1
|
Lee HH, Tian Q, Sheft M, Coronado-Leija R, Ramos-Llorden G, Abdollahzadeh A, Fieremans E, Novikov DS, Huang SY. The effects of axonal beading and undulation on axonal diameter estimation from diffusion MRI: Insights from simulations in human axons segmented from three-dimensional electron microscopy. NMR IN BIOMEDICINE 2024; 37:e5087. [PMID: 38168082 PMCID: PMC10942763 DOI: 10.1002/nbm.5087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
The increasing availability of high-performance gradient systems in human MRI scanners has generated great interest in diffusion microstructural imaging applications such as axonal diameter mapping. Practically, sensitivity to axon diameter in diffusion MRI is attained at strong diffusion weightings b , where the deviation from the expected 1 / b scaling in white matter yields a finite transverse diffusivity, which is then translated into an axon diameter estimate. While axons are usually modeled as perfectly straight, impermeable cylinders, local variations in diameter (caliber variation or beading) and direction (undulation) are known to influence axonal diameter estimates and have been observed in microscopy data of human axons. In this study, we performed Monte Carlo simulations of diffusion in axons reconstructed from three-dimensional electron microscopy of a human temporal lobe specimen using simulated sequence parameters matched to the maximal gradient strength of the next-generation Connectome 2.0 human MRI scanner ( ≲ 500 mT/m). We show that axon diameter estimation is accurate for nonbeaded, nonundulating fibers; however, in fibers with caliber variations and undulations, the axon diameter is heavily underestimated due to caliber variations, and this effect overshadows the known overestimation of the axon diameter due to undulations. This unexpected underestimation may originate from variations in the coarse-grained axial diffusivity due to caliber variations. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Maxina Sheft
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard–MIT Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Ricardo Coronado-Leija
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Gabriel Ramos-Llorden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Villarreal-Haro JL, Gardier R, Canales-Rodríguez EJ, Fischi-Gomez E, Girard G, Thiran JP, Rafael-Patiño J. CACTUS: a computational framework for generating realistic white matter microstructure substrates. Front Neuroinform 2023; 17:1208073. [PMID: 37603781 PMCID: PMC10434236 DOI: 10.3389/fninf.2023.1208073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/13/2023] [Indexed: 08/23/2023] Open
Abstract
Monte-Carlo diffusion simulations are a powerful tool for validating tissue microstructure models by generating synthetic diffusion-weighted magnetic resonance images (DW-MRI) in controlled environments. This is fundamental for understanding the link between micrometre-scale tissue properties and DW-MRI signals measured at the millimetre-scale, optimizing acquisition protocols to target microstructure properties of interest, and exploring the robustness and accuracy of estimation methods. However, accurate simulations require substrates that reflect the main microstructural features of the studied tissue. To address this challenge, we introduce a novel computational workflow, CACTUS (Computational Axonal Configurator for Tailored and Ultradense Substrates), for generating synthetic white matter substrates. Our approach allows constructing substrates with higher packing density than existing methods, up to 95% intra-axonal volume fraction, and larger voxel sizes of up to 500μm3 with rich fibre complexity. CACTUS generates bundles with angular dispersion, bundle crossings, and variations along the fibres of their inner and outer radii and g-ratio. We achieve this by introducing a novel global cost function and a fibre radial growth approach that allows substrates to match predefined targeted characteristics and mirror those reported in histological studies. CACTUS improves the development of complex synthetic substrates, paving the way for future applications in microstructure imaging.
Collapse
Affiliation(s)
- Juan Luis Villarreal-Haro
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
| | - Remy Gardier
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erick J. Canales-Rodríguez
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elda Fischi-Gomez
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Gabriel Girard
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
- Department of Computer Science, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Jonathan Rafael-Patiño
- Signal Processing Laboratory (LTS5), École Polytechnique Frale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Lee HH, Tian Q, Sheft M, Coronado-Leija R, Ramos-Llorden G, Abdollahzadeh A, Fieremans E, Novikov DS, Huang SY. The influence of axonal beading and undulation on axonal diameter mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537494. [PMID: 37131702 PMCID: PMC10153226 DOI: 10.1101/2023.04.19.537494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We consider the effect of non-cylindrical axonal shape on axonal diameter mapping with diffusion MRI. Practical sensitivity to axon diameter is attained at strong diffusion weightings b , where the deviation from the 1 / b scaling yields the finite transverse diffusivity, which is then translated into axon diameter. While axons are usually modeled as perfectly straight, impermeable cylinders, the local variations in diameter (caliber variation or beading) and direction (undulation) have been observed in microscopy data of human axons. Here we quantify the influence of cellular-level features such as caliber variation and undulation on axon diameter estimation. For that, we simulate the diffusion MRI signal in realistic axons segmented from 3-dimensional electron microscopy of a human brain sample. We then create artificial fibers with the same features and tune the amplitude of their caliber variations and undulations. Numerical simulations of diffusion in fibers with such tunable features show that caliber variations and undulations result in under- and over-estimation of axon diameters, correspondingly; this bias can be as large as 100%. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Maxina Sheft
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ricardo Coronado-Leija
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Gabriel Ramos-Llorden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Taylor EN, Huang N, Lin S, Mortazavi F, Wedeen VJ, Siamwala JH, Gilbert RJ, Hamilton JA. Lipid and smooth muscle architectural pathology in the rabbit atherosclerotic vessel wall using Q-space cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2022; 24:74. [PMID: 36544161 PMCID: PMC9773609 DOI: 10.1186/s12968-022-00897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Atherosclerosis is an arterial vessel wall disease characterized by slow, progressive lipid accumulation, smooth muscle disorganization, and inflammatory infiltration. Atherosclerosis often remains subclinical until extensive inflammatory injury promotes vulnerability of the atherosclerotic plaque to rupture with luminal thrombosis, which can cause the acute event of myocardial infarction or stroke. Current bioimaging techniques are unable to capture the pathognomonic distribution of cellular elements of the plaque and thus cannot accurately define its structural disorganization. METHODS We applied cardiovascular magnetic resonance spectroscopy (CMRS) and diffusion weighted CMR (DWI) with generalized Q-space imaging (GQI) analysis to architecturally define features of atheroma and correlated these to the microscopic distribution of vascular smooth muscle cells (SMC), immune cells, extracellular matrix (ECM) fibers, thrombus, and cholesteryl esters (CE). We compared rabbits with normal chow diet and cholesterol-fed rabbits with endothelial balloon injury, which accelerates atherosclerosis and produces advanced rupture-prone plaques, in a well-validated rabbit model of human atherosclerosis. RESULTS Our methods revealed new structural properties of advanced atherosclerosis incorporating SMC and lipid distributions. GQI with tractography portrayed the locations of these components across the atherosclerotic vessel wall and differentiated multi-level organization of normal, pro-inflammatory cellular phenotypes, or thrombus. Moreover, the locations of CE were differentiated from cellular constituents by their higher restrictive diffusion properties, which permitted chemical confirmation of CE by high field voxel-guided CMRS. CONCLUSIONS GQI with tractography is a new method for atherosclerosis imaging that defines a pathological architectural signature for the atheromatous plaque composed of distributed SMC, ECM, inflammatory cells, and thrombus and lipid. This provides a detailed transmural map of normal and inflamed vessel walls in the setting of atherosclerosis that has not been previously achieved using traditional CMR techniques. Although this is an ex-vivo study, detection of micro and mesoscale level vascular destabilization as enabled by GQI with tractography could increase the accuracy of diagnosis and assessment of treatment outcomes in individuals with atherosclerosis.
Collapse
Affiliation(s)
- Erik N Taylor
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
- Department of Radiology, UNM School of Medicine, The University of New Mexico, Albuquerque, NM, USA
| | - Nasi Huang
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Sunni Lin
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Farzad Mortazavi
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Van J Wedeen
- AA Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamila H Siamwala
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Richard J Gilbert
- Research Service, Providence VA Medical Center and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - James A Hamilton
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
5
|
Hao X, Liu Z, He S, Wang Y, Zhao Y, Wang R. Application of DTI and fMRI in moyamoya disease. Front Neurol 2022; 13:948830. [PMID: 35989917 PMCID: PMC9391058 DOI: 10.3389/fneur.2022.948830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Moyamoya disease (MMD) is a chronic and progressive cerebrovascular stenosis or occlusive disease that occurs near Willis blood vessels. Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) are used to detect the microstructure of white matter and the function of gray matter, respectively. The damage of these structures will lead to the change of cognitive level in patients with moyamoya disease. In this paper, the principles of DTI and fMRI, their applications and challenges in moyamoya disease are reviewed.
Collapse
Affiliation(s)
- Xiaokuan Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ziqi Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shihao He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yanru Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- *Correspondence: Rong Wang
| |
Collapse
|
6
|
García AO, Brambati SM, Desautels A, Marcotte K. Timing stroke: A review on stroke pathophysiology and its influence over time on diffusion measures. J Neurol Sci 2022; 441:120377. [DOI: 10.1016/j.jns.2022.120377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/30/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022]
|
7
|
Akbarzadeh MA, Sanaie S, Kuchaki Rafsanjani M, Hosseini MS. Role of imaging in early diagnosis of acute ischemic stroke: a literature review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021; 57:175. [DOI: 10.1186/s41983-021-00432-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/03/2021] [Indexed: 12/03/2022] Open
Abstract
AbstractStroke is a serious health condition that is responsible for more than 5% of total deaths. Near 20% of patients experiencing stroke die every year, resulting in the stroke being at the top of the list of preventable causes of death. Once an acute stroke is suspected, a golden hour of less than an hour is available to prevent the undesirable consequences. Since neuroimaging is mandatory in the diagnosis of stroke, the proper use of neuroimaging could help saving time and planning the right treatment for the patient. Some of the available imaging methods help us with rapid results, while others benefit us from a more accurate diagnosis. Hereby, we aim to provide a clinical review of the advantages and disadvantages of different available neuroimaging methods in approaching acute stroke to help clinicians choose the best method according to the settings.
