1
|
Ziyafati Kafi F, Eslami N, Shekari F, Bazrgar M. Theranostic potential of extracellular vesicles in reproductive tracts: implications for recurrent implantation failure. Mol Biol Rep 2025; 52:502. [PMID: 40411714 DOI: 10.1007/s11033-025-10619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/15/2025] [Indexed: 05/26/2025]
Abstract
Embryo implantation is a critical step at the beginning of pregnancy, occurring during a specific and limited period known as the "implantation window". Successful implantation involves various signaling pathways and molecular interactions. Recent studies have highlighted the importance of extracellular vesicles (EVs) in mediating these complex interactions. Different cell types release EVs to transfer signals to other cells or tissues. Additionally, emerging evidence suggests that EVs regulate signaling between the developing embryo and endometrium. In this review, we summarize current findings that highlight the role of EVs in the reproductive tract, gamete production, and their potential roles in embryo development and implantation. We then examine studies emphasizing the role of EVs in embryo-maternal interactions and implantation. Finally, we will explore the theranostic potential of EVs in various aspects of assisted reproductive technology (ART), including modulation of embryo-maternal interactions, enhancement of embryo quality, and improvement of endometrial receptivity. A more comprehensive understanding of EVs in the pathology of recurrent implantation failure could support the development of personalized treatments.
Collapse
Affiliation(s)
- Fatemeh Ziyafati Kafi
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Nasim Eslami
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masood Bazrgar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Lee SH. The role of extracellular vesicles in embryo development: implications for reproductive health and therapeutic potential. Reprod Fertil Dev 2025; 37:RD24151. [PMID: 40153376 DOI: 10.1071/rd24151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/11/2025] [Indexed: 03/30/2025] Open
Abstract
Extracellular vesicles (EVs) contain various biological molecules, such as proteins, lipids, and diverse nucleic acids, which alter various physiological and pathological processes in recipient cells. This review focuses on the current understanding of the biological characteristics of EVs on embryo development and their potential therapeutic value in treating reproductive disorders. EVs play a crucial role in early embryo development, from fertilization to the pre-implantation stage, gastrulation, cell differentiation, and organogenesis. During the pre-implantation period, EVs interact with maternal reproductive tissue and promote implantation receptivity. In gastrulation, EVs regulate cell differentiation, contributing to tissue formation and maintenance. Abnormal bioactive molecules in EVs are closely related to developmental disorders. Thus, EVs have the potential to serve as biomarkers. Moreover, EVs can serve as therapeutic agents, delivering genetic material for targeted tissue/organs. The findings of this review highlight the potential role of EVs in intercellular signaling during embryo development. This can help advance assisted reproductive technologies and therapies to overcome infertility issues and developmental disorders.
Collapse
Affiliation(s)
- Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Ovčar A, Kovačič B. Biogenesis of Extracellular Vesicles (EVs) and the Potential Use of Embryo-Derived EVs in Medically Assisted Reproduction. Int J Mol Sci 2024; 26:42. [PMID: 39795901 PMCID: PMC11719982 DOI: 10.3390/ijms26010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-bound particles released from cells that cannot replicate on their own, play a crucial role in intercellular communication, and are implicated in various physiological and pathological processes. Within the domain of embryo culture media research, extensive studies have been conducted to evaluate embryo viability by analyzing spent culture medium. Advanced methodologies such as metabolomic profiling, proteomic and genomic analyses, transcriptomic profiling, non-coding RNA assessments, and oxidative status measurements have been employed to further understand the molecular characteristics of embryos and improve selection criteria for successful implantation. In the field of EVs, only a limited number of studies have been conducted on embryo-conditioned medium, indicating a significant gap in knowledge regarding the potential role of EVs in embryo development and implantation. Therefore, this review aims to evaluate current research findings on EVs enriched from animal and human embryo spent medium. By unraveling the potential link between embryo-derived EVs and embryo selection in clinical settings, such research might enhance embryo-selection methods in assisted reproductive technologies, eventually increasing the success rates of fertility treatments and advancing our understanding of mechanisms underlying successful embryo development and implantation in humans.
