1
|
LeMense A, Fleming A, Gomez S, Lewis J, Labanowski H, Fedewa M, Winchester L. Blood flow restriction during high load bench press does not increase bar velocity or cause physiological changes in non-occluded agonist muscles. Clin Physiol Funct Imaging 2025; 45:e70006. [PMID: 40102677 DOI: 10.1111/cpf.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/15/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Blood blow restriction (BFR) can increase peak velocity and power during high load resistance training. However, previous research primarily utilized high occlusion pressures (i.e., greater than 80% arterial occlusion pressure (AOP)), and rarely measured the physiological response during or after the bench press stimuli. The aim of this study was to investigate the application of 50%AOP during acute high load bench press exercise on barbell power, velocity, and the physiological responses to this stimulus. METHODS Resistance trained males (n = 12, 26.2 ± 6.6 yrs., 84.0 ± 10.8 kg, 176.3 ± 10.4 cm) completed a maximum strength test followed by two experimental sessions which consisted of four sets of 4 reps of the barbell bench press at 75%1RM, with or without BFR applied to both arms at 50% AOP. Significance was set to p ≤ 0.05. A series of two-way repeated measures ANOVAs with Bonferroni post hoc corrections tested for potential changes in bar velocity, power, blood lactate, and muscle thickness and activation of the anterior deltoid and pectoralis major. RESULTS There were no main effects for the interaction terms "Condition×Set" or "Condition×Time," nor for "Condition" for any variables (all p > 0.05). There was a "Time" effect for blood lactate (p < 0.001) with lactate increasing from pre- to postexercise, and a main effects for "Set" for mean (p = 0.016) and peak velocity (p = 0.005). CONCLUSION There was no difference in the change in velocity, or physiological responses during high load bench press with or without BFR at 50%AOP. While promising, use of BFR for upper body power may require pressures >50%AOP.
Collapse
Affiliation(s)
- Andrew LeMense
- Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Abby Fleming
- Exercise Science Program, University of South Florida, Tampa, Florida, USA
| | - Samuel Gomez
- Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama, USA
| | - John Lewis
- Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama, USA
| | | | - Michael Fedewa
- Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Lee Winchester
- Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
2
|
Dong K, Tang J, Xu C, Gui W, Tian J, Chun B, Li D, Wang L. The effects of blood flow restriction combined with endurance training on athletes' aerobic capacity, lower limb muscle strength, anaerobic power and sports performance: a meta-analysis. BMC Sports Sci Med Rehabil 2025; 17:24. [PMID: 39987129 PMCID: PMC11847382 DOI: 10.1186/s13102-025-01072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/05/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE To evaluate the effects of blood flow restriction (BFR) combined with endurance training on aerobic capacity, lower limb muscle strength, anaerobic power, and sports performance to supply effective scientific guidance for training. Two reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies. We searched PubMed, Medline, Cochrane, SPORTDiscus and Web of Science databases up to 28 October 2024. Two reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies. We calculated the effect size using standardized mean difference values and the random effects model. The results showed a medium effect size on maximal oxygen uptake (V̇O2max), a large effect size on lower limb muscle strength, a small effect size on anaerobic power and sports performance. In conclusion, while BFR training during endurance training had a significant positive effect on lower limb muscle strength and moderate improvement in V̇O2max, its impact on anaerobic power and sports performance was relatively small. These findings suggest that BFR training may be effective for enhancing muscle strength and aerobic capacity, but its benefits on anaerobic power and sport-specific performance may be limited. Therefore, it is important to carefully design BFR training programs to target specific outcomes.