Collapse
|
8
|
Afzali M, Pieciak T, Newman S, Garyfallidis E, Özarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods 2021; 347:108951. [PMID: 33017644 PMCID: PMC7762827 DOI: 10.1016/j.jneumeth.2020.108951] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Diffusion MRI is a non-invasive technique to study brain microstructure. Differences in the microstructural properties of tissue, including size and anisotropy, can be represented in the signal if the appropriate method of acquisition is used. However, to depict the underlying properties, special care must be taken when designing the acquisition protocol as any changes in the procedure might impact on quantitative measurements. This work reviews state-of-the-art methods for studying brain microstructure using diffusion MRI and their sensitivity to microstructural differences and various experimental factors. Microstructural properties of the tissue at a micrometer scale can be linked to the diffusion signal at a millimeter-scale using modeling. In this paper, we first give an introduction to diffusion MRI and different encoding schemes. Then, signal representation-based methods and multi-compartment models are explained briefly. The sensitivity of the diffusion MRI signal to the microstructural components and the effects of curvedness of axonal trajectories on the diffusion signal are reviewed. Factors that impact on the quality (accuracy and precision) of derived metrics are then reviewed, including the impact of random noise, and variations in the acquisition parameters (i.e., number of sampled signals, b-value and number of acquisition shells). Finally, yet importantly, typical approaches to deal with experimental factors are depicted, including unbiased measures and harmonization. We conclude the review with some future directions and recommendations on this topic.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Eleftherios Garyfallidis
- Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
9
|
Berndt MT, Maegerlein C, Boeckh-Behrens T, Wunderlich S, Zimmer C, Wirth S, Mück FG, Mönch S, Friedrich B, Kaesmacher J. Microstructural Integrity of Salvaged Penumbra after Mechanical Thrombectomy. AJNR Am J Neuroradiol 2019; 41:79-85. [PMID: 31857324 DOI: 10.3174/ajnr.a6364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/24/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE There are sparse data on the microstructural integrity of salvaged penumbral tissue after mechanical thrombectomy of large-vessel occlusions. The aim of the study was to analyze possible microstructural alteration in the penumbra and their association with clinical symptoms as well as angiographic reperfusion success in patients undergoing mechanical thrombectomy. MATERIALS AND METHODS All patients who underwent mechanical thrombectomy for large-vessel occlusions in the anterior circulation and who received an admission CT perfusion together with postinterventional DTIs were included (n = 65). Angiographic reperfusion success by means of modified Thrombolysis in Cerebral Infarction (mTICI) scale and clinical outcome were recorded. Microstructural integrity was assessed by DTI evaluating the mean diffusivity index within the salvaged gray matter of the former penumbra. RESULTS The mean diffusivity index was higher in completely recanalized patients (mTICI 3: -0.001 ± 0.034 versus mTICI <3: -0.030 ± 0.055, P = .03). There was a positive correlation between the mean diffusivity index and NIHSS score improvement (r = 0.49, P = .003) and the mean diffusivity index was associated with midterm functional outcome (r = -0.37, P = .04) after adjustment for confounders. In mediation analysis, the mean diffusivity index and infarction growth mediated the association between reperfusion success and clinical outcomes. CONCLUSIONS The macroscopic salvaged penumbra included areas of microstructural integrity changes, most likely related to the initial hypoperfusion. These abnormalities were found early after mechanical thrombectomy, were dependent on angiographic results, and correlated with the clinical outcome. When confirmed, these findings prompt the evaluation of therapies for protection of the penumbral tissue integrity.
Collapse
Affiliation(s)
- M T Berndt
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - C Maegerlein
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - T Boeckh-Behrens
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - S Wunderlich
- Neurology (S.W.), Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - C Zimmer
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - S Wirth
- Department of Radiology (S.W., F.G.M.), Donauisar Hospital, Deggendorf, Germany
| | - F G Mück
- Department of Radiology (S.W., F.G.M.), Donauisar Hospital, Deggendorf, Germany
| | - S Mönch
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - B Friedrich
- From the Departments of Neuroradiology (M.T.B., C.M., T.B.-B., C.Z., S.M., B.F.), and
| | - J Kaesmacher
- Department of Neuroradiology (J.K.), Inselspital, University Hospital Bern, University Bern, Bern, Switzerland
| |
Collapse
|
10
|
Villa A, Gelosa P, Castiglioni L, Cimino M, Rizzi N, Pepe G, Lolli F, Marcello E, Sironi L, Vegeto E, Maggi A. Sex-Specific Features of Microglia from Adult Mice. Cell Rep 2019; 23:3501-3511. [PMID: 29924994 PMCID: PMC6024879 DOI: 10.1016/j.celrep.2018.05.048] [Citation(s) in RCA: 426] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/06/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022] Open
Abstract
Sex has a role in the incidence and outcome of neurological illnesses, also influencing the response to treatments. Neuroinflammation is involved in the onset and progression of several neurological diseases, and the fact that estrogens have anti-inflammatory activity suggests that these hormones may be a determinant in the sex-dependent manifestation of brain pathologies. We describe significant differences in the transcriptome of adult male and female microglia, possibly originating from perinatal exposure to sex steroids. Microglia isolated from adult brains maintain the sex-specific features when put in culture or transplanted in the brain of the opposite sex. Female microglia are neuroprotective because they restrict the damage caused by acute focal cerebral ischemia. This study therefore provides insight into a distinct perspective on the mechanisms underscoring a sexual bias in the susceptibility to brain diseases. Transcriptome sequencing indicates sexual differentiation in adult murine microglia Female microglia show a neuroprotective phenotype, independent from hormonal cues Female microglia phenotype is retained after transfer into male brains The presence of female microglia protects male brains from ischemic stroke
Collapse
Affiliation(s)
- Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases of the University of Milan, Milan 20133, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Paolo Gelosa
- Centro Cardiologico Monzino IRCCS, Milan 20138, Italy
| | - Laura Castiglioni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Mauro Cimino
- Department of Biomolecular Sciences, University of Urbino, Urbino 61029, Italy
| | - Nicoletta Rizzi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Giovanna Pepe
- Center of Excellence on Neurodegenerative Diseases of the University of Milan, Milan 20133, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Federica Lolli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Luigi Sironi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy; Centro Cardiologico Monzino IRCCS, Milan 20138, Italy
| | - Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases of the University of Milan, Milan 20133, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases of the University of Milan, Milan 20133, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy.
| |
Collapse
|
11
|
Goubran M, Leuze C, Hsueh B, Aswendt M, Ye L, Tian Q, Cheng MY, Crow A, Steinberg GK, McNab JA, Deisseroth K, Zeineh M. Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nat Commun 2019; 10:5504. [PMID: 31796741 PMCID: PMC6890789 DOI: 10.1038/s41467-019-13374-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
3D histology, slice-based connectivity atlases, and diffusion MRI are common techniques to map brain wiring. While there are many modality-specific tools to process these data, there is a lack of integration across modalities. We develop an automated resource that combines histologically cleared volumes with connectivity atlases and MRI, enabling the analysis of histological features across multiple fiber tracts and networks, and their correlation with in-vivo biomarkers. We apply our pipeline in a murine stroke model, demonstrating not only strong correspondence between MRI abnormalities and CLARITY-tissue staining, but also uncovering acute cellular effects in areas connected to the ischemic core. We provide improved maps of connectivity by quantifying projection terminals from CLARITY viral injections, and integrate diffusion MRI with CLARITY viral tracing to compare connectivity maps across scales. Finally, we demonstrate tract-level histological changes of stroke through this multimodal integration. This resource can propel investigations of network alterations underlying neurological disorders.
Collapse
Affiliation(s)
- Maged Goubran
- Department of Radiology, Stanford University, Stanford, CA, 94035, USA.
| | - Christoph Leuze
- Department of Radiology, Stanford University, Stanford, CA, 94035, USA
| | - Brian Hsueh
- Department of Bioengineering, Stanford University, Stanford, CA, 94035, USA
- CNC Program, Stanford University, Stanford, CA, 94035, USA
| | - Markus Aswendt
- Department of Neurosurgery and Stanford Stroke Center, Stanford University, Stanford, CA, 94035, USA
| | - Li Ye
- Department of Bioengineering, Stanford University, Stanford, CA, 94035, USA
- CNC Program, Stanford University, Stanford, CA, 94035, USA
| | - Qiyuan Tian
- Department of Radiology, Stanford University, Stanford, CA, 94035, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94035, USA
| | - Michelle Y Cheng
- Department of Neurosurgery and Stanford Stroke Center, Stanford University, Stanford, CA, 94035, USA
| | - Ailey Crow
- CNC Program, Stanford University, Stanford, CA, 94035, USA
| | - Gary K Steinberg
- Department of Neurosurgery and Stanford Stroke Center, Stanford University, Stanford, CA, 94035, USA
| | - Jennifer A McNab
- Department of Radiology, Stanford University, Stanford, CA, 94035, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, 94035, USA
- CNC Program, Stanford University, Stanford, CA, 94035, USA
- Department of Psychiatry, Stanford University, Stanford, CA, 94035, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94035, USA
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, CA, 94035, USA.