Collapse
Affiliation(s)
| | - Borut Kovačič
- Department of Reproductive Medicine and Gynecological Endocrinology, University Medical Centre Maribor, 2000 Maribor, Slovenia;
| |
Collapse
|
4
|
Poh QH, Rai A, Cross J, Greening DW. HB-EGF-loaded nanovesicles enhance trophectodermal spheroid attachment and invasion. Proteomics 2024; 24:e2200145. [PMID: 38214697 DOI: 10.1002/pmic.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
The ability of trophectodermal cells (outer layer of the embryo) to attach to the endometrial cells and subsequently invade the underlying matrix are critical stages of embryo implantation during successful pregnancy establishment. Extracellular vesicles (EVs) have been implicated in embryo-maternal crosstalk, capable of reprogramming endometrial cells towards a pro-implantation signature and phenotype. However, challenges associated with EV yield and direct loading of biomolecules limit their therapeutic potential. We have previously established generation of cell-derived nanovesicles (NVs) from human trophectodermal cells (hTSCs) and their capacity to reprogram endometrial cells to enhance adhesion and blastocyst outgrowth. Here, we employed a rapid NV loading strategy to encapsulate potent implantation molecules such as HB-EGF (NVHBEGF). We show these loaded NVs elicit EGFR-mediated effects in recipient endometrial cells, activating kinase phosphorylation sites that modulate their activity (AKT S124/129, MAPK1 T185/Y187), and downstream signalling pathways and processes (AKT signal transduction, GTPase activity). Importantly, they enhanced target cell attachment and invasion. The phosphoproteomics and proteomics approach highlight NVHBEGF-mediated short-term signalling patterns and long-term reprogramming capabilities on endometrial cells which functionally enhance trophectodermal-endometrial interactions. This proof-of-concept study demonstrates feasibility in enhancing the functional potency of NVs in the context of embryo implantation.
Collapse
Affiliation(s)
- Qi Hui Poh
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jonathon Cross
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Poh QH, Rai A, Pangestu M, Salamonsen LA, Greening DW. Rapid generation of functional nanovesicles from human trophectodermal cells for embryo attachment and outgrowth. Proteomics 2024; 24:e2300056. [PMID: 37698557 DOI: 10.1002/pmic.202300056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Extracellular vesicles (EVs) are important mediators of embryo attachment and outgrowth critical for successful implantation. While EVs have garnered immense interest in their therapeutic potential in assisted reproductive technology by improving implantation success, their large-scale generation remains a major challenge. Here, we report a rapid and scalable production of nanovesicles (NVs) directly from human trophectoderm cells (hTSCs) via serial mechanical extrusion of cells; these NVs can be generated in approximately 6 h with a 20-fold higher yield than EVs isolated from culture medium of the same number of cells. NVs display similar biophysical traits (morphologically intact, spherical, 90-130 nm) to EVs, and are laden with hallmark players of implantation that include cell-matrix adhesion and extracellular matrix organisation proteins (ITGA2/V, ITGB1, MFGE8) and antioxidative regulators (PRDX1, SOD2). Functionally, NVs are readily taken up by low-receptive endometrial HEC1A cells and reprogram their proteome towards a receptive phenotype that support hTSC spheroid attachment. Moreover, a single dose treatment with NVs significantly enhanced adhesion and spreading of mouse embryo trophoblast on fibronectin matrix. Thus, we demonstrate the functional potential of NVs in enhancing embryo implantation and highlight their rapid and scalable generation, amenable to clinical utility.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mulyoto Pangestu
- Education Program in Reproduction and Development (EPRD), Department of Obstetrics and Gynaecology, Monash Clinical School, Monash University, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Veraguas-Dávila D, Caamaño D, Saéz-Ruiz D, Vásquez Y, Saravia F, Castro FO, Rodríguez-Alvarez L. Zona pellucida removal modifies the expression and release of specific microRNAs in domestic cat blastocysts. ZYGOTE 2023; 31:544-556. [PMID: 37724015 DOI: 10.1017/s0967199423000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The in vitro culture of domestic cat embryos without the zona pellucida affects their implantation capacity. MicroRNAs (miRNAs) have an important role in embryo-maternal communication and implantation. The objective of this study was to evaluate the expression of specific miRNAs in domestic cat blastocysts cultured without the zona pellucida. Two experimental groups were done: (1) domestic cat embryos cultured with the zona pellucida (zona intact control group, ZI); and (2) cultured without the zona pellucida (zona free group, ZF). The cleavage, morula and blastocyst rates were evaluated. The blastocysts and their spent medium were used for miRNA expression analysis using RT-qPCR (miR-21, miR-24, mi25, miR-29, miR-96, miR-98, miR-103, miR-191, miR-196, miR-199, miR-130, miR-155 and miR-302). The pre-mature microRNAs (pre-miRNAs) and miRNAs were evaluated in the blastocysts and only miRNAs were evaluated in the spent medium. No differences were observed in the cleavage, morula and blastocyst rates between the ZF and ZI groups (P > 0.05). For miRNAs analysis, miR-103 and miR-191 had the most stable expression and were selected as internal controls. ZF blastocysts had a higher expression of miR-21, miR-25, miR-29 and miR-199 and a lower expression of miR-96 than their ZI counterparts (P < 0.05). Furthermore, higher levels of miR-21, miR-25 and miR-98 were detected in the spent medium of ZF blastocysts (P < 0.05). In conclusion, in vitro culture of domestic cat embryos without the zona pellucida modifies the expression of miR-21, miR-25, miR-29, miR-199 and miR-96 at the blastocyst stage and the release of miR-21, miR-25 and miR-98.
