1
|
Meyer-Baese L, Jaeger D, Keilholz S. Neurovascular coupling: a review of spontaneous neocortical dynamics linking neuronal activity to hemodynamics and what we have learned from the rodent brain. J Neurophysiol 2025; 133:644-660. [PMID: 39819035 DOI: 10.1152/jn.00418.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025] Open
Abstract
The brain is a complex neural network whose functional dynamics offer valuable insights into behavioral performance and health. Advances in fMRI have provided a unique window into studying human brain networks, providing us with a powerful tool for clinical research. Yet many questions about the underlying correlates between spontaneous fMRI and neural activity remain poorly understood, limiting the impact of this research. Cross-species studies have proven essential in deepening our understanding of how neuronal activity is coupled to increases in local cerebral blood flow, changes in blood oxygenation, and the measured fMRI signal. In this article, we review some fundamental mechanisms implicated in neurovascular coupling. We then examine neurovascular coupling within the context of spontaneous cortical functional networks and their dynamics, summarizing key findings from mechanistic studies in rodents. In doing so, we highlight the nuances of the neurovascular coupling that ultimately influences the interpretation of derived hemodynamic functional networks, their dynamics, and the neural underpinnings they represent.
Collapse
Affiliation(s)
- Lisa Meyer-Baese
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Department of Biology, Emory University, Atlanta, Georgia, United States
| | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, Georgia, United States
| | - Shella Keilholz
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| |
Collapse
|
2
|
Suarez A, Fernandez L, Riera J. Characterizing astrocyte-mediated neurovascular coupling by combining optogenetics and biophysical modeling. J Cereb Blood Flow Metab 2025:271678X241311010. [PMID: 39791314 PMCID: PMC11719438 DOI: 10.1177/0271678x241311010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Vasoactive signaling from astrocytes is an important contributor to the neurovascular coupling (NVC), which aims at providing energy to neurons during brain activation by increasing blood perfusion in the surrounding vasculature. Pharmacological manipulations have been previously combined with experimental techniques (e.g., transgenic mice, uncaging, and multiphoton microscopy) and stimulation paradigms to isolate in vivo individual pathways of the astrocyte-mediated NVC. Unfortunately, these pathways are highly nonlinear and non-additive. To separate these pathways in a unified framework, we combine a comprehensive biophysical model of vasoactive signaling from astrocytes with a unique optogenetic stimulation method that selectively induces astrocytic Ca2+ signaling in a large population of astrocytes. We also use a sensitivity analysis and an optimization technique to estimate key model parameters. Optogenetically-induced Ca2+ signals in astrocytes cause a cerebral blood flow (CBF) response with two major components. Component-1 was rapid and smaller (ΔCBF∼13%, 18 seconds), while component-2 was slowest and highest (ΔCBF ∼18%, 45 seconds). The proposed biophysical model was adequate in reproducing component-2, which was validated with a pharmacological manipulation. Model's predictions were not in contradiction with previous studies. Finally, we discussed scenarios accounting for the existence of component-1, which once validated might be included in our model.
Collapse
Affiliation(s)
- Alejandro Suarez
- Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA
| | - Lazaro Fernandez
- Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA
| | - Jorge Riera
- Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA
| |
Collapse
|
3
|
Khodadadi M, Helluy X, Güntürkün O, Behroozi M. Segmented spin-echo echo-planar imaging improves whole-brain BOLD functional MRI in awake pigeon brains. NMR IN BIOMEDICINE 2024; 37:e5034. [PMID: 37681398 DOI: 10.1002/nbm.5034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Functional magnetic resonance imaging (fMRI) in awake small animals such as pigeons or songbirds opens a new window into the neural fundaments of cognitive behavior. However, high-field fMRI in the avian brain is challenging due to strong local magnetic field inhomogeneities caused by air cavities in the skull. A spoiled gradient-echo fMRI sequence has already been used to map the auditory network in songbirds, but due to susceptibility artifacts only 50% of the whole brain could be recorded. Since whole-brain fMRI coverage is vital to reveal whole-brain networks, an MRI sequence that is less susceptible to these artifacts was required. This was recently achieved in various bird species by using a rapid acquisition with relaxation enhancement (RARE) sequence. Weak blood oxygen level-dependent (BOLD) sensitivity, low temporal resolution, and heat caused by the long train of RF refocusing pulses are the main limits of RARE fMRI at high magnetic fields. To go beyond some of these limitations, we here describe the implementation of a two-segmented spin-echo echo-planar imaging (SE-EPI). The proposed sequence covers the whole brain of awake pigeons. The sequence was applied to investigate the auditory network in awake pigeons and assessed the relative merits of this method in comparison with the single-shot RARE sequence. At the same imaging resolution but with a volume acquisition of 3 s versus 4 s for RARE, the two-segmented SE-EPI provided twice the strength of BOLD activity compared with the single-shot RARE sequence, while the image signal-to-noise ratio (SNR) and in particular the temporal SNR were very similar for the two sequences. In addition, the activation patterns in two-segmented SE-EPI data are more symmetric and larger than single-shot RARE results. Two-segmented SE-EPI represents a valid alternative to the RARE sequence in avian fMRI research since it yields more than twice the BOLD sensitivity per unit of time with much less energy deposition and better temporal resolution, particularly for event-related experiments.
Collapse
Affiliation(s)
- Mina Khodadadi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Xavier Helluy
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
- Department of Neurophysiology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr University Bochum, Bochum, Germany
| | - Mehdi Behroozi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Guran CNA, Sladky R, Karl S, Boch M, Laistler E, Windischberger C, Huber L, Lamm C. Validation of a New Coil Array Tailored for Dog Functional Magnetic Resonance Imaging Studies. eNeuro 2023; 10:ENEURO.0083-22.2022. [PMID: 36750363 PMCID: PMC9997692 DOI: 10.1523/eneuro.0083-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 02/09/2023] Open
Abstract
Comparative neuroimaging allows for the identification of similarities and differences between species. It provides an important and promising avenue, to answer questions about the evolutionary origins of the brain´s organization, in terms of both structure and function. Dog functional magnetic resonance imaging (fMRI) has recently become one particularly promising and increasingly used approach to study brain function and coevolution. In dog neuroimaging, image acquisition has so far been mostly performed with coils originally developed for use in human MRI. Since such coils have been tailored to human anatomy, their sensitivity and data quality is likely not optimal for dog MRI. Therefore, we developed a multichannel receive coil (K9 coil, read "canine") tailored for high-resolution functional imaging in canines, optimized for dog cranial anatomy. In this paper we report structural (n = 9) as well as functional imaging data (resting-state, n = 6; simple visual paradigm, n = 9) collected with the K9 coil in comparison to reference data collected with a human knee coil. Our results show that the K9 coil significantly outperforms the human knee coil, improving the signal-to-noise ratio (SNR) across the imaging modalities. We noted increases of roughly 45% signal-to-noise in the structural and functional domain. In terms of translation to fMRI data collected in a visual flickering checkerboard paradigm, group-level analyses show that the K9 coil performs better than the knee coil as well. These findings demonstrate how hardware improvements may be instrumental in driving data quality, and thus, quality of imaging results, for dog-human comparative neuroimaging.
Collapse
Affiliation(s)
- Catherine-Noémie Alexandrina Guran
- Cognitive Science Hub, Faculty of Psychology, University of Vienna, Vienna, Austria 1090
- Social, Cognitive and Affective Neuroscience (SCAN) Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria 1010
| | - Ronald Sladky
- Social, Cognitive and Affective Neuroscience (SCAN) Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria 1010
| | - Sabrina Karl
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria 1210
| | - Magdalena Boch
- Social, Cognitive and Affective Neuroscience (SCAN) Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria 1010
- Department of Cognitive Biology, University of Vienna, Vienna, Austria 1030
| | - Elmar Laistler
- Division MR Physics, Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria 1090
| | - Christian Windischberger
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria 1090
| | - Ludwig Huber
- Clever Dog Lab, Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria 1210
| | - Claus Lamm
- Cognitive Science Hub, Faculty of Psychology, University of Vienna, Vienna, Austria 1090
- Social, Cognitive and Affective Neuroscience (SCAN) Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria 1010
| |
Collapse
|
5
|
Taylor AJ, Kim JH, Ress D. Temporal stability of the hemodynamic response function across the majority of human cerebral cortex. Hum Brain Mapp 2022; 43:4924-4942. [PMID: 35965416 PMCID: PMC9582369 DOI: 10.1002/hbm.26047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 12/23/2022] Open
Abstract
The hemodynamic response function (HRF) measured with functional magnetic resonance imaging is generated by vascular and metabolic responses evoked by brief (<4 s) stimuli. It is known that the human HRF varies across cortex, between subjects, with stimulus paradigms, and even between different measurements in the same cortical location. However, our results demonstrate that strong HRFs are remarkably repeatable across sessions separated by time intervals up to 3 months. In this study, a multisensory stimulus was used to activate and measure the HRF across the majority of cortex (>70%, with lesser reliability observed in some areas of prefrontal cortex). HRFs were measured with high spatial resolution (2‐mm voxels) in central gray matter to minimize variations caused by partial‐volume effects. HRF amplitudes and temporal dynamics were highly repeatable across four sessions in 20 subjects. Positive and negative HRFs were consistently observed across sessions and subjects. Negative HRFs were generally weaker and, thus, more variable than positive HRFs. Statistical measurements showed that across‐session variability is highly correlated to the variability across events within a session; these measurements also indicated a normal distribution of variability across cortex. The overall repeatability of the HRFs over long time scales generally supports the long‐term use of event‐related functional magnetic resonance imaging protocols.
Collapse
Affiliation(s)
- Amanda J Taylor
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Jung Hwan Kim
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Sanganahalli BG, Thompson GJ, Parent M, Verhagen JV, Blumenfeld H, Herman P, Hyder F. Thalamic activations in rat brain by fMRI during tactile (forepaw, whisker) and non-tactile (visual, olfactory) sensory stimulations. PLoS One 2022; 17:e0267916. [PMID: 35522646 PMCID: PMC9075615 DOI: 10.1371/journal.pone.0267916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
The thalamus is a crucial subcortical hub that impacts cortical activity. Tracing experiments in animals and post-mortem humans suggest rich morphological specificity of the thalamus. Very few studies reported rodent thalamic activations by functional MRI (fMRI) as compared to cortical activations for different sensory stimuli. Here, we show different portions of the rat thalamus in response to tactile (forepaw, whisker) and non-tactile (visual, olfactory) sensory stimuli with high field fMRI (11.7T) using a custom-build quadrature surface coil to capture high sensitivity signals from superficial and deep brain regions simultaneously. Results demonstrate reproducible thalamic activations during both tactile and non-tactile stimuli. Forepaw and whisker stimuli activated broader regions within the thalamus: ventral posterior lateral (VPL), ventral posterior medial (VPM), lateral posterior mediorostral (LPMR) and posterior medial (POm) thalamic nuclei. Visual stimuli activated dorsal lateral geniculate nucleus (DLG) of the thalamus but also parts of the superior/inferior colliculus, whereas olfactory stimuli activated specifically the mediodorsal nucleus of the thalamus (MDT). BOLD activations in LGN and MDT were much stronger than in VPL, VPM, LPMR and POm. These fMRI-based thalamic activations suggest that forepaw and whisker (i.e., tactile) stimuli engage VPL, VPM, LPMR and POm whereas visual and olfactory (i.e., non-tactile) stimuli, respectively, recruit DLG and MDT exclusively.
