1
|
Sabater-Arcis M, Moreno N, Sevilla T, Perez Alonso M, Bargiela A, Artero R. Msi2 enhances muscle dysfunction in a myotonic dystrophy type 1 mouse model. Biomed J 2024; 47:100667. [PMID: 37797921 PMCID: PMC11340596 DOI: 10.1016/j.bj.2023.100667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by a CTG repeat expansion in the 3' untranslated region of the DM1 protein kinase gene. Characteristic degenerative muscle symptoms include myotonia, atrophy, and weakness. We previously proposed an Musashi homolog 2 (MSI2)>miR-7>autophagy axis whereby MSI2 overexpression repressed miR-7 biogenesis that subsequently de-repressed muscle catabolism through excessive autophagy. Because the DM1 HSALR mouse model expressing expanded CUG repeats shows weak muscle-wasting phenotypes, we hypothesized that MSI2 overexpression was sufficient to promote muscle dysfunction in vivo. METHODS By means of recombinant AAV murine MSI2 was overexpressed in neonates HSALR mice skeletal muscle to induce DM1-like phenotypes. RESULTS Sustained overexpression of the murine MSI2 protein in HSALR neonates induced autophagic flux and expression of critical autophagy proteins, increased central nuclei and reduced myofibers area, and weakened muscle strength. Importantly, these changes were independent of MBNL1, MBNL2, and Celf1 protein levels, which remained unchanged upon Msi2 overexpression. CONCLUSIONS Globally, molecular, histological, and functional data from these experiments in the HSALR mouse model confirms the pathological role of MSI2 expression levels as an atrophy-associated component that impacts the characteristic muscle dysfunction symptoms in DM1 patients.
Collapse
Affiliation(s)
- Maria Sabater-Arcis
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Nerea Moreno
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Teresa Sevilla
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Manuel Perez Alonso
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Ariadna Bargiela
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Ruben Artero
- Human Translational Genomics Group, University Institute for Biotechnology and Biomedicine, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
2
|
Russo V, Antonini G, Massa R, Casali C, Mauriello A, Martino AM, Marconi R, Garibaldi M, Franciosa P, Zecchin M, Gaudio C, D’Andrea A, Strano S. Comprehensive Cardiovascular Management of Myotonic Dystrophy Type 1 Patients: A Report from the Italian Neuro-Cardiology Network. J Cardiovasc Dev Dis 2024; 11:63. [PMID: 38392277 PMCID: PMC10889677 DOI: 10.3390/jcdd11020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
Myotonic dystrophy is a hereditary disorder with systemic involvement. The Italian Neuro-Cardiology Network-"Rete delle Neurocardiologie" (INCN-RNC) is a unique collaborative experience involving neurology units combined with cardio-arrhythmology units. The INCN facilitates the creation of integrated neuro-cardiac teams in Neuromuscular Disease Centers for the management of cardiovascular involvement in the treatment of myotonic dystrophy type 1 (MD1).
Collapse
Affiliation(s)
- Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania “Luigi Vanvitelli”—“Monaldi” Hospital, 80126 Naples, Italy;
| | - Giovanni Antonini
- Neuromuscular Disease Centre, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, “Sant’Andrea” Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (G.A.); (M.G.)
| | - Roberto Massa
- Neuromuscular Diseases Unit, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00196 Rome, Italy;
| | - Alfredo Mauriello
- Cardiology Unit, Department of Medical Translational Sciences, University of Campania “Luigi Vanvitelli”—“Monaldi” Hospital, 80126 Naples, Italy;
- Department of Cardiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy;
| | | | - Roberto Marconi
- Unit of Neurology, Cardio-Thoracic-Neuro-Vascular Department, “Misericordia” Hospital, 58100 Grosseto, Italy;
| | - Matteo Garibaldi
- Neuromuscular Disease Centre, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, “Sant’Andrea” Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (G.A.); (M.G.)
| | - Pasquale Franciosa
- Department of Internal, Anesthesiological and Cardiovascular Clinical Sciences, Sapienza University of Rome, 00196 Rome, Italy; (P.F.); (C.G.); (S.S.)
| | - Massimo Zecchin
- Cardiothoracovascular Department, “Cattinara” Hospital, ASUGI and University of Trieste, 34149 Trieste, Italy;
| | - Carlo Gaudio
- Department of Internal, Anesthesiological and Cardiovascular Clinical Sciences, Sapienza University of Rome, 00196 Rome, Italy; (P.F.); (C.G.); (S.S.)
| | - Antonello D’Andrea
- Department of Cardiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Italy;
| | - Stefano Strano
- Department of Internal, Anesthesiological and Cardiovascular Clinical Sciences, Sapienza University of Rome, 00196 Rome, Italy; (P.F.); (C.G.); (S.S.)
| |
Collapse
|
3
|
Lloyd EM, Pinniger GJ, Murphy RM, Grounds MD. Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders. Acta Physiol (Oxf) 2023; 238:e14012. [PMID: 37306196 DOI: 10.1111/apha.14012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow- to fast-twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic 'slow' to 'fast' myofibres are outlined, combined with exemplars of the predominantly slow-twitch soleus and fast-twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre-type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.
Collapse
Affiliation(s)
- Erin M Lloyd
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Gavin J Pinniger
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Miranda D Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Misquitta NS, Ravel-Chapuis A, Jasmin BJ. Combinatorial treatment with exercise and AICAR potentiates the rescue of myotonic dystrophy type 1 mouse muscles in a sex-specific manner. Hum Mol Genet 2023; 32:551-566. [PMID: 36048859 DOI: 10.1093/hmg/ddac222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
Targeting AMP-activated protein kinase (AMPK) is emerging as a promising strategy for treating myotonic dystrophy type 1 (DM1), the most prevalent form of adult-onset muscular dystrophy. We previously demonstrated that 5-aminomidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) and exercise, two potent AMPK activators, improve disease features in DM1 mouse skeletal muscles. Here, we employed a combinatorial approach with these AMPK activators and examined their joint impact on disease severity in male and female DM1 mice. Our data reveal that swimming exercise additively enhances the effect of AICAR in mitigating the nuclear accumulation of toxic CUGexp RNA foci. In addition, our findings show a trend towards an enhanced reversal of MBNL1 sequestration and correction in pathogenic alternative splicing events. Our results further demonstrate that the combinatorial impact of exercise and AICAR promotes muscle fiber hypertrophy in DM1 skeletal muscle. Importantly, these improvements occur in a sex-specific manner with greater benefits observed in female DM1 mice. Our findings demonstrate that combining AMPK-activating interventions may prove optimal for rescuing the DM1 muscle phenotype and uncover important sex differences in the response to AMPK-based therapeutic strategies in DM1 mice.
Collapse
Affiliation(s)
- Naomi S Misquitta
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The Eric J. Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Eraslan G, Drokhlyansky E, Anand S, Fiskin E, Subramanian A, Slyper M, Wang J, Van Wittenberghe N, Rouhana JM, Waldman J, Ashenberg O, Lek M, Dionne D, Win TS, Cuoco MS, Kuksenko O, Tsankov AM, Branton PA, Marshall JL, Greka A, Getz G, Segrè AV, Aguet F, Rozenblatt-Rosen O, Ardlie KG, Regev A. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 2022; 376:eabl4290. [PMID: 35549429 PMCID: PMC9383269 DOI: 10.1126/science.abl4290] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding gene function and regulation in homeostasis and disease requires knowledge of the cellular and tissue contexts in which genes are expressed. Here, we applied four single-nucleus RNA sequencing methods to eight diverse, archived, frozen tissue types from 16 donors and 25 samples, generating a cross-tissue atlas of 209,126 nuclei profiles, which we integrated across tissues, donors, and laboratory methods with a conditional variational autoencoder. Using the resulting cross-tissue atlas, we highlight shared and tissue-specific features of tissue-resident cell populations; identify cell types that might contribute to neuromuscular, metabolic, and immune components of monogenic diseases and the biological processes involved in their pathology; and determine cell types and gene modules that might underlie disease mechanisms for complex traits analyzed by genome-wide association studies.
