Biophysical optimization of preimplantation embryo culture: what mechanics can offer ART. Mol Hum Reprod 2021; 27:gaaa087. [PMID: 33543291 PMCID: PMC8453600 DOI: 10.1093/molehr/gaaa087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
Owing to the rise of ART and mounting reports of epigenetic modification associated with them, an understanding of optimal embryo culture conditions and reliable indicators of embryo quality are highly sought after. There is a growing body of evidence that mechanical biomarkers can rival embryo morphology as an early indicator of developmental potential and that biomimetic mechanical cues can promote healthy development in preimplantation embryos. This review will summarize studies that investigate the role of mechanics as both indicators and promoters of mammalian preimplantation embryo development and evaluate their potential for improving future embryo culture systems.
Collapse
Affiliation(s)
- Jamar Hawkins
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
| | - Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
10
|
Ranneva SV, Brusentsev EY, Igonina TN, Ragaeva DS, Rozhkova IN, Ershov NI, Levinson AL, Amstislavsky SY. The Effect of Embryo Culture on Ontogenesis of Mammalian Offspring. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420060077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Colombo M, Zahmel J, Jänsch S, Jewgenow K, Luvoni GC. Inhibition of Apoptotic Pathways Improves DNA Integrity but Not Developmental Competence of Domestic Cat Immature Vitrified Oocytes. Front Vet Sci 2020; 7:588334. [PMID: 33178729 PMCID: PMC7596218 DOI: 10.3389/fvets.2020.588334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Being a model for endangered wild felids, cryopreservation protocols for domestic cat oocytes are under continuous development. Immature vitrified oocytes (VOs) are a valuable resource for fertility preservation programs, but they often degenerate after warming and their in vitro development is poor. Since the exact mechanisms are not clear, this study assessed whether vitrification might trigger two apoptotic markers (DNA fragmentation and caspase activity, Experiment I) and the effects of a chemical inhibitor (i.e., the pan-caspase inhibitor Z-VAD-FMK) on the same markers (Experiment II) and on VOs in vitro development (Experiment III). The overarching aim was to check whether apoptosis inhibition might be a strategy to improve cat oocytes cryotolerance. In Experiment I, vitrification induced DNA fragmentation and increased caspase activity in VOs incubated for 24 h after warming (DNA fragmentation: 59.38%; caspase activity: 414.6 ± 326.8) compared to a fresh control (9.68%; 199.6 ± 178.3; p = 0.02). In Experiment II, the addition of Z-VAD-FMK to vitrification-warming and incubation media decreased DNA fragmentation and caspase activity (8.82%; 243.7 ± 106.9) compared to control (untreated) VOs (69.44%; 434.5 ± 248.3; p < 0.001). In Experiment III, Z-VAD-FMK brought maturation rates of treated VOs close to those of fresh oocytes (53.13 and 65.38%, respectively, p = 0.057), but there were no differences in VOs embryo development (cleavage rates; Z-VAD-FMK-treated VOs: 34.38%; control VOs: 31.78%; p = 0.69). In summary, vitrification increased apoptotic markers in cat VOs, and while Z-VAD-FMK was able to hinder DNA damage and caspase activity, its addition was not determinant for embryo development. To make the best use of VOs, other oocyte in vitro maturation and embryo culture strategies, such as the addition of other inhibitors or their prolonged use, should be investigated.
Collapse
Affiliation(s)
- Martina Colombo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Milan, Italy
| | - Jennifer Zahmel
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Stefanie Jänsch
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Katarina Jewgenow
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Gaia Cecilia Luvoni
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare "Carlo Cantoni", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
‘There is only one thing that is truly important in an IVF laboratory: everything’ Cairo Consensus Guidelines on IVF Culture Conditions. Reprod Biomed Online 2020; 40:33-60. [DOI: 10.1016/j.rbmo.2019.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/22/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
|
13
|
Deng T, Xie J, Ge H, Liu Q, Song X, Hu L, Meng L, Zhang C. Tauroursodeoxycholic acid (TUDCA) enhanced intracytoplasmic sperm injection (ICSI) embryo developmental competence by ameliorating endoplasmic reticulum (ER) stress and inhibiting apoptosis. J Assist Reprod Genet 2019; 37:119-126. [PMID: 31802346 DOI: 10.1007/s10815-019-01627-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/01/2019] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The objective of this study was to examine the effect of tauroursodeoxycholic acid (TUDCA) on intracytoplasmic sperm injection (ICSI) embryos by evaluating endoplasmic reticulum (ER) stress, apoptosis, and embryo developmental competence in vitro and in vivo. METHODS ER stress-associated genes and apoptosis-associated genes were measured and apoptosis index was analyzed. Embryo developmental competence was assessed in vitro and in vivo via the inner cell mass (ICM)/trophectoderm (TE) index, pregnancy and implantation rates, and birth rate. RESULTS The relative mRNA and protein expression of binding immunoglobulin protein (BIP) was significantly higher in the ICSI embryo group without TUDCA treatment (ICSI-C) than in the in vitro fertilization (IVF) group and in the ICSI embryo group with TUDCA treatment (200 μM) (ICSI-T), while TUDCA ameliorated ER stress in ICSI embryos. Embryos in the ICSI-C group showed a higher apoptosis index than those in the IVF group and ICSI-T group, and there was no significant difference between the IVF group and ICSI-T group. TUDCA can significantly improve ICSI embryo developmental competence in vitro and in vivo based on the ICM/TE index, pregnancy and implantation rates, and birth rate. CONCLUSION ICSI embryos manifested high ER stress and high apoptosis, while TUDCA ameliorated ER stress and reduced apoptosis in ICSI embryos. TUDCA can significantly improve the developmental competence of ICSI embryos in vitro and in vivo. This study provides a new idea for improving the efficiency of ICSI, and it will also have a positive effect on the development of assisted reproduction technologies for humans and other animals.
Collapse
Affiliation(s)
- Tengfei Deng
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China
| | - Juanke Xie
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China
| | - Hengtao Ge
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China
| | - Qi Liu
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China
| | - Xiaobing Song
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China
| | - Lin Hu
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China
| | - Li Meng
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.,LA IVF Clinic, Los Angeles, CA, USA
| | - Cuilian Zhang
- Reproductive Medical Center, Henan Provincial People's Hospital, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China. .,Reproductive Medical Center, People's Hospital of Zhengzhou University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China. .,Reproductive Medical Center, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, 7 Weiwu Rd, Zhengzhou City, 450003, Henan, China.
| |
Collapse
|
14
|
Morley LC, Beech DJ, Walker JJ, Simpson NAB. Emerging concepts of shear stress in placental development and function. Mol Hum Reprod 2019; 25:329-339. [PMID: 30931481 PMCID: PMC6554190 DOI: 10.1093/molehr/gaz018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/03/2019] [Indexed: 12/17/2022] Open
Abstract
Blood flow, and the force it generates, is critical to placental development and function throughout pregnancy. This mechanical stimulation of cells by the friction generated from flow is called shear stress (SS) and is a fundamental determinant of vascular homeostasis, regulating remodelling and vasomotor tone. This review describes how SS is fundamental to the establishment and regulation of the blood flow through the uteroplacental and fetoplacental circulations. Amongst the most recent findings is that alongside the endothelium, embryonic stem cells and the villous trophoblast are mechanically sensitive. A complex balance of forces is required to enable effective establishment of the uteroplacental circulation, while protecting the embryo and placental villi. SS also generates flow-mediated vasodilatation through the release of endothelial nitric oxide, a process vital for adequate placental blood flow. The identification of SS sensors and the mechanisms governing how the force is converted into biochemical signals is a fast-paced area of research, with multiple cellular components under investigation. For example, the Piezo1 ion channel is mechanosensitive in a variety of tissues including the fetoplacental endothelium. Enhanced Piezo1 activity has been demonstrated in response to the Yoda1 agonist molecule, suggesting the possibility for developing tools to manipulate these channels. Whether such agents might progress to novel therapeutics to improve blood flow through the placenta requires further consideration and research.