Collapse
Affiliation(s)
- Basavaraju G. Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
| | - Garth J. Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Maxime Parent
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
| | - Justus V. Verhagen
- The John B. Pierce Laboratory, New Haven, Connecticut, United States of America
- Department of Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Hal Blumenfeld
- Department of Neuroscience, Yale University, New Haven, Connecticut, United States of America
- Department of Neurology, Yale University, New Haven, Connecticut, United States of America
- Department of Neurosurgery, Yale University, New Haven, Connecticut, United States of America
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, United States of America
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, United States of America
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
7
|
Contribution of animal models toward understanding resting state functional connectivity. Neuroimage 2021; 245:118630. [PMID: 34644593 DOI: 10.1016/j.neuroimage.2021.118630] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/27/2022] Open
Abstract
Functional connectivity, which reflects the spatial and temporal organization of intrinsic activity throughout the brain, is one of the most studied measures in human neuroimaging research. The noninvasive acquisition of resting state functional magnetic resonance imaging (rs-fMRI) allows the characterization of features designated as functional networks, functional connectivity gradients, and time-varying activity patterns that provide insight into the intrinsic functional organization of the brain and potential alterations related to brain dysfunction. Functional connectivity, hence, captures dimensions of the brain's activity that have enormous potential for both clinical and preclinical research. However, the mechanisms underlying functional connectivity have yet to be fully characterized, hindering interpretation of rs-fMRI studies. As in other branches of neuroscience, the identification of the neurophysiological processes that contribute to functional connectivity largely depends on research conducted on laboratory animals, which provide a platform where specific, multi-dimensional investigations that involve invasive measurements can be carried out. These highly controlled experiments facilitate the interpretation of the temporal correlations observed across the brain. Indeed, information obtained from animal experimentation to date is the basis for our current understanding of the underlying basis for functional brain connectivity. This review presents a compendium of some of the most critical advances in the field based on the efforts made by the animal neuroimaging community.
Collapse
|
8
|
Leng H, Wang Y, Jhang DF, Chu TS, Tsao CH, Tsai CH, Giamundo S, Chen YY, Liao KW, Chuang CC, Ger TR, Chen LT, Liao LD. Characterization of a Fiber Bundle-Based Real-Time Ultrasound/Photoacoustic Imaging System and Its In Vivo Functional Imaging Applications. MICROMACHINES 2019; 10:mi10120820. [PMID: 31783545 PMCID: PMC6953120 DOI: 10.3390/mi10120820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Photoacoustic (PA) imaging is an attractive technology for imaging biological tissues because it can capture both functional and structural information with satisfactory spatial resolution. Current commercially available PA imaging systems are limited by their bulky size or inflexible user interface. We present a new handheld real-time ultrasound/photoacoustic imaging system (HARP) consisting of a detachable, high-numerical-aperture (NA) fiber bundle-based illumination system integrated with an array-based ultrasound (US) transducer and a data acquisition platform. In this system, different PA probes can be used for different imaging applications by switching the transducers and the corresponding jackets to combine the fiber pads and transducer into a single probe. The intuitive user interface is a completely programmable MATLAB-based platform. In vitro phantom experiments were conducted to test the imaging performance of the developed PA system. Furthermore, we demonstrated (1) in vivo brain vasculature imaging, (2) in vivo imaging of real-time stimulus-evoked cortical hemodynamic changes during forepaw electrical stimulation, and (3) in vivo imaging of real-time cerebral pharmacokinetics in rats using the developed PA system. The overall purpose of this design concept for a customizable US/PA imaging system is to help overcome the diverse challenges faced by medical researchers performing both preclinical and clinical PA studies.
Collapse
Affiliation(s)
- He Leng
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
| | - Yuhling Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
| | - De-Fu Jhang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan; (C.-C.C.)
| | - Tsung-Sheng Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan; (C.-C.C.)
| | - Chia-Hui Tsao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
| | - Chia-Hua Tsai
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
| | | | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan;
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Chiung-Cheng Chuang
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan; (C.-C.C.)
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City 32023, Taiwan; (C.-C.C.)
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan;
| | - Lun-De Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Township, Miaoli County 35053, Taiwan; (H.L.); (D.-F.J.); (C.-H.T.)
- Correspondence:
| |
Collapse
|
9
|
Jung WB, Shim HJ, Kim SG. Mouse BOLD fMRI at ultrahigh field detects somatosensory networks including thalamic nuclei. Neuroimage 2019; 195:203-214. [DOI: 10.1016/j.neuroimage.2019.03.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 01/16/2023] Open
|
10
|
Peng SL, Chen CM, Huang CY, Shih CT, Huang CW, Chiu SC, Shen WC. Effects of Hemodynamic Response Function Selection on Rat fMRI Statistical Analyses. Front Neurosci 2019; 13:400. [PMID: 31114471 PMCID: PMC6503084 DOI: 10.3389/fnins.2019.00400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/08/2019] [Indexed: 11/22/2022] Open
Abstract
The selection of the appropriate hemodynamic response function (HRF) for signal modeling in functional magnetic resonance imaging (fMRI) is important. Although the use of the boxcar-shaped hemodynamic response function (BHRF) and canonical hemodynamic response (CHRF) has gained increasing popularity in rodent fMRI studies, whether the selected HRF affects the results of rodent fMRI has not been fully elucidated. Here we investigated the signal change and t-statistic sensitivities of BHRF, CHRF, and impulse response function (IRF). The effect of HRF selection on different tasks was analyzed by using data collected from two groups of rats receiving either 3 mA whisker pad or 3 mA forepaw electrical stimulations (n = 10 for each group). Under whisker pad stimulation with large blood-oxygen-level dependent (BOLD) signal change (4.31 ± 0.42%), BHRF significantly underestimated signal changes (P < 0.001) and t-statistics (P < 0.001) compared with CHRF or IRF. CHRF and IRF did not provide significantly different t-statistics (P > 0.05). Under forepaw stimulation with small BOLD signal change (1.71 ± 0.34%), different HRFs provided insignificantly different t-statistics (P > 0.05). Therefore, the selected HRF can influence data analysis in rodent fMRI experiments with large BOLD responses but not in those with small BOLD responses.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Chun-Ming Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Chen-You Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Cheng-Ting Shih
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chiun-Wei Huang
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Wu-Chung Shen
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.,Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Evaluation of nuisance removal for functional MRI of rodent brain. Neuroimage 2019; 188:694-709. [DOI: 10.1016/j.neuroimage.2018.12.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2022] Open
|
12
|
Nunes D, Ianus A, Shemesh N. Layer-specific connectivity revealed by diffusion-weighted functional MRI in the rat thalamocortical pathway. Neuroimage 2019; 184:646-657. [PMID: 30267858 PMCID: PMC6264401 DOI: 10.1016/j.neuroimage.2018.09.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Investigating neural activity from a global brain perspective in-vivo has been in the domain of functional Magnetic Resonance Imaging (fMRI) over the past few decades. The intricate neurovascular couplings that govern fMRI's blood-oxygenation-level-dependent (BOLD) functional contrast are invaluable in mapping active brain regions, but they also entail significant limitations, such as non-specificity of the signal to active foci. Diffusion-weighted functional MRI (dfMRI) with relatively high diffusion-weighting strives to ameliorate this shortcoming as it offers functional contrasts more intimately linked with the underlying activity. Insofar, apart from somewhat smaller activation foci, dfMRI's contrasts have not been convincingly shown to offer significant advantages over BOLD-driven fMRI, and its activation maps relied on significant modelling. Here, we study whether dfMRI could offer a better representation of neural activity in the thalamocortical pathway compared to its (spin-echo (SE)) BOLD counterpart. Using high-end forepaw stimulation experiments in the rat at 9.4 T, and with significant sensitivity enhancements due to the use of cryocoils, we show for the first time that dfMRI signals exhibit layer specificity, and, additionally, display signals in areas devoid of SE-BOLD responses. We find that dfMRI signals in the thalamocortical pathway cohere with each other, namely, dfMRI signals in the ventral posterolateral (VPL) thalamic nucleus cohere specifically with layers IV and V in the somatosensory cortex. These activity patterns are much better correlated (compared with SE-BOLD signals) with literature-based electrophysiological recordings in the cortex as well as thalamus. All these findings suggest that dfMRI signals better represent the underlying neural activity in the pathway. In turn, these advanatages may have significant implications towards a much more specific and accurate mapping of neural activity in the global brain in-vivo.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Andrada Ianus
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Centre for Medical Image Computing, University College London, London, UK
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
13
|
Pais-Roldán P, Biswal B, Scheffler K, Yu X. Identifying Respiration-Related Aliasing Artifacts in the Rodent Resting-State fMRI. Front Neurosci 2018; 12:788. [PMID: 30455623 PMCID: PMC6230988 DOI: 10.3389/fnins.2018.00788] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/12/2018] [Indexed: 12/31/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) combined with optogenetics and electrophysiological/calcium recordings in animal models is becoming a popular platform to investigate brain dynamics under specific neurological states. Physiological noise originating from the cardiac and respiration signal is the dominant interference in human rs-fMRI and extensive efforts have been made to reduce these artifacts from the human data. In animal fMRI studies, physiological noise sources including the respiratory and cardiorespiratory artifacts to the rs-fMRI signal fluctuation have typically been less investigated. In this article, we demonstrate evidence of aliasing effects into the low-frequency rs-fMRI signal fluctuation mainly due to respiration-induced B0 offsets in anesthetized rats. This aliased signal was examined by systematically altering the fMRI sampling rate, i.e., the time of repetition (TR), in free-breathing conditions and by adjusting the rate of ventilation. Anesthetized rats under ventilation showed a significantly narrower frequency bandwidth of the aliasing effect than free-breathing animals. It was found that the aliasing effect could be further reduced in ventilated animals with a muscle relaxant. This work elucidates the respiration-related aliasing effects on the rs-fMRI signal fluctuation from anesthetized rats, indicating non-negligible physiological noise needed to be taken care of in both awake and anesthetized animal rs-fMRI studies.