| |
Collapse
|
12
|
Martin J, Endt S, Wetscherek A, Kuder TA, Doerfler A, Uder M, Hensel B, Laun FB. Twice‐refocused stimulated echo diffusion imaging: Measuring diffusion time dependence at constant
T
1
weighting. Magn Reson Med 2019; 83:1741-1749. [DOI: 10.1002/mrm.28046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Jan Martin
- Institute of Radiology University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Sebastian Endt
- Institute of Radiology University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
- Department of Computer Science Technical University of Munich Garching Germany
| | - Andreas Wetscherek
- Joint Department of Physics The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust London United Kingdom
| | - Tristan Anselm Kuder
- Department Medical Physics in Radiology German Cancer Research Center Heidelberg Germany
| | - Arnd Doerfler
- Institute of Neuroradiology University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Michael Uder
- Institute of Radiology University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Frederik Bernd Laun
- Institute of Radiology University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| |
Collapse
|
13
|
Novikov DS, Fieremans E, Jespersen SN, Kiselev VG. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. NMR IN BIOMEDICINE 2019; 32:e3998. [PMID: 30321478 PMCID: PMC6481929 DOI: 10.1002/nbm.3998] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 05/18/2023]
Abstract
We review, systematize and discuss models of diffusion in neuronal tissue, by putting them into an overarching physical context of coarse-graining over an increasing diffusion length scale. From this perspective, we view research on quantifying brain microstructure as occurring along three major avenues. The first avenue focusses on transient, or time-dependent, effects in diffusion. These effects signify the gradual coarse-graining of tissue structure, which occurs qualitatively differently in different brain tissue compartments. We show that transient effects contain information about the relevant length scales for neuronal tissue, such as the packing correlation length for neuronal fibers, as well as the degree of structural disorder along the neurites. The second avenue corresponds to the long-time limit, when the observed signal can be approximated as a sum of multiple nonexchanging anisotropic Gaussian components. Here, the challenge lies in parameter estimation and in resolving its hidden degeneracies. The third avenue employs multiple diffusion encoding techniques, able to access information not contained in the conventional diffusion propagator. We conclude with our outlook on future directions that could open exciting possibilities for designing quantitative markers of tissue physiology and pathology, based on methods of studying mesoscopic transport in disordered systems.
Collapse
Affiliation(s)
- Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Sune N. Jespersen
- CFIN/MINDLab, Department of Clinical Medicine and Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Valerij G. Kiselev
- Medical Physics, Deptartment of Radiology, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
14
|
Demiral ŞB, Tomasi D, Sarlls J, Lee H, Wiers CE, Zehra A, Srivastava T, Ke K, Shokri-Kojori E, Freeman CR, Lindgren E, Ramirez V, Miller G, Bandettini P, Horovitz S, Wang GJ, Benveniste H, Volkow ND. Apparent diffusion coefficient changes in human brain during sleep - Does it inform on the existence of a glymphatic system? Neuroimage 2019; 185:263-273. [PMID: 30342236 PMCID: PMC6289767 DOI: 10.1016/j.neuroimage.2018.10.043] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/05/2018] [Accepted: 10/17/2018] [Indexed: 01/24/2023] Open
Abstract
The role of sleep in brain physiology is poorly understood. Recently rodent studies have shown that the glymphatic system clears waste products from brain more efficiently during sleep compared to wakefulness due to the expansion of the interstitial fluid space facilitating entry of cerebrospinal fluid (CSF) into the brain. Here, we studied water diffusivity in the brain during sleep and awake conditions, hypothesizing that an increase in water diffusivity during sleep would occur concomitantly with an expansion of CSF volume - an effect that we predicted based on preclinical findings would be most prominent in cerebellum. We used MRI to measure slow and fast components of the apparent diffusion coefficient (ADC) of water in the brain in 50 healthy participants, in 30 of whom we compared awake versus sleep conditions and in 20 of whom we compared rested-wakefulness versus wakefulness following one night of sleep-deprivation. Sleep compared to wakefulness was associated with increases in slow-ADC in cerebellum and left temporal pole and with decreases in fast-ADC in thalamus, insula, parahippocampus and striatal regions, and the density of sleep arousals was inversely associated with ADC changes. The CSF volume was also increased during sleep and was associated with sleep-induced changes in ADCs in cerebellum. There were no differences in ADCs with wakefulness following sleep deprivation compared to rested-wakefulness. Although we hypothesized increases in ADC with sleep, our findings uncovered both increases in slow ADC (mostly in cerebellum) as well as decreases in fast ADC, which could reflect the distinct biological significance of fast- and slow-ADC values in relation to sleep. While preliminary, our findings suggest a more complex sleep-related glymphatic function in the human brain compared to rodents. On the other hand, our findings of sleep-induced changes in CSF volume provide preliminary evidence that is consistent with a glymphatic transport process in the human brain.
Collapse
Affiliation(s)
- Şükrü Barış Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Joelle Sarlls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Amna Zehra
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Tansha Srivastava
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Ke
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Clara R Freeman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Elsa Lindgren
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Ramirez
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gregg Miller
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Peter Bandettini
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Silvina Horovitz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
MRI demonstrates glutamine antagonist-mediated reversal of cerebral malaria pathology in mice. Proc Natl Acad Sci U S A 2018; 115:E12024-E12033. [PMID: 30514812 DOI: 10.1073/pnas.1812909115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The deadliest complication of Plasmodium falciparum infection is cerebral malaria (CM), with a case fatality rate of 15 to 25% in African children despite effective antimalarial chemotherapy. No adjunctive treatments are yet available for this devastating disease. We previously reported that the glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) rescued mice from experimental CM (ECM) when administered late in the infection, a time by which mice had already suffered blood-brain barrier (BBB) dysfunction, brain swelling, and hemorrhaging. Herein, we used longitudinal MR imaging to visualize brain pathology in ECM and the impact of a new DON prodrug, JHU-083, on disease progression in mice. We demonstrate in vivo the reversal of disease markers in symptomatic, infected mice following treatment, including the resolution of edema and BBB disruption, findings usually associated with a fatal outcome in children and adults with CM. Our results support the premise that JHU-083 is a potential adjunctive treatment that could rescue children and adults from fatal CM.
Collapse
|
16
|
Palombo M, Shemesh N, Ronen I, Valette J. Insights into brain microstructure from in vivo DW-MRS. Neuroimage 2018; 182:97-116. [DOI: 10.1016/j.neuroimage.2017.11.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/09/2017] [Accepted: 11/15/2017] [Indexed: 12/27/2022] Open
|
17
|
Leigh R, Knutsson L, Zhou J, van Zijl PC. Imaging the physiological evolution of the ischemic penumbra in acute ischemic stroke. J Cereb Blood Flow Metab 2018; 38:1500-1516. [PMID: 28345479 PMCID: PMC6125975 DOI: 10.1177/0271678x17700913] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We review the hemodynamic, metabolic and cellular parameters affected during early ischemia and their changes as a function of approximate cerebral blood flow ( CBF) thresholds. These parameters underlie the current practical definition of an ischemic penumbra, namely metabolically affected but still viable brain tissue. Such tissue is at risk of infarction under continuing conditions of reduced CBF, but can be rescued through timely intervention. This definition will be useful in clinical diagnosis only if imaging techniques exist that can rapidly, and with sufficient accuracy, visualize the existence of a mismatch between such a metabolically affected area and regions that have suffered cell depolarization. Unfortunately, clinical data show that defining the outer boundary of the penumbra based solely on perfusion-related thresholds may not be sufficiently accurate. Also, thresholds for CBF and cerebral blood volume ( CBV) differ for white and gray matter and evolve with time for both inner and outer penumbral boundaries. As such, practical penumbral imaging would involve parameters in which the physiology is immediately displayed in a manner independent of baseline CBF or CBF threshold, namely pH, oxygen extraction fraction ( OEF), diffusion constant and mean transit time ( MTT). Suitable imaging technologies will need to meet this requirement in a 10-20 min exam.
Collapse
Affiliation(s)
- Richard Leigh
- 1 National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA
| | - Linda Knutsson
- 2 Department of Medical Radiation Physics, Lund University, Lund, Sweden.,3 Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Jinyuan Zhou
- 3 Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.,4 F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter Cm van Zijl
- 3 Department of Radiology, Johns Hopkins University, Baltimore, MD, USA.,4 F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
18
|
Harston GWJ, Carone D, Sheerin F, Jenkinson M, Kennedy J. Quantifying Infarct Growth and Secondary Injury Volumes: Comparing Multimodal Image Registration Measures. Stroke 2018; 49:1647-1655. [PMID: 29895538 PMCID: PMC6023577 DOI: 10.1161/strokeaha.118.020788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/01/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Lesion expansion in the week after acute stroke involves both infarct growth (IG) and anatomic distortion (AD) because of edema and hemorrhage. Enabling separate quantification would allow clinical trials targeting these distinct pathological processes. We developed an objective and automated approach to quantify these processes at 24 hours and 1 week. METHODS Patients with acute ischemic stroke were scanned at presentation, 24 hours, and 1 week in a magnetic resonance imaging (MRI) cohort study. IG and AD were calculated from follow-up lesion masks after linear and nonlinear registration to a presenting MRI scan. Performance of IG and AD was compared with edema quantified using cerebrospinal fluid displacement. The use of alternative reference images to define AD, including template MRI, mirrored MRI, and presenting computed tomographic scan, was explored. RESULTS Thirty-seven patients with nonlacunar stroke were included. AD was responsible for 20% and 36% of lesion expansion at 24 hours (n=30) and 1 week (n=28). Registration-defined IG and AD compared favorably with edema quantified using cerebrospinal fluid displacement, particularly at smaller infarct volumes. Presenting computed tomographic imaging was the preferred alternative reference image to presenting MRI for measuring AD. CONCLUSIONS The contributions of IG and AD to lesion expansion can be measured separately over time through the use of image registration. This approach can be used to combine imaging outcome data from computed tomography and MRI.