Collapse
Affiliation(s)
- Daniel Veraguas-Dávila
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
- Facultad de Ciencias Agrarias y Forestales, Departamento de Ciencias Agrarias, Escuela de Medicina Veterinaria, Universidad Católica del Maule, Los Niches, Curicó, Chile
| | - Diego Caamaño
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Darling Saéz-Ruiz
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Yazmín Vásquez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Fernando Saravia
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | | |
Collapse
|
7
|
Poh QH, Rai A, Salamonsen LA, Greening DW. Omics insights into extracellular vesicles in embryo implantation and their therapeutic utility. Proteomics 2023; 23:e2200107. [PMID: 36591946 DOI: 10.1002/pmic.202200107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/03/2023]
Abstract
Implantation success relies on intricate interplay between the developing embryo and the maternal endometrium. Extracellular vesicles (EVs) represent an important player of this intercellular signalling through delivery of functional cargo (proteins and RNAs) that reprogram the target cells protein and RNA landscape. Functionally, the signalling reciprocity of endometrial and embryo EVs regulates the site of implantation, preimplantation embryo development and hatching, antioxidative activity, embryo attachment, trophoblast invasion, arterial remodelling, and immune tolerance. Omics technologies including mass spectrometry have been instrumental in dissecting EV cargo that regulate these processes as well as molecular changes in embryo and endometrium to facilitate implantation. This has also led to discovery of potential cargo in EVs in human uterine fluid (UF) and embryo spent media (ESM) of diagnostic and therapeutic value in implantation success, fertility, and pregnancy outcome. This review discusses the contribution of EVs in functional hallmarks of embryo implantation, and how the integration of various omics technologies is enabling design of EV-based diagnostic and therapeutic platforms in reproductive medicine.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Bovine embryos release extracellular vesicles with differential miRNA signature during the compaction and blastulation stages. Reprod Biol 2023; 23:100725. [PMID: 36565511 DOI: 10.1016/j.repbio.2022.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Pre-implantation embryos release extracellular vesicles (EVs) to extracellular environment. In this work it is hypothesized that the EVs miRNA cargo will vary during pre-implantation development due to the constant changes in gene expression that take place through this period. The concentration, size and miRNA cargo of EVs secreted by competent bovine embryos during the period from compaction to blastulation (Day 3-7) were analyzed. For this analysis tow developmental windows were defined: W2 from 8-cells (D3) to morula (D5) and W3 from morula (D5) to blastocyst (D7). For W2, in vitro produced embryos were individually cultured in EVs-depleted medium from D3 to D5; culture media were collected and assigned to Group W2. Morulae were kept in culture up to blastocyst stage to determine the developmental competence. For W3, D5 morulae were collected and cultured individually in EVs-depleted medium up to blastocyst stage; culture media were assigned to Group W3, and blastocysts were kept in culture up to day 11 to define their competence. The mean size of EVs was similar between groups, however, EVs concentration was lower in W2. A total of 140 miRNAs were identified. From them, 79 were differentially expressed between the groups, 28 upregulated and 51 downregulated. miRNAs differentially detected between both developmental windows participate in the regulation of signaling pathways which crucial for embryonic development. It was concluded that the secretion of EVs is regulated by the developmental progress of the embryo during the pre-implantation period.
Collapse
|
9
|
Fan W, Qi Y, Wang Y, Yan H, Li X, Zhang Y. Messenger roles of extracellular vesicles during fertilization of gametes, development and implantation: Recent advances. Front Cell Dev Biol 2023; 10:1079387. [PMID: 36684431 PMCID: PMC9849778 DOI: 10.3389/fcell.2022.1079387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) have become a research hotspot in recent years because they act as messengers between cells in the physiological and pathological processes of the human body. It can be produced by the follicle, prostate, embryo, uterus, and oviduct in the reproductive field and exists in the extracellular environment as follicular fluid, semen, uterine cavity fluid, and oviduct fluid. Because extracellular vesicles are more stable at transmitting information, it allows all cells involved in the physiological processes of embryo formation, development, and implantation to communicate with one another. Extracellular vesicles carried miRNAs and proteins as mail, and when the messenger delivers the mail to the recipient cell, the recipient cell undergoes a series of changes. Current research begins with intercepting and decoding the information carried by extracellular vesicles. This information may help us gain a better understanding of the secrets of reproduction, as well as assist reproductive technology as an emerging marker and treatment.