Collapse
Affiliation(s)
- Patricia Pais-Roldán
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, Tuebingen, Germany
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Klaus Scheffler
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Department for Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Xin Yu
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
14
|
Mouse fMRI under ketamine and xylazine anesthesia: Robust contralateral somatosensory cortex activation in response to forepaw stimulation. Neuroimage 2018; 177:30-44. [DOI: 10.1016/j.neuroimage.2018.04.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
|
15
|
Gu X, Chen W, You J, Koretsky AP, Volkow ND, Pan Y, Du C. Long-term optical imaging of neurovascular coupling in mouse cortex using GCaMP6f and intrinsic hemodynamic signals. Neuroimage 2017; 165:251-264. [PMID: 28974452 DOI: 10.1016/j.neuroimage.2017.09.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/08/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022] Open
Abstract
Cerebral hemodynamics are modulated in response to changes in neuronal activity, a process termed neurovascular coupling (NVC), which can be disrupted by neuropsychiatric diseases (e.g., stroke, Alzheimer's disease). Thus, there is growing interest to image long-term NVC dynamics with high spatiotemporal resolutions. Here, by combining the use of a genetically-encoded calcium indicator with optical techniques, we develop a longitudinal multimodal optical imaging platform (MIP) that enabled time-lapse tracking of NVC over a relatively large field of view in the mouse somatosensory cortex at single cell and single vessel resolutions. Specifically, GCaMP6f was used as marker of neuronal activity, which along with MIP allowed us to simultaneously measure the changes in neuronal [Ca2+]i fluorescence, cerebral blood flow velocity (CBFv) and hemodynamics longitudinally for more than eight weeks. We show that [Ca2+]i fluorescence was detectable one week post viral injection and the damage to local microvasculature and perfusion recovered two weeks after injection. By three weeks post viral injection, maximal neuronal and CBFv responses to hindpaw stimulations were observed. Moreover, single neuronal activation in response to hindpaw stimulation was consistently recorded, followed by ∼2 s delayed dilation of contiguous microvessels. Additionally, resting-state spontaneous neuronal and hemodynamic oscillations were detectable throughout the eight weeks of study. Our results demonstrate the capability of MIP for longitudinal investigation of the organization and plasticity of the neurovascular network during resting state and during stimulation-evoked neuronal activation at high spatiotemporal resolutions.
Collapse
Affiliation(s)
- Xiaochun Gu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; Jiangsu Key Laboratory of Molecule Imaging and Functional Imaging, Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Wei Chen
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jiang You
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - N D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20857, USA
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
16
|
Boussida S, Traoré AS, Durif F. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study. PLoS One 2017; 12:e0176512. [PMID: 28441420 PMCID: PMC5404844 DOI: 10.1371/journal.pone.0176512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/12/2017] [Indexed: 12/02/2022] Open
Abstract
Blood Oxygenation Level Dependent functional MRI (BOLD fMRI) during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw’s movements. These findings may find application in fMRI studies of sensorimotor disorders within cortico-basal network in rodents.
Collapse
|
17
|
Just N, Sonnay S. Investigating the Role of Glutamate and GABA in the Modulation of Transthalamic Activity: A Combined fMRI-fMRS Study. Front Physiol 2017; 8:30. [PMID: 28197105 PMCID: PMC5281558 DOI: 10.3389/fphys.2017.00030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/11/2017] [Indexed: 11/29/2022] Open
Abstract
The Excitatory-Inhibitory balance (EIB) between glutamatergic and GABAergic neurons is known to regulate the function of thalamocortical neurocircuits. The thalamus is known as an important relay for glutamatergic and GABAergic signals ascending/descending to/from the somatosensory cortex in rodents. However, new investigations attribute a larger role to thalamic nuclei as modulators of information processing within the cortex. In this study, functional Magnetic Resonance Spectroscopy (fMRS) was used to measure glutamate (Glu) and GABA associations with BOLD responses during activation of the thalamus to barrel cortex (S1BF) pathway at 9.4T. In line with previous studies in humans, resting GABA and Glu correlated negatively and positively respectively with BOLD responses in S1BF. Moreover, a significant negative correlation (R = −0.68, p = 0.0024) between BOLD responses in the thalamus and the barrel cortex was found. Rats with low Glu levels and high resting GABA levels in S1BF demonstrated lower BOLD responses in S1BF and high amplitude BOLD responses in the thalamus themselves linked to the release of high GABA levels during stimulation. In addition, early analysis of resting state functional connectivity suggested EIB controlled thalamocortical neuronal synchrony. We propose that the presented approach may be useful for further characterization of diseases affecting thalamocortical neurotransmission.
Collapse
Affiliation(s)
- Nathalie Just
- CIBM-AIT core, Ecole Polytechnique Fédérale de LausanneLausanne, Switzerland; University Hospital MünsterMünster, Germany
| | - Sarah Sonnay
- LIFMET, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
18
|
Keilholz SD, Pan WJ, Billings J, Nezafati M, Shakil S. Noise and non-neuronal contributions to the BOLD signal: applications to and insights from animal studies. Neuroimage 2016; 154:267-281. [PMID: 28017922 DOI: 10.1016/j.neuroimage.2016.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/21/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023] Open
Abstract
The BOLD signal reflects hemodynamic events within the brain, which in turn are driven by metabolic changes and neural activity. However, the link between BOLD changes and neural activity is indirect and can be influenced by a number of non-neuronal processes. Motion and physiological cycles have long been known to affect the BOLD signal and are present in both humans and animal models. Differences in physiological baseline can also contribute to intra- and inter-subject variability. The use of anesthesia, common in animal studies, alters neural activity, vascular tone, and neurovascular coupling. Most intriguing, perhaps, are the contributions from other processes that do not appear to be neural in origin but which may provide information about other aspects of neurophysiology. This review discusses different types of noise and non-neuronal contributors to the BOLD signal, sources of variability for animal studies, and insights to be gained from animal models.
Collapse
Affiliation(s)
- Shella D Keilholz
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, United States; Neuroscience Program, Emory University, Atlanta, GA, United States.
| | - Wen-Ju Pan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, United States
| | - Jacob Billings
- Neuroscience Program, Emory University, Atlanta, GA, United States
| | - Maysam Nezafati
- Wallace H. Coulter Department of Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA, United States
| | - Sadia Shakil
- Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
19
|
|
20
|
Sanganahalli BG, Herman P, Rothman DL, Blumenfeld H, Hyder F. Metabolic demands of neural-hemodynamic associated and disassociated areas in brain. J Cereb Blood Flow Metab 2016; 36:1695-1707. [PMID: 27562867 PMCID: PMC5076793 DOI: 10.1177/0271678x16664531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/04/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022]
Abstract
Interpretation of regional blood oxygenation level-dependent (BOLD) responses in functional magnetic resonance imaging (fMRI) is contingent on whether local field potential (LFP) and multi-unit activity (MUA) is either dissociated or associated. To examine whether neural-hemodynamic associated and dissociated areas have different metabolic demands, we recorded sensory-evoked responses of BOLD signal, blood flow (CBF), and blood volume (CBV), which with calibrated fMRI provided oxidative metabolism (CMRO2) from rat's ventral posterolateral thalamic nucleus (VPL) and somatosensory forelimb cortex (S1FL) and compared these neuroimaging signals to neurophysiological recordings. MUA faithfully recorded evoked latency differences between VPL and S1FL because evoked MUA in these regions were similar in magnitude. Since evoked LFP was significantly attenuated in VPL, we extracted the time courses of the weaker thalamic LFP to compare with the stronger cortical LFP using wavelet transform. BOLD and CBV responses were greater in S1FL than in VPL, similar to LFP regional differences. CBF and CMRO2 responses were both comparably larger in S1FL and VPL. Despite different levels of CBF-CMRO2 and LFP-MUA couplings in VPL and S1FL, the CMRO2 was well matched with MUA in both regions. These results suggest that neural-hemodynamic associated and dissociated areas in VPL and S1FL can have similar metabolic demands.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Hal Blumenfeld
- Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Neurology, Yale University, New Haven, USA Department of Neurobiology, Yale University, New Haven, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, USA Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, USA Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA Department of Biomedical Engineering, Yale University, New Haven, USA
| |
Collapse
|
21
|
Taheri S, Xun Z, See RE, Joseph JE, Reichel CM. Cocaine and methamphetamine induce opposing changes in BOLD signal response in rats. Brain Res 2016; 1642:497-504. [PMID: 27103569 PMCID: PMC4899179 DOI: 10.1016/j.brainres.2016.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/07/2016] [Accepted: 04/16/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neuroimaging studies in psychostimulant addicts have reported functional neural activity changes in brain regions involved in relapse. However, the difference between the effects of the psychostimulants methamphetamine and cocaine on neuronal activity in a similar setting not been clarified. Since studies in humans are limited by the inability to study the initial impact of psychostimulant drugs, we addressed this issue in a rat model. OBJECTIVE Here, we report methamphetamine and cocaine-induced blood-oxygen-level dependent (BOLD) signal change using functional magnetic resonance imaging (fMRI) in rats receiving drug for the first time during the imaging session. METHODS Twenty-three male Long Evans rats underwent fMRI imaging and received an intravenous infusion of methamphetamine, cocaine, or saline. Anatomical and pharmacological fMRI (pfMRI) were performed on a 7T BioSpec dedicated research MR scanner under isoflurane gas (1.5-2%). After collecting baseline data for 10min, rats received drug over the next 10min for a total 40min scan time. Data were then preprocessed and statistically analyzed in anatomically defined regions of interest (ROIs) that have been implicated in persistent drug seeking and relapse. RESULTS Methamphetamine during the imaging session resulted in a sustained negative BOLD signal change in key regions of the relapse circuit, except for the prefrontal cortex. In contrast, cocaine evoked a positive or unchanged BOLD signal in these same regions. In all of the investigated ROIs, there were no changes in BOLD signal following saline. CONCLUSION Acute methamphetamine and cocaine have distinct patterns of functional activity as measured by pfMRI.