Collapse
Affiliation(s)
- L C Morley
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, UK
| | - D J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, UK
| | - J J Walker
- Academic department of Obstetrics and Gynaecology, Level, Worsley Building, University of Leeds, UK
| | - N A B Simpson
- Academic department of Obstetrics and Gynaecology, Level, Worsley Building, University of Leeds, UK
| |
Collapse
|
15
|
Yoshida K, Okada M, Nagasaka R, Sasaki H, Okada M, Kanie K, Kato R. Time-course colony tracking analysis for evaluating induced pluripotent stem cell culture processes. J Biosci Bioeng 2019; 128:209-217. [PMID: 30738731 DOI: 10.1016/j.jbiosc.2019.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/15/2023]
Abstract
Increasing the yield and maintaining a high quality of induced pluripotent stem cells (iPSCs) is necessary for manufacturing iPSCs at the industrial scale. However, because iPSCs are delicate, it is important to evaluate their quality during processing. To examine the status of cultured iPSCs non-invasively, morphology-based iPSC colony evaluation may be an efficient technology for cellular status monitoring and analysis. In this study, we examined the effectiveness of time-course colony tracking analysis for evaluating the iPSC culture process. Particularly, we obtained detailed time-course data to evaluate the effect of the pipetting technique on cell dissociation before seeding. Although the pipetting process causes severe shear stress to cells, which affects their quality, these effects have not been quantitatively analyzed because of their complex and uncontrollable parameters. By analyzing the heterogeneity and time-course responses of individual colonies, our colony tracking analysis revealed a critically damaged population caused by pipetting stress which could not be detected in conventional bulk analysis. Moreover, by comprehensively analyzing colony tracking data, which links the time-course morphology and marker staining results with each colony, we found that colony morphology is only highly correlated with the undifferentiated marker in the final stage, with a lower correlation in the early stages. Thus, colony tracking analysis provides a way to quantify cellular morphological information when evaluating complex iPSC manufacturing processes.
Collapse
Affiliation(s)
- Kei Yoshida
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Mika Okada
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Risako Nagasaka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroto Sasaki
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Mai Okada
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kei Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan; Stem Cell Evaluation Technology Research Association (SCA), Hacho-bori, Chuou-ku, Tokyo 104-0032, Japan; Institute of Nano-Life-Systems, Institute of Innovation for Future Society, Nagoya University, Division of Micro-Nano Mechatronics, Furocho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
16
|
Ramos-Ibeas P, Heras S, Gómez-Redondo I, Planells B, Fernández-González R, Pericuesta E, Laguna-Barraza R, Pérez-Cerezales S, Gutiérrez-Adán A. Embryo responses to stress induced by assisted reproductive technologies. Mol Reprod Dev 2019; 86:1292-1306. [PMID: 30719806 DOI: 10.1002/mrd.23119] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
Assisted reproductive technology (ART) has led to the birth of millions of babies. In cattle, thousands of embryos are produced annually. However, since the introduction and widespread use of ART, negative effects on embryos and offspring are starting to emerge. Knowledge so far, mostly provided by animal models, indicates that suboptimal conditions during ART can affect embryo viability and quality, and may induce embryonic stress responses. These stress responses take the form of severe gene expression alterations or modifications in critical epigenetic marks established during early developmental stages that can persist after birth. Unfortunately, while developmental plasticity allows the embryo to survive these stressful conditions, such insult may lead to adult health problems and to long-term effects on offspring that could be transmitted to subsequent generations. In this review, we describe how in mice, livestock, and humans, besides affecting the development of the embryo itself, ART stressors may also have significant repercussions on offspring health and physiology. Finally, we argue the case that better control of stressors during ART will help improve embryo quality and offspring health.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Sonia Heras
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Isabel Gómez-Redondo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Benjamín Planells
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Raúl Fernández-González
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Ricardo Laguna-Barraza
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Serafín Pérez-Cerezales
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
17
|
Endoplasmic Reticulum (ER) Stress and Unfolded Protein Response (UPR) in Mammalian Oocyte Maturation and Preimplantation Embryo Development. Int J Mol Sci 2019; 20:ijms20020409. [PMID: 30669355 PMCID: PMC6359168 DOI: 10.3390/ijms20020409] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian oocytes and early embryos derived from in vitro production are highly susceptible to a variety of cellular stresses. During oocyte maturation and preimplantation embryo development, functional proteins must be folded properly in the endoplasmic reticulum (ER) to maintain oocyte and embryo development. However, some adverse factors negatively impact ER functions and protein synthesis, resulting in the activation of ER stress and unfolded protein response (UPR) signaling pathways. ER stress and UPR signaling have been identified in mammalian oocytes and embryos produced in vitro, suggesting that modulation of ER stress and UPR signaling play very important roles in oocyte maturation and the development of preimplantation embryos. In this review, we briefly describe the current state of knowledge regarding ER stress, UPR signaling pathways, and their roles and mechanisms in mammalian (excluding human) oocyte maturation and preimplantation embryo development.
Collapse
|
18
|
Kumari S, Vermeulen S, van der Veer B, Carlier A, de Boer J, Subramanyam D. Shaping Cell Fate: Influence of Topographical Substratum Properties on Embryonic Stem Cells. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:255-266. [PMID: 29455619 PMCID: PMC7116060 DOI: 10.1089/ten.teb.2017.0468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Development of multicellular organisms is a highly orchestrated process, with cells responding to factors and features present in the extracellular milieu. Changes in the surrounding environment help decide the fate of cells at various stages of development. This review highlights recent research that details the effects of mechanical properties of the surrounding environment and extracellular matrix and the underlying molecular mechanisms that regulate the behavior of embryonic stem cells (ESCs). In this study, we review the role of mechanical properties during embryogenesis and discuss the effect of engineered microtopographies on ESC pluripotency.
Collapse
Affiliation(s)
- Sarita Kumari
- National Center for Cell Science, SP Pune University, Pune, India
| | - Steven Vermeulen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Ben van der Veer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Aurélie Carlier
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Jan de Boer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
19
|
Cui FR, Ip BC, Morgan JR, Tripathi A. Hydrodynamics of the Bio-Gripper: A Fluid-Driven "Claw Machine" for Soft Microtissue Translocation. SLAS Technol 2018; 23:540-549. [PMID: 29932848 DOI: 10.1177/2472630318775079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Technological advances in solid organ tissue engineering that rely on the assembly of small tissue-building parts require a novel transport method suited for soft, deformable, living objects of submillimeter- to centimeter-length scale. We describe a technology that utilizes membrane flow through a gripper to generate optimized pressure differentials across the top and bottom surfaces of microtissue so that the part may be gripped and lifted. The flow and geometry parameters are developed for automation by analyzing the fluid mechanics framework by which a gripper can lift tissue parts off solid and porous surfaces. For the axisymmetric part and gripper geometries, we examine the lift force on the part as a function of various parameters related to the gripper design, its operation, and the tissue parts and environments with which it operates. We believe our bio-gripping model can be used in various applications in high-throughput tissue engineering.
Collapse
Affiliation(s)
- Francis R Cui
- 1 School of Engineering, Brown University, Providence, RI, USA.,2 Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | - Blanche C Ip
- 2 Center for Biomedical Engineering, Brown University, Providence, RI, USA.,3 Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
| | - Jeffrey R Morgan
- 2 Center for Biomedical Engineering, Brown University, Providence, RI, USA.,3 Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
| | - Anubhav Tripathi
- 1 School of Engineering, Brown University, Providence, RI, USA.,2 Center for Biomedical Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
20
|
Calder MD, Edwards NA, Betts DH, Watson AJ. Treatment with AICAR inhibits blastocyst development, trophectoderm differentiation and tight junction formation and function in mice. Mol Hum Reprod 2018; 23:771-785. [PMID: 28962017 DOI: 10.1093/molehr/gax050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 09/06/2017] [Indexed: 12/28/2022] Open
Abstract
STUDY QUESTION What is the impact of adenosine monophosphate-activated protein kinase (AMPK) activation on blastocyst formation, gene expression, and tight junction formation and function? SUMMARY ANSWER AMPK activity must be tightly controlled for normal preimplantation development and blastocyst formation to occur. WHAT IS KNOWN ALREADY AMPK isoforms are detectable in oocytes, cumulus cells and preimplantation embryos. Cultured embryos are subject to many stresses that can activate AMPK. STUDY DESIGN, SIZE, DURATION Two primary experiments were carried out to determine the effect of AICAR treatment on embryo development and maintenance of the blastocoel cavity. Embryos were recovered from superovulated mice. First, 2-cell embryos were treated with a concentration series (0-2000 μM) of AICAR for 48 h until blastocyst formation would normally occur. In the second experiment, expanded mouse blastocysts were treated for 9 h with 1000 μM AICAR. PARTICIPANTS/MATERIALS, SETTING, METHODS Outcomes measured included development to the blastocyst stage, cell number, blastocyst volume, AMPK phosphorylation, Cdx2 and blastocyst formation gene family expression (mRNAs and protein measured using quantitative RT-PCR, immunoblotting, immunofluorescence), tight junction function (FITC dextran dye uptake assay), and blastocyst ATP levels. The reversibility of AICAR treatment was assessed using Compound C (CC), a well-known inhibitor of AMPK, alone or in combination with AICAR. MAIN RESULTS AND THE ROLE OF CHANCE Prolonged treatment with AICAR from the 2-cell stage onward decreases blastocyst formation, reduces total cell number, embryo diameter, leads to loss of trophectoderm cell contacts and membrane zona occludens-1 staining, and increased nuclear condensation. Treatment with CC alone inhibited blastocyst development only at concentrations that are higher than normally used. AICAR treated embryos displayed altered mRNA and protein levels of blastocyst formation genes. Treatment of blastocysts with AICAR for 9 h induced blastocyst collapse, altered blastocyst formation gene expression, increased tight junction permeability and decreased CDX2. Treated blastocysts displayed three phenotypes: those that were unaffected by treatment, those in which treatment was reversible, and those in which effects were irreversible. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION Our study investigates the effects of AICAR treatment on early development. While AICAR does increase AMPK activity and this is demonstrated in our study, AICAR is not a natural regulator of AMPK activity and some outcomes may result from off target non-AMPK AICAR regulated events. To support our results, blastocyst developmental outcomes were confirmed with two other well-known small molecule activators of AMPK, metformin and phenformin. WIDER IMPLICATIONS OF THE FINDINGS Metformin, an AMPK activator, is widely used to treat type II diabetes and polycystic ovarian disorder (PCOS). Our results indicate that early embryonic AMPK levels must be tightly regulated to ensure normal preimplantation development. Thus, use of metformin should be carefully considered during preimplantation and early post-embryo transfer phases of fertility treatment cycles. STUDY FUNDING AND COMPETING INTEREST(S) Canadian Institutes of Health Research (CIHR) operating funds. There are no competing interests.