Collapse
Affiliation(s)
- Kuan Dong
- School of Physical Education, Central China Normal University, Wuhan, China
| | - Jing Tang
- School of Electrical and Electronic EngineeringHuBei University of Technology, Wuhan, China
| | - Chengli Xu
- School of Physical Education, Central China Normal University, Wuhan, China
| | - Wenliang Gui
- School of Physical Education, Central China Normal University, Wuhan, China
| | - Jing Tian
- School of Physical Education, Central China Normal University, Wuhan, China.
| | - Buongo Chun
- Graduate School of Physical Education, Myongji University, Yongin, Republic of Korea
| | - Dong Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Physical Education and Health, Zhaoqing University, Zhaoqing, China
| | - Liqing Wang
- School of Physical Education, Central China Normal University, Wuhan, China
| |
Collapse
|
3
|
He J, Zhang L, Wu Q, Zhang J. Credibility of Blood Flow Restriction Training in Patients With Knee Osteoarthritis: A Systematic Review and Meta-analysis. Orthop J Sports Med 2025; 13:23259671241300145. [PMID: 39906604 PMCID: PMC11789105 DOI: 10.1177/23259671241300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 02/06/2025] Open
Abstract
Background The effectiveness and practicality of blood flow restriction training (BFRT) as a nonsurgical intervention for treating patients with knee injuries are uncertain because of the small size of BFRT trials and inconsistent results. Purpose To conduct a meta-analysis comparing the effectiveness of BFRT versus traditional resistance training in patients with knee osteoarthritis (OA) in terms of pain, muscle strength, functional performance, self-reported function, muscle size, and adverse events during exercise. Study Design Systematic review; Level of evidence: 1. Methods Under the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we searched the Web of Science, PubMed, EMBASE, and other databases for randomized controlled trials of BFRT interventions in patients with knee OA. Methodological and quality evaluations, heterogeneity analysis, and subgroup analysis of the included studies were conducted, and effect sizes were evaluated using mean differences or standardized mean differences (SMDs). Subgroup and sensitivity analyses were used to explore the sources of heterogeneity. Results Of 2826 initial studies, 6 studies (N = 228 patients) were included. The results of the meta-analysis indicated that compared with resistance training, BFRT did not significantly affect pain relief (SMD, -0.02 [95% CI, -0.30 to 0.26]; P = .88), muscle strength (SMD, 0.32 [95% CI, -0.33 to 0.96]; P = .33), functional performance (SMD, 0.25 [95% CI, -0.29 to 0.80]; P = .36), or self-reported function (SMD, -0.252 [95% CI, -0.88 to 0.45]; P = .52). However, BFRT reduced the risk of adverse events (risk ratio, 0.45 [95% CI, 0.20 to 1.01]; P = .05). Subgroup analysis revealed that compared with low-load resistance training, BFRT significantly increased muscle size (SMD, 0.88 [95% CI, 0.09 to 1.68]; P = .02). The quality-of-evidence assessment indicated that the evidence level for the above outcomes was low and that the strength of the recommendation was weak. Conclusion The results of our meta-analysis indicated that compared with resistance training, BFRT did not significantly improve symptom outcomes in patients with knee OA. It is important to acknowledge that the findings were limited by the small number of studies and sample sizes that were included.
Collapse
Affiliation(s)
- Jinrong He
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Lei Zhang
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Quanshuo Wu
- School of Physical Education and Sport Science, South China Normal University, Canton, China
| | - Jialin Zhang
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
4
|
Chang H, Yang X, Chen B, Zhang J. Effects of Different Blood Flow Restriction Training Modes on Body Composition and Maximal Strength of Untrained Individuals. Life (Basel) 2024; 14:1666. [PMID: 39768373 PMCID: PMC11678457 DOI: 10.3390/life14121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The objective of this study was to examine the impacts of absolute cuff pressure blood flow restriction (A-BFR) training and incremental cuff pressure blood flow restriction (I-BFR) training, under equal cuff pressures, on body composition and maximal strength among untrained adults. Additionally, we aimed to compare these effects with those observed in high-load resistance training (HL-RT). METHODS Thirty-three adults without prior professional sports or resistance training experience were recruited and randomly assigned to three groups (n = 11 per group) for an 8-week training program, held three times weekly. The A-BFR group trained with a 20% 1RM load and a cuff occlusion pressure set at 190 mmHg. The I-BFR group initiated training with an occlusion pressure of 160 mmHg, which incrementally increased by 20 mmHg every two weeks, with other conditions mirroring those of the A-BFR group. The HL-RT group trained with a 70% 1RM load. RESULTS All three groups demonstrated a statistically significant improvement in lower-body maximal strength (p < 0.01), with no significant differences observed among the groups (p > 0.05). A notable increase in left-leg muscle mass was seen across all groups (p < 0.05). However, total muscle mass, right-leg muscle mass, fat-free mass, BMI, bone mineral density, and bone mineral content remained relatively unchanged (p > 0.05), with no significant differences among the groups (p > 0.05). Only the HL-RT group exhibited a significant increase in left-leg thigh circumference (p < 0.05), while right-leg thigh circumference remained stable (p > 0.05), with no significant intergroup differences (p > 0.05). CONCLUSIONS While A-BFR and I-BFR did not yield statistically significant differences in overall training outcomes, A-BFR demonstrated a slightly stronger potential. A-BFR and I-BFR achieved comparable gains in muscle strength and improvements in body composition to those seen with HL-RT. However, HL-RT demonstrated more significant improvements in leg circumference.