Collapse
Affiliation(s)
- Saeid Taheri
- Department of Pharmaceutical Sciences, University of South Florida, Tampa FL 33612
| | - Zhu Xun
- Department of Neurosciences, Medical University of South Carolina, Charleston SC 29425
| | - Ronald E See
- Department of Neurosciences, Medical University of South Carolina, Charleston SC 29425
| | - Jane E Joseph
- Department of Neurosciences, Medical University of South Carolina, Charleston SC 29425
| | - Carmela M Reichel
- Department of Neurosciences, Medical University of South Carolina, Charleston SC 29425
| |
Collapse
|
22
|
A novel anesthesia regime enables neurofunctional studies and imaging genetics across mouse strains. Sci Rep 2016; 6:24523. [PMID: 27080031 PMCID: PMC4832200 DOI: 10.1038/srep24523] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/30/2016] [Indexed: 12/18/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) has revolutionized neuroscience by opening a unique window that allows neurocircuitry function and pathological alterations to be probed non-invasively across brain disorders. Here we report a novel sustainable anesthesia procedure for small animal neuroimaging that overcomes shortcomings of anesthetics commonly used in rodent fMRI. The significantly improved preservation of cerebrovascular dynamics enhances sensitivity to neural activity changes for which it serves as a proxy in fMRI readouts. Excellent cross-species/strain applicability provides coherence among preclinical findings and is expected to improve translation to clinical fMRI investigations. The novel anesthesia procedure based on the GABAergic anesthetic etomidate was extensively validated in fMRI studies conducted in a range of genetically engineered rodent models of autism and strains commonly used for transgenic manipulations. Etomidate proved effective, yielded long-term stable physiology with basal cerebral blood flow of ~0.5 ml/g/min and full recovery. Cerebrovascular responsiveness of up to 180% was maintained as demonstrated with perfusion- and BOLD-based fMRI upon hypercapnic, pharmacological and sensory stimulation. Hence, etomidate lends itself as an anesthetic-of-choice for translational neuroimaging studies across rodent models of brain disorders.
Collapse
|
23
|
Chavarrías C, Abascal JFPJ, Montesinos P, Desco M. Exploitation of temporal redundancy in compressed sensing reconstruction of fMRI studies with a prior-based algorithm (PICCS). Med Phys 2016; 42:3814-21. [PMID: 26133583 DOI: 10.1118/1.4921365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Compressed sensing is a technique used to accelerate magnetic resonance imaging (MRI) acquisition without compromising image quality. While it has proven particularly useful in dynamic imaging procedures such as cardiac cine, very few authors have applied it to functional magnetic resonance imaging (fMRI). The purpose of the present study was to check whether the prior image constrained compressed sensing (PICCS) algorithm, which is based on an available prior image, can improve the statistical maps in fMRI better than other strategies that also exploit temporal redundancy. METHODS PICCS was compared to spatiotemporal total variation (TTV) and k-t FASTER, since they have already demonstrated high performance and robustness in other MRI applications, such as cardiac cine MRI and resting state fMRI, respectively. The prior image for PICCS was the average of all undersampled data. Both PICCS and TTV were solved using the split Bregman formulation. K-t FASTER algorithm relies on matrix completion to reconstruct the undersampled k-spaces. The three algorithms were evaluated using two datasets with high and low signal-to-noise ratio (SNR)-BOLD contrast-acquired in a 7 T preclinical MRI scanner and retrospectively undersampled at various rates (i.e., acceleration factors). The authors evaluated their performance in terms of the sensitivity/specificity of BOLD detection through receiver operating characteristic curves and by visual inspection of the statistical maps. RESULTS With high SNR studies, PICCS performed similarly to the state-of-the-art algorithms TTV and k-t FASTER and provided consistent BOLD signal at the ROI. In scenarios with low SNR and high acceleration factors, PICCS still provided consistent maps and higher sensitivity/specificity than TTV, whereas k-t FASTER failed to provide significant maps. CONCLUSIONS The authors performed a comparison between three reconstructions (PICCS, TTV, and k-t FASTER) that exploit temporal redundancy in fMRI. The prior-based algorithm, PICCS, preserved BOLD activation and sensitivity/specificity better than TTV and k-t FASTER in noisy scenarios. The PICCS algorithm can potentially reach an acceleration factor of ×8 and still provide BOLD contrast in the ROI with an area under the curve over 0.99.
Collapse
Affiliation(s)
- C Chavarrías
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, Madrid 28911, Spain and Instituto de Investigación Sanitaria Gregorio Marañón, Doctor Esquerdo 46, Madrid 28007, Spain
| | - J F P J Abascal
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, Madrid 28911, Spain and Instituto de Investigación Sanitaria Gregorio Marañón, Doctor Esquerdo 46, Madrid 28007, Spain
| | - P Montesinos
- Instituto de Investigación Sanitaria Gregorio Marañón, Doctor Esquerdo 46, Madrid 28007, Spain
| | - M Desco
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, Madrid 28911, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Doctor Esquerdo 46, Madrid 28007, Spain; and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28007, Spain
| |
Collapse
|
24
|
Yu X, Koretsky AP. Interhemispheric plasticity protects the deafferented somatosensory cortex from functional takeover after nerve injury. Brain Connect 2014; 4:709-17. [PMID: 25117691 DOI: 10.1089/brain.2014.0259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional changes across brain hemispheres have been reported after unilateral cortical or peripheral nerve injury. Interhemispheric callosal connections usually underlie this cortico-cortical plasticity. However, the effect of the altered callosal inputs on local cortical plasticity in the adult brain is not well studied. Ipsilateral functional magnetic resonance imaging (fMRI) activation has been reliably detected in the deafferented barrel cortex (BC) at 2 weeks after unilateral infraorbital denervation (IO) in adult rats. The ipsilateral fMRI signal relies on callosal-mediated interhemispheric plasticity. This form of interhemispheric plasticity provides a good chronic model to study the interaction between callosal inputs and local cortical plasticity. The receptive field of forepaw in the primary somatosensory cortex (S1), which is adjacent to the BC, was mapped with fMRI. The S1 receptive field expanded to take over a portion of the BC in 2 weeks after both ascending inputs and callosal inputs were removed in IO rats with ablated contralateral BC (IO+ablation). This expansion, estimated specifically by fMRI mapping, is significantly larger than what has been observed in the IO rats with intact callosal connectivity, as well as in the rats with sham surgery. This work indicates that altered callosal inputs prevent the functional takeover of the deafferented BC from adjacent cortices and may help preserve the functional identity of the BC.
Collapse
Affiliation(s)
- Xin Yu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, Maryland
| | | |
Collapse
|
25
|
Kundu P, Santin MD, Bandettini PA, Bullmore ET, Petiet A. Differentiating BOLD and non-BOLD signals in fMRI time series from anesthetized rats using multi-echo EPI at 11.7 T. Neuroimage 2014; 102 Pt 2:861-74. [PMID: 25064668 DOI: 10.1016/j.neuroimage.2014.07.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/13/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022] Open
Abstract
The study of spontaneous brain activity using fMRI is central to mapping brain networks. However, current fMRI methodology has limitations in the study of small animal brain organization using ultra-high field fMRI experiments, as imaging artifacts are difficult to control and the relationship between classical neuroanatomy and spontaneous functional BOLD activity is not fully established. Challenges are especially prevalent during the fMRI study of individual rodent brains, which could be instrumental to studies of disease progression and pharmacology. A recent advance in fMRI methodology enables unbiased, accurate, and comprehensive identification of functional BOLD signals by interfacing multi-echo (ME) fMRI acquisition, NMR signal decay analysis, and independent components analysis (ICA), in a procedure called ME-ICA. Here we present a pilot study on the suitability of ME-ICA for ultra high field animal fMRI studies of spontaneous brain activity under anesthesia. ME-ICA applied to 11.7 T fMRI data of rats first showed robust performance in automatic high dimensionality estimation and ICA decomposition, similar to that previously reported for 3.0 T human data. ME sequence optimization for 11.7 T indicated that 3 echoes, 0.5mm isotropic voxel size and TR=3s was adequate for sensitive and specific BOLD signal acquisition. Next, in seeking optimal inhaled isoflurane anesthesia dosage, we report that progressive increase in anesthesia goes with concomitant decrease in statistical complexity of "global" functional activity, as measured by the number of BOLD components, or degrees of freedom (DOF). Finally, BOLD functional connectivity maps for individual rodents at the component level show that spontaneous BOLD activity follows classical neuroanatomy, and seed-based analysis shows plausible cortical-cortical and cortical-subcortical functional interactions.
Collapse
Affiliation(s)
- Prantik Kundu
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA; Behavioural Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.
| | - Mathieu D Santin
- Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| | - Peter A Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA; Functional MRI Core Facility, National Institute of Mental Health, Bethesda, MD, USA
| | - Edward T Bullmore
- Behavioural Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK; NIHR Cambridge Biomedical Research Centre, Cambridgeshire Peterborough NHS Foundation Trust, UK; ImmunoPsychiatry, Alternative Discovery & Development, GlaxoSmithKline, Stevenage, UK
| | - Alexandra Petiet
- Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| |
Collapse
|
26
|
Magnuson ME, Thompson GJ, Pan WJ, Keilholz SD. Time-dependent effects of isoflurane and dexmedetomidine on functional connectivity, spectral characteristics, and spatial distribution of spontaneous BOLD fluctuations. NMR IN BIOMEDICINE 2014; 27:291-303. [PMID: 24449532 PMCID: PMC4465547 DOI: 10.1002/nbm.3062] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/17/2013] [Accepted: 11/22/2013] [Indexed: 05/05/2023]
Abstract
Anesthesia is often necessary to perform fMRI experiments in the rodent model; however, commonly used anesthetic protocols may manifest changing brain conditions over the duration of the study. This possibility was explored in the current work. Eleven rats were anesthetized with 2% isoflurane anesthesia; four rats were anesthetized for a short period (30 min, simulating induction and fMRI setup) and seven rats were anesthetized for a long period (3 h, simulating surgical preparation). Following the initial anesthetic period, isoflurane was discontinued, and a dexmedetomidine bolus (0.025 mg/kg) and continuous subcutaneous infusion (0.05 mg/kg/h) were administered. Blood-oxygen-level dependent resting state imaging was performed every 30 min from 0.75 h post dexmedetomidine bolus until 5.75 h post-bolus. Evaluation of power spectra obtained from time courses in the primary somatosensory cortex revealed, in general, a monotonic increase in low-frequency power (0.05-0.3 Hz) in both groups over the duration of resting state imaging. Greater low-band spectral power (0.05-0.15 Hz) is present in the short isoflurane group for the first 2.75 h, but the spectra become highly uniform at 3.25 h. The emergence of a ~0.18 Hz peak, beginning at the 3.75 h time point, exists in both groups and evolves similarly, increasing in strength as the duration of dexmedetomidine sedation (and time since isoflurane cessation) extends. In the long isoflurane group only, bilateral functional connectivity strengthens with anesthetic duration, and correlation is linearly linked to low-band spectral power. Convergence of connectivity and spectral metrics between the short and long isoflurane groups occurs at ~3.25 h, suggesting the effects of isoflurane have subsided. Researchers using dexmedetomidine following isoflurane for functional studies should be aware of the duration specific effects of the pre-scan isoflurane durations as well as the continuing influences of long-term imaging under dexmedetomidine.