Collapse
Affiliation(s)
- Michele D Calder
- Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada
| | - Nicole A Edwards
- Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Dean H Betts
- Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada.,Children's Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario, Canada
| | - Andrew J Watson
- Departments of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Obstetrics and Gynaecology, Schulich School of Medicine, Western University, London, Ontario, Canada.,Children's Health Research Institute (CHRI), Lawson Health Research Institute (LHRI), London, Ontario, Canada
| |
Collapse
|
21
|
Ruden DM, Bolnick A, Awonuga A, Abdulhasan M, Perez G, Puscheck EE, Rappolee DA. Effects of Gravity, Microgravity or Microgravity Simulation on Early Mammalian Development. Stem Cells Dev 2018; 27:1230-1236. [PMID: 29562866 DOI: 10.1089/scd.2018.0024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plant and animal life forms evolved mechanisms for sensing and responding to gravity on Earth where homeostatic needs require responses. The lack of gravity, such as in the International Space Station (ISS), causes acute, intra-generational changes in the quality of life. These include maintaining calcium levels in bone, maintaining muscle tone, and disturbances in the vestibular apparatus in the ears. These problems decrease work efficiency and quality of life of humans not only during microgravity exposures but also after return to higher gravity on Earth or destinations such as Mars or the Moon. It has been hypothesized that lack of gravity during mammalian development may cause prenatal, postnatal and transgenerational effects that conflict with the environment, especially if the developing organism and its progeny are returned, or introduced de novo, into the varied gravity environments mentioned above. Although chicken and frog pregastrulation development, and plant root development, have profound effects due to orientation of cues by gravity-sensing mechanisms and responses, mammalian development is not typically characterized as gravity-sensing. Although no effects of microgravity simulation (MGS) on mouse fertilization were observed in two reports, negative effects of MGS on early mammalian development after fertilization and before gastrulation are presented in four reports that vary with the modality of MGS. This review will analyze the positive and negative mammalian early developmental outcomes, and enzymatic and epigenetic mechanisms known to mediate developmental responses to simulated microgravity on Earth and microgravity during spaceflight experiments. We will update experimental techniques that have already been developed or need to be developed for zero gravity molecular, cellular, and developmental biology experiments.
Collapse
Affiliation(s)
- Douglas M Ruden
- 1 Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine , Detroit, Michigan.,2 Institutes for Environmental Health Science, Wayne State University School of Medicine , Detroit, Michigan
| | - Alan Bolnick
- 1 Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine , Detroit, Michigan
| | - Awoniyi Awonuga
- 1 Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine , Detroit, Michigan
| | - Mohammed Abdulhasan
- 1 Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine , Detroit, Michigan
| | - Gloria Perez
- 3 Reproductive Stress, Inc. , Grosse Pointe Farms, Michigan
| | - Elizabeth E Puscheck
- 1 Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine , Detroit, Michigan.,3 Reproductive Stress, Inc. , Grosse Pointe Farms, Michigan
| | - Daniel A Rappolee
- 1 Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine , Detroit, Michigan.,2 Institutes for Environmental Health Science, Wayne State University School of Medicine , Detroit, Michigan.,3 Reproductive Stress, Inc. , Grosse Pointe Farms, Michigan.,4 Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan.,5 Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit, Michigan.,6 Institutes for Environmental Health Science, Wayne State University School of Medicine , Detroit, Michigan.,7 Department of Biology, University of Windsor , Windsor, Canada
| |
Collapse
|
22
|
Takahashi M, Honda T, Hatoya S, Inaba T, Kawate N, Tamada H. Efficacy of mechanical micro-vibration in the development of bovine embryos during in vitro maturation and culture. J Vet Med Sci 2018; 80:532-535. [PMID: 29415921 PMCID: PMC5880838 DOI: 10.1292/jvms.17-0607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is currently unclear how mechanical micro-vibration affects the in vitro culture of embryos in Japanese Black cow. In the experimental groups, immature oocytes and fertilized embryos were cultured
using the micro-vibration culture system with the vibration set for 5 sec at intervals of 60 min and frequency of 20, 40 or 80 Hz, respectively, during in vitro maturation and in vitro
development. Compared with the control group, the rate of blastocyst development significantly increased in the 40 Hz group. In addition, the number of blastocyst cells reduced significantly in the 80 Hz group. In
conclusion, the development of blastocysts in cows is facilitated by providing moderate mechanical micro-vibration to immature oocytes and embryos during the in vitro maturation and in
vitro development.
Collapse
Affiliation(s)
- Masahiro Takahashi
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan.,Laboratory of Food Animal Medical Science, Cooperative Department of Veterinary Medicine, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Tatsutoshi Honda
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Toshio Inaba
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Noritoshi Kawate
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Hiromichi Tamada
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
23
|
Comparison of the development of human embryos cultured in either an EmbryoScope or benchtop incubator. J Assist Reprod Genet 2017; 35:515-522. [PMID: 29243141 DOI: 10.1007/s10815-017-1100-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023] Open
Abstract
PURPOSE In this current study, our main goal was to establish that EmbryoScope incubation environment is comparable to standard incubation. METHODS The development of sibling human zygotes was compared after culture in either a benchtop incubator (SI) or an EmbryoScope time-lapse incubator (ES). Between May 2015 to April 2016, a total of 581 normally fertilized 2PN, pronuclear-stage embryos, from 47 patients were allocated to culture in either a benchtop incubator (SI) or an EmbryoScope incubator (ES). RESULTS The development of embryos to cleavage (up to day 3) and blastocyst stages (day 5/6) was compared between the two different incubators. The proportion of good quality embryos was higher in the ES group compared to the SI on day 2 (66.8 vs. 50.5%, P = 0.014) and on day 3 (75.1 vs. 56.0%, P = 0.006). Those differences were statistically significant. A higher proportion of embryos developed to good quality blastocysts when cultured in the EmbryoScope compared to the benchtop (49.4 vs. 42.0%, P = 0.24), but this was not significant. Finally, no significant differences were noted with the proportion of blastocysts chosen for cryopreservation on day 5/6 in the two incubators. CONCLUSIONS The findings support the view that the EmbryoScope incubator supports at least equivalent in vitro development of human embryos compared to other standard incubation methods and may promote improved development during early cleavage stages.
Collapse
|
24
|
CoQ10 increases mitochondrial mass and polarization, ATP and Oct4 potency levels, and bovine oocyte MII during IVM while decreasing AMPK activity and oocyte death. J Assist Reprod Genet 2017; 34:1595-1607. [PMID: 28900834 DOI: 10.1007/s10815-017-1027-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE We tested whether mitochondrial electron transport chain electron carrier coenzyme Q10 (CoQ10) increases ATP during bovine IVM and increases %M2 oocytes, mitochondrial polarization/mass, and Oct4, and decreases pAMPK and oocyte death. METHODS Bovine oocytes were aspirated from ovaries and cultured in IVM media for 24 h with 0, 20, 40, or 60 μM CoQ10. Oocytes were assayed for ATP by luciferase-based luminescence. Oocyte micrographs were quantitated for Oct4, pAMPK (i.e., activity), polarization by JC1 staining, and mitochondrial mass by MitoTracker Green staining. RESULTS CoQ10 at 40 μM was optimal. Oocytes at 40 μM enabled 1.9-fold more ATP than 0 μM CoQ10. There was 4.3-fold less oocyte death, 1.7-fold more mitochondrial charge polarization, and 3.1-fold more mitochondrial mass at 40 μM than at 0 μM CoQ10. Increased ATP was associated with 2.2-fold lower AMPK thr172P activation and 2.1-fold higher nuclear Oct4 stemness/potency protein at 40 μM than at 0 μM CoQ10. CoQ10 is hydrophobic, and at all doses, 50% was lost from media into oil by ~ 12 h. Replenishing CoQ10 at 12 h did not significantly diminish dead oocytes. CONCLUSIONS The data suggest that CoQ10 improves mitochondrial function in IVM where unwanted stress, higher AMPK activity, and Oct4 potency loss are induced.