Collapse
Affiliation(s)
- Hualong Chang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xudong Yang
- Department of Sports Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Biao Chen
- Renji College, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianli Zhang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Bergamasco JGA, Bittencourt D, Silva DG, Biazon TMPDC, Soligon SD, Oliveira RM, Libardi CA. Individual muscle hypertrophy in high-load resistance training with and without blood flow restriction: A near-infrared spectroscopy approach. J Sports Sci 2024:1-7. [PMID: 39675016 DOI: 10.1080/02640414.2024.2437588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
We aimed to compare individual hypertrophic responses to high-load resistance training (HL-RT) or high-load with blood flow restriction (HL-BFR). Furthermore, we investigated whether greater responsiveness to one of the protocols could be explained by acute changes in blood deoxyhemoglobin concentration (HHb) and total hemoglobin concentration (tHb) (proxy markers of metabolic stress). Ten untrained participants had their legs randomized into both HL-RT and HL-BFR and underwent 10 weeks of training. Muscle cross-sectional area (mCSA) was measured at baseline and post training, while HHb and tHb during the final session. Using a threshold of 2 × typical errors (3.24%) to compare protocols, five participants showed greater mCSA increases after HL-RT (16.44 ± 7.90%) compared to HL-BFR (10.74 ± 7.12%, p = 0.0054) and five did not respond better to HL-RT (8.95 ± 10.83%) compared to HL-BFR (13.33 ± 8.59%) (p = 0.3105). Additionally, HL-RT induced lower HHb (5855.78 ± 12905.99; p = 0.0101) and tHb (-43169.70 ± 37793.17; p = 0.0030) AUC values compared to HL-BFR (HHb: 39254.80 ± 27020.15; tHb: 46309.40 ± 31613.97). In conclusion, despite the higher levels of metabolic stress markers, most participants did not present greater muscle hypertrophy by combining blood flow restriction with HL-RT.
Collapse
Affiliation(s)
- João Guilherme Almeida Bergamasco
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Diego Bittencourt
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Deivid Gomes Silva
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Thaís Marina Pires de Campos Biazon
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Samuel Domingos Soligon
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Ramon Martins Oliveira
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Cleiton Augusto Libardi
- MUSCULAB - Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| |
Collapse
|
6
|
Jagim AR, Schuler J, Szymanski E, Khurelbaatar C, Carpenter M, Fields JB, Jones MT. Acute Responses of Low-Load Resistance Exercise with Blood Flow Restriction. J Funct Morphol Kinesiol 2024; 9:254. [PMID: 39728238 DOI: 10.3390/jfmk9040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Blood flow restriction (BFR) is a popular resistance exercise technique purported to increase metabolic stress and augment training adaptations over time. However, short-term use may lead to acute neuromuscular fatigue and higher exertion ratings. Objective: The purpose of the current study was to examine acute physiological responses to low-load resistance exercise utilizing BFR compared to higher-load, non-BFR resistance exercise. Methods: Recreationally trained males (n = 6) and females (n = 7) (mean ± standard deviation, age: 20 ± 1 yrs.; height: 172 ± 8 cm; weight: 73 ± 11 kg; BMI: 24.4 ± 2.2 kg·m-2; training experience: 4 ± 2 yrs.) had limb occlusion pressure determined (50%; right leg: 118 ± 11 mmHg; left leg: 121 ± 13 mmHg) using an automated, self-inflating cuff system during baseline testing. In subsequent sessions, using a randomized, cross-over design, participants completed one of two experimental conditions: (1) Low-load + BFR and (2) High load + non-BFR. In both conditions, participants completed one set of back squats at either 30% (BFR) or 60% (non-BFR) of an estimated 1RM for a max of 30 repetitions, followed by three additional sets with the same loads