Collapse
Affiliation(s)
| | | | - Wen-Ju Pan
- Correspondence to: W.-J. Pan and S. D. Keilholz, Georgia Institute of Technology and Emory University, Biomedical Engineering, Atlanta, GA, USA., ;
| | - Shella Dawn Keilholz
- Correspondence to: W.-J. Pan and S. D. Keilholz, Georgia Institute of Technology and Emory University, Biomedical Engineering, Atlanta, GA, USA., ;
| |
Collapse
|
27
|
Yang PF, Chen YY, Chen DY, Hu JW, Chen JH, Yen CT. Comparison of fMRI BOLD response patterns by electrical stimulation of the ventroposterior complex and medial thalamus of the rat. PLoS One 2013; 8:e66821. [PMID: 23826146 PMCID: PMC3691267 DOI: 10.1371/journal.pone.0066821] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/10/2013] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to compare the functional connectivity of the lateral and medial thalamocortical pain pathways by investigating the blood oxygen level-dependent (BOLD) activation patterns in the forebrain elicited by direct electrical stimulation of the ventroposterior (VP) and medial (MT) thalamus. An MRI-compatible stimulation electrode was implanted in the VP or MT of α-chloralose-anesthetized rats. Electrical stimulation was applied to the VP or MT at various intensities (50 µA to 300 µA) and frequencies (1 Hz to 12 Hz). BOLD responses were analyzed in the ipsilateral forelimb region of the primary somatosensory cortex (iS1FL) after VP stimulation and in the ipsilateral cingulate cortex (iCC) after MT stimulation. When stimulating the VP, the strongest activation occurred at 3 Hz. The stimulation intensity threshold was 50 µA and the response rapidly peaked at 100 µA. When stimulating the MT, The optimal frequency for stimulation was 9 Hz or 12 Hz, the stimulation intensity threshold was 100 µA and we observed a graded increase in the BOLD response following the application of higher intensity stimuli. We also evaluated c-Fos expression following the application of a 200-µA stimulus. Ventroposterior thalamic stimulation elicited c-Fos-positivity in few cells in the iS1FL and caudate putamen (iCPu). Medial thalamic stimulation, however, produced numerous c-Fos-positive cells in the iCC and iCPu. The differential BOLD responses and c-Fos expressions elicited by VP and MT stimulation indicate differences in stimulus-response properties of the medial and lateral thalamic pain pathways.
Collapse
Affiliation(s)
- Pai-Feng Yang
- Interdisciplinary MRI/MRI Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Der-Yow Chen
- Department of Psychology, National Cheng Kung University, Tainan City, Taiwan
| | - James W. Hu
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Jyh-Horng Chen
- Interdisciplinary MRI/MRI Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- * E-mail: (JHC); (CTY)
| | - Chen-Tung Yen
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
- * E-mail: (JHC); (CTY)
| |
Collapse
|
28
|
Van Ruijssevelt L, De Groof G, Van der Kant A, Poirier C, Van Audekerke J, Verhoye M, Van der Linden A. Functional magnetic resonance imaging (FMRI) with auditory stimulation in songbirds. J Vis Exp 2013. [PMID: 23770665 DOI: 10.3791/4369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The neurobiology of birdsong, as a model for human speech, is a pronounced area of research in behavioral neuroscience. Whereas electrophysiology and molecular approaches allow the investigation of either different stimuli on few neurons, or one stimulus in large parts of the brain, blood oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging (fMRI) allows combining both advantages, i.e. compare the neural activation induced by different stimuli in the entire brain at once. fMRI in songbirds is challenging because of the small size of their brains and because their bones and especially their skull comprise numerous air cavities, inducing important susceptibility artifacts. Gradient-echo (GE) BOLD fMRI has been successfully applied to songbirds (1-5) (for a review, see (6)). These studies focused on the primary and secondary auditory brain areas, which are regions free of susceptibility artifacts. However, because processes of interest may occur beyond these regions, whole brain BOLD fMRI is required using an MRI sequence less susceptible to these artifacts. This can be achieved by using spin-echo (SE) BOLD fMRI (7,8) . In this article, we describe how to use this technique in zebra finches (Taeniopygia guttata), which are small songbirds with a bodyweight of 15-25 g extensively studied in behavioral neurosciences of birdsong. The main topic of fMRI studies on songbirds is song perception and song learning. The auditory nature of the stimuli combined with the weak BOLD sensitivity of SE (compared to GE) based fMRI sequences makes the implementation of this technique very challenging.
Collapse
|
29
|
Abstract
Anesthesia has broad actions that include changing neuronal excitability, vascular reactivity, and other baseline physiologies and eventually modifies the neurovascular coupling relationship. Here, we review the effects of anesthesia on the spatial propagation, temporal dynamics, and quantitative relationship between the neural and vascular responses to cortical stimulation. Previous studies have shown that the onset latency of evoked cerebral blood flow (CBF) changes is relatively consistent across anesthesia conditions compared with variations in the time-to-peak. This finding indicates that the mechanism of vasodilation onset is less dependent on anesthesia interference, while vasodilation dynamics are subject to this interference. The quantitative coupling relationship is largely influenced by the type and dosage of anesthesia, including the actions on neural processing, vasoactive signal transmission, and vascular reactivity. The effects of anesthesia on the spatial gap between the neural and vascular response regions are not fully understood and require further attention to elucidate the mechanism of vascular control of CBF supply to the underlying focal and surrounding neural activity. The in-depth understanding of the anesthesia actions on neurovascular elements allows for better decision-making regarding the anesthetics used in specific models for neurovascular experiments and may also help elucidate the signal source issues in hemodynamic-based neuroimaging techniques.
Collapse
Affiliation(s)
- Kazuto Masamoto
- Center for Frontier Science and Engineering, University of Electro-Communications, Tokyo, Japan.
| | | |
Collapse
|
30
|
Hoehn M, Aswendt M. Structure-function relationship of cerebral networks in experimental neuroscience: contribution of magnetic resonance imaging. Exp Neurol 2012; 242:65-73. [PMID: 22572591 DOI: 10.1016/j.expneurol.2012.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 03/20/2012] [Accepted: 04/23/2012] [Indexed: 11/25/2022]
Abstract
The analysis of neuronal networks, their interactions in resting condition as well as during brain activation have become of great interest for a better understanding of the signal processing of the brain during sensory stimulus or cognitive tasks. Parallel to the study of the functional networks and their dynamics, the underlying network structure is highly important as it provides the basis of the functional interaction. Moreover, under pathological conditions, some nodes in such a net may be impaired and the function of the whole network affected. Mechanisms such as functional deficit and improvement, and plastic reorganization are increasingly discussed in the context of existing structural and functional networks. While many of these aspects have been followed in human and clinical studies, the experimental range is limited for obvious reasons. Here, animal experimental studies are needed as they permit longer scan times and, moreover, comparison with invasive histology. Experimental non-invasive imaging modalities are now able to perform impressive contributions. In this review we try to highlight most recent new cutting-edge developments and applications in experimental neuroscience of functional and structural networks of the brain, relying on non-invasive imaging. We focus primarily on the potential of experimental Magnetic Resonance Imaging (MRI), but also touch upon micro positron emission tomography (μPET) and optical imaging developments where they are applicable to the topic of the present review.
Collapse
Affiliation(s)
- Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, Cologne, Germany.
| | | |
Collapse
|
31
|
Low frequency stimulation of the perforant pathway generates anesthesia-specific variations in neural activity and BOLD responses in the rat dentate gyrus. J Cereb Blood Flow Metab 2012; 32:291-305. [PMID: 21863039 PMCID: PMC3272596 DOI: 10.1038/jcbfm.2011.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To study how various anesthetics affect the relationship between stimulus frequency and generated functional magnetic resonance imaging (fMRI) signals in the rat dentate gyrus, the perforant pathway was electrically stimulated with repetitive low frequency (i.e., 0.625, 1.25, 2.5, 5, and 10 Hz) stimulation trains under isoflurane/N(2)O, isoflurane, medetomidine, and α-chloralose. During stimulation, the blood oxygen level-dependent signal intensity (BOLD response) and local field potentials in the dentate gyrus were simultaneously recorded to prove whether the present anesthetic controls the generation of a BOLD response via targeting general hemodynamic parameters, by affecting mechanisms of neurovascular coupling, or by disrupting local signal processing. Using this combined electrophysiological/fMRI approach, we found that the threshold frequency (i.e., the minimal frequency required to trigger significant BOLD responses), the optimal frequency (i.e., the frequency that elicit the strongest BOLD response), and the spatial distribution of generated BOLD responses are specific for each anesthetic used. Concurrent with anesthetic-dependent characteristics of the BOLD response, we found the pattern of stimulus-induced neuronal activity in the dentate gyrus is also specific for each anesthetic. Consequently, the anesthetic-specific influence on local signaling processes is the underlying cause for the observation that an identical stimulus elicits different BOLD responses under various anesthetics.
Collapse
|
32
|
Dhawan J, Benveniste H, Luo Z, Nawrocky M, Smith SD, Biegon A. A new look at glutamate and ischemia: NMDA agonist improves long-term functional outcome in a rat model of stroke. FUTURE NEUROLOGY 2011; 6:823-834. [PMID: 22140354 DOI: 10.2217/fnl.11.55] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ischemic stroke triggers a massive, although transient, glutamate efflux and excessive activation of NMDA receptors (NMDARs), possibly leading to neuronal death. However, multiple clinical trials with NMDA antagonists failed to improve, or even worsened, stroke outcome. Recent findings of a persistent post-stroke decline in NMDAR density, which plays a pivotal role in plasticity and memory formation, suggest that NMDAR stimulation, rather than inhibition, may prove beneficial in the subacute period after stroke. AIM: This study aims to examine the effect of the NMDAR partial agonist d-cycloserine (DCS) on long-term structural, functional and behavioral outcomes in rats subjected to transient middle cerebral artery occlusion, an animal model of ischemic stroke. MATERIALS #ENTITYSTARTX00026; METHODS: Rats (n = 36) that were subjected to 90 min of middle cerebral artery occlusion were given a single injection of DCS (10 mg/kg) or vehicle (phosphate-buffered saline) 24 h after occlusion and followed up for 30 days. MRI (structural and functional) was used to measure infarction, atrophy and cortical activation due to electrical forepaw stimulation. Memory function was assessed on days 7, 21 and 30 postocclusion using the novel object recognition test. A total of 20 nonischemic controls were included for comparison. RESULTS: DCS treatment resulted in significant improvement of somatosensory and cognitive function relative to vehicle treatment. By day 30, cognitive performance of the DCS-treated animals was indistinguishable from nonischemic controls, while vehicle-treated animals demonstrated a stable memory deficit. DCS had no significant effect on infarction or atrophy. CONCLUSION: These results support a beneficial role for NMDAR stimulation during the recovery period after stroke, most likely due to enhanced neuroplasticity rather than neuroprotection.