Collapse
|
25
|
Liu Y, Maekawa T, Yoshida K, Kaneda H, Chatton B, Wakana S, Ishii S. The transcription factor ATF7 mediates in vitro fertilization-induced gene expression changes in mouse liver. FEBS Open Bio 2017; 7:1598-1610. [PMID: 28979846 PMCID: PMC5623699 DOI: 10.1002/2211-5463.12304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022] Open
Abstract
Assisted reproductive technologies, including in vitro fertilization (IVF), are now frequently used, and increasing evidence indicates that IVF causes gene expression changes in children and adolescents that increase the risk of metabolic diseases. Although such gene expression changes are thought to be due to IVF‐induced epigenetic changes, the mechanism remains elusive. We tested whether the transcription factor ATF7—which mediates stress‐induced changes in histone H3K9 tri‐ and dimethylation, typical marks of epigenetic silencing—is involved in the IVF‐induced gene expression changes. IVF up‐ and downregulated the expression of 688 and 204 genes, respectively, in the liver of 3‐week‐old wild‐type (WT) mice, whereas 87% and 68% of these were not changed, respectively, by IVF in ATF7‐deficient (Atf7−/−) mice. The genes, which are involved in metabolism, such as pyrimidine and purine metabolism, were upregulated in WT mice, but not in Atf7−/− mice. Of the genes whose expression was upregulated by IVF in WT mice, 37% were also upregulated by a loss of ATF7. These results indicate that ATF7 is a key factor in establishing the memory of IVF effects on metabolic pathways.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Molecular Genetics RIKEN Tsukuba Institute Japan.,Department of Molecular Genetics and Ph.D. Program in Human Biology School of Integrative and Global Majors University of Tsukuba Japan
| | - Toshio Maekawa
- Laboratory of Molecular Genetics RIKEN Tsukuba Institute Japan
| | - Keisuke Yoshida
- Laboratory of Molecular Genetics RIKEN Tsukuba Institute Japan
| | - Hideki Kaneda
- Technology and Development Team for Mouse Phenotype Analysis RIKEN BRC Tsukuba Japan
| | - Bruno Chatton
- Université de Strasbourg UMR7242 Biotechnologie et Signalisation Cellulaire Ecole Supérieure de Biotechnologie de Strasbourg Il lkirch France
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis RIKEN BRC Tsukuba Japan
| | - Shunsuke Ishii
- Laboratory of Molecular Genetics RIKEN Tsukuba Institute Japan.,Department of Molecular Genetics and Ph.D. Program in Human Biology School of Integrative and Global Majors University of Tsukuba Japan
| |
Collapse
|
26
|
Dieamant F, Petersen CG, Mauri AL, Comar V, Mattila M, Vagnini LD, Renzi A, Petersen B, Ricci J, Oliveira JBA, Baruffi RLR, Franco JG. Single versus sequential culture medium: which is better at improving ongoing pregnancy rates? A systematic review and meta-analysis. JBRA Assist Reprod 2017; 21:240-246. [PMID: 28837034 PMCID: PMC5574647 DOI: 10.5935/1518-0557.20170045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study aimed to evaluate if single medium is better than sequential medium at
improving ongoing pregnancy rates in patients undergoing assisted reproductive
technology (ART) procedures. The data featured in this meta-analysis were
extracted from four randomized controlled trials yielded from a systematic
search carried out on electronic databases. The primary endpoint was ongoing
pregnancy rate. Secondary endpoints included clinical pregnancy and miscarriage
rates. The endpoints for ongoing pregnancy rate were also analyzed based on the
time at which the embryo transfers were performed: cleavage stage (day 2/3)
and/or blastocyst stage (day 5/6). There were no significant differences between
single and sequential medium for clinical pregnancy (RR=1.09; 95%CI=0.83-1.44;
p=0.53), ongoing pregnancy (RR=1.11; 95%CI=0.87-1.40;
p=0.39), or miscarriage rates (RR=0.89; 95%CI=0.44-1.81;
p=0.74). No significant difference was found for ongoing
pregnancy rate (RR=1.29; 95%CI=0.93-1.78; p=0.12) between
single and sequential medium when only trials in which embryos were transferred
at the blastocyst stage were included. In conclusion, the choice of embryo
culture approach - single or sequential medium - did not affect the ongoing
pregnancy rates of patients undergoing ART cycles.
Collapse
Affiliation(s)
- Felipe Dieamant
- Center for Human Reproduction Prof. Franco Jr, Ribeirão Preto, Brazil.,Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
| | - Claudia G Petersen
- Center for Human Reproduction Prof. Franco Jr, Ribeirão Preto, Brazil.,Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
| | - Ana L Mauri
- Center for Human Reproduction Prof. Franco Jr, Ribeirão Preto, Brazil.,Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
| | - Vanessa Comar
- Center for Human Reproduction Prof. Franco Jr, Ribeirão Preto, Brazil
| | - Marina Mattila
- Center for Human Reproduction Prof. Franco Jr, Ribeirão Preto, Brazil
| | - Laura D Vagnini
- Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
| | - Adriana Renzi
- Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
| | - Bruna Petersen
- Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
| | - Juliana Ricci
- Center for Human Reproduction Prof. Franco Jr, Ribeirão Preto, Brazil
| | - João Batista A Oliveira
- Center for Human Reproduction Prof. Franco Jr, Ribeirão Preto, Brazil.,Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
| | - Ricardo L R Baruffi
- Center for Human Reproduction Prof. Franco Jr, Ribeirão Preto, Brazil.,Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
| | - Jose G Franco
- Center for Human Reproduction Prof. Franco Jr, Ribeirão Preto, Brazil.,Paulista Center for Diagnosis Research and Training, Ribeirão Preto, Brazil
| |
Collapse
|
27
|
Sfontouris IA, Kolibianakis EM, Lainas GT, Venetis CA, Petsas GK, Tarlatzis BC, Lainas TG. Blastocyst utilization rates after continuous culture in two commercial single-step media: a prospective randomized study with sibling oocytes. J Assist Reprod Genet 2017; 34:1377-1383. [PMID: 28718081 DOI: 10.1007/s10815-017-0997-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/05/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The aim of this study is to determine whether blastocyst utilization rates are different after continuous culture in two different commercial single-step media. METHODS This is a paired randomized controlled trial with sibling oocytes conducted in infertility patients, aged ≤40 years with ≥10 oocytes retrieved assigned to blastocyst culture and transfer. Retrieved oocytes were randomly allocated to continuous culture in either Sage one-step medium (Origio) or Continuous Single Culture (CSC) medium (Irvine Scientific) without medium renewal up to day 5 post oocyte retrieval. Main outcome measure was the proportion of embryos suitable for clinical use (utilization rate). RESULTS A total of 502 oocytes from 33 women were randomly allocated to continuous culture in either Sage one-step medium (n = 250) or CSC medium (n = 252). Fertilization was performed by either in vitro fertilization or intracytoplasmic sperm injection, and embryo transfers were performed on day 5. Two patients had all blastocysts frozen due to the occurrence of severe ovarian hyperstimulation syndrome. Fertilization and cleavage rates, as well as embryo quality on day 3, were similar in the two media. Blastocyst utilization rates (%, 95% CI) [55.4% (46.4-64.1) vs 54.7% (44.9-64.6), p = 0.717], blastocyst formation rates [53.6% (44.6-62.5) vs 51.9 (42.2-61.6), p = 0.755], and proportion of good quality blastocysts [36.8% (28.1-45.4) vs 36.1% (27.2-45.0), p = 0.850] were similar in Sage one-step and CSC media, respectively. CONCLUSIONS Continuous culture of embryos in Sage one-step and CSC media is associated with similar blastocyst development and utilization rates. Both single-step media appear to provide adequate support during in vitro preimplantation embryo development. Whether these observations are also valid for other continuous single medium protocols remains to be determined. CLINICAL TRIAL REGISTRATION NUMBER NCT02302638.
Collapse
Affiliation(s)
- Ioannis A Sfontouris
- Eugonia Assisted Reproduction Unit, 7 Ventiri Street, 11528, Athens, Greece.