Collapse
Affiliation(s)
- Gökcen Eraslan
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eugene Drokhlyansky
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shankara Anand
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Evgenij Fiskin
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiali Wang
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - John M. Rouhana
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thet Su Win
- Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Michael S. Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Olena Kuksenko
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Philip A. Branton
- The Joint Pathology Center Gynecologic/Breast Pathology, Silver Spring, MD 20910, USA
| | | | - Anna Greka
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Cancer Research and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ayellet V. Segrè
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - François Aguet
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Characterization of cognitive impairment in adult polyglucosan body disease. J Neurol 2022; 269:2854-2861. [PMID: 34999962 PMCID: PMC9119871 DOI: 10.1007/s00415-022-10960-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 11/14/2022]
Abstract
Adult polyglucosan body disease (APBD) is a rare but probably underdiagnosed autosomal recessive neurodegenerative disorder due to pathogenic variants in GBE1. The phenotype is characterized by neurogenic bladder dysfunction, spastic paraplegia, and axonal neuropathy. Additionally, cognitive symptoms and dementia have been reported in APBD but have not been studied systematically. Using exome sequencing, we identified two previously unreported bi-allelic missense GBE1 variants in a patient with severe memory impairment along with the typical non-cognitive symptoms. We were able to confirm a reduction of GBE1 activity in blood lymphocytes. To characterize the neuropsychological profile of patients suffering from APBD, we conducted a systematic review of cognitive impairment in this rare disease. Analysis of 24 cases and case series (in total 58 patients) showed that executive deficits and memory impairment are the most common cognitive symptoms in APBD.
Collapse
|
7
|
Botta A, Visconti VV, Fontana L, Bisceglia P, Bengala M, Massa R, Bagni I, Cardani R, Sangiuolo F, Meola G, Antonini G, Petrucci A, Pegoraro E, D'Apice MR, Novelli G. A 14-Year Italian Experience in DM2 Genetic Testing: Frequency and Distribution of Normal and Premutated CNBP Alleles. Front Genet 2021; 12:668094. [PMID: 34234810 PMCID: PMC8255792 DOI: 10.3389/fgene.2021.668094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Myotonic dystrophy type 2 (DM2) is a multisystemic disorder caused by a (CCTG)n in intron 1 of the CNBP gene. The CCTG repeat tract is part of a complex (TG)v(TCTG)w(CCTG)x(NCTG)y(CCTG)z motif generally interrupted in CNBP healthy range alleles. Here we report our 14-year experience of DM2 postnatal genetic testing in a total of 570 individuals. The DM2 locus has been analyzed by a combination of SR-PCR, TP-PCR, LR-PCR, and Sanger sequencing of CNBP alleles. DM2 molecular diagnosis has been confirmed in 187/570 samples analyzed (32.8%) and is mainly associated with the presence of myotonia in patients. This set of CNBP alleles showed unimodal distribution with 25 different alleles ranging from 108 to 168 bp, in accordance with previous studies on European populations. The most frequent CNBP alleles consisted of 138, 134, 140, and 136 bps with an overall locus heterozygosity of 90%. Sequencing of 103 unexpanded CNBP alleles in DM2-positive patients revealed that (CCTG)5(NCTG)3(CCTG)7 and (CCTG)6(NCTG)3(CCTG)7 are the most common interruption motifs. We also characterized five CNBP premutated alleles with (CCTG)n repetitions from n = 36 to n = 53. However, the molecular and clinical consequences in our cohort of samples are not unequivocal. Data that emerged from this study are representative of the Italian population and are useful tools for National and European centers offering DM2 genetic testing and counseling.
Collapse
Affiliation(s)
- Annalisa Botta
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Virginia Veronica Visconti
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Luana Fontana
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paola Bisceglia
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy.,Research Laboratory, Complex Structure of Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Mario Bengala
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy
| | - Roberto Massa
- Neuromuscular Disease Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ilaria Bagni
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy
| | - Rosanna Cardani
- BioCor Biobank, UOC SMEL-1 of Clinical Pathology, IRCCS-Policlinico San Donato, Milan, Italy
| | - Federica Sangiuolo
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Center, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Antonio Petrucci
- Center for Neuromuscular and Neurological Rare Diseases, S. Camillo Forlanini Hospital, Rome, Italy
| | - Elena Pegoraro
- Department of Neuroscience, University of Padua, Padua, Italy
| | | | - Giuseppe Novelli
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy
| |
Collapse
|
8
|
Rehmann R, Schneider-Gold C, Froeling M, Güttsches AK, Rohm M, Forsting J, Vorgerd M, Schlaffke L. Diffusion Tensor Imaging Shows Differences Between Myotonic Dystrophy Type 1 and Type 2. J Neuromuscul Dis 2021; 8:949-962. [PMID: 34180419 DOI: 10.3233/jnd-210660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Myotonic Dystrophies type 1 and type 2 are hereditary myopathies with dystrophic muscle degeneration in varying degrees. Differences in muscle diffusion between both diseases have not been evaluated yet. OBJECTIVE To evaluate the ability to of muscle diffusion tensor imaging (mDTI) and Dixon fat-quantification to distinguish between Myotonic dystrophy (DM) type 1 and type 2 and if both diseases show distinct muscle involvement patterns. METHODS We evaluated 6 thigh and 7 calf muscles (both legs) of 10 DM 1 and 13 DM 2 and 28 healthy controls (HC) with diffusion tensor imaging, T1w and mDixonquant sequences in a 3T MRI scanner. The quantitative mDTI-values axial diffusivity (λ1), mean diffusivity (MD), radial diffusivity (RD) and fractional anisotropy (FA) as well as fat-fraction were analysed. CTG-Triplett repeat-length of DM 1 patients was correlated to diffusion metrics and fat-fraction. RESULTS mDTI showed significant differences between DM 1 and DM 2 vs. healthy controls in diffusion parameters of the thigh (all p < 0.001) except for FA (p = 0.0521 / 0.8337). In calf muscles mDTI showed significant differences between DM 1 and DM 2 patients (all p < 0.0001) as well as between DM 1 patients and controls (all p = 0.0001). Thigh muscles had a significant higher fat-fraction in both groups vs. controls (p < 0.05). There was no correlation of CTG triplet length with mDTI values and fat-fraction. DISCUSSION mDTI reveals specific changes of the diffusion parameters and fat-fraction in muscles of DM 1 and DM 2 patients. Thus, the quantitative MRI methods presented in this study provide a powerful tool in differential diagnosis and follow-up of DM 1 and DM 2, however, the data must be validated in larger studies.