and a target of 15 repetitions per set. Blood lactate and countermovement jump (CMJ) height were measured pre- and post-back squat. Ratings of perceived exertion (RPE) were assessed following each set. Results: When collapsed across all sets, participants completed significantly more total repetitions in the BFR condition compared to non-BFR (75.0 ± 0.0 vs. 68.23 ± 9.27 reps; p = 0.015; ES: 1.03), but a lower training load volume (2380 ± 728 vs. 4756 ± 1538 kg; p < 0.001; ES: 1.97). There was a significant time-by-condition interaction (p < 0.001), with a greater increase in blood lactate occurring from baseline to post-back squat in the non-BFR condition (11.61 mmol/L, 95%CI: 9.93, 13.28 mmol/L) compared to BFR (5.98 mmol/L, 95%CI: 4.30, 7.65 mmol/L). There was another significant time-by-condition interaction (p = 0.043), with a greater reduction in CMJ occurring in the non-BFR condition (-6.01, 95%CI: -9.14, -2.88 cm; p < 0.001) compared to BFR (-1.50, 95%CI: -1.50, 4.51 cm; p = 0.312). Conclusions: Utilizing a low-load BFR protocol may allow for a higher training volume, yet lower metabolic stress and reduce neuromuscular fatigue compared to lifting at a higher load without the use of BFR.
Collapse
Affiliation(s)
- Andrew R Jagim
- Sports Medicine, Mayo Clinic Health System, Onalaska, WI 54650, USA
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
- Patriot Performance Laboratory, Frank Pettrone Center for Sports Performance, George Mason University, Fairfax, VA 22030, USA
| | - Jordan Schuler
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - Elijah Szymanski
- Medical College of Wisconsin-Central Wisconsin, Wausau, WI 54401, USA
| | - Chinguun Khurelbaatar
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - Makenna Carpenter
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - Jennifer B Fields
- Patriot Performance Laboratory, Frank Pettrone Center for Sports Performance, George Mason University, Fairfax, VA 22030, USA
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Margaret T Jones
- Patriot Performance Laboratory, Frank Pettrone Center for Sports Performance, George Mason University, Fairfax, VA 22030, USA
- Sport, Recreation, and Tourism Management, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
7
|
Bubeck F, Tomalka A, Siebert T, Röhrle O, Gizzi L. Altered muscle fibre activation in an antagonistic muscle pair due to perturbed afferent feedback caused by blood flow restriction. J Electromyogr Kinesiol 2024; 79:102922. [PMID: 39244815 DOI: 10.1016/j.jelekin.2024.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
PURPOSE This study aimed to better understand the coping strategy of the neuromuscular system under perturbed afferent feedback. To this end, the neuromechanical effects of transient blood flow restriction (BFR) compared to atmospheric pressure were investigated in an antagonistic muscle pair. METHODS Perceived discomfort and neuromechanical parameters (torque and high-density electromyography) were recorded during submaximal isometric ankle dorsiflexion before, during and after BFR. The tibialis anterior and gastrocnemius lateralis muscles were studied in 14 healthy young adults. RESULTS Discomfort increased during BFR and decreased to baseline level afterwards. The exerted torque and the co-activation index remained constant, whereas the EMG signal energy increased significantly during BFR. Coherence analysis of the delta band remained constant, whereas the alpha band shows an increase during BFR. Median frequency and muscle fibre conduction velocity showed a positive trend during the first minutes of BFR before significantly decreasing. Both parameters exceeded baseline values after cuff deflation. CONCLUSION Perturbed afferent feedback leads to altered neuromechanical parameters. We assume that increased central drive is required to maintain force output, resulting in changed muscle fibre activity. Glycolytic fast-switch fibres are only active for a short time due to oxygen deprivation and hyperacidity, but fatigue effects predominate in the long term.