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Efstratios M Kolibianakis
- Unit for Human Reproduction, First Department of Obstetrics and Gynecology, Papageorgiou General Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George T Lainas
- Eugonia Assisted Reproduction Unit, 7 Ventiri Street, 11528, Athens, Greece
| | - Christos A Venetis
- Women's and Children's Health, St. George Hospital, University of New South Wales, Sydney, Australia
| | - George K Petsas
- Eugonia Assisted Reproduction Unit, 7 Ventiri Street, 11528, Athens, Greece
| | - Basil C Tarlatzis
- Unit for Human Reproduction, First Department of Obstetrics and Gynecology, Papageorgiou General Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Tryfon G Lainas
- Eugonia Assisted Reproduction Unit, 7 Ventiri Street, 11528, Athens, Greece
| |
Collapse
|
28
|
Abstract
The phenotype of the human embryo conceived through in vitro fertilization (IVF), that is its morphology, developmental kinetics, physiology and metabolism, can be affected by numerous components of the laboratory and embryo culture system (which comprise the laboratory environment). The culture media formulation is important in determining embryo phenotype, but this exists within a culture system that includes oxygen, temperature, pH and whether an embryo is cultured individually or in a group, all of which can influence embryo development. Significantly, exposure of an embryo to one suboptimal component of the culture system of laboratory typically predisposes the embryo to become more vulnerable to a second stressor, as has been well documented for atmospheric oxygen and individual culture, as well as for oxygen and ammonium. Furthermore, the inherent viability of the human embryo is derived from the quality of the gametes from which it is created. Patient age, aetiology, genetics, lifestyle (as well as ovarian stimulation in women) are all known to affect the developmental potential of gametes and hence the embryo. Thus, as well as considering the impact of the IVF laboratory environment, one needs to be aware of the status of the infertile couple, as this impacts how their gametes and embryos will respond to an in vitro environment. Although far from straight forward, analysing the interactions that exist between the human embryo and its environment will facilitate the creation of more effective and safer treatments for the infertile couple.
Collapse
|
29
|
Yanez LZ, Camarillo DB. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies. Mol Hum Reprod 2017; 23:235-247. [PMID: 27932552 PMCID: PMC5909856 DOI: 10.1093/molehr/gaw071] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/28/2016] [Indexed: 01/03/2023] Open
Abstract
Measurement of oocyte and embryo biomechanical properties has recently emerged as an exciting new approach to obtain a quantitative, objective estimate of developmental potential. However, many traditional methods for probing cell mechanical properties are time consuming, labor intensive and require expensive equipment. Microfluidic technology is currently making its way into many aspects of assisted reproductive technologies (ART), and is particularly well suited to measure embryo biomechanics due to the potential for robust, automated single-cell analysis at a low cost. This review will highlight microfluidic approaches to measure oocyte and embryo mechanics along with their ability to predict developmental potential and find practical application in the clinic. Although these new devices must be extensively validated before they can be integrated into the existing clinical workflow, they could eventually be used to constantly monitor oocyte and embryo developmental progress and enable more optimal decision making in ART.
Collapse
Affiliation(s)
- Livia Z. Yanez
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| | - David B. Camarillo
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Sfontouris IA, Kolibianakis EM, Lainas GT, Petsas GK, Tarlatzis BC, Lainas TG. Blastocyst Development in a Single Medium Compared to Sequential Media: A Prospective Study With Sibling Oocytes. Reprod Sci 2017; 24:1312-1318. [PMID: 28093041 DOI: 10.1177/1933719116687653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of the present study was to compare blastocyst formation rates after embryo culture in a single medium (Global) as compared to sequential media (ISM1/BlastAssist). In this prospective trial with sibling oocytes, 542 metaphase II (ΜΙΙ) oocytes from 31 women were randomly and equally divided to be fertilized and cultured to the blastocyst stage in either sequential media (ISM1/BlastAssist; n = 271 MII oocytes) or a single medium (Global; n = 271 MII oocytes). In both groups, embryos were cultured in an interrupted fashion with media changes on day 3. Embryo transfer was performed on day 5. Blastocyst formation rates on day 5 (61.7% ± 19.9% vs 37.0% ± 25.5%, P < .001) were significantly higher following culture in Global as compared to ISM1/BlastAssist, respectively. Fertilization rates, cleavage rates, and percentage of good quality embryos on day 3 were similar between Global and ISM1/BlastAssist, respectively. The percentages of good quality blastocysts (63.0% ± 24.8% vs 32.1% ± 37.2%, P < .001), blastocysts selected for transfer (27.8% ± 19.2% vs 11.1% ± 14.4%, P = .005), and utilization rates (62.5% ± 24.8% vs 39.0% ± 25.2%, P < .001) were significantly higher in Global as compared to ISM1/BlastAssist, respectively. In conclusion, culture in Global was associated with higher blastocyst formation rates compared to ISM1/BlastAssist, suggesting that the single medium may provide better support to the developing embryo.
Collapse
Affiliation(s)
- Ioannis A Sfontouris
- 1 Eugonia Assisted Reproduction Unit, Athens, Greece.,2 Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Efstratios M Kolibianakis
- 3 Unit for Human Reproduction, 1st Department of Obstetrics & Gynecology, Papageorgiou General Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Basil C Tarlatzis
- 3 Unit for Human Reproduction, 1st Department of Obstetrics & Gynecology, Papageorgiou General Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
31
|
Sfontouris IA, Martins WP, Nastri CO, Viana IGR, Navarro PA, Raine-Fenning N, van der Poel S, Rienzi L, Racowsky C. Blastocyst culture using single versus sequential media in clinical IVF: a systematic review and meta-analysis of randomized controlled trials. J Assist Reprod Genet 2016; 33:1261-1272. [PMID: 27491772 DOI: 10.1007/s10815-016-0774-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/10/2016] [Indexed: 11/28/2022] Open
Abstract
PURPOSE The purpose of this study was to undertake a review of the available evidence comparing the use of a single medium versus sequential media for embryo culture to the blastocyst stage in clinical IVF. METHODS We searched the Cochrane Central, PubMed, Scopus, ClinicalTrials.gov, Current Controlled Trials and WHO International Clinical Trials Registry Platform to identify randomized controlled trials comparing single versus sequential media for blastocyst culture and ongoing pregnancy rate. Included studies randomized either oocytes/zygotes or women. Eligible oocyte/zygote studies were analyzed to assess the risk difference (RD) and 95 % confidence intervals (CI) between the two media systems; eligible woman-based studies were analyzed to assess the risk ratio (RR) and 95 % CI for clinical pregnancy rate. RESULTS No differences were observed between single and sequential media for either ongoing pregnancy per randomized woman (relative risk (RR) = 0.9, 95 % CI = 0.7 to 1.3, two studies including 246 women, I 2 = 0 %) or clinical pregnancy per randomized woman (RR = 1.0, 95 % CI = 0.7 to 1.4, one study including 100 women); or miscarriage per clinical pregnancy: RR = 1.3, 95 % CI = 0.4 to 4.3, two studies including 246 participants, I 2 = 0 %). Single media use was associated with an increase blastocyst formation per randomized oocyte/zygote (relative distribution (RD) = +0.06, 95 % CI = +0.01 to +0.12, ten studies including 7455 oocytes/zygotes, I 2 = 83 %) but not top/high blastocyst formation (RD = +0.05, 95 % CI = -0.01 to +0.11, five studies including 3879 oocytes/zygotes, I 2 = 93 %). The overall quality of the evidence was very low for all these four outcomes. CONCLUSIONS Although using a single medium for extended culture has some practical advantages and blastocyst formation rates appear to be higher, there is insufficient evidence to recommend either sequential or single-step media as being superior for the culture of embryos to days 5/6. Future studies comparing these two media systems in well-designed trials should be performed.
Collapse
Affiliation(s)
- Ioannis A Sfontouris
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK.,Eugonia Assisted Reproduction Unit, Athens, Greece
| | - Wellington P Martins
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carolina O Nastri
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,SEMEAR fertilidade, Reproductive Medicine, Ribeirao Preto, Brazil
| | - Iara G R Viana
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,SEMEAR fertilidade, Reproductive Medicine, Ribeirao Preto, Brazil
| | - Paula A Navarro
- Department of Obstetrics and Gynecology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Nick Raine-Fenning
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sheryl van der Poel
- HRP (the UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction), Geneva, Switzerland.,Population Council, Reproductive Health Programme, New York, USA
| | - Laura Rienzi
- GENERA Centre for Reproductive Medicine, Clinica Valle Giulia, via de Notaris 2b, Rome, Italy
| | - Catherine Racowsky
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, 02115, MA, USA.