Collapse
Affiliation(s)
- Weisen Fan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yinghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaqian Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huiting Yan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuan Li
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingjie Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Yingjie Zhang,
| |
Collapse
|
10
|
Extracellular Vesicles as Drug Targets and Delivery Vehicles for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14122822. [PMID: 36559315 PMCID: PMC9788152 DOI: 10.3390/pharmaceutics14122822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) are particles that are released from cells into the extracellular space both under pathological and normal conditions. It is now well established that cancer cells secrete more EVs compared to non-cancerous cells and that, captivatingly, several proteins that are involved in EV biogenesis and secretion are upregulated in various tumours. Recent studies have revealed that EVs facilitate the interaction between cancer cells and their microenvironment and play a substantial role in the growth of tumours. As EVs are involved in several aspects of cancer progression including angiogenesis, organotropism, pre-metastatic niche formation, fostering of metastasis, and chemoresistance, inhibiting the release of EVs from cancer and the surrounding tumour microenvironment cells has been proposed as an ideal strategy to treat cancer and associated paraneoplastic syndromes. Lately, EVs have shown immense benefits in preclinical settings as a novel drug delivery vehicle. This review provides a brief overview of the role of EVs in various hallmarks of cancer, focusing on (i) strategies to treat cancer by therapeutically targeting the release of tumour-derived EVs and (ii) EVs as valuable drug delivery vehicles. Furthermore, we also outline the drawbacks of the existing anti-cancer treatments and the future prospective of EV-based therapeutics.
Collapse
|
11
|
Hua R, Liu Q, Lian W, Gao D, Huang C, Lei M. Transcriptome regulation of extracellular vesicles derived from porcine uterine flushing fluids during peri-implantation on endometrial epithelial cells and embryonic trophoblast cells. Gene 2022; 822:146337. [PMID: 35182676 DOI: 10.1016/j.gene.2022.146337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 12/16/2022]
Abstract
The extracellular vesicles (EVs) in uterine fluids play a vital role in embryo implantation by mediating intrauterine communication between conceptus and maternal endometrium in pigs. However, the regulatory mechanism of EVs in uterine fluids is largely unclear. In order to understand the effect of EVs in uterine flushing fluids (UFs) during embryo implantation on endometrial epithelial cells (EECs) and embryonic trophoblast cells (PTr2 cells). The UFs-EVs on day 13 of pregnancy (D13) were added to the culture medium of EECs and PTr2 cells. It was found that PKH-67 labeled UFs-EVs could be taken up in EECs and PTr2 cells. Transcriptome sequencing analysis showed that a total of 1793 and 6279 genes were differentially expressed in the EECs and PTr2 cells after the treatment of UFs-EVs on D13, respectively. Among these genes, real-time quantitative PCR (RT-qPCR) results indicated that ID2, ITGA5, CXCL10 and CXCL11 genes were differentially expressed in both EECs and PTr2 cells after treatment. Bioinformatics analysis showed that the differentially expressed (DE) genes in EECs and PTr2 cells after treatment are involved in immune regulation, cell migration, cell adhesion and the secretion and uptake of EVs. Our research offers novel insight into the regulation mechanism of UFs-EVs on D13 in EECs and PTr2 cells.
Collapse
Affiliation(s)
- Renwu Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Qiaorui Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Weisi Lian
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Dengying Gao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Cheng Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China
| | - Minggang Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; National Engineering Research Center for Livestock, Wuhan 430000, China; The Cooperative Innovation Center for Sustainable Pig Production, 430000 Wuhan, China.
| |
Collapse
|
12
|
Kim HJ, Kim G, Lee J, Lee Y, Kim JH. Secretome of Stem Cells: Roles of Extracellular Vesicles in Diseases, Stemness, Differentiation, and Reprogramming. Tissue Eng Regen Med 2022; 19:19-33. [PMID: 34817808 PMCID: PMC8782975 DOI: 10.1007/s13770-021-00406-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence suggests that stem cells or stem cell-derived cells may contribute to tissue repair, not only by replacing lost tissue but also by delivering complex sets of secretory molecules, called secretomes, into host injured tissues. In recent years, extracellular vesicles (EVs) have gained much attention for their diverse and important roles in a wide range of pathophysiological processes. EVs are released from most types of cells and mediates cell-cell communication by activating receptors on target cells or by being taken up by recipient cells. EVs, including microvesicles and exosomes, encapsulate and carry proteins, nucleic acids, and lipids in the lumen and on the cell surface. Thus, EV-mediated intercellular communication has been extensively studied across various biological processes. While a number of investigations has been conducted in different tissues and body fluids, the field lacks a systematic review on stem cell-derived EVs, especially regarding their roles in stemness and differentiation. Here, we provide an overview of the pathophysiological roles of EVs and summarize recent findings focusing on EVs released from various types of stem cells. We also highlight emerging evidence for the potential implication of EVs in self-renewal, differentiation, and reprograming and discuss the benefits and limitations in translational approaches.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea
| | - Gyeongmin Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea
| | - Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea
| | - Youngseok Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, West building of Life Sciences, Seoul, 02841, South Korea.