Collapse
Affiliation(s)
- George W J Harston
- From the Radcliffe Department of Medicine, Acute Vascular Imaging Centre (G.W.J.H., D.C., F.S., J.K.)
| | - Davide Carone
- From the Radcliffe Department of Medicine, Acute Vascular Imaging Centre (G.W.J.H., D.C., F.S., J.K.)
| | - Fintan Sheerin
- From the Radcliffe Department of Medicine, Acute Vascular Imaging Centre (G.W.J.H., D.C., F.S., J.K.)
| | - Mark Jenkinson
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging (M.J.), University of Oxford, United Kingdom
| | - James Kennedy
- From the Radcliffe Department of Medicine, Acute Vascular Imaging Centre (G.W.J.H., D.C., F.S., J.K.)
| |
Collapse
|
19
|
Diffusion-Weighted Magnetic Resonance Imaging. Methods Mol Biol 2018; 1718:89-101. [PMID: 29341004 DOI: 10.1007/978-1-4939-7531-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Magnetic resonance imaging (MRI) is a technique based on the contents and relaxation features of water in tissues. In basic MRI sequences, diffusion phenomenon of water molecules is not taken into account although it has a notable influence in the relaxation times, and therefore in the signal intensity of images. In fact, MRI techniques that take advantage of water diffusion have experienced a huge development in last years. Diffusion-weighted imaging (DWI) has spectacularly evolved reaching nowadays a great impact both in clinical and preclinical imaging-especially in the neuroimaging field-and in basic research. We present here a protocol to perform DWI studies in a high-field preclinical setup.
Collapse
|
20
|
Kanno S, Saito M, Kashinoura T, Nishio Y, Iizuka O, Kikuchi H, Takagi M, Iwasaki M, Takahashi S, Mori E. A change in brain white matter after shunt surgery in idiopathic normal pressure hydrocephalus: a tract-based spatial statistics study. Fluids Barriers CNS 2017; 14:1. [PMID: 28132644 PMCID: PMC5278569 DOI: 10.1186/s12987-016-0048-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022] Open
Abstract
Background The aim of this study was to elucidate changes in cerebral white matter after shunt surgery in idiopathic normal pressure hydrocephalus (INPH) using diffusion tensor imaging (DTI). Methods Twenty-eight consecutive INPH patients whose symptoms were followed for 1 year after shunt placement and 10 healthy control (HC) subjects were enrolled. Twenty of the initial 28 INPH patients were shunt-responsive (SR) and the other 8 patients were non-responsive (SNR). The cerebral white matter integrity was detected by assessing fractional anisotropy (FA) and mean diffusivity (MD). The mean hemispheric DTI indices and the ventricular sizes were calculated, and a map of these DTI indices was created for each subject. The DTI maps were analysed to compare preshunt INPH with HC and preshunt INPH with 1 year after shunt placement in each INPH group, using tract-based spatial statistics. We restricted analyses to the left hemisphere because of shunt valve artefacts. Results The ventricles became significantly smaller after shunt placement both in the SR and SNR groups. In addition, there was a significant interaction between clinical improvement after shunt and decrease in ventricular size. Although the hemispheric DTI indices were not significantly changed after shunt placement, there was a significant interaction between clinical improvement and increase in hemispheric MD. Compared with the HC group, FA in the corpus callosum and in the subcortical white matter of the convexity and the occipital cortex was significantly lower in SR at baseline, whereas MD in the periventricular and peri-Sylvian white matter was significantly higher in the SR group. Compared with the pre-operative images, the post-operative FA was only decreased in the corona radiata and only in the SR group. There were no significant regions in which DTI indices were altered after shunt placement in the SNR group. Conclusions Brain white matter regions in which FA was decreased after shunt placement were in the corona radiata between the lateral ventricles and the Sylvian fissures. This finding was observed only in shunt-responsive INPH patients and might reflect the plasticity of the brain for mechanical pressure changes from the cerebrospinal fluid system. Electronic supplementary material The online version of this article (doi:10.1186/s12987-016-0048-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shigenori Kanno
- Department of Neurology, Southmiyagi Medical Center, 38-1, Aza-nishi, Shibata, Miyagi, 989-1253, Japan. .,Department of Behavioural Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Makoto Saito
- Department of Behavioural Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohito Kashinoura
- Department of Behavioural Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiyuki Nishio
- Department of Behavioural Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Osamu Iizuka
- Department of Behavioural Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirokazu Kikuchi
- Department of Behavioural Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahito Takagi
- Department of Behavioural Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shoki Takahashi
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Etsuro Mori
- Department of Behavioural Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
Pizzini F, Beltramello A, Piovan E, Alessandrini F. Diffusion-Weighted and Diffusion Tensor Magnetic Resonance Brain Imaging: Principles and Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/197140090301600202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diffusion Weighted Imaging (DWI) is one of the most recent products of Magnetic Resonance (MR) technology evolution. DWI has been proposed as a noninvasive tool for evaluating structural and physiologic states in biologic tissues as hyperacute ischemic changes within brain tissue. Recently, its more complex and detailed evolution, Diffusion Tensor Imaging (DTI), has been introduced and its clinical applications are the evaluation of anatomical structures and pathologic processes in white matter. White matter quantitative maps that indicate the integrity of brain tissue, color map, and tractography that identifies macroscopic three-dimensional architecture of fiber tracts (e.g., projections and association pathways) can be obtained with DTI. Diffusion weighted imaging visualization techniques (ADC and Trace) are applied for the study of stroke, in the differential diagnosis of expansive lesions (e.g. epidermoid vs. arachnoid cyst) and in detecting traumatic and other lesions associated with restricted diffusion (e.g. MS plaques). On the other hand, DTI provides the identification of abnormalities in the otherwise normal appearing white matter with the understanding of the organization of the fibers, both in tumors and in other cortical or white matter diseases (including stroke, dementias, demyelinating-dismyelinating diseases, epilepsy, schizophrenia). Furthermore, in combination with functional MR, DTI might contribute to the comprehension of brain development, aging and connectivity, thus having a significant impact on brain functional studies.
Collapse
Affiliation(s)
- F. Pizzini
- Service of Neuroradiology, Verona University Hospital, Verona, Italy
| | - A. Beltramello
- Service of Neuroradiology, Verona University Hospital, Verona, Italy
| | - E. Piovan
- Service of Neuroradiology, Verona University Hospital, Verona, Italy
| | - F. Alessandrini
- Service of Neuroradiology, Verona University Hospital, Verona, Italy
| |
Collapse
|
22
|
Mussel M, Inzelberg L, Nevo U. Insignificance of active flow for neural diffusion weighted imaging: A negative result. Magn Reson Med 2016; 78:746-753. [DOI: 10.1002/mrm.26375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Matan Mussel
- The Iby and Aladar Fleischman Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University; Tel Aviv Israel
| | - Lilah Inzelberg
- The Iby and Aladar Fleischman Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University; Tel Aviv Israel
- Sagol School of Neuroscience; Tel Aviv University; Tel Aviv Israel
| | - Uri Nevo
- The Iby and Aladar Fleischman Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv University; Tel Aviv Israel
- Sagol School of Neuroscience; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
23
|
Knight MJ, McGarry BL, Rogers HJ, Jokivarsi KT, Gröhn OHJ, Kauppinen RA. A spatiotemporal theory for MRI T2 relaxation time and apparent diffusion coefficient in the brain during acute ischaemia: Application and validation in a rat acute stroke model. J Cereb Blood Flow Metab 2016; 36:1232-43. [PMID: 26661188 PMCID: PMC4929697 DOI: 10.1177/0271678x15608394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/22/2015] [Indexed: 01/20/2023]
Abstract
The objective of this study is to present a mathematical model which can describe the spatiotemporal progression of cerebral ischaemia and predict magnetic resonance observables including the apparent diffusion coefficient (ADC) of water and transverse relaxation time T2 This is motivated by the sensitivity of the ADC to the location of cerebral ischaemia and T2 to its time-course, and that it has thus far proven challenging to relate observations of changes in these MR parameters to stroke timing, which is of considerable importance in making treatment choices in clinics. Our mathematical model, called the cytotoxic oedema/dissociation (CED) model, is based on the transit of water from the extra- to the intra-cellular environment (cytotoxic oedema) and concomitant degradation of supramacromolecular and macromolecular structures (such as microtubules and the cytoskeleton). It explains experimental observations of ADC and T2, as well as identifying the rate of spread of effects of ischaemia through a tissue as a dominant system parameter. The model brings the direct extraction of the timing of ischaemic stroke from quantitative MRI closer to reality, as well as providing insight on ischaemia pathology by imaging in general. We anticipate that this may improve patient access to thrombolytic treatment as a future application.