Collapse
Affiliation(s)
- Jasbeer Dhawan
- Medical Department, Brookhaven National Laboratory, Building 490, Upton, NY 11973, USA
| | | | | | | | | | | |
Collapse
|
33
|
Devonshire IM, Papadakis NG, Port M, Berwick J, Kennerley AJ, Mayhew JEW, Overton PG. Neurovascular coupling is brain region-dependent. Neuroimage 2011; 59:1997-2006. [PMID: 21982928 DOI: 10.1016/j.neuroimage.2011.09.050] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022] Open
Abstract
Despite recent advances in alternative brain imaging technologies, functional magnetic resonance imaging (fMRI) remains the workhorse for both medical diagnosis and primary research. Indeed, the number of research articles that utilise fMRI have continued to rise unabated since its conception in 1991, despite the limitation that recorded signals originate from the cerebral vasculature rather than neural tissue. Consequently, understanding the relationship between brain activity and the resultant changes in metabolism and blood flow (neurovascular coupling) remains a vital area of research. In the past, technical constraints have restricted investigations of neurovascular coupling to cortical sites and have led to the assumption that coupling in non-cortical structures is the same as in the cortex, despite the lack of any evidence. The current study investigated neurovascular coupling in the rat using whole-brain blood oxygenation level-dependent (BOLD) fMRI and multi-channel electrophysiological recordings and measured the response to a sensory stimulus as it proceeded through brainstem, thalamic and cortical processing sites - the so-called whisker-to-barrel pathway. We found marked regional differences in the amplitude of BOLD activation in the pathway and non-linear neurovascular coupling relationships in non-cortical sites. The findings have important implications for studies that use functional brain imaging to investigate sub-cortical function and caution against the use of simple, linear mapping of imaging signals onto neural activity.
Collapse
Affiliation(s)
- Ian M Devonshire
- Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhao F, Welsh D, Williams M, Coimbra A, Urban MO, Hargreaves R, Evelhoch J, Williams DS. fMRI of pain processing in the brain: a within-animal comparative study of BOLD vs. CBV and noxious electrical vs. noxious mechanical stimulation in rat. Neuroimage 2011; 59:1168-79. [PMID: 21856430 DOI: 10.1016/j.neuroimage.2011.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/01/2011] [Accepted: 08/02/2011] [Indexed: 11/19/2022] Open
Abstract
This study aims to identify fMRI signatures of nociceptive processing in whole brain of anesthetized rats during noxious electrical stimulation (NES) and noxious mechanical stimulation (NMS) of paw. Activation patterns for NES were mapped with blood oxygen level dependent (BOLD) and cerebral blood volume (CBV) fMRI, respectively, to investigate the spatially-dependent hemodynamic responses during nociception processing. A systematic evaluation of fMRI responses to varying frequencies of electrical stimulus was carried out to optimize the NES protocol. Both BOLD and CBV fMRI showed widespread activations, but with different spatial characteristics. While BOLD and CBV showed well-localized activations in ipsilateral dorsal column nucleus, contralateral primary somatosensory cortex (S1), and bilateral caudate putamen (CPu), CBV fMRI showed additional bilateral activations in the regions of pons, midbrain and thalamus compared to BOLD fMRI. CBV fMRI that offers higher sensitivity compared to BOLD was then used to compare the nociception processing during NES and NMS in the same animal. The activations in most regions were similar. In the medulla, however, NES induced a robust activation in the ipsilateral dorsal column nucleus while NMS showed no activation. This study demonstrates that (1) the hemodynamic response to nociception is spatial-dependent; (2) the widespread activations during nociception in CBV fMRI are similar to what have been observed in (14)C-2-deoxyglucose (2DG) autoradiography and PET; (3) the bilateral activations in the brain originate from the divergence of neural responses at supraspinal level; and (4) the similarity of activation patterns suggests that nociceptive processing in rats is similar during NES and NMS.
Collapse
Affiliation(s)
- Fuqiang Zhao
- Imaging Department, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hirano Y, Stefanovic B, Silva AC. Spatiotemporal evolution of the functional magnetic resonance imaging response to ultrashort stimuli. J Neurosci 2011; 31:1440-7. [PMID: 21273428 PMCID: PMC3078723 DOI: 10.1523/jneurosci.3986-10.2011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/15/2010] [Accepted: 11/22/2010] [Indexed: 11/21/2022] Open
Abstract
The specificity of the hemodynamic response function (HRF) is determined spatially by the vascular architecture and temporally by the evolution of hemodynamic changes. The stimulus duration has additional influence on the spatiotemporal evolution of the HRF, as brief stimuli elicit responses that engage only the local vasculature, whereas long stimuli lead to the involvement of remote vascular supply and drainage. Here, we used functional magnetic resonance imaging to investigate the spatiotemporal evolution of the blood oxygenation level-dependent (BOLD), cerebral blood flow (CBF), and cerebral blood volume (CBV) HRF to ultrashort forelimb stimulation in an anesthetized rodent model. The HRFs to a single 333-μs-long stimulus were robustly detected and consisted of a rapid response in both CBF and CBV, with an onset time (OT) of 350 ms and a full width at half-maximum of 1 s. In contrast, longer stimuli elicited a dispersive transit of oxygenated blood across the cortical microvasculature that significantly prolonged the evolution of the CBV HRF, but not the CBF. The CBF and CBV OTs suggest that vasoactive messengers are synthesized, released, and effective within 350 ms. However, the difference between the BOLD and CBV OT (∼100 ms) was significantly smaller than the arteriolar-venular transit time (∼500 ms), indicating an arterial contribution to the BOLD HRF. Finally, the rapid rate of growth of the active region with stimulus elongation suggests that functional hyperemia is an integrative process that involves the entire functional cortical depth. These findings offer a new view into the spatiotemporal dynamics of functional hemodynamic regulation in the brain.
Collapse
Affiliation(s)
- Yoshiyuki Hirano
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1065
| | - Bojana Stefanovic
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1065
| | - Afonso C. Silva
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1065
| |
Collapse
|
36
|
Magnuson M, Majeed W, Keilholz SD. Functional connectivity in blood oxygenation level-dependent and cerebral blood volume-weighted resting state functional magnetic resonance imaging in the rat brain. J Magn Reson Imaging 2011; 32:584-92. [PMID: 20815055 DOI: 10.1002/jmri.22295] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To directly compare functional connectivity and spatiotemporal dynamics acquired with blood oxygenation level-dependent (BOLD) and cerebral blood volume (CBV)-weighted functional magnetic resonance imaging (fMRI) in anesthetized rats. MATERIALS AND METHODS A series of BOLD images were acquired in 10 rats followed by CBV-weighted images created by injection of ultrasmall iron oxide particles. Functional connectivity, spectral information, and spatiotemporal dynamics were compared for the BOLD and CBV-weighted resting state scans. RESULTS BOLD scans exhibited higher cross-correlation values compared to CBV-weighted scans, but the spatial patterns of correlation were similar. The BOLD spectrum contains power evenly distributed throughout the low-frequency range while the CBV power spectrum exhibited a high power peak localized to approximately 0.2 Hz. Both BOLD and CBV resting state scans showed similar propagating waves of activity along the cortex from the SII toward MI; however, these waves were detected more often in BOLD scans than in CBV scans. CONCLUSION While the power spectrum of the CBV signal is different from that of the BOLD signal, both connectivity maps and spatiotemporal dynamics are similar for the two modalities. Further experiments should address the relationship between spontaneous neural activity, local changes in metabolism, and hemodynamic fluctuations to elucidate the origins of the BOLD and CBV signals.
Collapse
Affiliation(s)
- Matthew Magnuson
- Georgia Institute of Technology and Emory University, Biomedical Engineering, Atlanta, Georgia, USA
| | | | | |
Collapse
|
37
|
Poirier C, Verhoye M, Boumans T, Van der Linden A. Implementation of spin-echo blood oxygen level-dependent (BOLD) functional MRI in birds. NMR IN BIOMEDICINE 2010; 23:1027-1032. [PMID: 20806227 DOI: 10.1002/nbm.1525] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The advent of high-field MRI systems has allowed the implementation of blood oxygen level-dependent functional MRI (BOLD fMRI) on small animals. An increased magnetic field improves the signal-to-noise ratio and thus allows an improvement in the spatial resolution. However, it also increases susceptibility artefacts in the commonly acquired gradient-echo images. This problem is particularly prominent in songbird MRI because of the presence of numerous air cavities in the skull of birds. These T(2)*-related image artefacts can be circumvented using spin-echo BOLD fMRI. In this article, we describe the implementation of spin-echo BOLD fMRI in zebra finches, a small songbird of 15-25 g, extensively studied in the behavioural neurosciences of birdsong. Because the main topics in this research domain are song perception and song learning, the protocol implemented used auditory stimuli. Despite the auditory nature of the stimuli and the weak contrast-to-noise ratio of spin-echo BOLD fMRI compared with gradient-echo BOLD fMRI, we succeeded in detecting statistically significant differences in BOLD responses triggered by different stimuli. This study shows that spin-echo BOLD fMRI is a viable approach for the investigation of auditory processing in the whole brain of small songbirds. It can also be applied to study auditory processing in other small animals, as well as other sensory modalities.
Collapse
Affiliation(s)
- Colline Poirier
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | | |
Collapse
|
38
|
Evaluation of data-driven network analysis approaches for functional connectivity MRI. Brain Struct Funct 2010; 215:129-40. [PMID: 20853181 DOI: 10.1007/s00429-010-0276-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 09/02/2010] [Indexed: 01/29/2023]
Abstract
Correlated low frequency fluctuations in the blood oxygenation level dependent signal have been widely observed in highly connected brain regions and are considered to be indicative of coordinated activity within those regions. A typical functional connectivity MRI study consists of hundreds of time points acquired from thousands of image voxels, and thus exploratory data analysis is a significant challenge. This paper investigates the utilization of analytical methods based upon graph theory that can potentially provide a data-driven approach to examining the relationships between and within groups of voxels. Three algorithms, based on reachable groups, path-length analysis, and hierarchical clustering, are described and evaluated in the relatively simple context of the rodent brain. Analysis indicates that (based on the cross-correlation coefficient) cortical voxels are the most strongly connected network nodes. These voxels exhibit stronger clustering than would be expected in a randomly connected graph, and the amount of clustering is dependent on the cross-correlation threshold chosen. The analysis algorithms identify core groups in somatosensory areas and indicate that left and right somatosensory regions are more strongly connected to each other than to midline cortical areas. The results show that algorithms based on graph theory are well-suited for the data-driven analysis of functional connectivity studies.