| |
Collapse
|
13
|
Chen K, Liang J, Qin T, Zhang Y, Chen X, Wang Z. The Role of Extracellular Vesicles in Embryo Implantation. Front Endocrinol (Lausanne) 2022; 13:809596. [PMID: 35154016 PMCID: PMC8831238 DOI: 10.3389/fendo.2022.809596] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-coating nanoparticles derived from cells. The effect of cell-to-cell communication mediated by EVs has been investigated in different fields of physio-logical as well as pathological process in recent years. Reproduction, regarded as a definitive characteristic of organisms, has been a focus in both animal and medical sciences. It is well agreed that implantation is a critical event during early pregnancy in viviparous animals, and a proper implantation is essential for the establishment and maintenance of normal pregnancy. However, successful implantation requires the synchronized development of both the uterus and the embryo, therefore, in which well communication and opportune regulation are necessary. This review focuses on the progression of studies that reveal the role of EVs in early pregnancy, especially during implantation. Based on current evidence, EVs are produced and exist in the environment for implantation. It has been proved that EVs of different origins such as endometrium and embryo, have positive influences on embryo implantation. With their cargos of proteins and nucleic acids (especially microRNAs), EVs exert their effects including information transportation, immune stimulation and regulation of gene expression.
Collapse
|
14
|
Melo-Báez B, Mellisho EA, Cabezas J, Velásquez AE, Veraguas D, Escobar DAC, Castro FO, Rodríguez-Álvarez L. Nanoparticles from culture media are internalized by in vitro-produced bovine embryos and its depletion affect expression of pluripotency genes. Anim Reprod 2021; 18:e20200028. [PMID: 34122648 PMCID: PMC8189351 DOI: 10.1590/1984-3143-ar2020-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles are nanoparticles secreted by cell and have been proposed as suitable markers to identify competent embryos produced in vitro. Characterizing EVs secreted by individual embryos is challenging because culture medium itself contributes to the pool of nanoparticles that are co-isolated. To avoid this, culture medium must be depleted of nanoparticles that are present in natural protein source. The aim of this study was to evaluate if the culture medium subjected to nanoparticle depletion can support the proper in vitro development of bovine embryos. Zygotes were cultured in groups on depleted or control medium for 8 days. Nanoparticles from the medium were characterized by their morphology, size and expression of EVs surface markers. Isolated nanoparticles were labelled and added to depleted medium containing embryos at different developmental stages and evaluated after 24 hours at 2, 8-16 cells, morula and blastocyst stages. There were no statistical differences on blastocyst rate at day 7 and 8, total cell count neither blastocyst diameter between groups. However, morphological quality was better in blastocysts cultured in non-depleted medium and the expression of SOX2 was significantly lower whereas NANOG expression was significantly higher. Few nanoparticles from medium had a typical morphology of EVs but were positive to specific surface markers. Punctuated green fluorescence near the nuclei of embryonic cells was observed in embryos from all developmental stages. In summary, nanoparticles from culture medium are internalized by in vitro cultured bovine embryos and their depletion affects the capacity of medium to support the proper embryo development.
Collapse
Affiliation(s)
- Bárbara Melo-Báez
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Edwin A Mellisho
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile.,Centro de investigación en Tecnología de Embriones, Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Joel Cabezas
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Alejandra E Velásquez
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Daniel Veraguas
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Diego Andrés Caamaño Escobar
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Fidel O Castro
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Lleretny Rodríguez-Álvarez
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
15
|
Machtinger R, Baccarelli AA, Wu H. Extracellular vesicles and female reproduction. J Assist Reprod Genet 2021; 38:549-557. [PMID: 33471231 PMCID: PMC7910356 DOI: 10.1007/s10815-020-02048-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/21/2020] [Indexed: 01/28/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized membrane bound complexes that have been identified as a mean for intercellular communication between cells and tissues both in physiological and pathological conditions. These vesicles contain numerous molecules involved in signal transduction including microRNAs, mRNAs, DNA, proteins, lipids, and cytokines and can affect the behavior of recipient cells. Female reproduction is dependent on extremely fine-tuned endocrine regulation, and EVs may represent an added layer that contributes to this regulation. This narrative review article provides an update on the research of the role of EVs in female reproduction including folliculogenesis, fertilization, embryo quality, and implantation. We also highlight potential pitfalls in typical EV studies and discuss gaps in the current literature.