Collapse
Affiliation(s)
- Franziska Bubeck
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany.
| | - André Tomalka
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Leonardo Gizzi
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany; Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany; Department of Biomechatronic Systems, Fraunhofer Institute for Manufacturing Engineering and Automation, Stuttgart, Germany
| |
Collapse
|
8
|
Feng M, Li J, Zhao J, Pan X, Wang M, Han Q. Effect of blood flow restriction training on health promotion in middle-aged and elderly women: a systematic review and meta-analysis. Front Physiol 2024; 15:1392483. [PMID: 39015223 PMCID: PMC11249765 DOI: 10.3389/fphys.2024.1392483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Background: Physical activities play an important role in alleviating the aging problem and improving the physical fitness of middle-aged and elderly people. Blood flow restriction (BFR) training, also known as pressure training, has been widely used to improve athletes' performance and rehabilitation, which is a relatively novel exercise method for improving the physical fitness of middle-aged and elderly people. The purpose of this study is to conduct a systematic review and meta-analysis of domestic and foreign randomized controlled trial studies on BFR training for middle-aged and elderly women, further explore the impact of BFR training on health status. Methods: Meta-analysis was performed according to PRISMA standards, and charts were drawn using Review Manager 5.4 and Stata 17 software. In this study, the keywords such as "pressure training", "blood restriction training", "elderly women", "KAATSU", "blood flow restriction training" were used on CNKI, China Science and Technology Journal Database, PubMed, Embase, Web of Science, Cochrane Library, EBSCO, Scopus, and randomized controlled trials were searched in all languages. The search was performed from the establishment of database to 2 January 2024. The results of the combined effect were represented by standard mean differences. Results: Among the 681 literature retrieved, six eligible English articles were included in this meta-analysis. The overall effect test of the combined effect was performed on 10 groups of data, and the results were SMD = -0.18 (95%CI: -0.91 to 0.56; p > 0.05), the maximum dynamic force of 1RM SMD = 0.97 (95%CI: 0.35 to 1.58; p < 0.05), leg compression force SMD = -0.10 (95%CI: -0.78 to 0.57; p > 0.05), heart rate SMD = 0.33 (95%CI: -2.50 to 3.17; p > 0.05), systolic blood pressure (SBP) SMD = -1.44 (95%CI: -2.17 to -0.70; p < 0.05), diastolic blood pressure (DBP) SMD = -0.69 (95%CI: 2.54 to 1.15; p > 0.05). Conclusion: BFR training had a significant effect on the increase of the maximum dynamic force of 1RM and decrease of blood pressure in middle-aged and elderly women, but there was no significant difference found in heart rate and leg compression force. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42024491642.
Collapse
Affiliation(s)
- Mengyun Feng
- China Ice Sport College, Beijing Sport University, Beijing, China
| | - Jian Li
- College of Sports Coaching, Beijing Sport University, Beijing, China
| | - Jinzhen Zhao
- College of Sports Coaching, Beijing Sport University, Beijing, China
| | - Xianqi Pan
- College of Sports Coaching, Beijing Sport University, Beijing, China
| | - Mengyu Wang
- College of Sports Coaching, Beijing Sport University, Beijing, China
| | - Qi Han
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, China
| |
Collapse
|
9
|
Li R, Chee CS, Kamalden TF, Ramli AS, Yang K. Effects of blood flow restriction training on sports performance in athletes: a systematic review with meta-analysis. J Sports Med Phys Fitness 2024; 64:55-65. [PMID: 37902798 DOI: 10.23736/s0022-4707.23.15220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Blood flow restriction training (BFRT) is an effective training method to improve sports performance in healthy athletes. Nevertheless, a systematic review with meta-analysis regarding how BFRT affects sports performance in athletes is still lacking. Consequently, the study attempted to expand and consolidate the prior studies regarding the effect of BFRT on technical and physical performance in athletes. EVIDENCE ACQUISITION This study was based on PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyzes) statement guidelines for a systematic review of the academic databases Scopus, Web of Science, PubMed, EBSCOhost (SportDiscus), and Google Scholar. The PEDro scale was used to assess the methodological quality of the included publications, which ranged from moderate to high quality. The systematic review protocol was registered on inplasy.com (INPLASY202380049). EVIDENCE SYNTHESIS Out of 249 studies identified, 93 articles were evaluated as eligible, and after the screening, 18 studies were finally included in this systematic review. Meta-analysis results showed a significant enhancement on vertical jump height in the BFRT group compared to the control group (SMD=1.39, 95% CI=0.30-2.49, P=0.01). BFRT was able to significantly increase maximal oxygen uptake (SMD=1.65, 95% CI=0.56-2.74, P<0.01). While no significant improvement in sprint time was observed (SMD= -0.18, 95% CI=-1.18-0.82, P=0.115). CONCLUSIONS The finding suggests that BFRT is beneficial to athletes as this training method can be effective in enhancing physical and technical performance in athletes. Nevertheless, further analysis needs to be conducted to fully determine the effectiveness of the moderators of the intervention on sports performance.