Collapse
|
39
|
Adamczak JM, Farr TD, Seehafer JU, Kalthoff D, Hoehn M. High field BOLD response to forepaw stimulation in the mouse. Neuroimage 2010; 51:704-12. [DOI: 10.1016/j.neuroimage.2010.02.083] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/11/2010] [Accepted: 02/28/2010] [Indexed: 10/19/2022] Open
|
40
|
No increase of the blood oxygenation level-dependent functional magnetic resonance imaging signal with higher field strength: implications for brain activation studies. J Neurosci 2010; 30:5234-41. [PMID: 20392946 DOI: 10.1523/jneurosci.0844-10.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Experimental data up to 7.0 T show that the blood oxygenation level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI) increases with higher magnetic field strength. Although several studies at 11.7 T report higher BOLD signal compared with studies at 7.0 T, no direct comparison at these two field strengths has been performed under the exact same conditions. It therefore remains unclear whether the expected increase of BOLD effect with field strength will still continue to hold for fields >7.0 T. To examine this issue, we compared the BOLD activation signal at 7.0 and 11.7 T with the two common sequences, spin-echo (SE) and gradient-echo (GE) echo planar imaging (EPI). We chose the physiologically well controlled rat model of electrical forepaw stimulation under medetomidine sedation. While a linear to superlinear increase in activation with field strengths up to 7.0 T was reported in the literature, we observed no significant activation difference between 7.0 and 11.7 T with either SE or GE. Discussing the results in light of the four-component model of the BOLD signal, we showed that at high field only two extravascular contributions remain relevant, while both intravascular components vanish. Constancy of the BOLD effect is discussed due to motional narrowing, i.e., susceptibility gradients become so strong that phase variance of diffusing spins decreases and therefore the BOLD signal also decreases. This finding will be of high significance for the planning of future human and animal fMRI studies at high fields and their quantitative analysis.
Collapse
|
41
|
BOLD fMRI of visual and somatosensory-motor stimulations in baboons. Neuroimage 2010; 52:1420-7. [PMID: 20471483 DOI: 10.1016/j.neuroimage.2010.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 05/03/2010] [Accepted: 05/06/2010] [Indexed: 01/13/2023] Open
Abstract
Baboon, with its large brain size and extensive cortical folding compared to other non-human primates, serves as a good model for neuroscience research. This study reports the implementation of a baboon model for blood oxygenation level-dependent (BOLD) fMRI studies (1.5 x 1.5 x 4 mm resolution) on a clinical 3T-MRI scanner. BOLD fMRI responses to hypercapnic (5% CO(2)) challenge, 10 Hz flicker visual, and vibrotactile somatosensory-motor stimulations were investigated in baboons anesthetized sequentially with isoflurane and ketamine. Hypercapnia evoked robust BOLD increases. Paralysis was determined to be necessary to achieve reproducible functional activations within and between subjects under our experimental conditions. With optimized anesthetic doses (0.8-1.0% isoflurane or 6-8 mg/kg/h ketamine) and adequate paralysis (vecuronium, 0.2 mg/kg), robust activations were detected in the visual (V), primary (S1) and secondary (S2) somatosensory, primary motor (M cortices), supplementary motor area (SMA), lateral geniculate nucleus (LGN) and thalamus (Th). Data were tabulated for 11 trials under isoflurane and 10 trials under ketamine on 5 baboons. S1, S2, M, and V activations were detected in essentially all trials (90-100% of the time, except 82% for S2 under isoflurane and 70% for M under ketamine). LGN activations were detected 64-70% of the time under both anesthetics. SMA and Th activations were detected 36-45% of the time under isoflurane and 60% of the time under ketamine. BOLD percent changes among different structures were slightly higher under ketamine than isoflurane (0.75% versus 0.58% averaging all structures), but none was statistically different (P>0.05). This baboon model offers an opportunity to non-invasively image brain functions and dysfunctions in large non-human primates.
Collapse
|
42
|
Williams KA, Magnuson M, Majeed W, LaConte SM, Peltier SJ, Hu X, Keilholz SD. Comparison of alpha-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat. Magn Reson Imaging 2010; 28:995-1003. [PMID: 20456892 DOI: 10.1016/j.mri.2010.03.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 01/18/2010] [Accepted: 03/11/2010] [Indexed: 12/19/2022]
Abstract
Functional connectivity measures based upon low-frequency blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD fMRI) signal fluctuations have become a widely used tool for investigating spontaneous brain activity in humans. Still unknown, however, is the precise relationship between neural activity, the hemodynamic response and fluctuations in the MRI signal. Recent work from several groups had shown that correlated low-frequency fluctuations in the BOLD signal can be detected in the anesthetized rat - a first step toward elucidating this relationship. Building on this preliminary work, through this study, we demonstrate that functional connectivity observed in the rat depends strongly on the type of anesthesia used. Power spectra of spontaneous fluctuations and the cross-correlation-based connectivity maps from rats anesthetized with alpha-chloralose, medetomidine or isoflurane are presented using a high-temporal-resolution imaging sequence that ensures minimal contamination from physiological noise. The results show less localized correlation in rats anesthetized with isoflurane as compared with rats anesthetized with alpha-chloralose or medetomidine. These experiments highlight the utility of using different types of anesthesia to explore the fundamental physiological relationships of the BOLD signal and suggest that the mechanisms contributing to functional connectivity involve a complicated relationship between changes in neural activity, neurovascular coupling and vascular reactivity.
Collapse
Affiliation(s)
- Kathleen A Williams
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10012, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kim T, Masamoto K, Fukuda M, Vazquez A, Kim SG. Frequency-dependent neural activity, CBF, and BOLD fMRI to somatosensory stimuli in isoflurane-anesthetized rats. Neuroimage 2010; 52:224-33. [PMID: 20350603 DOI: 10.1016/j.neuroimage.2010.03.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 03/01/2010] [Accepted: 03/22/2010] [Indexed: 11/29/2022] Open
Abstract
Inhalation anesthetics (e.g. isoflurane) are preferable for longitudinal fMRI experiments in the same animals. We previously implemented isoflurane anesthesia for rodent forepaw stimulation studies, and optimized the stimulus parameters with short stimuli (1-3-s long stimulation with ten electric pulses). These parameters, however, may not be applicable for long periods of stimulation because repetitive stimuli induce neural adaptation. Here we evaluated frequency-dependent responses (pulse width of 1.0 ms and current of 1.5 mA) for 30-s long stimulation under 1.3-1.5% isoflurane anesthesia. The cerebral blood flow (CBF) response (using laser Doppler flowmetry: CBF(LDF)) and field potential (FP) changes were simultaneously measured for nine stimulus frequencies (1-24 Hz). CBF (using arterial spin labeling: CBF(ASL)) and blood oxygenation level dependent (BOLD) fMRI responses were measured at 9.4 T for four stimulus frequencies (1.5-12 Hz). Higher stimulus frequencies (12-24 Hz) produced a larger FP per unit time initially, but decreased more rapidly later due to neural adaptation effects. On the other hand, lower stimulus frequencies (1-3 Hz) induced smaller, but sustained FP activities over the entire stimulus period. Similar frequency-dependencies were observed in CBF(LDF), CBF(ASL) and BOLD responses. A linear relationship between FP and CBF(LDF) was observed for all stimulus frequencies. Stimulation frequency for the maximal cumulative neural and hemodynamic changes is dependent on stimulus duration; 8-12 Hz for short stimulus durations (<10s) and 6-8 Hz for 30-s stimulation. Our findings suggest that neural adaptation should be considered in determining the somatosensory stimulation frequency and duration under isoflurane anesthesia.
Collapse
Affiliation(s)
- Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15203, USA.
| | | | | | | | | |
Collapse
|
44
|
Pawela CP, Biswal BB, Hudetz AG, Li R, Jones SR, Cho YR, Matloub HS, Hyde JS. Interhemispheric neuroplasticity following limb deafferentation detected by resting-state functional connectivity magnetic resonance imaging (fcMRI) and functional magnetic resonance imaging (fMRI). Neuroimage 2009; 49:2467-78. [PMID: 19796693 DOI: 10.1016/j.neuroimage.2009.09.054] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 08/28/2009] [Accepted: 09/22/2009] [Indexed: 12/31/2022] Open
Abstract
Functional connectivity magnetic resonance imaging (fcMRI) studies in rat brain show brain reorganization following peripheral nerve injury. Subacute neuroplasticity was observed 2 weeks following transection of the four major nerves of the brachial plexus. Direct stimulation of the intact radial nerve reveals a functional magnetic resonance imaging (fMRI) activation pattern in the forelimb regions of the sensory and motor cortices that is significantly different from that observed in normal rats. Results of this fMRI experiment were used to determine seed voxel regions for fcMRI analysis. Intrahemispheric connectivities in the sensorimotor forelimb representations in both hemispheres are largely unaffected by deafferentation, whereas substantial disruption of interhemispheric sensorimotor cortical connectivity occurs. In addition, significant intra- and interhemispheric changes in connectivities of thalamic nuclei were found. These are the central findings of the study. They could not have been obtained from fMRI studies alone-both fMRI and fcMRI are needed. The combination provides a general marker for brain plasticity. The rat visual system was studied in the same animals as a control. No neuroplastic changes in connectivities were found in the primary visual cortex upon forelimb deafferentation. Differences were noted in regions responsible for processing multisensory visual-motor information. This incidental discovery is considered to be significant. It may provide insight into phantom limb epiphenomena.
Collapse
Affiliation(s)
- Christopher P Pawela
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Majeed W, Magnuson M, Keilholz SD. Spatiotemporal dynamics of low frequency fluctuations in BOLD fMRI of the rat. J Magn Reson Imaging 2009; 30:384-93. [PMID: 19629982 PMCID: PMC2758521 DOI: 10.1002/jmri.21848] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To examine spatiotemporal dynamics of low frequency fluctuations in rat cortex. MATERIALS AND METHODS Gradient-echo echo-planar imaging images were acquired from anesthetized rats (repetition time = 100 ms). Power spectral analysis was performed to detect different frequency peaks. Functional connectivity maps were obtained for the frequency peaks of interest. The images in the filtered time-series were displayed as a movie to study spatiotemporal patterns in the data for frequency bands of interest. RESULTS High temporal and spectral resolution allowed separation of primary components of physiological noise and visualization of spectral details. Two low frequency peaks with distinct characteristics were observed. Selective visualization of the second low frequency peak revealed waves of activity that typically began in the secondary somatosensory cortex and propagated to the primary motor cortex. CONCLUSION To date, analysis of these fluctuations has focused on the detection of functional networks assuming steady state conditions. These results suggest that detailed examination of the spatiotemporal dynamics of the low frequency fluctuations may provide more insight into brain function, and add a new perspective to the analysis of resting state fMRI data.