Collapse
Affiliation(s)
- Ronit Machtinger
- Sheba Medical Center, Ramat Gan and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, 52621, Tel Hashomer, Israel.
| | - Andrea A Baccarelli
- Environmental Precision Biosciences Laboratory, Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Haotian Wu
- Environmental Precision Biosciences Laboratory, Columbia University, Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
16
|
Llobat L. Extracellular vesicles and domestic animal reproduction. Res Vet Sci 2021; 136:166-173. [PMID: 33647595 DOI: 10.1016/j.rvsc.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/01/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023]
Abstract
Embryo implantation is a complex process in which significant changes occur continually in both the corpora lutea and in the endometrium of females and which varies depending on the embryonic, pre-implantation, or fetal stages. However, at all stages, correct maternal-embryonic communication is essential. In the last few years, a new intercellular communication tool, mediated by extracellular vesicles (EVs), has emerged. Many authors agree on the relevant role of EVs in correct communication between the mother and the embryo, as a fundamental system for the pregnancy to reach term and embryonic development to occur correctly. This review analyzes current information on known EVs, their main functions, and their role in implantation and embryonic development in domestic animals.
Collapse
Affiliation(s)
- Lola Llobat
- Grupo de Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| |
Collapse
|
17
|
Jiang NX, Li XL. The Complicated Effects of Extracellular Vesicles and Their Cargos on Embryo Implantation. Front Endocrinol (Lausanne) 2021; 12:681266. [PMID: 34149619 PMCID: PMC8213030 DOI: 10.3389/fendo.2021.681266] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
As a rate-limiting step in pregnancy, embryo implantation is highly dependent on intercellular communication. Extracellular vesicles (EVs) are newly identified to be important in the course of intercellular communication. EVs have been isolated from a wide variety of biofluids and tissues, including plasma, liver, uterine, semen, embryo, etc. The present and future use of EVs not only as biomarkers, but also as targeting drug delivery system, is promisingly pave the way for advanced comprehension of implantation failure in reproductive diseases. However, as the precise mechanisms of EVs in embryo implantation has not been elucidated yet. Herein, we summarize the current knowledge on the diverse effects of EVs from various sources and their cargos such as microRNA, long non-coding RNA, protein, etc. on embryo implantation, and the potential mechanisms of EVs in reproductive diseases such as recurrent implantation failure, polycystic ovary syndrome and endometriosis. It is essential to note that many of the biologically plausible functions of EVs in embryo implantation discussed in present literatures still need further research in vivo.
Collapse
Affiliation(s)
- Nan-Xing Jiang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- *Correspondence: Xue-Lian Li,
| |
Collapse
|
18
|
Hawke DC, Watson AJ, Betts DH. Extracellular vesicles, microRNA and the preimplantation embryo: non-invasive clues of embryo well-being. Reprod Biomed Online 2020; 42:39-54. [PMID: 33303367 DOI: 10.1016/j.rbmo.2020.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
Elective single embryo transfer is rapidly becoming the standard of care in assisted reproductive technology for patients under the age of 35 years with a good prognosis. Clinical pregnancy rates have become increasingly dependent on the selection of a single viable embryo for transfer, and diagnostic techniques facilitating this selection continue to develop. Current progress in elucidating the extracellular vesicle and microRNA components of the embryonic secretome is reviewed, and the potential for these findings to improve clinical embryo selection discussed. Key results have shown that extracellular vesicles and microRNAs are rapidly detectable constituents of the embryonic secretome. Evidence suggests that the vesicular population is largely exosomal in nature, secreted at all stages of preimplantation development and capable of traversing the zona pellucida. Both extracellular vesicle and microRNA concentrations within the secretome are elevated for blastocysts with diminished developmental competence, as indicated either by degeneracy or implantation failure, whereas studies have yet to firmly correlate individual microRNA sequences with pregnancy outcome. These emerging correlations support the viability of extracellular vesicles and microRNAs as the basis for a new diagnostic test to supplement or replace morphokinetic assessment.