Collapse
Affiliation(s)
- Rui Li
- Department of Sport Studies, Faculty of Educational Studies, Putra Malaysia University, Selangor, Malaysia
| | - Chen S Chee
- Department of Sport Studies, Faculty of Educational Studies, Putra Malaysia University, Selangor, Malaysia -
| | - Tengku F Kamalden
- Department of Sport Studies, Faculty of Educational Studies, Putra Malaysia University, Selangor, Malaysia
| | - Alif S Ramli
- Department of Sport Studies, Faculty of Educational Studies, Putra Malaysia University, Selangor, Malaysia
| | - Kun Yang
- Department of Sport Studies, Faculty of Educational Studies, Putra Malaysia University, Selangor, Malaysia
| |
Collapse
|
10
|
Hackett DA, Wang B, Tran DL. Effect of Blood Flow Restriction during the Rest Periods of Squats on Accuracy of Estimated Repetitions to Failure. Sports (Basel) 2023; 12:14. [PMID: 38251288 PMCID: PMC10820122 DOI: 10.3390/sports12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
This study investigated the impact of resistance training with blood flow restriction during rest (BFRrest) on the accuracy of estimated repetitions to failure (ERF). It also explored associations between error in ERF and mean concentric velocity (MCV) along with physiological responses. In a randomised cross-over study, 18 male trainers (23.4 ± 2.7 years) performed three sets of squats at 70% of their one-repetition maximum until failure. One session integrated BFRrest, while another employed traditional passive inter-set rest (TRAD) during the 3 min inter-set rest intervals. Cardiorespiratory and metabolic measures were taken in the inter-set recovery periods. The results revealed no significant differences between BFRrest and TRAD in terms of ERF and error in ERF. A notable set effect for ERF was observed, with a greater ERF during set 1 compared to sets 2 and 3 (p < 0.001). Additionally, a lower error in ERF was observed during sets 2 and 3 compared to set 1 (p < 0.001). Error in ERF were strongly associated with the respiratory exchange ratio, and moderately associated with end-tidal carbon dioxide partial pressure, carbon dioxide output, and MCV variables. Notably, the precision of ERF seems to be predominantly influenced by indicators of physiological stress rather than the incorporation of BFRrest.
Collapse
Affiliation(s)
- Daniel A. Hackett
- Discipline of Exercise and Sports Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia; (B.W.); (D.L.T.)
| | - Boliang Wang
- Discipline of Exercise and Sports Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia; (B.W.); (D.L.T.)
| | - Derek L. Tran
- Discipline of Exercise and Sports Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia; (B.W.); (D.L.T.)