Collapse
Affiliation(s)
- R Rehmann
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - C Schneider-Gold
- Department of Neurology, University Hospital St. Josef, Ruhr-University Bochum, Bochum, Germany
| | - M Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - A K Güttsches
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - M Rohm
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - J Forsting
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - M Vorgerd
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - L Schlaffke
- Department of Neurology, Heimer Institute for muscle Research, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
9
|
Roy B, Wu Q, Whitaker CH, Felice KJ. Myotonic Muscular Dystrophy Type 2 in CT, USA: A Single-Center Experience With 50 Patients. J Clin Neuromuscul Dis 2021; 22:135-146. [PMID: 33595997 DOI: 10.1097/cnd.0000000000000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Myotonic dystrophy type 2 (DM2) is an autosomal dominant disorder due to a (CCTG)n repeat expansion in intron 1 of the CNBP gene. In this article, we report the clinicopathologic findings in 50 patients seen at a single site over a 27 year period. DM2 was the fifth most common type of muscular dystrophy seen at our center with a 5-fold lower frequency as compared to DM1. Age of symptom onset ranged from 15 to 72 years, and the mean duration between symptom onset and diagnosis was 7.4 years. Weakness referable to the proximal lower extremities was the presenting symptom in 62% of patients. The degree of generalized weakness varied from severe in 30% to no weakness in 20% of patients. Clinical myotonia was noted in 18% and myotonic discharges on electromyography in 97% of patients. Pain symptoms were uncommon in our cohort. A significant correlation was noted between limb weakness and degree of muscle pathologic changes. There was no correlation between CCTG repeat size and other clinicopathologic findings. Six patients (12%) had cardiac abnormalities including one who developed progressive nonischemic dilated cardiomyopathy ultimately leading to cardiac transplantation. In 21 patients followed for 2 or more years, we noted a mean rate of decline in total Medical Research Council score of about 1% per year.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Neurology, University of Connecticut School of Medicine, Farmington, CT
| | - Qian Wu
- Department of Pathology and Laboratory Medicine, University of Connecticut School of Medicine, Farmington, CT; and
| | - Charles H Whitaker
- Department of Neuromuscular Medicine, Muscular Dystrophy Association Care Center, Hospital for Special Care, New Britain, CT
| | - Kevin J Felice
- Department of Neuromuscular Medicine, Muscular Dystrophy Association Care Center, Hospital for Special Care, New Britain, CT
| |
Collapse
|
10
|
Affiliation(s)
- Ikjae Lee
- From the Departments of Neurology (I.L., K.N.) and Medicine (J.B.W., L.L.W.), University of Alabama at Birmingham, Birmingham
| | - Jeremey B Walker
- From the Departments of Neurology (I.L., K.N.) and Medicine (J.B.W., L.L.W.), University of Alabama at Birmingham, Birmingham
| | - Kenkichi Nozaki
- From the Departments of Neurology (I.L., K.N.) and Medicine (J.B.W., L.L.W.), University of Alabama at Birmingham, Birmingham
| | - Lisa L Willett
- From the Departments of Neurology (I.L., K.N.) and Medicine (J.B.W., L.L.W.), University of Alabama at Birmingham, Birmingham
| |
Collapse
|
11
|
Comprehensive Analysis of lncRNAs and circRNAs Reveals the Metabolic Specialization in Oxidative and Glycolytic Skeletal Muscles. Int J Mol Sci 2019; 20:ijms20122855. [PMID: 31212733 PMCID: PMC6627206 DOI: 10.3390/ijms20122855] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/08/2019] [Indexed: 12/18/2022] Open
Abstract
The biochemical and functional differences between oxidative and glycolytic muscles could affect human muscle health and animal meat quality. However, present understanding of the epigenetic regulation with respect to lncRNAs and circRNAs is rudimentary. Here, porcine oxidative and glycolytic skeletal muscles, which were at the growth curve inflection point, were sampled to survey variant global expression of lncRNAs and circRNAs using RNA-seq. A total of 4046 lncRNAs were identified, including 911 differentially expressed lncRNAs (p < 0.05). The cis-regulatory analysis identified target genes that were enriched for specific GO terms and pathways (p < 0.05), including the oxidation-reduction process, glycolytic process, and fatty acid metabolic. All these were closely related to different phenotypes between oxidative and glycolytic muscles. Additionally, 810 circRNAs were identified, of which 137 were differentially expressed (p < 0.05). Interestingly, some circRNA-miRNA-mRNA networks were found, which were closely linked to muscle fiber-type switching and mitochondria biogenesis in muscles. Furthermore, 44.69%, 39.19%, and 54.01% of differentially expressed mRNAs, lncRNAs, and circRNAs respectively were significantly enriched in pig quantitative trait loci (QTL) regions for growth and meat quality traits. This study reveals a mass of candidate lncRNAs and circRNAs involved in muscle physiological functions, which may improve understanding of muscle metabolism and development from an epigenetic perspective.
Collapse
|
12
|
Towards clinical outcome measures in myotonic dystrophy type 2: a systematic review. Curr Opin Neurol 2018; 31:599-609. [DOI: 10.1097/wco.0000000000000591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
14
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
15
|
Park D, Lee SH, Shin JH, Park JS. Lower limb muscle magnetic resonance imaging in myotonic dystrophy type 1 correlates with the six-minute walk test and CTG repeats. Neuromuscul Disord 2018; 28:29-37. [DOI: 10.1016/j.nmd.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/04/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023]
|
16
|
Vizzaccaro E, Terracciano C, Rastelli E, Massa R. Aquaporin 4 expression in human skeletal muscle fiber types. Muscle Nerve 2017; 57:856-858. [PMID: 29193153 DOI: 10.1002/mus.26024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2017] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Aquaporins (AQPs) are a family of transmembrane proteins involved in the maintenance of osmotic gradients. AQP4 is abundant in skeletal muscle, where it seems to be associated with glycolytic metabolism. We investigated the pattern of expression of AQP4 in normal human myofibers relative to the main forms of myosin heavy chain (MHC). METHODS Six normal human muscle biopsies were analyzed by double immunofluorescence for co-expression of AQP4 and slow or fast MHC. RESULTS A high percentage (64-99%) of MHC-fast positive fibers showed immunoreaction for AQP4. Immunoreactivity for AQP4 was also present in MHC-slow positive fibers, but with a higher variability (5-72%) among biopsies. DISCUSSION The expression pattern of AQP4 in human myofibers is highly variable among different patients and cannot be predicted for single fibers depending on MHC type expression. Other factors, possibly related to muscle activity, may modulate AQP4 expression. Muscle Nerve 57: 856-859, 2018.
Collapse
Affiliation(s)
| | - Chiara Terracciano
- Neuromuscular Unit, Department of Systems Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Emanuele Rastelli
- Neuromuscular Unit, Department of Systems Medicine, University of Rome Tor Vergata, Roma, Italy
| | - Roberto Massa
- Neuromuscular Unit, Department of Systems Medicine, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
17
|
Renna LV, Bosè F, Iachettini S, Fossati B, Saraceno L, Milani V, Colombo R, Meola G, Cardani R. Receptor and post-receptor abnormalities contribute to insulin resistance in myotonic dystrophy type 1 and type 2 skeletal muscle. PLoS One 2017; 12:e0184987. [PMID: 28915272 PMCID: PMC5600405 DOI: 10.1371/journal.pone.0184987] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant multisystemic disorders caused by expansion of microsatellite repeats. In both forms, the mutant transcripts accumulate in nuclear foci altering the function of alternative splicing regulators which are necessary for the physiological mRNA processing. Missplicing of insulin receptor (IR) gene (INSR) has been associated with insulin resistance, however, it cannot be excluded that post-receptor signalling abnormalities could also contribute to this feature in DM. We have analysed the insulin pathway in skeletal muscle biopsies and in myotube cultures from DM patients to assess whether downstream metabolism might be dysregulated and to better characterize the mechanism inducing insulin resistance. DM skeletal muscle exhibits alterations of basal phosphorylation levels of Akt/PKB, p70S6K, GSK3β and ERK1/2, suggesting that these changes might be accompanied by a lack of further insulin stimulation. Alterations of insulin pathway have been confirmed on control and DM myotubes expressing fetal INSR isoform (INSR-A). The results indicate that insulin action appears to be lower in DM than in control myotubes in terms of protein activation and glucose uptake. Our data indicate that post-receptor signalling abnormalities might contribute to DM insulin resistance regardless the alteration of INSR splicing.