Collapse
Affiliation(s)
- David Connor Hawke
- Department of Physiology and Pharmacology; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London Ontario N6A 5C1, Canada; Children's Health Research Institute; Lawson Health Research Institute, London Ontario, Canada
| | - Andrew John Watson
- Department of Physiology and Pharmacology; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London Ontario N6A 5C1, Canada; Children's Health Research Institute; Lawson Health Research Institute, London Ontario, Canada
| | - Dean Harvey Betts
- Department of Physiology and Pharmacology; Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London Ontario N6A 5C1, Canada; Children's Health Research Institute; Lawson Health Research Institute, London Ontario, Canada.
| |
Collapse
|
19
|
Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. Int J Mol Sci 2020; 21:ijms21207568. [PMID: 33066349 PMCID: PMC7589920 DOI: 10.3390/ijms21207568] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The participation of extracellular vesicles in many cellular processes, including reproduction, is unquestionable. Although currently, the tetraspanin proteins found in extracellular vesicles are mostly applied as markers, increasing evidence points to their role in extracellular vesicle biogenesis, cargo selection, cell targeting, and cell uptake under both physiological and pathological conditions. In this review, we bring other insight into the involvement of tetraspanin proteins in extracellular vesicle physiology in mammalian reproduction. We provide knowledge regarding the involvement of extracellular vesicle tetraspanins in these processes in somatic cells. Furthermore, we discuss the future direction towards an understanding of their functions in the tissues and fluids of the mammalian reproductive system in gamete maturation, fertilization, and embryo development; their involvement in mutual cell contact and communication in their complexity.
Collapse
|
20
|
Almiñana C, Bauersachs S. Extracellular vesicles: Multi-signal messengers in the gametes/embryo-oviduct cross-talk. Theriogenology 2020; 150:59-69. [PMID: 32088033 DOI: 10.1016/j.theriogenology.2020.01.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) have emerged as novel cell-to-cell communication mediators in physiological and pathological scenarios. Their ability to transfer their molecular cargo (RNAs, proteins and lipids) from one cell to another, in the vicinity or far from the cell of origin, together with their capacity of exerting a functional impact on the target cell make them valuable diagnostic tools as well as therapeutic vectors in a variety of diseases. In the reproductive field, there is a growing interest in the role of EVs in gamete/embryo-maternal communication and their potential implications in the reproductive success. In this review, we provide current knowledge of EVs secreted by the oviduct (oEVs) and embryos (eEVs), since both have been proposed as key players in the crucial two-way dialogue between the oviduct (lining epithelium and secretions) and the embryo that ensures successful pregnancy. Both oEVs and eEVs molecular cargos and their potential role as multi-signal messengers in the gametes/embryo-oviduct cross-talk and in the embryo-to-embryo communication in different species are also addressed. Eventually, a comparative analysis between oEVs and eEVs has been performed to shed some light on common and specific cargos responsible for their functions supporting the early reproductive events and as prime candidate molecules for improving fertility and assisted reproductive technologies outcomes.
Collapse
Affiliation(s)
- Carmen Almiñana
- University of Zurich, Genetics and Functional Genomics Group, Clinic of Reproductive Medicine, VetSuisse Faculty, Zurich, Switzerland; UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, 37380, Nouzilly, France.
| | - Stefan Bauersachs
- University of Zurich, Genetics and Functional Genomics Group, Clinic of Reproductive Medicine, VetSuisse Faculty, Zurich, Switzerland.
| |
Collapse
|
21
|
Kim J, Lee J, Jun JH. Advantages of the outgrowth model for evaluating the implantation competence of blastocysts. Clin Exp Reprod Med 2020; 47:85-93. [PMID: 32521581 PMCID: PMC7315857 DOI: 10.5653/cerm.2019.03216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
The implantation process is highly complex and difficult to mimic in vitro, and a reliable experimental model of implantation has yet to be established. Many researchers have used embryo transfer (ET) to assess implantation potential; however, ET with pseudopregnant mice requires expert surgical skills and numerous sacrificial animals. To overcome those economic and ethical problems, several researchers have tried to use outgrowth models to evaluate the implantation potential of embryos. Many previous studies, as well as our experiments, have found significant correlations between blastocyst outgrowth in vitro and implantation in utero by ET. This review proposes the blastocyst outgrowth model as a possible alternative to animal experimentation involving ET in utero. In particular, the outgrowth model might be a cost- and time-effective alternative method to ET for evaluating the effectiveness of culture conditions or treatments. An advanced outgrowth model and further culture of outgrowth embryos could provide a subtle research model of peri- and postimplantation development, excluding maternal effects, and thereby could facilitate progress in assisted reproductive technologies. Recently, we found that outgrowth embryos secreted extracellular vesicles containing specific microRNAs. The function of microRNAs from outgrowth embryos should be elucidated in further researches.