Collapse
Affiliation(s)
- Michael J Knight
- School of Experimental Psychology and Clinical Research and Imaging Centre Bristol, University of Bristol, Bristol, UK
| | - Bryony L McGarry
- School of Experimental Psychology and Clinical Research and Imaging Centre Bristol, University of Bristol, Bristol, UK
| | - Harriet J Rogers
- School of Experimental Psychology and Clinical Research and Imaging Centre Bristol, University of Bristol, Bristol, UK
| | - Kimmo T Jokivarsi
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Olli H J Gröhn
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Risto A Kauppinen
- School of Experimental Psychology and Clinical Research and Imaging Centre Bristol, University of Bristol, Bristol, UK
| |
Collapse
|
24
|
Warach S. Review : Mapping Brain Pathophysiology and Higher Cortical Function with Magnetic Resonance Imaging. Neuroscientist 2016. [DOI: 10.1177/107385849500100406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advances in magnetic resonance imaging (MRI) have moved the technology beyond its application solely as a diagnostic test to become a tool for addressing questions of in vivo pathophysiology and higher cortical function in humans. Diffusion-weighted MRI measures the apparent rate of translational movement of water molecules through brain parenchyma. This measurement can be used to determine axonal orientation within white matter, to define regions of tissue edema, and to permit early identification of ischemic neuronal injury related to impairment of Na+-K +-ATPase activity in experimental and human stroke. Changes in various aspects of cerebral perfusion—blood volume, blood flow, and hemoglobin oxygen saturation—can be mea sured with MRI, and altered cerebrovascular circulation and regional brain activation can thereby be inves tigated. Echo planar imaging is a method of ultrafast data acquisition with MRI—individual images are ac quired on the order of 100 msec. Echo planar imaging makes diffusion and perfusion measurements more practicable for diverse applications and allows for the study of temporal characteristics of regional brain responses to stimuli. Diffusion and perfusion MRI, generally termed functional MRI, are tools for studying in vivo brain physiology with MRI and are being applied to a broad range of questions in neuroscience. The Neuroscientist 1:221-235, 1995
Collapse
Affiliation(s)
- Steven Warach
- Departments of Neurology and Radiology Harvard Medical
School Beth Israel Hospital Boston, Massachusetts
| |
Collapse
|
25
|
Zhang XY, Wang F, Afzal A, Xu J, Gore JC, Gochberg DF, Zu Z. A new NOE-mediated MT signal at around -1.6ppm for detecting ischemic stroke in rat brain. Magn Reson Imaging 2016; 34:1100-6. [PMID: 27211260 DOI: 10.1016/j.mri.2016.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 11/16/2022]
Abstract
In the present work, we reported a new nuclear Overhauser enhancement (NOE)-mediated magnetization transfer (MT) signal at around -1.6ppm (NOE(-1.6)) in rat brain and investigated its application in the detection of acute ischemic stroke in rodent model. Using continuous wave (CW) MT sequence, the NOE(-1.6) is reliably detected in rat brain. The amplitude of this new NOE signal in rat brain was quantified using a 5-pool Lorentzian Z-spectral fitting method. Amplitudes of amide, amine, NOE at -3.5ppm (NOE(-3.5)), as well as NOE(-1.6) were mapped using this fitting method in rat brain. Several other conventional imaging parameters (R1, R2, apparent diffusion coefficient (ADC), and semi-solid pool size ratio (PSR)) were also measured. Our results show that NOE(-1.6), R1, R2, ADC, and APT signals from stroke lesion have significant changes at 0.5-1h after stroke. Compared with several other imaging parameters, NOE(-1.6) shows the strongest contrast differences between stroke and contralateral normal tissues and stays consistent over time until 2h after onset of stroke. Our results demonstrate that this new NOE(-1.6) signal in rat brain is a new potential contrast for assessment of acute stroke in vivo and might provide broad applications in the detection of other abnormal tissues.
Collapse
Affiliation(s)
- Xiao-Yong Zhang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Aqeela Afzal
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Deparment of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Deparment of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Deparment of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
26
|
Ismail MMT, Keynton RS, Mostapha MMMO, ElTanboly AH, Casanova MF, Gimel'farb GL, El-Baz A. Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey. Front Hum Neurosci 2016; 10:211. [PMID: 27242476 PMCID: PMC4862981 DOI: 10.3389/fnhum.2016.00211] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics.
Collapse
Affiliation(s)
- Marwa M. T. Ismail
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Robert S. Keynton
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | | | - Ahmed H. ElTanboly
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Manuel F. Casanova
- Departments of Pediatrics and Biomedical Sciences, University of South CarolinaColumbia, SC, USA
| | | | - Ayman El-Baz
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| |
Collapse
|
27
|
Wen H, Alshikho MJ, Wang Y, Luo X, Zafonte R, Herbert MR, Wang QM. Correlation of Fractional Anisotropy With Motor Recovery in Patients With Stroke After Postacute Rehabilitation. Arch Phys Med Rehabil 2016; 97:1487-1495. [PMID: 27178097 DOI: 10.1016/j.apmr.2016.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the relation between fractional anisotropy (FA), a suggested biomarker for tissue integrity, and motor recovery in patients with stroke after postacute rehabilitation. DESIGN Retrospective study. SETTING Acute rehabilitation hospital. PARTICIPANTS Subjects (N=43) diagnosed with ischemic stroke (n=28) and hemorrhagic stroke (n=15). The average age for subjects was 68±14 years. INTERVENTIONS Magnetic resonance imaging and diffusion tensor imaging were conducted on all patients. MAIN OUTCOME MEASURES The admission and discharge motor subscores of the FIM were obtained from medical records, and relative gain was calculated using the Montebello Rehabilitation Factor Score (MRFS). K-means cluster analysis (K=3) using both the MRFS and the gain of the FIM motor subscore (ΔFIM) was performed. Analysis of variance was used to determine the difference in FA among the clusters. Spearman analysis was conducted to examine the relation between FA, ΔFIM, and MRFS in each cluster. RESULTS FA was significantly higher in the clusters of good and moderate recovery in the corticospinal tract (CST), peduncle, and posterior limb of the internal capsule bilaterally (all P<.05) compared with the poor recovery group. Significant positive correlations were observed in multiple regions along the CST between FA, ΔFIM, and MRFS in the clusters of good and moderate recovery, but not in the poor recovery group. CONCLUSIONS Our results showed an association between FA values within the corticospinal tract and motor recovery in patients with stroke undergoing postacute rehabilitation. This finding may help to identify novel targets for new interventions to promote stroke recovery.
Collapse
Affiliation(s)
- Hongmei Wen
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA; Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mohamad J Alshikho
- Transcend Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Yao Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA; Department of Rehabilitation Medicine, Nan'ao People's Hospital of Shenzhen, The First Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Xun Luo
- Department of Rehabilitation Medicine, Nan'ao People's Hospital of Shenzhen, The First Affiliated Hospital, Shenzhen University, Shenzhen, China; Kerry Rehabilitation Medicine Research Institute, Shenzhen, China
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA
| | - Martha R Herbert
- Transcend Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA.
| |
Collapse
|
28
|
Fieremans E, Burcaw LM, Lee HH, Lemberskiy G, Veraart J, Novikov DS. In vivo observation and biophysical interpretation of time-dependent diffusion in human white matter. Neuroimage 2016; 129:414-427. [PMID: 26804782 DOI: 10.1016/j.neuroimage.2016.01.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/11/2015] [Accepted: 01/08/2016] [Indexed: 12/20/2022] Open
Abstract
The presence of micrometer-level restrictions leads to a decrease of diffusion coefficient with diffusion time. Here we investigate this effect in human white matter in vivo. We focus on a broad range of diffusion times, up to 600 ms, covering diffusion length scales up to about 30 μm. We perform stimulated echo diffusion tensor imaging on 5 healthy volunteers and observe a relatively weak time-dependence in diffusion transverse to major fiber tracts. Remarkably, we also find notable time-dependence in the longitudinal direction. Comparing models of diffusion in ordered, confined and disordered media, we argue that the time-dependence in both directions can arise due to structural disorder, such as axonal beads in the longitudinal direction, and the random packing geometry of fibers within a bundle in the transverse direction. These time-dependent effects extend beyond a simple picture of Gaussian compartments, and may lead to novel markers that are specific to neuronal fiber geometry at the micrometer scale.
Collapse
Affiliation(s)
- Els Fieremans
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Lauren M Burcaw
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Hong-Hsi Lee
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Gregory Lemberskiy
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jelle Veraart
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA; iMinds Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Dmitry S Novikov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
29
|
Length of intact plasma membrane determines the diffusion properties of cellular water. Sci Rep 2016; 6:19051. [PMID: 26750342 PMCID: PMC4707473 DOI: 10.1038/srep19051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/04/2015] [Indexed: 01/05/2023] Open
Abstract
Molecular diffusion in a boundary-free medium depends only on the molecular size, the temperature, and medium viscosity. However, the critical determinant of the molecular diffusion property in inhomogeneous biological tissues has not been identified. Here, using an in vitro system and a high-resolution MR imaging technique, we show that the length of the intact plasma membrane is a major determinant of water diffusion in a controlled cellular environment and that the cell perimeter length (CPL) is sufficient to estimate the apparent diffusion coefficient (ADC) of water in any cellular environment in our experimental system (ADC = -0.21 × CPL + 1.10). We used this finding to further explain the different diffusion kinetics of cells that are dying via apoptotic or non-apoptotic cell death pathways exhibiting characteristic changes in size, nuclear and cytoplasmic architectures, and membrane integrity. These results suggest that the ADC value can be used as a potential biomarker for cell death.
Collapse
|
30
|
Menzilcioglu MS, Mete A, Ünverdi Z. Effectiveness of CT Computed Tomography Perfusion in Diagnostics of Acute Ischemic Stroke. Pol J Radiol 2015; 80:549-54. [PMID: 26740827 PMCID: PMC4692568 DOI: 10.12659/pjr.895468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Stroke is the third most common death reason after the cardiovascular disorders and cancer. Cerebral ischemia is a pathology that stems from a decrease in cerebral perfusion. Computed Tomography Perfusion (CTP) is an additional method to the conventional Computed Tomography (CT) that could be performed by using developed softwares, in a short period of time and with a low risk of complications. CTP not only allows early detection of cerebral ischemia but also gives valuable information on the ischemic penumbra which are very important in early diagnosis and treatment. Acute Ischemic Stroke (AIS) can be cured by trombolytic treapy within 3-6 hours after symptom onset. Since rapid screening and accurate diagnosis increase the success of the treatment, the role of neuroradiology in acute ischemia diagnostics and treatment has become more important. Our aim was to define CT skills in early diagnosis of AIS, to define its contribution to patient's diagnosis and treatment and to define its importance regarding patient's prognosis. MATERIAL/METHODS We included 42 patients that presented to the emergency service and neurology outpatient clinic with the symptoms of acute cerebral incidence. RESULTS In our study, we found that Cerebral Blood Flow (CBF) is 90.91% sensitive and 100% specific in examining ischemia. CONCLUSIONS Tissue hemodynamic data, especially sensitivity and specificity rates, which cannot be acquired by conventional CT and MRI methods, can be acquired by the CTP method.