Collapse
Affiliation(s)
- Laura Valentina Renna
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Francesca Bosè
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Sara Iachettini
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Barbara Fossati
- Department of Neurology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Lorenzo Saraceno
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Valentina Milani
- Scientific Directorate, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Roberto Colombo
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy.,Department of Neurology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
18
|
Expanded CCUG repeat RNA expression in Drosophila heart and muscle trigger Myotonic Dystrophy type 1-like phenotypes and activate autophagocytosis genes. Sci Rep 2017; 7:2843. [PMID: 28588248 PMCID: PMC5460254 DOI: 10.1038/s41598-017-02829-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Myotonic dystrophies (DM1–2) are neuromuscular genetic disorders caused by the pathological expansion of untranslated microsatellites. DM1 and DM2, are caused by expanded CTG repeats in the 3′UTR of the DMPK gene and CCTG repeats in the first intron of the CNBP gene, respectively. Mutant RNAs containing expanded repeats are retained in the cell nucleus, where they sequester nuclear factors and cause alterations in RNA metabolism. However, for unknown reasons, DM1 is more severe than DM2. To study the differences and similarities in the pathogenesis of DM1 and DM2, we generated model flies by expressing pure expanded CUG ([250]×) or CCUG ([1100]×) repeats, respectively, and compared them with control flies expressing either 20 repeat units or GFP. We observed surprisingly severe muscle reduction and cardiac dysfunction in CCUG-expressing model flies. The muscle and cardiac tissue of both DM1 and DM2 model flies showed DM1-like phenotypes including overexpression of autophagy-related genes, RNA mis-splicing and repeat RNA aggregation in ribonuclear foci along with the Muscleblind protein. These data reveal, for the first time, that expanded non-coding CCUG repeat-RNA has similar in vivo toxicity potential as expanded CUG RNA in muscle and heart tissues and suggests that specific, as yet unknown factors, quench CCUG-repeat toxicity in DM2 patients.
Collapse
|
19
|
Biomolecular diagnosis of myotonic dystrophy type 2: a challenging approach. J Neurol 2017; 264:1705-1714. [PMID: 28550479 DOI: 10.1007/s00415-017-8504-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/02/2017] [Indexed: 01/23/2023]
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are the most common adult form of muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia, and multiorgan involvement. The onset and symptoms of the myotonic dystrophies are diverse, complicating their diagnoses and limiting a comprehensive approach to their clinical care. Diagnostic delay in DM2 is due not only to the heterogeneous phenotype and the aspecific onset but also to the unfamiliarity with the disorder by most clinicians. Moreover, the DM2 diagnostic odyssey is complicated by the difficulties to develop an accurate, robust, and cost-effective method for a routine molecular assay. The aim of this review is to underline by challenging approach the diagnostic limits and pitfalls that could results in failure to recognize the presence of DM2 disease. Understanding and preventing delays in DM2 diagnosis may facilitate family planning, improve symptom management in the short term, and facilitate more specific treatment in the long term.
Collapse
|
20
|
Meola G, Cardani R. Myotonic dystrophy type 2 and modifier genes: an update on clinical and pathomolecular aspects. Neurol Sci 2017; 38:535-546. [PMID: 28078562 DOI: 10.1007/s10072-016-2805-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia, and multiorgan involvement. To date, two distinct forms caused by similar mutations in two different genes have been identified: myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2). Aberrant transcription and mRNA processing of multiple genes due to RNA-mediated toxic gain-of function has been suggested to cause the complex phenotype in DM1 and DM2. However, despite clinical and genetic similarities, DM1 and DM2 may be considered as distinct disorders. This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, Piazza E. Malan, 1, San Donato Mil., 20097, Milan, Italy. .,Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
21
|
Dozio E, Passeri E, Cardani R, Benedini S, Aresta C, Valaperta R, Corsi Romanelli M, Meola G, Sansone V, Corbetta S. Circulating Irisin Is Reduced in Male Patients with Type 1 and Type 2 Myotonic Dystrophies. Front Endocrinol (Lausanne) 2017; 8:320. [PMID: 29184538 PMCID: PMC5694592 DOI: 10.3389/fendo.2017.00320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/01/2017] [Indexed: 12/26/2022] Open
Abstract
CONTEXT Myotonic dystrophies (DM) are dominantly inherited muscle disorders characterized by myotonia, muscle weakness, and wasting. The reasons for sarcopenia in DMs are uncleared and multiple factors are involved. Irisin, a positive hormone regulator of muscle growth and bone, may play a role. OBJECTIVES To investigate (1) circulating irisin in a series of DM1 and DM2 male patients compared with healthy controls and (2) the relationships between irisin and anthropometric, metabolic and hormonal parameters. DESIGN AND STUDY PARTICIPANTS This is a cross-sectional study. Fasting blood samples for glucometabolic, gonadic, bone markers, and irisin were collected from 28 ambulatory DM1, 10 DM2, and 23 age-matched healthy male subjects. Body composition and bone mineralization [bone mineral density (BMD)] were measured by DEXA. Echocardiographic assessment and visceral adiposity, namely, liver and epicardial fat, were investigated by ultrasound. Irisin released from cultured myotubes derived from 3 DM1, 3 DM2, and 3 healthy donors was assayed. RESULTS Plasma irisin levels were definitely lower in both DM1 and DM2 patients than in controls with no difference between DM1 and DM2. Irisin released from DM1 and DM2 myotubes was similar to that released from myotubes of the non-DM donors, though diabetic DM2 myotubes released more irisin than DM1 myotubes. There was no correlation between irisin and muscle strength or lean mass in both DM1 and DM2 patients. In DM1 patients, plasma irisin levels correlated negatively with oxygen consumption and positively with insulin resistance, while in DM2 patients plasma irisin levels positively correlated with fat mass at arms and legs levels. No correlation with visceral fat, left ventricular mass, and gonadal hormones could be detected. In both DM1 and DM2 patients, legs BMD parameters positively correlated with plasma irisin levels. CONCLUSION Plasma irisin is reduced in both DM1 and DM2 male patients likely reflecting muscle mass reduction. Moreover, insulin resistance may contribute to modulation of plasma irisin in DM1 patients. The irisin-mediated cross talk muscle-adipose tissue-bone may be active also in the male myotonic dystrophies' model.
Collapse
Affiliation(s)
- Elena Dozio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Elena Passeri
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
| | - Stefano Benedini
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Carmen Aresta
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Rea Valaperta
- Research Laboratories, IRCCS Policlinico San Donato, Milan, Italy
| | - Massimiliano Corsi Romanelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Laboratory of Medicine Unit SMEL-1, IRCCS Policlinico San Donato, Milan, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Neurology Unit, IRCCS Policlinico San Donato, Milan, Italy
| | - Valeria Sansone
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Centro Clinico Nemo, Neurorehabilitation Unit, Milan, Italy
| | - Sabrina Corbetta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Endocrinology and Diabetology Service, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- *Correspondence: Sabrina Corbetta,
| |
Collapse
|
22
|
Campione E, Botta A, Di Prete M, Rastelli E, Gibellini M, Petrucci A, Bernardini S, Novelli G, Bianchi L, Orlandi A, Massa R, Terracciano C. Cutaneous features of myotonic dystrophy types 1 and 2: Implication of premature aging and vitamin D homeostasis. Neuromuscul Disord 2016; 27:163-169. [PMID: 28065683 DOI: 10.1016/j.nmd.2016.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/08/2023]
Abstract
Skin changes have been described in myotonic dystrophy type 1 (DM1). However, whether and in which way skin is a target of specific disease alterations in DM1 and DM2 has not been yet clarified. This study aims to explore cutaneous features of DM1 and DM2 patients. Skin examination was performed in 60 DM1, 15 DM2, and 103 control, unselected patients by means of dermoscopy. It revealed quantitative and qualitative abnormalities of nevi and typical signs of premature aging in both DM1 and DM2 patients, with a significantly higher frequency of dysplastic nevi, alopecia, xerosis and seborrheic dermatitis. Twenty-eight nevi were excised in DM patients and none showed histological features of melanoma, although 12 of them were diagnosed as dysplastic and the remaining 16 presented histological irregularity in melanin distribution. In DM1 patients, the number of nevi correlated with CTG expansion size, whereas the presence of dysplastic nevi and xerosis inversely correlated with vitamin D levels. DM1 and DM2 patients display a high frequency of skin abnormalities, the most common of which correlate with genotype severity and serum vitamin D levels. Skin examination is highly informative in these patients and reveals features suggestive of premature aging and impaired vitamin D homeostasis.