| |
Collapse
|
32
|
Bolnick A, Abdulhasan M, Kilburn B, Xie Y, Howard M, Andresen P, Shamir AM, Dai J, Puscheck EE, Rappolee DA. Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos. J Assist Reprod Genet 2016; 33:1027-39. [PMID: 27230877 PMCID: PMC4974229 DOI: 10.1007/s10815-016-0735-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/13/2016] [Indexed: 11/26/2022] Open
Abstract
PURPOSE The purpose of the present study is to test whether metformin, aspirin, or diet supplement (DS) BioResponse-3,3'-Diindolylmethane (BR-DIM) can induce AMP-activated protein kinase (AMPK)-dependent potency loss in cultured embryos and whether metformin (Met) + Aspirin (Asa) or BR-DIM causes an AMPK-dependent decrease in embryonic development. METHODS The methods used were as follows: culture post-thaw mouse zygotes to the two-cell embryo stage and test effects after 1-h AMPK agonists' (e.g., Met, Asa, BR-DIM, control hyperosmotic stress) exposure on AMPK-dependent loss of Oct4 and/or Rex1 nuclear potency factors, confirm AMPK dependence by reversing potency loss in two-cell-stage embryos with AMPK inhibitor compound C (CC), test whether Met + Asa (i.e., co-added) or DS BR-DIM decreases development of two-cell to blastocyst stage in an AMPK-dependent (CC-sensitive) manner, and evaluate the level of Rex1 and Oct4 nuclear fluorescence in two-cell-stage embryos and rate of two-cell-stage embryo development to blastocysts. RESULT(S) Met, Asa, BR-DIM, or hyperosmotic sorbitol stress induces rapid ~50-85 % Rex1 and/or Oct4 protein loss in two-cell embryos. This loss is ~60-90 % reversible by co-culture with AMPK inhibitor CC. Embryo development from two-cell to blastocyst stage is decreased in culture with either Met + Asa or BR-DIM, and this is either >90 or ~60 % reversible with CC, respectively. CONCLUSION These experimental designs here showed that Met-, Asa-, BR-DIM-, or sorbitol stress-induced rapid potency loss in two-cell embryos is AMPK dependent as suggested by inhibition of Rex1 and/or Oct4 protein loss with an AMPK inhibitor. The DS BR-DIM or fertility drugs (e.g., Met + Asa) that are used to enhance maternal metabolism to support fertility can also chronically slow embryo growth and block development in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Alan Bolnick
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.
| | - Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Brian Kilburn
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Yufen Xie
- Fertility and Surgical Associates of California, Thousand Oaks, CA, 91361, USA
| | - Mindie Howard
- EmbryoTech Laboratories, 140 Hale Street, Haverhill, MA, 01830, USA
| | - Paul Andresen
- Ob/Gyn, IVF Clinic, University Physician Group, Wayne State University School of Medicine, 26400 W 12 Mile Road, Suite 140, Southfield, MI, 48034, USA
| | - Alexandra M Shamir
- University of Utah, 201 Presidents Circle, Salt Lake City, UT, 84112, USA
| | - Jing Dai
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Elizabeth E Puscheck
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
| | - Daniel A Rappolee
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
33
|
Huang HY, Shen HH, Chung LY, Chung YH, Chen CC, Hsu CH, Fan SK, Yao DJ. Fertilization of Mouse Gametes in Vitro Using a Digital Microfluidic System. IEEE Trans Nanobioscience 2015; 14:857-63. [PMID: 26529769 DOI: 10.1109/tnb.2015.2485303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We demonstrated in vitro fertilization (IVF) using a digital microfluidic (DMF) system, so-called electrowetting on dielectric (EWOD). The DMF device was proved to be biocompatible and the DMF manipulation of a droplet was harmless to the embryos. This DMF platform was then used for the fertilization of mouse gametes in vitro and for embryo dynamic culture based on a dispersed droplet form. Development of the embryos was instantaneously recorded by a time-lapse microscope in an incubator. Our results indicated that increasing the number of sperms for IVF would raise the rate of fertilization. However, the excess of sperms in the 10 μL culture medium would more easily make the embryo dead during cell culture. Dynamic culture powered with EWOD can manipulate a single droplet containing mouse embryos and culture to the eight-cell stage. The fertilization rate of IVF demonstrated by DMF system was 34.8%, and about 25% inseminated embryos dynamically cultured on a DMF chip developed into an eight-cell stage. The results indicate that the DMF system has the potential for application in assisted reproductive technology.
Collapse
|
34
|
Hardarson T, Bungum M, Conaghan J, Meintjes M, Chantilis SJ, Molnar L, Gunnarsson K, Wikland M. Noninferiority, randomized, controlled trial comparing embryo development using media developed for sequential or undisturbed culture in a time-lapse setup. Fertil Steril 2015; 104:1452-9.e1-4. [PMID: 26409153 DOI: 10.1016/j.fertnstert.2015.08.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To study whether a culture medium that allows undisturbed culture supports human embryo development to the blastocyst stage equivalently to a well-established sequential media. DESIGN Randomized, double-blinded sibling trial. SETTING Independent in vitro fertilization (IVF) clinics. PATIENT(S) One hundred twenty-eight patients, with 1,356 zygotes randomized into two study arms. INTERVENTION(S) Embryos randomly allocated into two study arms to compare embryo development on a time-lapse system using a single-step medium or sequential media. MAIN OUTCOME MEASURE(S) Percentage of good-quality blastocysts on day 5. RESULT(S) Percentage of day 5 good-quality blastocysts was 21.1% (standard deviation [SD] ± 21.6%) and 22.2% (SD ± 22.1%) in the single-step time-lapse medium (G-TL) and the sequential media (G-1/G-2) groups, respectively. The mean difference (-1.2; 95% CI, -6.0; 3.6) between the two media systems for the primary end point was less than the noninferiority margin of -8%. There was a statistically significantly lower number of good-quality embryos on day 3 in the G-TL group [50.7% (SD ± 30.6%) vs. 60.8% (SD ± 30.7%)]. Four out of the 11 measured morphokinetic parameters were statistically significantly different for the two media used. The mean levels of ammonium concentration in the media at the end of the culture period was statistically significantly lower in the G-TL group as compared with the G-2 group. CONCLUSION(S) We have shown that a single-step culture medium supports blastocyst development equivalently to established sequential media. The ammonium concentrations were lower in the single-step media, and the measured morphokinetic parameters were modified somewhat. CLINICAL TRIAL REGISTRATION NUMBER NCT01939626.
Collapse
Affiliation(s)
| | - Mona Bungum
- Reproductive Medicine Centre, Skåne University Hospital, Malmö, Sweden
| | - Joe Conaghan
- Pacific Fertility Center, San Francisco, California
| | - Marius Meintjes
- Frisco Institute for Reproductive Medicine, Dallas/Austin, Texas
| | | | | | | | - Matts Wikland
- Fertilitetscentrum, Carlanderska Hospital, Gothenburg, Sweden
| |
Collapse
|
35
|
Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update 2015. [PMID: 26207016 DOI: 10.1093/humupd/dmv034] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although laboratory procedures, along with culture media formulations, have improved over the past two decades, the issue remains that human IVF is performed in vitro (literally 'in glass'). METHODS Using PubMed, electronic searches were performed using keywords from a list of chemical and physical factors with no limits placed on time. Examples of keywords include oxygen, ammonium, volatile organics, temperature, pH, oil overlays and incubation volume/embryo density. Available clinical and scientific evidence surrounding physical and chemical factors have been assessed and presented here. RESULTS AND CONCLUSIONS Development of the embryo outside the body means that it is constantly exposed to stresses that it would not experience in vivo. Sources of stress on the human embryo include identified factors such as pH and temperature shifts, exposure to atmospheric (20%) oxygen and the build-up of toxins in the media due to the static nature of culture. However, there are other sources of stress not typically considered, such as the act of pipetting itself, or the release of organic compounds from the very tissue culture ware upon which the embryo develops. Further, when more than one stress is present in the laboratory, there is evidence that negative synergies can result, culminating in significant trauma to the developing embryo. It is evident that embryos are sensitive to both chemical and physical signals within their microenvironment, and that these factors play a significant role in influencing development and events post transfer. From the viewpoint of assisted human reproduction, a major concern with chemical and physical factors lies in their adverse effects on the viability of embryos, and their long-term effects on the fetus, even as a result of a relatively brief exposure. This review presents data on the adverse effects of chemical and physical factors on mammalian embryos and the importance of identifying, and thereby minimizing, them in the practice of human IVF. Hence, optimizing the in vitro environment involves far more than improving culture media formulations.
Collapse
Affiliation(s)
- Petra L Wale
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia Melbourne IVF, Melbourne, Victoria, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Huang HY, Shen HH, Tien CH, Li CJ, Fan SK, Liu CH, Hsu WS, Yao DJ. Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip. PLoS One 2015; 10:e0124196. [PMID: 25933003 PMCID: PMC4416819 DOI: 10.1371/journal.pone.0124196] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/26/2015] [Indexed: 01/04/2023] Open
Abstract
Current human fertilization in vitro (IVF) bypasses the female oviduct and manually inseminates, fertilizes and cultivates embryos in a static microdrop containing appropriate chemical compounds. A microfluidic microchannel system for IVF is considered to provide an improved in-vivo-mimicking environment to enhance the development in a culture system for an embryo before implantation. We demonstrate a novel digitalized microfluidic device powered with electrowetting on a dielectric (EWOD) to culture an embryo in vitro in a single droplet in a microfluidic environment to mimic the environment in vivo for development of the embryo and to culture the embryos with good development and live births. Our results show that the dynamic culture powered with EWOD can manipulate a single droplet containing one mouse embryo and culture to the blastocyst stage. The rate of embryo cleavage to a hatching blastocyst with a dynamic culture is significantly greater than that with a traditional static culture (p<0.05). The EWOD chip enhances the culture of mouse embryos in a dynamic environment. To test the reproductive outcome of the embryos collected from an EWOD chip as a culture system, we transferred embryos to pseudo-pregnant female mice and produced live births. These results demonstrate that an EWOD-based microfluidic device is capable of culturing mammalian embryos in a microfluidic biological manner, presaging future clinical application.