Collapse
Affiliation(s)
- Jihyun Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Korea.,Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Seongnam, Korea.,Eulji Medi-Bio Research Institute (EMBRI), Eulji University, Daejeon, Korea
| |
Collapse
|
22
|
Fu B, Ma H, Liu D. Extracellular Vesicles Function as Bioactive Molecular Transmitters in the Mammalian Oviduct: An Inspiration for Optimizing in Vitro Culture Systems and Improving Delivery of Exogenous Nucleic Acids during Preimplantation Embryonic Development. Int J Mol Sci 2020; 21:ijms21062189. [PMID: 32235756 PMCID: PMC7139358 DOI: 10.3390/ijms21062189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Two technologies, in vitro culture and exogenous gene introduction, constitute cornerstones of producing transgenic animals. Although in vitro embryo production techniques can bypass the oviduct during early development, such embryos are inferior to their naturally produced counterparts. In addition, preimplantation embryos are resistant to the uptake of exogenous genetic material. These factors restrict the production of transgenic animals. The discovery of extracellular vesicles (EVs) was a milestone in the study of intercellular signal communication. EVs in the oviduct, known as oviductosomes (OVS), are versatile delivery tools during maternal–embryo communication. In this review, we discuss the important roles of OVS in these interactions and the feasibility of using them as tools for transferring exogenous nucleic acids during early development. We hypothesize that further accurate characterization of OVS cargoes and functions will open new horizons for research on maternal–embryo interactions and enhance the production of transgenic animals.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People’s Republic of China, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People’s Republic of China, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People’s Republic of China, Harbin 150086, China
- Correspondence: ; Tel.: +86-138-4512-0192
| |
Collapse
|
23
|
Identification and Characterization of Extracellular Vesicles and Its DNA Cargo Secreted During Murine Embryo Development. Genes (Basel) 2020; 11:genes11020203. [PMID: 32079252 PMCID: PMC7074575 DOI: 10.3390/genes11020203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are known to transport DNA, but their implications in embryonic implantation are unknown. The aim of this study was to investigate EVs production and secretion by preimplantation embryos and assess their DNA cargo. Murine oocytes and embryos were obtained from six- to eight-week-old females, cultured until E4.5 and analyzed using transmission electron microscopy to examine EVs production. EVs were isolated from E4.5-day conditioned media and quantified by nanoparticle tracking analysis, characterized by immunogold, and their DNA cargo sequenced. Multivesicular bodies were observed in murine oocytes and preimplantation embryos together with the secretion of EVs to the blastocoel cavity and blastocyst spent medium. Embryo-derived EVs showed variable electron-densities and sizes (20–500 nm) and total concentrations of 1.74 × 107 ± 2.60 × 106 particles/mL. Embryo secreted EVs were positive for CD63 and ARF6. DNA cargo sequencing demonstrated no differences in DNA between apoptotic bodies or smaller EVs, although they showed significant gene enrichment compared to control medium. The analysis of sequences uniquely mapping the murine genome revealed that DNA contained in EVs showed higher representation of embryo genome than vesicle-free DNA. Murine blastocysts secrete EVs containing genome-wide sequences of DNA to the medium, reinforcing the relevance of studying these vesicles and their cargo in the preimplantation moment, where secreted DNA may help the assessment of the embryo previous to implantation.
Collapse
|
24
|
Giacomini E, Alleva E, Fornelli G, Quartucci A, Privitera L, Vanni VS, Viganò P. Embryonic extracellular vesicles as informers to the immune cells at the maternal-fetal interface. Clin Exp Immunol 2019; 198:15-23. [PMID: 31009068 DOI: 10.1111/cei.13304] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicle (EV) exchange is emerging as a novel method of communication at the maternal-fetal interface. The presence of the EVs has been demonstrated in the preimplantation embryo culture medium from different species, such as bovines, porcines and humans. Preimplantation embryo-derived EVs have been shown to carry molecules potentially able to modulate the local endometrial immune system. The non-classical major histocompatibility complex (MHC) class I molecule human leucocyte antigen (HLA)-G, the immunomodulatory molecule progesterone-induced blocking factor and some regulatory miRNAs species are contained in embryo-derived EV cargo. The implanted syncytiotrophoblasts are also well known to secrete EVs, with microvesicles exerting a mainly proinflammatory effect while exosomes in general mediate local immunotolerance. This review focuses on the current knowledge on the potential role of EVs released by the embryo in the first weeks of pregnancy on the maternal immune cells. Collectively, the data warrant further exploration of the dialogue between the mother and the embryo via EVs.
Collapse
Affiliation(s)
- E Giacomini
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - E Alleva
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - G Fornelli
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - A Quartucci
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - L Privitera
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - V S Vanni
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - P Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|