Collapse
Affiliation(s)
- Elena Campione
- Department of Systems Medicine, Division of Dermatology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Division of Medical Genetics, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Monia Di Prete
- Department of Systems Medicine, Division of Dermatology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Emanuele Rastelli
- Department of Systems Medicine, Division of Neurology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Manuela Gibellini
- Department of Systems Medicine, Division of Neurology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; Department of Experimental Medicine and Surgery, Division of Clinical Biochemistry, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Antonio Petrucci
- Center for Neuromuscular and Neurological Rare Diseases S. Camillo-Forlanini Hospital, Circonvallazione Gianicolense 87, 00152 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, Division of Clinical Biochemistry, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Division of Medical Genetics, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Luca Bianchi
- Department of Systems Medicine, Division of Dermatology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Division of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Roberto Massa
- Department of Systems Medicine, Division of Neurology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Chiara Terracciano
- Department of Systems Medicine, Division of Neurology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy; Department of Experimental Medicine and Surgery, Division of Clinical Biochemistry, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy.
| |
Collapse
|
23
|
Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:518-34. [PMID: 27199166 DOI: 10.1002/wdev.230] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibers are classified into fiber types, in particular, slow twitch versus fast twitch. Muscle fiber types are generally defined by the particular myosin heavy chain isoforms that they express, but many other components contribute to a fiber's physiological characteristics. Skeletal muscle fiber type can have a profound impact on muscle diseases, including certain muscular dystrophies and sarcopenia, the aging-induced loss of muscle mass and strength. These findings suggest that some muscle diseases may be treated by shifting fiber type characteristics either from slow to fast, or fast to slow phenotypes, depending on the disease. Recent studies have begun to address which components of muscle fiber types mediate their susceptibility or resistance to muscle disease. However, for many diseases it remains largely unclear why certain fiber types are affected. A substantial body of work has revealed molecular pathways that regulate muscle fiber type plasticity and early developmental muscle fiber identity. For instance, recent studies have revealed many factors that regulate muscle fiber type through modulating the activity of the muscle regulatory transcription factor MYOD1. Future studies of muscle fiber type development in animal models will continue to enhance our understanding of factors and pathways that may provide therapeutic targets to treat muscle diseases. WIREs Dev Biol 2016, 5:518-534. doi: 10.1002/wdev.230 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jared Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Guglielmi V, Oosterhof A, Voermans NC, Cardani R, Molenaar JP, van Kuppevelt TH, Meola G, van Engelen BG, Tomelleri G, Vattemi G. Characterization of sarcoplasmic reticulum Ca(2+) ATPase pumps in muscle of patients with myotonic dystrophy and with hypothyroid myopathy. Neuromuscul Disord 2016; 26:378-85. [PMID: 27133661 DOI: 10.1016/j.nmd.2016.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 10/22/2022]
Abstract
Sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase (SERCA) pumps play the major role in lowering cytoplasmic calcium concentration in skeletal muscle by catalyzing the ATP-dependent transport of Ca(2+) from the cytosol to the lumen of the sarcoplasmic reticulum (SR). Although SERCA abnormalities have been hypothesized to contribute to the dysregulation of intracellular Ca(2+) homeostasis and signaling in muscle of patients with myotonic dystrophy (DM) and hypothyroid myopathy, the characterization of SERCA pumps remains elusive and their impairment is still unclear. We assessed the activity of SR Ca(2+)-ATPase, expression levels and fiber distribution of SERCA1 and SERCA2, and oligomerization of SERCA1 protein in muscle of patients with DM type 1 and 2, and with hypothyroid myopathy. Our data provide evidence that SR Ca(2+) ATPase activity, protein levels and muscle fiber distribution of total SERCA1 and SERCA2, and SERCA1 oligomerization pattern are similar in patients with both DM1 and DM2, hypothyroid myopathy and in control subjects. We prove that SERCA1b, the neonatal isoform of SERCA1, is expressed at protein level in muscle of patients with DM2 and, in lower amount, of patients with DM1. Our present study demonstrates that SERCA function is not altered in muscle of patients with DM and with hypothyroid myopathy.
Collapse
Affiliation(s)
- V Guglielmi
- Department of Neurological and Movement Sciences, Section of Clinical Neurology, University of Verona, Italy
| | - A Oosterhof
- Department of Biochemistry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - N C Voermans
- Neuromuscular Centre Nijmegen, Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - R Cardani
- Department of Biomedical Sciences for Health, IRCCS Policlinico San Donato, University of Milan, Italy
| | - J P Molenaar
- Neuromuscular Centre Nijmegen, Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - T H van Kuppevelt
- Department of Biochemistry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - G Meola
- Department of Biomedical Sciences for Health, IRCCS Policlinico San Donato, University of Milan, Italy
| | - B G van Engelen
- Neuromuscular Centre Nijmegen, Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - G Tomelleri
- Department of Neurological and Movement Sciences, Section of Clinical Neurology, University of Verona, Italy
| | - G Vattemi
- Department of Neurological and Movement Sciences, Section of Clinical Neurology, University of Verona, Italy.
| |
Collapse
|
25
|
Meola G, Cardani R. Myotonic Dystrophy Type 2: An Update on Clinical Aspects, Genetic and Pathomolecular Mechanism. J Neuromuscul Dis 2015; 2:S59-S71. [PMID: 27858759 PMCID: PMC5240594 DOI: 10.3233/jnd-150088] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in CNBP. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders. The pathogenesis of DM is explained by a common RNA gain-of-function mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes. However additional pathogenic mechanism like changes in gene expression, modifier genes, protein translation and micro-RNA metabolism may also contribute to disease pathology and to clarify the phenotypic differences between these two types of myotonic dystrophies.This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
26
|
Mateos-Aierdi AJ, Goicoechea M, Aiastui A, Fernández-Torrón R, Garcia-Puga M, Matheu A, López de Munain A. Muscle wasting in myotonic dystrophies: a model of premature aging. Front Aging Neurosci 2015. [PMID: 26217220 PMCID: PMC4496580 DOI: 10.3389/fnagi.2015.00125] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1 or Steinert’s disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3′ untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9(CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular degeneration seen in DM patients, highlighting the similarities found with muscle aging.