Collapse
Affiliation(s)
| | - Ahmet Mete
- Department of Radiology, Gaziantep University, Gaziantep, Turkey
| | - Zeyni Ünverdi
- Department of Radiology, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
31
|
Li H, Jiang X, Wang F, Xu J, Gore JC. Structural information revealed by the dispersion of ADC with frequency. Magn Reson Imaging 2015; 33:1083-1090. [PMID: 26117695 DOI: 10.1016/j.mri.2015.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/20/2015] [Indexed: 01/18/2023]
Abstract
Diffusion MRI provides a non-invasive means to characterize tissue microstructure at varying length scales. Temporal diffusion spectra reveal how the apparent diffusion coefficient (ADC) varies with frequency. When measured using oscillating gradient spin echo sequences, the manner in which ADC disperses with gradient frequency (which is related to the reciprocal of diffusion time) provides information on the characteristic dimensions of restricting structures within the medium. For example, the dispersion of ADC with oscillating gradient frequency (ΔfADC) has been shown to correlate with axon sizes in white matter and provide novel tissue contrast in images of mouse hippocampus and cerebellum. However, despite increasing interest in applying frequency-dependent ADC to derive novel information on tissue, the interpretations of ADC spectra are not always clear. In this study, the relation between ADC spectra and restricting dimensions are further elucidated and used to derive novel image contrast related to the sizes of intrinsic microstructures.
Collapse
Affiliation(s)
- Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Feng Wang
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, 37232, USA; Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
32
|
Liu W, Zhao X, Ma Y, Tang X, Gao JH. DWI using navigated interleaved multishot EPI with realigned GRAPPA reconstruction. Magn Reson Med 2015; 75:280-6. [PMID: 25753774 DOI: 10.1002/mrm.25586] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/23/2014] [Accepted: 11/26/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE A novel k-space reconstruction method is proposed for generating diffusion-weighted imaging (DWI) using navigated interleaved multishot EPI (msEPI). THEORY AND METHODS In interleaved msEPI, each shot of data acquired from one coil channel is a subset of the full k-space of that channel. All the k-space subsets of one channel can be treated as an undersampled dataset of a virtual multichannel data, which can be reconstructed by the GRAPPA algorithm after k-space realignment. The intershot phase variations are directly compensated using navigator echoes as the auto-calibrating data in GRAPPA reconstruction. In cases of multichannel msEPI data, all the virtual channels and actual channels can be integrated into a single GRAPPA reconstruction step. The proposed method is tested using both simulation and in-vivo data. The simulation results produced by the proposed method and a SENSE-based method are compared. RESULTS The simulated images generated by the proposed method exhibit less relative error compared with those generated by the SENSE method. Inconsistent shot-to-shot phase variation is naturally resolved by GRAPPA calibration without additional phase map processing. High-quality brain DWI with submillimeter resolution is obtained using our proposed reconstruction method. CONCLUSION A novel k-space msEPI reconstruction method has been developed for generating high-quality diffusion imaging.
Collapse
Affiliation(s)
- Wentao Liu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xuna Zhao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yajun Ma
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xin Tang
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
33
|
Abstract
OPINION STATEMENT Recent years have seen the development of novel neuroimaging techniques whose roles in the management of acute stroke are sometimes confusing and controversial. This may be attributable in part to a focus on establishing simplified algorithms and terminology that omit consideration of the basic pathophysiology of cerebral ischemia and, consequently, of the full potential for optimizing patients' care based upon their individual imaging findings. This review begins by discussing cerebral hemodynamic physiology and of the effects of hemodynamic disturbances upon the brain. Particular attention will be paid to the hemodynamic measurements and markers of tissue injury that are provided by common clinical imaging techniques, with the goal of enabling greater confidence and flexibility in understanding the potential uses of these techniques in various clinical roles, which will be discussed in the remainder of the review.
Collapse
Affiliation(s)
- William A Copen
- Massachusetts General Hospital, Division of Neuroradiology, GRB-273A, 55 Fruit Street, Boston, MA, 02114, USA,
| |
Collapse
|
34
|
Ingo C, Sui Y, Chen Y, Parrish TB, Webb AG, Ronen I. Parsimonious continuous time random walk models and kurtosis for diffusion in magnetic resonance of biological tissue. FRONTIERS IN PHYSICS 2015; 3:11. [PMID: 28344972 PMCID: PMC5365033 DOI: 10.3389/fphy.2015.00011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, we provide a context for the modeling approaches that have been developed to describe non-Gaussian diffusion behavior, which is ubiquitous in diffusion weighted magnetic resonance imaging of water in biological tissue. Subsequently, we focus on the formalism of the continuous time random walk theory to extract properties of subdiffusion and superdiffusion through novel simplifications of the Mittag-Leffler function. For the case of time-fractional subdiffusion, we compute the kurtosis for the Mittag-Leffler function, which provides both a connection and physical context to the much-used approach of diffusional kurtosis imaging. We provide Monte Carlo simulations to illustrate the concepts of anomalous diffusion as stochastic processes of the random walk. Finally, we demonstrate the clinical utility of the Mittag-Leffler function as a model to describe tissue microstructure through estimations of subdiffusion and kurtosis with diffusion MRI measurements in the brain of a chronic ischemic stroke patient.
Collapse
Affiliation(s)
- Carson Ingo
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Yi Sui
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yufen Chen
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Todd B. Parrish
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Andrew G. Webb
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Itamar Ronen
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
35
|
Li H, Zu Z, Zaiss M, Khan IS, Singer R, Gochberg DF, Bachert P, Gore JC, Xu J. Imaging of amide proton transfer and nuclear Overhauser enhancement in ischemic stroke with corrections for competing effects. NMR IN BIOMEDICINE 2015; 28:200-9. [PMID: 25483870 PMCID: PMC4303585 DOI: 10.1002/nbm.3243] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/21/2014] [Accepted: 11/11/2014] [Indexed: 05/08/2023]
Abstract
Chemical exchange saturation transfer (CEST) potentially provides the ability to detect small solute pools through indirect measurements of attenuated water signals. However, CEST effects may be diluted by various competing effects, such as non-specific magnetization transfer (MT) and asymmetric MT effects, water longitudinal relaxation (T1 ) and direct water saturation (radiofrequency spillover). In the current study, CEST images were acquired in rats following ischemic stroke and analyzed by comparing the reciprocals of the CEST signals at three different saturation offsets. This combined approach corrects the above competing effects and provides a more robust signal metric sensitive specifically to the proton exchange rate constant. The corrected amide proton transfer (APT) data show greater differences between the ischemic and contralateral (non-ischemic) hemispheres. By contrast, corrected nuclear Overhauser enhancements (NOEs) around -3.5 ppm from water change over time in both hemispheres, indicating whole-brain changes that have not been reported previously. This study may help us to better understand the contrast mechanisms of APT and NOE imaging in ischemic stroke, and may also establish a framework for future stroke measurements using CEST imaging with spillover, MT and T1 corrections.
Collapse
Affiliation(s)
- Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhongliang Zu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Moritz Zaiss
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ, German Cancer Research Center), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Imad S. Khan
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Robert Singer
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Daniel F. Gochberg
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Peter Bachert
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ, German Cancer Research Center), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - John C. Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Corresponding author: Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA. Tel.: + 1 615 322 8359; Fax: + 1 615 322 0734. (J. Xu)
| |
Collapse
|
36
|
Huang Y, Chen X, Zhang Z, Yan L, Pan D, Liang C, Liu Z. MRI quantification of non-Gaussian water diffusion in normal human kidney: a diffusional kurtosis imaging study. NMR IN BIOMEDICINE 2015; 28:154-161. [PMID: 25392938 DOI: 10.1002/nbm.3235] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/17/2014] [Accepted: 10/25/2014] [Indexed: 06/04/2023]
Abstract
Our aim was to prospectively evaluate the feasibility of diffusional kurtosis imaging (DKI) in normal human kidney and to report preliminary DKI measurements. Institutional review board approval and informed consent were obtained. Forty-two healthy volunteers underwent diffusion-weighted imaging (DWI) scans with a 3-T MR scanner. b values of 0, 500 and 1000 s/mm(2) were adopted. Maps of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (D⊥), axial diffusivity (D||), mean kurtosis (MK), radial kurtosis (K⊥) and axial kurtosis (K||) were produced. Three representative axial slices in the upper pole, mid-zone and lower pole were selected in the left and right kidney. On each selected slice, three regions of interest were drawn on the renal cortex and another three on the medulla. Statistical comparison was performed with t-test and analysis of variance. Thirty-seven volunteers successfully completed the scans. No statistically significant differences were observed between the left and right kidney for all metrics (p values in the cortex: FA, 0.114; MD, 0.531; D⊥, 0.576; D||, 0.691; MK, 0.934; K⊥, 0.722; K||, 0.891; p values in the medulla: FA, 0.348; MD, 0.732; D⊥, 0.470; D||, 0.289; MK, 0.959; K⊥, 0.780; K||, 0.287). Kurtosis metrics (MK, K||, K⊥) obtained in the renal medulla were significantly (p <0.001) higher than those in the cortex (0.552 ± 0.04, 0.637 ± 0.07 and 0.530 ± 0.08 in the medulla and 0.373 ± 0.04, 0.492 ± 0.06 and 0.295 ± 0.06 in the cortex, respectively). For the diffusivity measures, FA of the medulla (0.356 ± 0.03) was higher than that of the cortex (0.179 ± 0.03), whereas MD, D⊥ and D|| (mm(2) /ms) were lower in the medulla than in the cortex (3.88 ± 0.09, 3.50 ± 0.23 and 4.65 ± 0.29 in the cortex and 2.88 ± 0.11, 2.32 ± 0.20 and 3.47 ± 0.31 in the medulla, respectively). Our results indicate that DKI is feasible in the human kidney. We have reported the preliminary DKI measurements of normal human kidney that demonstrate well the non-Gaussian behavior of water diffusion, especially in the renal medulla.