Collapse
Affiliation(s)
- Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Chang Gung University and College of Medicine, Taoyuan, Taiwan
| | - Hsien-Hua Shen
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu, Taiwan
| | - Chang-Hung Tien
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chin-Jung Li
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Kang Fan
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Cheng-Hsien Liu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Syang Hsu
- Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Da-Jeng Yao
- Institute of Nanoengineering and Microsystem, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Stress signaling in mammalian oocytes and embryos: a basis for intervention and improvement of outcomes. Cell Tissue Res 2015; 363:159-167. [PMID: 25743689 DOI: 10.1007/s00441-015-2124-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 12/30/2014] [Indexed: 10/23/2022]
Abstract
Oocytes and early stage embryos are highly sensitive to variation in diverse exogenous factors such as temperature, osmolarity, oxygen, nutrient restriction, pH, shear stress, toxins, amino acid availability, and lipids. It is becoming increasingly apparent that many such factors negatively affect the endoplasmic reticulum, protein synthesis and protein processing, initiating ER stress and unfolded protein responses. As a result, ER stress signaling serves as a common mediator of cellular responses to diverse stressors. In oocytes and embryos, this leads to developmental arrest and epigenetic changes. Recent studies have revealed that preventing ER stress or inhibiting ER stress signaling can preserve or even enhance oocyte and embryo developmental potential. This review examines ER stress signaling, how it arises, how it affects oocytes and embryos, and how its occurrence can be managed or prevented.
Collapse
|
38
|
Shen HH, Chung LY, Yao DJ. Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer. BIOMICROFLUIDICS 2015; 9:022403. [PMID: 25825614 PMCID: PMC4376753 DOI: 10.1063/1.4915613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/18/2015] [Indexed: 05/29/2023]
Abstract
Dielectric breakdown is a common problem in a digital microfluidic system, which limits its application in chemical or biomedical applications. We propose a new fabrication of an electrowetting-on-dielectric (EWOD) device using Si3N4 deposited by low-pressure chemical vapor deposition (LPCVD) as a dielectric layer. This material exhibits a greater relative permittivity, purity, uniformity, and biocompatibility than polymeric films. These properties also increase the breakdown voltage of a dielectric layer and increase the stability of an EWOD system when applied in biomedical research. Medium droplets with mouse embryos were manipulated in this manner. The electrical properties of the Si3N4 dielectric layer-breakdown voltage, refractive index, relative permittivity, and variation of contact angle with input voltage-were investigated and compared with a traditional Si3N4 dielectric layer deposited as a plasma-enhanced chemical vapor deposition to confirm the potential of LPCVD Si3N4 applied as the dielectric layer of an EWOD digital microfluidic system.
Collapse
Affiliation(s)
- Hsien-Hua Shen
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University , Hsinchu 30013, Taiwan
| | - Lung-Yuan Chung
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University , Hsinchu 30013, Taiwan
| | | |
Collapse
|
39
|
Kieslinger DC, Hao Z, Vergouw CG, Kostelijk EH, Lambalk CB, Le Gac S. In vitro development of donated frozen-thawed human embryos in a prototype static microfluidic device: a randomized controlled trial. Fertil Steril 2015; 103:680-6.e2. [DOI: 10.1016/j.fertnstert.2014.12.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022]
|
40
|
Endoplasmic reticulum stress signaling in mammalian oocytes and embryos: life in balance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:227-65. [PMID: 25805126 DOI: 10.1016/bs.ircmb.2015.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian oocytes and embryos are exquisitely sensitive to a wide range of insults related to physical stress, chemical exposure, and exposures to adverse maternal nutrition or health status. Although cells manifest specific responses to various stressors, many of these stressors intersect at the endoplasmic reticulum (ER), where disruptions in protein folding and production of reactive oxygen species initiate downstream signaling events. These signals modulate mRNA translation and gene transcription, leading to recovery, activation of autophagy, or with severe and prolonged stress, apoptosis. ER stress signaling has recently come to the fore as a major contributor to embryo demise. Accordingly, agents that modulate or inhibit ER stress signaling have yielded beneficial effects on embryo survival and long-term developmental potential. We review here the mechanisms of ER stress signaling, their connections to mammalian oocytes and embryos, and the promising indications that interventions in this pathway may provide new opportunities for improving mammalian reproduction and health.
Collapse
|
41
|
Puscheck EE, Awonuga AO, Yang Y, Jiang Z, Rappolee DA. Molecular biology of the stress response in the early embryo and its stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 843:77-128. [PMID: 25956296 DOI: 10.1007/978-1-4939-2480-6_4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stress is normal during early embryogenesis and transient, elevated stress is commonplace. Stress in the milieu of the peri-implantation embryo is a summation of maternal hormones, and other elements of the maternal milieu, that signal preparedness for development and implantation. Examples discussed here are leptin, adrenaline, cortisol, and progesterone. These hormones signal maternal nutritional status and provide energy, but also signal stress that diverts maternal and embryonic energy from an optimal embryonic developmental trajectory. These hormones communicate endocrine maternal effects and local embryonic effects although signaling mechanisms are not well understood. Other in vivo stresses affect the embryo such as local infection and inflammation, hypoxia, environmental toxins such as benzopyrene, dioxin, or metals, heat shock, and hyperosmotic stress due to dehydration or diabetes. In vitro, stresses include shear during handling, improper culture media and oxygen levels, cryopreservation, and manipulations of the embryo to introduce sperm or mitochondria. We define stress as any stimulus that slows stem cell accumulation or diminishes the ability of cells to produce normal and sufficient parenchymal products upon differentiation. Thus stress deflects downwards the normal trajectories of development, growth and differentiation. Typically stress is inversely proportional to embryonic developmental and proliferative rates, but can be proportional to induction of differentiation of stem cells in the peri-implantation embryo. When modeling stress it is most interesting to produce a 'runting model' where stress exposures slow accumulation but do not create excessive apoptosis or morbidity. Windows of stress sensitivity may occur when major new embryonic developmental programs require large amounts of energy and are exacerbated if nutritional flow decreases and removes energy from the normal developmental programs and stress responses. These windows correspond to zygotic genome activation, the large mRNA program initiated at compaction, ion pumping required for cavitation, the differentiation of the first lineages, integration with the uterine environment at implantation, rapid proliferation of stem cells, and production of certain lineages which require the highest energy and are most sensitive to mitochondrial inhibition. Stress response mechanisms insure that stem cells for the early embryo and placenta survive at lower stress exposures, and that the organism survives through compensatory and prioritized stem cell differentiation, at higher stress exposures. These servomechanisms include a small set of stress enzymes from the 500 protein kinases in the kinome; the part of the genome coding for protein kinases that hierarchically regulate the activity of other proteins and enzymes. Important protein kinases that mediate the stress response of embryos and their stem cells are SAPK, p38MAPK, AMPK, PI3K, Akt, MEK1/2, MEKK4, PKA, IRE1 and PERK. These stress enzymes have cytosolic function in cell survival at low stress exposures and nuclear function in modifying transcription factor activity at higher stress exposures. Some of the transcription factors (TFs) that are most important in the stress response are JunC, JunB, MAPKAPs, ATF4, XBP1, Oct1, Oct4, HIFs, Nrf2/KEAP, NFKB, MT1, Nfat5, HSF1/2 and potency-maintaining factors Id2, Cdx2, Eomes, Sox2, Nanog, Rex1, and Oct4. Clearly the stress enzymes have a large number of cytosolic and nuclear substrates and the TFs regulate large numbers of genes. The interaction of stress enzymes and TFs in the early embryo and its stem cells are a continuing central focus of research. In vitro regulation of TFs by stress enzymes leads to reprogramming of the stem cell when stress diminishes stem cell accumulation. Since more differentiated product is produced by fewer cells, the process compensates for fewer cells. Coupled with stress-induced compensatory differentiation of stem cells is a tendency to prioritize differentiation by increasing the first essential lineage and decreasing later lineages. These mechanisms include stress enzymes that regulate TFs and provide stress-specific, shared homeostatic cellular and organismal responses of prioritized differentiation.