Collapse
Affiliation(s)
- Alba Judith Mateos-Aierdi
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Maria Goicoechea
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain
| | - Ana Aiastui
- CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Cell Culture Platform, Biodonostia Health Research Institute, San Sebastián Spain
| | - Roberto Fernández-Torrón
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain
| | - Mikel Garcia-Puga
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Ander Matheu
- Oncology Area, Biodonostia Health Research Institute San Sebastián, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biodonostia Health Research Institute San Sebastián, Spain ; CIBERNED, Instituto Carlos III, Ministerio de Economía y Competitividad Madrid, Spain ; Department of Neurology, Hospital Universitario Donostia, San Sebastián Spain ; Department of Neuroscience, Universidad del País Vasco UPV-EHU San Sebastián, Spain
| |
Collapse
|
27
|
Papadimas GK, Kekou K, Papadopoulos C, Kararizou E, Kanavakis E, Manta P. Phenotypic variability and molecular genetics in proximal myotonic myopathy. Muscle Nerve 2015; 51:686-91. [DOI: 10.1002/mus.24440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 11/09/2022]
Affiliation(s)
- George Konstantinos Papadimas
- First Department of Neurology; University of Athens, Medical School; Aeginition Hospital, 74, Vas. Sophias Avenue 11528 Athens Greece
| | - Kiriaki Kekou
- Department of Medical Genetics; University of Athens, Medical School of Athens; Greece
| | - Constantinos Papadopoulos
- First Department of Neurology; University of Athens, Medical School; Aeginition Hospital, 74, Vas. Sophias Avenue 11528 Athens Greece
| | - Evangelia Kararizou
- First Department of Neurology; University of Athens, Medical School; Aeginition Hospital, 74, Vas. Sophias Avenue 11528 Athens Greece
| | - Emmanuel Kanavakis
- Department of Medical Genetics; University of Athens, Medical School of Athens; Greece
- University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Aghia Sophia Children's Hospital; Athens Greece
| | - Panagiota Manta
- First Department of Neurology; University of Athens, Medical School; Aeginition Hospital, 74, Vas. Sophias Avenue 11528 Athens Greece
| |
Collapse
|
28
|
Renna LV, Cardani R, Botta A, Rossi G, Fossati B, Costa E, Meola G. Premature senescence in primary muscle cultures of myotonic dystrophy type 2 is not associated with p16 induction. Eur J Histochem 2014; 58:2444. [PMID: 25578974 PMCID: PMC4289846 DOI: 10.4081/ejh.2014.2444] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/04/2014] [Accepted: 10/09/2014] [Indexed: 12/25/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are multisystemic disorders linked to two different genetic loci and characterized by several features including myotonia, muscle weakness and atrophy, cardiac dysfunctions, cataracts and insulin-resistance. In both forms, expanded nucleotide sequences cause the accumulation of mutant transcripts in the nucleus deregulating the activity of some RNA-binding proteins and providing an explanation for the multisystemic phenotype of DM patients. However this pathogenetic mechanism does not explain some histopathological features of DM skeletal muscle like muscle atrophy. It has been observed that DM muscle shares similarities with the ageing muscle, where the progressive muscle weakness and atrophy is accompanied by a lower regenerative capacity possibly due to the failure in satellite cells activation. The aim of our study is to investigate if DM2 satellite cell derived myoblasts exhibit a premature senescence as reported for DM1 and if alterations in their proliferation potential and differentiation capabilities might contribute to some of the histopathological features observed in DM2 muscles. Our results indicate that DM myoblasts have lower proliferative capability than control myoblasts and reach in vitro senescence earlier than controls. Differentely from DM1, the p16 pathway is not responsible for the premature growth arrest observed in DM2 myoblasts which stop dividing with telomeres shorter than controls. During in vitro senescence, a progressive decrease in fusion index is observable in both DM and control myotubes with no significant differences between groups. Moreover, myotubes obtained from senescent myoblasts appear to be smaller than those from young myoblasts. Taken together, our data indicate a possible role of DM2 premature myoblast senescence in skeletal muscle histopathological alterations i.e., dystrophic changes and type 2 fibre atrophy.
Collapse
|
29
|
Szmidt-Salkowska E, Gawel M, Lusakowska A, Nojszewska M, Lipowska M, Sulek A, Krysa W, Rajkiewicz M, Seroka A, Kaminska AM. Does quantitative EMG differ myotonic dystrophy type 2 and type 1? J Electromyogr Kinesiol 2014; 24:755-61. [DOI: 10.1016/j.jelekin.2014.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/22/2014] [Accepted: 05/30/2014] [Indexed: 11/30/2022] Open
|
30
|
Meola G, Cardani R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta Mol Basis Dis 2014; 1852:594-606. [PMID: 24882752 DOI: 10.1016/j.bbadis.2014.05.019] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in ZNF9/CNBP. When transcribed into CUG/CCUG-containing RNA, mutant transcripts aggregate as nuclear foci that sequester RNA-binding proteins, resulting in spliceopathy of downstream effector genes. However, it is now clear that additional pathogenic mechanism like changes in gene expression, protein translation and micro-RNA metabolism may also contribute to disease pathology. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders requiring different diagnostic and management strategies. This review is an update on the recent advances in the understanding of the molecular mechanisms behind myotonic dystrophies. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Neurology, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy; Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| |
Collapse
|
31
|
Cardani R, Bugiardini E, Renna LV, Rossi G, Colombo G, Valaperta R, Novelli G, Botta A, Meola G. Overexpression of CUGBP1 in skeletal muscle from adult classic myotonic dystrophy type 1 but not from myotonic dystrophy type 2. PLoS One 2013; 8:e83777. [PMID: 24376746 PMCID: PMC3869793 DOI: 10.1371/journal.pone.0083777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are progressive multisystemic disorders caused by similar mutations at two different genetic loci. The common key feature of DM pathogenesis is nuclear accumulation of mutant RNA which causes aberrant alternative splicing of specific pre-mRNAs by altering the functions of two RNA binding proteins, MBNL1 and CUGBP1. However, DM1 and DM2 show disease-specific features that make them clearly separate diseases suggesting that other cellular and molecular pathways may be involved. In this study we have analysed the histopathological, and biomolecular features of skeletal muscle biopsies from DM1 and DM2 patients in relation to presenting phenotypes to better define the molecular pathogenesis. Particularly, the expression of CUGBP1 protein has been examined to clarify if this factor may act as modifier of disease-specific manifestations in DM. The results indicate that the splicing and muscle pathological alterations observed are related to the clinical phenotype both in DM1 and in DM2 and that CUGBP1 seems to play a role in classic DM1 but not in DM2. In conclusion, our results indicate that multisystemic disease spectrum of DM pathologies may not be explained only by spliceopathy thus confirming that the molecular pathomechanism of DM is more complex than that actually suggested.
Collapse
Affiliation(s)
- Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | - Enrico Bugiardini
- Department of Neurology, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
| | - Laura V. Renna
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giulia Rossi
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | | | - Rea Valaperta
- Research Laboratories - Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | | | - Annalisa Botta
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
- Department of Neurology, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
- * E-mail:
| |
Collapse
|
32
|
Sleep-Wake Cycle and Daytime Sleepiness in the Myotonic Dystrophies. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:692026. [PMID: 26316996 PMCID: PMC4437277 DOI: 10.1155/2013/692026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/19/2013] [Accepted: 08/03/2013] [Indexed: 01/19/2023]
Abstract
Myotonic dystrophy is the most common type of muscular dystrophy in adults and is characterized by progressive myopathy, myotonia, and multiorgan involvement. Two genetically distinct entities have been identified, myotonic dystrophy type 1 (DM1 or Steinert's Disease) and myotonic dystrophy type 2 (DM2). Myotonic dystrophies are strongly associated with sleep dysfunction. Sleep disturbances in DM1 are common and include sleep-disordered breathing (SDB), periodic limb movements (PLMS), central hypersomnia, and REM sleep dysregulation (high REM density and narcoleptic-like phenotype). Interestingly, drowsiness in DM1 seems to be due to a central dysfunction of sleep-wake regulation more than SDB. To date, little is known regarding the occurrence of sleep disorders in DM2. SDB (obstructive and central apnoea), REM sleep without atonia, and restless legs syndrome have been described. Further polysomnographic, controlled studies are strongly needed, particularly in DM2, in order to clarify the role of sleep disorders in the myotonic dystrophies.