Collapse
Affiliation(s)
- Yanqi Huang
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Graduate College, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Baikeev RF, Gubanov RA, Sadikov KK, Safina SZ, Muhamadiev FF, Sibgatullin TA. Dynamic properties of water in breast pathology depend on the histological compounds: distinguishing tissue malignancy by water diffusion coefficients. BMC Res Notes 2014; 7:887. [PMID: 25487139 PMCID: PMC4295355 DOI: 10.1186/1756-0500-7-887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 11/18/2014] [Indexed: 11/11/2022] Open
Abstract
Background The parameters that characterize the intricate water diffusion in tumors may also reveal their distinct pathology. Specifically, characterization of breast cancer could be aided by diffusion magnetic resonance. The present in vitro study aimed to discover connections between the NMR biexponential diffusion parameters [fast diffusion phase (DFDP ), slow diffusion phase (DSDP ), and spin population of fast diffusion phase (P1)] and the histological constituents of nonmalignant (control) and malignant human breast tissue. It also investigates whether the diffusion coefficients indicate tissue status. Methods Post-surgical specimens of control (mastopathy and peritumoral tissues) and malignant human breast tissue were placed in an NMR spectrometer and diffusion sequences were applied. The resulting decay curves were analyzed by a biexponential model, and slow and fast diffusion parameters as well as percentage signal were identified. The same samples were also histologically examined and their percentage composition of several tissue constituents were measured: parenchyma (P), stroma (St), adipose tissue (AT), vessels (V) , pericellular edema (PCE), and perivascular edema (PVE). Correlations between the biexponential model parameters and tissue types were evaluated for different specimens. The effects of tissue composition on the biexponential model parameters, and the effects of histological and model parameters on cancer probability, were determined by non-linear regression. Results Meaningful relationships were found among the in vitro data. The dynamic parameters of water in breast tissue are stipulated by the histological constituents of the tissues (P, St, AT, PCE, and V). High coefficients of determination (R2) were obtained in the non-linear regression analysis: DFDP (R2 = 0.92), DSDP (R2 = 0.81), and P1(R2 = 0.93). In the cancer probability analysis, the informative value (R2) of the obtained equations of cancer probability in distinguishing tissue malignancy depended on the parameters input to the model. In order of increasing value, these equations were: cancer probability (P, St, AT, PCE, V) (R2 = 0.66), cancer probability (DFDP, DSDP)(R2 = 0.69), cancer probability (DFDP, DSDP, P1) (R2 = 0.85). Conclusion Histological tissue components are related to the diffusion biexponential model parameters. From these parameters, the relative probability of cancer in a given specimen can be determined with some certainty.
Collapse
Affiliation(s)
- Rustem F Baikeev
- Department of Biochemistry, Kazan State Medical University, Butlerova St,, 49, Kazan, Tatarstan, Russia.
| | | | | | | | | | | |
Collapse
|
38
|
Bisdas S, Braun C, Skardelly M, Schittenhelm J, Teo TH, Thng CH, Klose U, Koh TS. Correlative assessment of tumor microcirculation using contrast-enhanced perfusion MRI and intravoxel incoherent motion diffusion-weighted MRI: is there a link between them? NMR IN BIOMEDICINE 2014; 27:1184-1191. [PMID: 25088433 DOI: 10.1002/nbm.3172] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The purpose of this study was to correlate intravoxel incoherent motion (IVIM) imaging with classical perfusion-weighted MRI metrics in human gliomas. Parametric images for slow diffusion coefficient (D), fast diffusion coefficient (D*), and fractional perfusion-related volume (f) in patients with high-grade gliomas were generated. Maps of Fp (plasma flow), vp (vascular plasma volume), PS (permeability surface-area product), ve (extravascular, extracellular volume), E (extraction ratio), ke (influx ratio into the interstitium), and tc (vascular transit time) from dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast-enhanced (DSC) MRI were also generated. A region-of-interest analysis on the contralateral healthy white matter and on the tumor areas was performed and the extracted parameter values were tested for any significant differences among tumor grades or any correlations. Only f could be significantly correlated to DSC-derived vp and tc in healthy brain tissue. Concerning the tumor regions, Fp was significantly positively correlated with D* and inversely correlated with f in DSC measurements. The D*, f, and f × D* values in the WHO grade III gliomas were non-significantly different from those in the grade IV gliomas. There was a trend to significant negative correlations between f and PS as well as between f × D* and ke in DCE experiments. Presumably due to different theoretical background, tracer properties and modeling of the tumor vasculature in the IVIM theory, there is no clearly evident link between D*, f and DSC- and DCE-derived metrics.
Collapse
Affiliation(s)
- Sotirios Bisdas
- Department of Neuroradiology, Eberhard Karls University, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wu D, Martin LJ, Northington FJ, Zhang J. Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains. Magn Reson Med 2014; 72:1366-74. [PMID: 25168861 DOI: 10.1002/mrm.25441] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 12/28/2022]
Abstract
PURPOSE We investigated whether oscillating gradient diffusion MRI (dMRI) can provide information on brain microstructural changes after formaldehyde fixation and after hypoxic-ischemic (HI) injury beyond that provided by conventional dMRI. METHODS Pulsed gradient spin echo (PGSE) and oscillating gradient spin echo (OGSE) dMRI of the adult mouse brain was performed in vivo (50-200 Hz, b = 600 mm(2)/s), and a similar protocol was applied to neonatal mouse brains at 24 h after unilateral hypoxia-ischemia. Animals were perfusion fixed with 4% paraformaldehyde for ex vivo dMRI and histology. RESULTS Apparent diffusion coefficients (ADCs) measured in the live adult mouse brain presented tissue-dependent frequency-dependence. In vivo OGSE-ADC maps at high oscillating frequencies (>100 Hz) showed clear contrast between the molecular layer and granule cell layer in the adult mouse cerebellum. Formaldehyde fixation significantly altered the temporal diffusion spectra in several brain regions. In neonatal mouse brains with HI injury, in vivo ADC measurements from edema regions showed diminished edema contrasts at 200 Hz compared with the PGSE results. Histology showed severe tissue swelling and necrosis in the edema regions. CONCLUSION The results demonstrate the unique ability of OGSE-dMRI in delineating tissue microstructures at different spatial scales.
Collapse
Affiliation(s)
- Dan Wu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
40
|
Investigating the ventral-lexical, dorsal-sublexical model of basic reading processes using diffusion tensor imaging. Brain Struct Funct 2013; 220:445-55. [PMID: 24189777 DOI: 10.1007/s00429-013-0666-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/21/2013] [Indexed: 01/18/2023]
Abstract
Recent results from diffusion tensor imaging (DTI) studies provide evidence of a ventral-lexical stream and a dorsal-sublexical stream associated with reading processing. We investigated the relationship between behavioural reading speed for stimuli thought to rely on either the ventral-lexical, dorsal-sublexical, or both streams and white matter via fractional anisotropy (FA) and mean diffusivity (MD) using DTI tractography. Participants (N = 32) overtly named exception words (e.g., 'one', ventral-lexical), regular words (e.g., 'won', both streams), nonwords ('wum', dorsal-sublexical) and pseudohomophones ('wun', dorsal-sublexical) in a behavioural lab. Each participant then underwent a brain scan that included a 30-directional DTI sequence. Tractography was used to extract FA and MD values from four tracts of interest: inferior longitudinal fasciculus, uncinate fasciculus, arcuate fasciculus, and inferior fronto-occipital fasciculus. Median reaction times (RTs) for reading exception words and regular words both showed a significant correlation with the FA of the uncinate fasciculus thought to underlie the ventral processing stream, such that response time decreased as FA increased. In addition, RT for exception and regular words showed a relationship with MD of the uncinate fasciculus, such that response time increased as MD increased. Multiple regression analyses revealed that exception word RT accounted for unique variability in FA of the uncinate over and above regular words. There were no robust relationships found between pseudohomophones, or nonwords, and tracts thought to underlie the dorsal processing stream. These results support the notion that word recognition, in general, and exception word reading in particular, rely on ventral-lexical brain regions.
Collapse
|
41
|
Budin F, Hoogstoel M, Reynolds P, Grauer M, O'Leary-Moore SK, Oguz I. Fully automated rodent brain MR image processing pipeline on a Midas server: from acquired images to region-based statistics. Front Neuroinform 2013; 7:15. [PMID: 23964234 PMCID: PMC3741535 DOI: 10.3389/fninf.2013.00015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 07/23/2013] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) of rodent brains enables study of the development and the integrity of the brain under certain conditions (alcohol, drugs etc.). However, these images are difficult to analyze for biomedical researchers with limited image processing experience. In this paper we present an image processing pipeline running on a Midas server, a web-based data storage system. It is composed of the following steps: rigid registration, skull-stripping, average computation, average parcellation, parcellation propagation to individual subjects, and computation of region-based statistics on each image. The pipeline is easy to configure and requires very little image processing knowledge. We present results obtained by processing a data set using this pipeline and demonstrate how this pipeline can be used to find differences between populations.
Collapse
Affiliation(s)
- Francois Budin
- Neuro Image Research and Analysis Laboratories, Department of Psychiatry, University of North Carolina Chapel Hill, NC, USA
| | | | | | | | | | | |
Collapse
|
42
|
Smith SA, Pekar JJ, van Zijl PCM. Advanced MRI strategies for assessing spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2013. [PMID: 23098708 DOI: 10.1016/b978-0-444-52137-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advanced magnetic resonance (MR) approaches permit the noninvasive quantification of macromolecular, functional, and physiological properties of biological tissues. In this chapter, we review the application of advanced MR techniques to the spinal cord. Macromolecular properties of the spinal cord can be studied using magnetization transfer (MT) MR, diffusion tensor imaging (DTI), Q-space diffusion spectroscopy, and selective detection of myelin water. The functional and metabolic status of the spinal cord can be studied using functional MRI (fMRI), perfusion imaging, and magnetic resonance spectroscopy (MRS). Finally, we consider the outlook for advanced MR studies in persons in whom metal hardware has been implanted to stabilize the cord. In spite of the spinal cord's diminutive size, its location deep within the body, and constant motion, recent work shows that the spinal cord can be studied using these advanced MR approaches.