Collapse
Affiliation(s)
- Waqas Majeed
- Georgia Institute of Technology and Emory University, Biomedical Engineering, Atlanta, Georgia, USA
| | | | | |
Collapse
|
46
|
Pawela CP, Biswal BB, Hudetz AG, Schulte ML, Li R, Jones SR, Cho YR, Matloub HS, Hyde JS. A protocol for use of medetomidine anesthesia in rats for extended studies using task-induced BOLD contrast and resting-state functional connectivity. Neuroimage 2009; 46:1137-47. [PMID: 19285560 DOI: 10.1016/j.neuroimage.2009.03.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/03/2009] [Accepted: 03/02/2009] [Indexed: 11/25/2022] Open
Abstract
The alpha-2-adrenoreceptor agonist, medetomidine, which exhibits dose-dependent sedative effects and is gaining acceptance in small-animal functional magnetic resonance imaging (fMRI), has been studied. Rats were examined on the bench using the classic tail-pinch method with three infusion sequences: 100 microg/kg/h, 300 microg/kg/h, or 100 microg/kg/h followed by 300 microg/kg/h. Stepping the infusion rate from 100 to 300 microg/kg/h after 2.5 h resulted in a prolonged period of approximately level sedation that cannot be achieved by a constant infusion of either 100 or 300 microg/kg/h. By stepping the infusion dosage, experiments as long as 6 h are possible. Functional MRI experiments were carried out on rats using a frequency dependent electrical stimulation protocol-namely, forepaw stimulation at 3, 5, 7, and 10 Hz. Each rat was studied for a four-hour period, divided into two equal portions. During the first portion, rats were started at a 100 microg/kg/h constant infusion. During the second portion, four secondary levels of infusion were used: 100, 150, 200, and 300 microg/kg/h. The fMRI response to stimulation frequency was used as an indirect measure of modulation of neuronal activity through pharmacological manipulation. The frequency response to stimulus was attenuated at the lower secondary infusion dosages 100 or 150 microg/kg/h but not at the higher secondary infusion dosages 200 or 300 microg/kg/h. Parallel experiments with the animal at rest were carried out using both electroencephalogram (EEG) and functional connectivity MRI (fcMRI) methods with consistent results. In the secondary infusion period using 300 microg/kg/h, resting-state functional connectivity is enhanced.
Collapse
Affiliation(s)
- Christopher P Pawela
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sanganahalli BG, Bailey CJ, Herman P, Hyder F. Tactile and non-tactile sensory paradigms for fMRI and neurophysiologic studies in rodents. Methods Mol Biol 2009; 489:213-42. [PMID: 18839094 PMCID: PMC3703391 DOI: 10.1007/978-1-59745-543-5_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has become a popular functional imaging tool for human studies. Future diagnostic use of fMRI depends, however, on a suitable neurophysiologic interpretation of the blood oxygenation level dependent (BOLD) signal change. This particular goal is best achieved in animal models primarily due to the invasive nature of other methods used and/or pharmacological agents applied to probe different nuances of neuronal (and glial) activity coupled to the BOLD signal change. In the last decade, we have directed our efforts towards the development of stimulation protocols for a variety of modalities in rodents with fMRI. Cortical perception of the natural world relies on the formation of multi-dimensional representation of stimuli impinging on the different sensory systems, leading to the hypothesis that a sensory stimulus may have very different neurophysiologic outcome(s) when paired with a near simultaneous event in another modality. Before approaching this level of complexity, reliable measures must be obtained of the relatively small changes in the BOLD signal and other neurophysiologic markers (electrical activity, blood flow) induced by different peripheral stimuli. Here we describe different tactile (i.e., forepaw, whisker) and non-tactile (i.e., olfactory, visual) sensory paradigms applied to the anesthetized rat. The main focus is on development and validation of methods for reproducible stimulation of each sensory modality applied independently or in conjunction with one another, both inside and outside the magnet. We discuss similarities and/or differences across the sensory systems as well as advantages they may have for studying essential neuroscientific questions. We envisage that the different sensory paradigms described here may be applied directly to studies of multi-sensory interactions in anesthetized rats, en route to a rudimentary understanding of the awake functioning brain where various sensory cues presumably interrelate.
Collapse
Affiliation(s)
- Basavaraju G. Sanganahalli
- Department of Diagnostic Radiology Yale University, New Haven, Connecticut, USA,Department of Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, Connecticut, USA,Department of Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Christopher J. Bailey
- Department of Diagnostic Radiology Yale University, New Haven, Connecticut, USA,Department of Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA,Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Peter Herman
- Department of Diagnostic Radiology Yale University, New Haven, Connecticut, USA,Department of Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, Connecticut, USA,Department of Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA,Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Fahmeed Hyder
- Department of Diagnostic Radiology Yale University, New Haven, Connecticut, USA,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA,Department of Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, Connecticut, USA,Department of Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
48
|
Luo Z, Yu M, Smith SD, Kritzer M, Du C, Ma Y, Volkow ND, Glass PS, Benveniste H. The effect of intravenous lidocaine on brain activation during non-noxious and acute noxious stimulation of the forepaw: a functional magnetic resonance imaging study in the rat. Anesth Analg 2009; 108:334-44. [PMID: 19095870 PMCID: PMC2681082 DOI: 10.1213/ane.0b013e31818e0d34] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Lidocaine can alleviate acute as well as chronic neuropathic pain at very low plasma concentrations in humans and laboratory animals. The mechanism(s) underlying lidocaine's analgesic effect when administered systemically is poorly understood but clearly not related to interruption of peripheral nerve conduction. Other targets for lidocaine's analgesic action(s) have been suggested, including sodium channels and other receptor sites in the central rather than peripheral nervous system. To our knowledge, the effect of lidocaine on the brain's functional response to pain has never been investigated. Here, we therefore characterized the effect of systemic lidocaine on the brain's response to innocuous and acute noxious stimulation in the rat using functional magnetic resonance imaging (fMRI). METHODS Alpha-chloralose anesthetized rats underwent fMRI to quantify brain activation patterns in response to innocuous and noxious forepaw stimulation before and after IV administration of lidocaine. RESULTS Innocuous forepaw stimulation elicited brain activation only in the contralateral primary somatosensory (S1) cortex. Acute noxious forepaw stimulation induced activation in additional brain areas associated with pain perception, including the secondary somatosensory cortex (S2), thalamus, insula and limbic regions. Lidocaine administered at IV doses of either 1 mg/kg, 4 mg/kg or 10 mg/kg did not abolish or diminish brain activation in response to innocuous or noxious stimulation. In fact, IV doses of 4 mg/kg and 10 mg/kg lidocaine enhanced S1 and S2 responses to acute nociceptive stimulation, increasing the activated cortical volume by 50%-60%. CONCLUSION The analgesic action of systemic lidocaine in acute pain is not reflected in a straightforward interruption of pain-induced fMRI brain activation as has been observed with opioids. The enhancement of cortical fMRI responses to acute pain by lidocaine observed here has also been reported for cocaine. We recently showed that both lidocaine and cocaine increased intracellular calcium concentrations in cortex, suggesting that this pharmacological effect could account for the enhanced sensitivity to somatosensory stimulation. As our model only measured physiological acute pain, it will be important to also test the response of these same pathways to lidocaine in a model of neuropathic pain to further investigate lidocaine's analgesic mechanism of action.
Collapse
Affiliation(s)
- Zhongchi Luo
- Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, New York
| | - Mei Yu
- Anesthesiology, State University of New York at Stony Brook, Stony Brook, New York
| | - S. David Smith
- Department of Medicine, Brookhaven National Laboratory, Upton, New York
| | - Mary Kritzer
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York
| | - Congwu Du
- Anesthesiology, State University of New York at Stony Brook, Stony Brook, New York
- Department of Medicine, Brookhaven National Laboratory, Upton, New York
| | - Yu Ma
- Anesthesiology, State University of New York at Stony Brook, Stony Brook, New York
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Peter S. Glass
- Anesthesiology, State University of New York at Stony Brook, Stony Brook, New York
| | - Helene Benveniste
- Anesthesiology, State University of New York at Stony Brook, Stony Brook, New York
- Department of Medicine, Brookhaven National Laboratory, Upton, New York
| |
Collapse
|
49
|
Cho YR, Jones SR, Pawela CP, Li R, Kao DS, Schulte ML, Runquist ML, Yan JG, Hudetz AG, Jaradeh SS, Hyde JS, Matloub HS. Cortical brain mapping of peripheral nerves using functional magnetic resonance imaging in a rodent model. J Reconstr Microsurg 2008; 24:551-7. [PMID: 18924070 DOI: 10.1055/s-0028-1088231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The regions of the body have cortical and subcortical representation in proportion to their degree of innervation. The rat forepaw has been studied extensively in recent years using functional magnetic resonance imaging (fMRI), typically by stimulation using electrodes directly inserted into the skin of the forepaw. Here we stimulate the nerve directly using surgically implanted electrodes. A major distinction is that stimulation of the skin of the forepaw is mostly sensory, whereas direct nerve stimulation reveals not only the sensory system but also deep brain structures associated with motor activity. In this article, we seek to define both the motor and sensory cortical and subcortical representations associated with the four major nerves of the rodent upper extremity. We electrically stimulated each nerve (median, ulnar, radial, and musculocutaneous) during fMRI acquisition using a 9.4-T Bruker scanner (Bruker BioSpin, Billerica, MA). A current level of 0.5 to 1.0 mA and a frequency of 5 Hz were used while keeping the duration constant. A distinct pattern of cortical activation was found for each nerve that can be correlated with known sensorimotor afferent and efferent pathways to the rat forepaw. This direct nerve stimulation rat model can provide insight into peripheral nerve injury.
Collapse
Affiliation(s)
- Younghoon R Cho
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
BOLD fMRI mapping of brain responses to nociceptive stimuli in rats under ketamine anesthesia. Med Eng Phys 2008; 30:953-8. [DOI: 10.1016/j.medengphy.2007.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 12/05/2007] [Accepted: 12/12/2007] [Indexed: 12/25/2022]
|