Collapse
Affiliation(s)
- Elizabeth E Puscheck
- Department of Ob/Gyn, REI Division, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
42
|
Tran M, Gallo LA, Hanvey AN, Jefferies AJ, Westcott KT, Cullen-McEwen LA, Gardner DK, Moritz KM, Wlodek ME. Embryo transfer cannot delineate between the maternal pregnancy environment and germ line effects in the transgenerational transmission of disease in rats. Am J Physiol Regul Integr Comp Physiol 2014; 306:R607-18. [PMID: 24523338 DOI: 10.1152/ajpregu.00523.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adverse conditions in utero can have transgenerational effects, in the absence of a subsequent insult. We aimed to investigate the contribution of the maternal pregnancy environment vs. germ line effects in mediating alterations to cardiorenal and metabolic physiology in offspring from mothers born small. Uteroplacental insufficiency was induced by bilateral uterine artery and vein ligation (Restricted group) or sham surgery (Control group) in Wistar-Kyoto rats. Restricted and control female offspring (F1) were mated with either breeder males (embryo donor) or vasectomized males (embryo recipient). Embryo transfer was performed at embryonic day (E) 1, whereby second-generation (F2) embryos gestated (donor-in-recipient) in either a control (Cont-in-Cont, Rest-in-Cont) or restricted (Cont-in-Rest, Rest-in-Rest) mother. In male and female offspring, glomerular number and size were measured at postnatal day (PN) 35, and systolic blood pressure, glucose control, insulin sensitivity, and pancreatic β-cell mass were measured in separate sibling cohorts at 6 mo. Rest-in-Rest offspring were hypothesized to have similar characteristics (reduced growth, altered metabolic control, and hypertension) to non-embryo-transferred Rest, such that embryo transfer would not be a confounding experimental influence. However, embryo-transferred Rest-in-Rest offspring underwent accelerated growth during the peripubertal phase, followed by slowed growth between 2 and 3 mo of age compared with non-embryo-transferred Rest groups. Furthermore, renal function and insulin response to a glucose load were different to respective non-embryo-transferred groups. Our data demonstrate the long-term effects of in vitro embryo manipulation, which confounded the utility of this approach in delineating between the maternal pregnancy environment and germ line effects that drive transgenerational outcomes.
Collapse
Affiliation(s)
- Melanie Tran
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li Y, Li T, Mai Q, Long L, Ou J. Comparison of fertilization outcome between microdrop and open insemination methods in non-male factor IVF patients. Syst Biol Reprod Med 2014; 60:165-70. [PMID: 24499510 DOI: 10.3109/19396368.2013.872707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Both microdrop and open methods are commonly used for in vitro fertilization (IVF) protocols for embryo culture as well as oocyte insemination. However, few comparative studies evaluating the microdrop or open method of insemination on the fertilization outcome and subsequent embryo development have been performed. A randomized study was conducted to compare microdrop and open fertilization with respect to fertilization rate and embryo development among non-male factor patients undergoing in vitro fertilization and embryo transfer (IVF-ET). The results presented in this study demonstrate that the fertilization failure rate [total fertilization failure rate (TFF) plus low fertilization rate (<25% oocytes fertilized)] in the microdrop insemination group was higher than in the open insemination group (11.9% versus 3.3%, p < 0.001), while the good quality embryo rate and pregnancy rate did not differ significantly between the groups. As a highly complicated process involving many extrinsic and intrinsic factors, further studies are needed to confirm the effects of these insemination methods on the rate of fertilization failure.
Collapse
Affiliation(s)
- Yubin Li
- The First Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Awoniyi O Awonuga
- CS Mott Center for Human Growth and Development of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | |
Collapse
|
45
|
Asano Y, Matsuura K. Mouse embryo motion and embryonic development from the 2-cell to blastocyst stage using mechanical vibration systems. Reprod Fertil Dev 2013; 26:733-41. [PMID: 23697534 DOI: 10.1071/rd13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/01/2013] [Indexed: 11/23/2022] Open
Abstract
We investigated the effect of mechanical stimuli on mouse embryonic development from the 2-cell to blastocyst stage to evaluate physical factors affecting embryonic development. Shear stress (SS) applied to embryos using two mechanical vibration systems (MVSs) was calculated by observing microscopic images of moving embryos during mechanical vibration (MV). The MVSs did not induce any motion of the medium and the diffusion rate using MVSs was the same as that under static conditions. Three days of culture using MVS did not improve embryonic development. MVS transmitted MV power more efficiently to embryos than other systems and resulted in a significant decrease in development to the morula or blastocyst stage after 2 days. Comparison of the results of embryo culture using dynamic culture systems demonstrated that macroscopic diffusion of secreted materials contributes to improved development of mouse embryos to the blastocyst stage. These results also suggest that the threshold of SS and MV to induce negative effects for mouse embryos at stages earlier than the blastocyst may be lower than that for the blastocyst, and that mouse embryos are more sensitive to physical and chemical stimuli than human or pig embryos because of their thinner zona pellucida.
Collapse
Affiliation(s)
- Yuka Asano
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Koji Matsuura
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| |
Collapse
|
46
|
Swain JE, Lai D, Takayama S, Smith GD. Thinking big by thinking small: application of microfluidic technology to improve ART. LAB ON A CHIP 2013; 13:1213-24. [PMID: 23400523 DOI: 10.1039/c3lc41290c] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In Vitro Fertilization (IVF) laboratories often carry a penchant to resist change while in the pursuit of maintaining consistency in laboratory conditions. However, implementation of new technology is often critical to expand scientific discoveries and to improve upon prior successes to advance the field. Microfluidic platforms represent a technology that has the potential to revolutionize the fundamental processes of IVF. While the focus of microfluidic application in IVF has centered on embryo culture, the innovative platforms carry tremendous potential to improve other procedural steps and represents a possible paradigm shift in how we handle gametes and embryos. The following review will highlight application of various microfluidic platforms in IVF for use in maturation, manipulation, culture, cryopreservation and non-invasive quality assessment; pointing out new insights gained into functions of sperm, oocytes and embryos. Platform design and function will also be discussed, focusing on limitations, advancements and future refinements that can further aid in their clinical implementation.
Collapse
Affiliation(s)
- J E Swain
- Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
47
|
Hara T, Matsuura K, Kodama T, Sato K, Kikkawa Y, Muneto T, Tanaka J, Naruse K. A tilting embryo culture system increases the number of high-grade human blastocysts with high implantation competence. Reprod Biomed Online 2013; 26:260-8. [DOI: 10.1016/j.rbmo.2012.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 11/27/2022]
|
48
|
Abstract
The first tissue culture media were developed nearly 150 years ago by Ludwig and Ringer. These were simple salt solutions, which were initially based on the chemical properties of blood serum. The second generation of culture media was developed more than a century later, in the 1970s, aiming to mimic the reproductive environment. In the 1990s, simplex optimization was used to design the third group of media, to some extent ignoring existing formulations and principles. Simultaneous with the development of culture media, it became evident that it was necessary to carefully control the culture conditions, including temperature, pH, osmolarity, and air quality. Equally important was the development of instruments and tools specifically designed for cell tissue culture such as the inverted microscope, the incubator, the Petri dish, sterile plasticware, the laminar flow cabinet, and air filtration equipment.
Collapse
Affiliation(s)
- Jacques Cohen
- Tyho-Galileo Research Laboratories & Reprogenetics, West Orange, NJ, USA.
| | | |
Collapse
|
49
|
Automated neurosphere sorting and plating by the COPAS large particle sorter is a suitable method for high-throughput 3D in vitro applications. Toxicol In Vitro 2012; 26:993-1000. [DOI: 10.1016/j.tiv.2012.04.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 11/13/2022]
|
50
|
Meseguer M, Kruhne U, Laursen S. Full in vitro fertilization laboratory mechanization: toward robotic assisted reproduction? Fertil Steril 2012; 97:1277-86. [PMID: 22480821 DOI: 10.1016/j.fertnstert.2012.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To describe the current efforts made to standardize different steps of assisted reproductive technology processes by the introduction of new technologies for the nonsubjective sperm selection process, oocyte denudation by mechanical removal of cumulus cells, oocyte positioning, sperm motility screening, fertilization, embryo culture, media replacement by microfluidics, and monitoring of embryo development by time-lapse photography, embryo secretions, and/or O(2) consumption. These technologies could be integrated in a unique and fully automated device. DESIGN Pubmed database and research and development data from authors. SETTING University-affiliated private center. PATIENT(S) None. INTERVENTION(S) None. MAIN OUTCOME MEASUREMENT(S) None. RESULT(S) Several technologies would be useful for: 1) selection of sperm based on viability; 2) manipulation and removal of the cumulus cells' narrow channel regions combined with microfluidics; 3) advances in oocyte positioning precision through the use of joystick-controlled micromanipulators; 4) microfluidics allowing the gradual change of a culture medium, which might result in better embryo development as well as reduce the amount of embryo manipulation; 5) time-lapse, proteomic, and metabolic scoring of the developing embryo, allowing multiple and optimized selection of the embryos. The technologies described in this review have not yet reported reliable clinical proofs. CONCLUSION(S) We already have available some of the technologies described, but we envisage an integrated device, i.e., an IVF lab-on-a-chip, by which oocyte and sperm would be processed to achieve a perfect embryo ready to be delivered into the uterus. With such a device, sample preparation, chemical or biologic reactions, and data collection would be integrated.
Collapse
Affiliation(s)
- Marcos Meseguer
- Instituto Valenciano de Infertilidad, Universidad de Valencia, Valencia, Spain
| | | | | |
Collapse
|