Collapse
Affiliation(s)
- Seth A Smith
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
43
|
Chang Z, Kirkpatrick JP, Wang Z, Cai J, Adamson J, Yin FF. Evaluating radiation-induced white matter changes in patients treated with stereotactic radiosurgery using diffusion tensor imaging: a pilot study. Technol Cancer Res Treat 2013; 13:21-8. [PMID: 23862743 DOI: 10.7785/tcrt.2012.500358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stereotactic radiosurgery (SRS) has been an effective treatment method for brain tumors; however, few data are available regarding radiation-induced white matter (WM) damage by SRS. In this work, diffusion tensor imaging (DTI) was used to investigate WM changes following SRS. Fifteen patients with gliomas were enrolled, with prescription doses ranging 18-25 Gy. Patients were scanned with magnetic resonance imaging (MRI) including DTI before and after SRS. Diffusion tensors were calculated and fiber tracking was performed. Non-irradiated WM volumes and irradiated WM volumes receiving ≥ 12 Gy and ≥ Gy were contoured as volumes of interest (VOI). Apparent diffusion coefficient (〈D〉), fractional anisotropy (FA) and number of fibers (NF) were calculated and assessed using the Wilcoxon signed-rank test. Compared with those of non-irradiated VOIs, FA and NF decreased considerably after two months of SRS in the irradiated WM VOIs. The variation in (〈D〉 was however small and was not statistically significant. The preliminary results suggested that FA and NF might potentially be more sensitive indicators than (〈D〉 in measuring radiation-induced WM changes and DTI could be a valuable tool to assess radiation-induced WM changes in SRS. Although it is still preliminary, this pilot study may be useful to provide insights for future studies.
Collapse
Affiliation(s)
- Zheng Chang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, 27710, United States.
| | | | | | | | | | | |
Collapse
|
44
|
Kershaw J, Leuze C, Aoki I, Obata T, Kanno I, Ito H, Yamaguchi Y, Handa H. Systematic changes to the apparent diffusion tensor of in vivo rat brain measured with an oscillating-gradient spin-echo sequence. Neuroimage 2013; 70:10-20. [DOI: 10.1016/j.neuroimage.2012.12.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/22/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022] Open
|
45
|
Yu T, Zhang C, Alexander AL, Davidson RJ. Local Tests for Identifying Anisotropic Diffusion Areas in Human Brain with DTI. Ann Appl Stat 2013; 7:201-225. [PMID: 25558295 DOI: 10.1214/12-aoas573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diffusion tensor imaging (DTI) plays a key role in analyzing the physical structures of biological tissues, particularly in reconstructing fiber tracts of the human brain in vivo. On the one hand, eigenvalues of diffusion tensors (DTs) estimated from diffusion weighted imaging (DWI) data usually contain systematic bias, which subsequently biases the diffusivity measurements popularly adopted in fiber tracking algorithms. On the other hand, correctly accounting for the spatial information is important in the construction of these diffusivity measurements since the fiber tracts are typically spatially structured. This paper aims to establish test-based approaches to identify anisotropic water diffusion areas in the human brain. These areas in turn indicate the areas passed by fiber tracts. Our proposed test statistic not only takes into account the bias components in eigenvalue estimates, but also incorporates the spatial information of neighboring voxels. Under mild regularity conditions, we demonstrate that the proposed test statistic asymptotically follows a χ2 distribution under the null hypothesis. Simulation and real DTI data examples are provided to illustrate the efficacy of our proposed methods.
Collapse
Affiliation(s)
- Tao Yu
- Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546
| | - Chunming Zhang
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Andrew L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Richard J Davidson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
46
|
Thiessen JD, Vincent TJ, Herrera SL, Martin M. Diffusion Tensor Metric Measurements as a Function of Diffusion Time in the Rat Central Nervous System. MAGNETIC RESONANCE INSIGHTS 2012. [DOI: 10.4137/mri.s10692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
MRI and Monte Carlo simulated data of pulsed gradient spin echo experiments were used to study the effects of diffusion time, gradient strength and b-value on diffusion tensor (DT) metrics using real and simulated fixed rat spines. Radial (λ⊥) in grey matter and simulation data, axial (λ||) in both grey and white matter in fixed rat spinal cords and mean diffusivity in all tissues showed a significant decrease with diffusion time at b = 1 μm2/ms. All diffusivities significantly decreased with b-value at g = 116 mT/m and at Δeff = 23 ms. The fractional anisotropy (FA) significantly increased with diffusion time at b = 1 μm2/ms in the simulation data and grey matter. FA significantly increased in white matter and simulation data and significantly decreased in grey matter with b-value at g = 116 mT/m and at Δeff = 23 ms. These data suggest that DTI metrics are highly dependent on pulse sequence parameters.
Collapse
Affiliation(s)
- Jonathan D. Thiessen
- Department of Physics and Astronomy, University of Manitoba
- Department of Radiology, University of Manitoba
| | | | | | - Melanie Martin
- Department of Physics and Astronomy, University of Manitoba
- Department of Physics, University of Winnipeg
| |
Collapse
|
47
|
Grinberg F, Ciobanu L, Farrher E, Shah NJ. Diffusion kurtosis imaging and log-normal distribution function imaging enhance the visualisation of lesions in animal stroke models. NMR IN BIOMEDICINE 2012; 25:1295-304. [PMID: 22461260 DOI: 10.1002/nbm.2802] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 02/22/2012] [Accepted: 02/29/2012] [Indexed: 05/16/2023]
Abstract
In this work, we report a case study of a stroke model in animals using two methods of quantification of the deviations from Gaussian behaviour: diffusion kurtosis imaging (DKI) and log-normal distribution function imaging (LNDFI). The affected regions were predominantly in grey rather than in white matter. The parameter maps were constructed for metrics quantifying the apparent diffusivity (evaluated from conventional diffusion tensor imaging, DKI and LNDFI) and for those quantifying the degree of deviations (mean kurtosis and a parameter σ characterising the width of the distribution). We showed that both DKI and LNDFI were able to dramatically enhance the visualisation of ischaemic lesions in comparison with conventional methods. The largest relative change in the affected versus healthy regions was observed in the mean kurtosis values. The average changes in the mean kurtosis and σ values in the lesions were a factor of two to three larger than the relative changes observed in the mean diffusivity. In conclusion, the applied methods promise valuable perspectives in the assessment of stroke.
Collapse
Affiliation(s)
- Farida Grinberg
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich GmbH, Juelich, Germany.
| | | | | | | |
Collapse
|
48
|
Oguz I, McMurray MS, Styner M, Johns JM. The translational role of diffusion tensor image analysis in animal models of developmental pathologies. Dev Neurosci 2012; 34:5-19. [PMID: 22627095 DOI: 10.1159/000336825] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 01/24/2012] [Indexed: 12/31/2022] Open
Abstract
Diffusion tensor magnetic resonance imaging (DTI) has proven itself a powerful technique for clinical investigation of the neurobiological targets and mechanisms underlying developmental pathologies. The success of DTI in clinical studies has demonstrated its great potential for understanding translational animal models of clinical disorders, and preclinical animal researchers are beginning to embrace this new technology to study developmental pathologies. In animal models, genetics can be effectively controlled, drugs consistently administered, subject compliance ensured, and image acquisition times dramatically increased to reduce between-subject variability and improve image quality. When pairing these strengths with the many positive attributes of DTI, such as the ability to investigate microstructural brain organization and connectivity, it becomes possible to delve deeper into the study of both normal and abnormal development. The purpose of this review is to provide new preclinical investigators with an introductory source of information about the analysis of data resulting from small animal DTI studies to facilitate the translation of these studies to clinical data. In addition to an in-depth review of translational analysis techniques, we present a number of relevant clinical and animal studies using DTI to investigate developmental insults in order to further illustrate techniques and to highlight where small animal DTI could potentially provide a wealth of translational data to inform clinical researchers.
Collapse
Affiliation(s)
- Ipek Oguz
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
49
|
Ichikawa Y, Sumi M, Eida S, Takagi Y, Tashiro S, Hotokezaka Y, Katayama I, Nakamura T. Apparent diffusion coefficient characterization of fluid areas in cystic and abscess lesions of the neck. Oral Radiol 2012. [DOI: 10.1007/s11282-012-0082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Smith SA, Pekar JJ, van Zijl PCM. Advanced MRI strategies for assessing spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:85-101. [PMID: 23098708 DOI: 10.1016/b978-0-444-52137-8.00006-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Advanced magnetic resonance (MR) approaches permit the noninvasive quantification of macromolecular, functional, and physiological properties of biological tissues. In this chapter, we review the application of advanced MR techniques to the spinal cord. Macromolecular properties of the spinal cord can be studied using magnetization transfer (MT) MR, diffusion tensor imaging (DTI), Q-space diffusion spectroscopy, and selective detection of myelin water. The functional and metabolic status of the spinal cord can be studied using functional MRI (fMRI), perfusion imaging, and magnetic resonance spectroscopy (MRS). Finally, we consider the outlook for advanced MR studies in persons in whom metal hardware has been implanted to stabilize the cord. In spite of the spinal cord's diminutive size, its location deep within the body, and constant motion, recent work shows that the spinal cord can be studied using these advanced MR approaches.
Collapse
Affiliation(s)
- Seth A Smith
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|