Collapse
|
33
|
Santoro M, Masciullo M, Bonvissuto D, Bianchi MLE, Michetti F, Silvestri G. Alternative splicing of human insulin receptor gene (INSR) in type I and type II skeletal muscle fibers of patients with myotonic dystrophy type 1 and type 2. Mol Cell Biochem 2013; 380:259-65. [PMID: 23666741 DOI: 10.1007/s11010-013-1681-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/02/2013] [Indexed: 12/20/2022]
Abstract
INSR, one of those genes aberrantly expressed in myotonic dystrophy type 1 (DM1) and type 2 (DM2) due to a toxic RNA effect, encodes for the insulin receptor (IR). Its expression is regulated by alternative splicing generating two isoforms: IR-A, which predominates in embryonic tissue, and IR-B, which is highly expressed in adult, insulin-responsive tissues (skeletal muscle, liver, and adipose tissue). The aberrant INSR expression detected in DM1 and DM2 muscles tissues, characterized by a relative increase of IR-A versus IR-B, was pathogenically related to the insulin resistance occurring in DM patients. To assess if differences in the aberrant splicing of INSR could underlie the distinct fiber type involvement observed in DM1 and DM2 muscle tissues, we have used laser capture microdissection (LCM) and RT-PCR, comparing the alternative splicing of INSR in type I and type II muscle fibers isolated from muscle biopsies of DM1, DM2 patients and controls. In the controls, the relative amounts of IR-A and IR-B showed no obvious differences between type I and type II fibers, as in the whole muscle tissue. In DM1 and DM2 patients, both fiber types showed a similar, relative increase of IR-A versus IR-B, as also evident in the whole muscle tissue. Our data suggest that the distinct fiber type involvement in DM1 and DM2 muscle tissues would not be related to qualitative differences in the expression of INSR. LCM can represent a powerful tool to give a better understanding of the pathogenesis of myotonic dystrophies, as well as other myopathies.
Collapse
|
34
|
Heatwole CR, Statland JM, Logigian EL. The diagnosis and treatment of myotonic disorders. Muscle Nerve 2013; 47:632-48. [PMID: 23536309 DOI: 10.1002/mus.23683] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2012] [Indexed: 12/12/2022]
Abstract
Myotonia is a defining clinical symptom and sign common to a relatively small group of muscle diseases, including the myotonic dystrophies and the nondystrophic myotonic disorders. Myotonia can be observed on clinical examination, as can its electrical correlate, myotonic discharges, on electrodiagnostic testing. Research interest in the myotonic disorders continues to expand rapidly, which justifies a review of the scientific bases, clinical manifestations, and numerous therapeutic approaches associated with these disorders. We review the pathomechanisms of myotonia, the clinical features of the dystrophic and nondystrophic myotonic disorders, and the diagnostic approach and treatment options for patients with symptomatic myotonia.
Collapse
Affiliation(s)
- Chad R Heatwole
- Department of Neurology, Box 673, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, New York 14642, USA.
| | | | | |
Collapse
|
35
|
Joyce NC, Oskarsson B, Jin LW. Muscle biopsy evaluation in neuromuscular disorders. Phys Med Rehabil Clin N Am 2013; 23:609-31. [PMID: 22938878 DOI: 10.1016/j.pmr.2012.06.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews the indications for a muscle biopsy, and then gives a step-by-step description of the processes of muscle selection through to interpreting the biopsy report. The article aims to aid the clinician in preparing for a muscle biopsy procedure to avoid common pitfalls and obtain optimal results from this minimally invasive procedure. The basic anatomic structure of normal muscle is reviewed to provide a foundation for understanding common patterns of pathologic change observed in muscle disease and common and disease-specific histopathologic findings are presented, focusing on a select group of neuromuscular diseases.
Collapse
Affiliation(s)
- Nanette C Joyce
- Department of Physical Medicine and Rehabilitation, University of California Davis School of Medicine, 4860 Y Street, Suite 3850, Sacramento, CA 95817, USA.
| | | | | |
Collapse
|
36
|
Terracciano C, Celi M, Lecce D, Baldi J, Rastelli E, Lena E, Massa R, Tarantino U. Differential features of muscle fiber atrophy in osteoporosis and osteoarthritis. Osteoporos Int 2013; 24:1095-100. [PMID: 22535191 PMCID: PMC3572370 DOI: 10.1007/s00198-012-1990-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/26/2012] [Indexed: 11/25/2022]
Abstract
UNLABELLED We demonstrated that osteoporosis is associated with a preferential type II muscle fiber atrophy, which correlates with bone mineral density and reduced levels of Akt, a major regulator of muscle mass. In osteoarthritis, muscle atrophy is of lower extent and related to disease duration and severity. INTRODUCTION Osteoarthritis (OA) and osteoporosis (OP) are associated with loss of muscle bulk and power. In these diseases, morphological studies on muscle tissue are lacking, and the underlying mechanisms of muscle atrophy are not known. The aim of our study was to evaluate the OP- or OA-related muscle atrophy and its correlation with severity of disease. Muscle levels of Akt protein, a component of IGF-1/PI3K/Akt pathway, the main regulator of muscle mass, have been determined. METHODS We performed muscle biopsy in 15 women with OP and in 15 women with OA (age range, 60-85 years). Muscle fibers were counted, measured, and classified by ATPase reaction. By statistical analysis, fiber-type atrophy was correlated with bone mineral density (BMD) in the OP group and with Harris Hip Score (HHS) and disease duration in the OA group. Akt protein levels were evaluated by Western blot analysis. RESULTS Our findings revealed in OP a preferential type II fiber atrophy that inversely correlated with patients' BMD. In OA, muscle atrophy was of lower extent, homogeneous among fiber types and related to disease duration and HHS. Moreover, in OP muscle, the Akt level was significantly reduced as compared to OA muscles. CONCLUSIONS This study shows that in OP, there is a preferential and diffuse type II fiber atrophy, proportional to the degree of bone loss, whereas in OA, muscle atrophy is connected to the functional impairment caused by the disease. A reduction of Akt seems to be one of the mechanisms involved in OP-related muscle atrophy.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biopsy
- Bone Density/physiology
- Female
- Humans
- Middle Aged
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscular Atrophy/etiology
- Muscular Atrophy/pathology
- Muscular Atrophy/physiopathology
- Osteoarthritis, Hip/complications
- Osteoarthritis, Hip/pathology
- Osteoarthritis, Hip/physiopathology
- Osteoporosis, Postmenopausal/complications
- Osteoporosis, Postmenopausal/pathology
- Osteoporosis, Postmenopausal/physiopathology
- Proto-Oncogene Proteins c-akt/metabolism
Collapse
Affiliation(s)
- C Terracciano
- Department of Neurosciences, Tor Vergata University of Rome, Via Montpellier, 1, 00133 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Co-segregation of DM2 with a recessive CLCN1 mutation in juvenile onset of myotonic dystrophy type 2. J Neurol 2012; 259:2090-9. [DOI: 10.1007/s00415-012-6462-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 01/04/2023]
|
38
|
Berg KT, Hunter DG, Bothun ED, Antunes-Foschini R, McLoon LK. Extraocular muscles in patients with infantile nystagmus: adaptations at the effector level. ARCHIVES OF OPHTHALMOLOGY (CHICAGO, ILL. : 1960) 2012; 130:343-9. [PMID: 22411664 PMCID: PMC3759680 DOI: 10.1001/archophthalmol.2011.381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To test the hypothesis that the extraocular muscles (EOMs) of patients with infantile nystagmus have muscular and innervational adaptations that may have a role in the involuntary oscillations of the eyes. METHODS Specimens of EOMs from 10 patients with infantile nystagmus and postmortem specimens from 10 control subjects were prepared for histologic examination. The following variables were quantified: mean myofiber cross-sectional area, myofiber central nucleation, myelinated nerve density, nerve fiber density, and neuromuscular junction density. RESULTS In contrast to control EOMs, infantile nystagmus EOMs had significantly more centrally nucleated myofibers, consistent with cycles of degeneration and regeneration. The EOMs of patients with nystagmus also had a greater degree of heterogeneity in myofiber size than did those of controls, with no difference in mean myofiber cross-sectional area. Mean myelinated nerve density, nerve fiber density, and neuromuscular junction density were also significantly decreased in infantile nystagmus EOMs. CONCLUSIONS The EOMs of patients with infantile nystagmus displayed a distinct hypoinnervated phenotype. This represents the first quantification of changes in central nucleation and myofiber size heterogeneity, as well as decreased myelinated nerve, nerve fiber, and neuromuscular junction density. These results suggest that deficits in motor innervation are a potential basis for the primary loss of motor control. CLINICAL RELEVANCE Improved understanding of the etiology of nystagmus may direct future diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Kathleen T Berg
- Department of Ophthalmology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
39
|
Catalli C, Morgante A, Iraci R, Rinaldi F, Botta A, Novelli G. Validation of sensitivity and specificity of tetraplet-primed PCR (TP-PCR) in the molecular diagnosis of myotonic dystrophy type 2 (DM2). J Mol Diagn 2010; 12:601-6. [PMID: 20616365 DOI: 10.2353/jmoldx.2010.090239] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 2 (DM2, OMIM #602688) is a multisystemic hereditary degenerative disease caused by a tetranucleotide CCTG expansion in the ZNF9 gene. Routine testing strategies for DM2 require the use of Southern blot or long-range PCR, but the presence of very large expansions and wide somatic mosaicism greatly reduce the sensitivity of these reference techniques. We therefore developed and validated a tetraplet-primed PCR (TP-PCR) method to detect the DM2 mutation by testing 87 DM2-positive and 76 DM2-negative previously characterized patients. The specificity of this technique was evaluated including DNA samples from 39 DM1-positive patients. We then attempted a prospective analysis of 50 patients with unknown genotype who referred to our center for diagnostic or presymptomatic tests. Results show that TP-PCR is a fast, reliable, and flexible technique, whose specificity and sensitivity is almost 100%, with no false positive or negative results either in retrospective and prospective applications. We therefore conclude that using this technique, in combination with the short-range PCR, is sufficient to correctly establish the presence or the absence of ZNF9 expanded alleles in the molecular diagnosis of DM2.
Collapse
Affiliation(s)
- Claudio Catalli
- Department of Biopathology and Diagnosing Imaging, Tor Vergata University of Rome, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Santoro M, Modoni A, Masciullo M, Gidaro T, Broccolini A, Ricci E, Tonali PA, Silvestri G. Analysis of MTMR1 expression and correlation with muscle pathological features in juvenile/adult onset myotonic dystrophy type 1 (DM1) and in myotonic dystrophy type 2 (DM2). Exp Mol Pathol 2010; 89:158-68. [PMID: 20685272 DOI: 10.1016/j.yexmp.2010.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/28/2010] [Accepted: 05/17/2010] [Indexed: 02/01/2023]
Abstract
Among genes abnormally expressed in myotonic dystrophy type1 (DM1), the myotubularin-related 1 gene (MTMR1) was related to impaired muscle differentiation. Therefore, we analyzed MTMR1 expression in correlation with CUG-binding protein1 (CUG-BP1) and muscleblind-like1 protein (MBNL1) steady-state levels and with morphological features in muscle tissues from DM1 and myotonic dystrophy type 2 (DM2) patients. Semi-quantitative RT-PCR for MTMR1 was done on muscle biopsies and primary muscle cultures. The presence of impaired muscle fiber maturation was evaluated using immunochemistry for neural cell adhesion molecule (NCAM), Vimentin and neonatal myosin heavy chain. CUG-BP1 and MBNL1 steady-state levels were estimated by Western blot. RNA-fluorescence in situ hybridization combined with immunochemistry for CUG-BP1, MBNL1 and NCAM were performed on serial muscle sections. An aberrant splicing of MTMR1 and a significant amount of NCAM-positive myofibers were detected in DM1 and DM2 muscle biopsies; these alterations correlated with DNA repeat expansion size only in DM1. CUG-BP1 levels were increased only in DM1 muscles, while MBNL1 levels were similar among DM1, DM2 and controls. Normal and NCAM-positive myofibers displayed no differences either in the amount of ribonuclear foci and the intracellular distribution of MBNL1 and CUG-BP1. In conclusion, an aberrant MTMR1 expression and signs of altered myofiber maturation were documented in both DM1 and in DM2 muscle tissues. The more severe dysregulation of MTMR1 expression in DM1 versus DM2, along with increased CUG-BP1 levels only in DM1 tissues, suggests that the mutual antagonism between MBNL1 and CUG-BP1 on alternative splicing is more unbalanced in DM1.
Collapse
Affiliation(s)
- Massimo Santoro
- Department of Neuroscience, Center for Neuromuscular Disorders, Catholic University of Sacred Heart, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the role of muscle biopsy in the current age of genetic testing. RECENT FINDINGS The diagnostic approach to patients with suspected genetically determined myopathies has been altered by recent advances in molecular diagnostic technologies and by the increased number of conditions for which the genetic alterations have been identified. Myopathological aspects can narrow down the differential diagnosis when the clinical phenotype is not informative enough and can help guide the molecular investigation. SUMMARY Here, we review genetic and myopathological aspects of selected genetically determined myopathies.
Collapse
|
42
|
Massa R, Panico MB, Caldarola S, Fusco FR, Sabatelli P, Terracciano C, Botta A, Novelli G, Bernardi G, Loreni F. The myotonic dystrophy type 2 (DM2) gene product zinc finger protein 9 (ZNF9) is associated with sarcomeres and normally localized in DM2 patients' muscles. Neuropathol Appl Neurobiol 2009; 36:275-84. [PMID: 20102514 DOI: 10.1111/j.1365-2990.2010.01068.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AIMS Myotonic dystrophy type 2 (DM2) is caused by a [CCTG]n intronic expansion in the zinc finger protein 9 (ZNF9) gene. As for DM1, sharing with DM2 a similar phenotype, the pathogenic mutation involves a transcribed but untranslated genomic region, suggesting that RNA toxicity may have a role in the pathogenesis of these multisystem disorders by interfering with common cellular mechanisms. However, haploinsufficiency has been described in DM1 and DM2 animal models, and might contribute to pathogenesis. The aim of the present work was therefore to assess ZNF9 protein expression in rat tissues and in human muscle, and ZNF9 subcellular distribution in normal and DM2 human muscles. METHODS Polyclonal anti-ZNF9 antibodies were obtained in rabbit, high pressure liquid chromatography-purified, and used for Western blot, standard and confocal immunofluorescence and immunogold labelling electron microscopy on a panel of normal rat tissues and on normal and DM2 human muscles. RESULTS Western blot analysis showed that ZNF9 is ubiquitously expressed in mammalian tissues, and that its signal is not substantially modified in DM2 muscles. Immunofluorescence studies showed a myofibrillar distribution of ZNF9, and double staining with two non-repetitive epitopes of titin located it in the I bands. This finding was confirmed by the visualization of ZNF9 in close relation with sarcomeric thin filaments by immunogold labelling electron microscopy. ZNF9 distribution was unaltered in DM2 muscle fibres. CONCLUSIONS ZNF9 is abundantly expressed in human myofibres, where it is located in the sarcomeric I bands, and no modification of this pattern is observed in DM2 muscles.
Collapse
Affiliation(s)
- R Massa
- Department of Neurosciences, Tor Vergata University of Rome, Via Montpellier 1, I-00133, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|