- Central Clinical School, The University of Sydney School of Medicine, Sydney 2006, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney 2006, Australia
| |
Collapse
|
11
|
TANAKA TSUKASA, KUBOTA ATSUSHI, OZAKI HAYAO, NISHIO HIROFUMI, NOZU SHOJIRO, TAKAZAWA YUJI. Effect of Isokinetic Training with Blood Flow Restriction During Rest Interval Versus Exercise on Muscle Strength, Hypertrophy, and Perception: A Pilot Study. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:477-484. [PMID: 38855068 PMCID: PMC11153072 DOI: 10.14789/jmj.jmj23-0014-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/07/2023] [Indexed: 06/11/2024]
Abstract
Objectives This study aimed to determine the effects of high-intensity isokinetic training with blood flow restriction during rest interval between set (rBFR) versus during exercise (eBFR) on muscle hypertrophy and increasing muscle strength and determine whether BFR-induced exercise pain is suppressed by rBFR. Materials and Methods Fourteen arms (7 participants) were recruited for the study. We conducted the following interventions for each arm: eBFR (n=4), rBFR (n=5), and exercise only (CON, n=5). The participants performed elbow flexion training with a BIODEX device twice weekly for 8 weeks. This study training consisted of total four sets; each was performed until <50% peak torque was achieved twice consecutively. BFR pressure was set at 120 mmHg. Elbow flexor peak torque during concentric contraction (CC), isometric contraction (IM), and muscle cross-sectional area (CSA) were measured before and after the intervention. Numerical rating scale scores used to assess pain during exercise were determined during training. Results Peak torque at the CC increased in the rBFR (p<0.05) and IM increased in the rBFR and CON (p<0.05), while CSA increased in the rBFR and CON (p<0.001). The pain during exercise was severe in the eBFR and moderate in the rBFR and CON. Conclusions This study's showed that high-intensity isokinetic training with rBFR did not have a synergistic effect on increasing muscle strength and muscle size. Additionally, high-intensity isokinetic training with BFR when it may be best not to perform it during exercise, because it was induces severe pain and may inhibit increases in muscle strength.
Collapse
Affiliation(s)
| | | | | | | | | | - YUJI TAKAZAWA
- Corresponding author: Yuji Takazawa, Department of Sports Medicine, Faculty of Medicine, Juntendo University, 2-3-15 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, TEL: +81-3-3813-3111 E-mail:
| |
Collapse
|
12
|
Chang H, Yan J, Lu G, Chen B, Zhang J. Muscle strength adaptation between high-load resistance training versus low-load blood flow restriction training with different cuff pressure characteristics: a systematic review and meta-analysis. Front Physiol 2023; 14:1244292. [PMID: 37693006 PMCID: PMC10485702 DOI: 10.3389/fphys.2023.1244292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose: In this systematic review and meta-analysis, blood flow restriction (BFR) with low-load resistance training (BFR-RT) was compared with high-load resistance training (HL-RT) on muscle strength in healthy adults. The characteristics of cuff pressure suitable for muscle strength gain were also investigated by analyzing the effects of applying different occlusion pressure prescriptions and cuff inflation patterns on muscle strength gain. Methods: Literature search was conducted using PubMed, Ovid Medline, ProQuest, Cochrane Library, Embase, and Scopus databases to identify literature published until May 2023. Studies reporting the effects of BFR-RT interventions on muscle strength gain were compared with those of HL-RT. The risk of bias in the included trials was assessed using the Cochrane tool, followed by a meta-analysis to calculate the combined effect. Subgroup analysis was performed to explore the beneficial variables. Results: Nineteen articles (42 outcomes), with a total of 458 healthy adults, were included in the meta-analysis. The combined effect showed higher muscle strength gain with HL-RT than with BFR-RT (p = 0.03, SMD = -0.16, 95% CI: -0.30 to -0.01). The results of the subgroup analysis showed that the BFR-RT applied with incremental and individualized pressure achieved muscle strength gain similar to the HL-RT (p = 0.8, SMD = -0.05, 95% CI: -0.44 to 0.34; p = 0.68, SMD = -0.04, 95% CI: -0.23 to 0.15), but muscle strength gain obtained via BFR-RT applied with absolute pressure was lower than that of HL-RT (p < 0.05, SMD = -0.45, 95% CI: -0.71 to -0.19). Furthermore, muscle strength gain obtained by BFR-RT applied with intermittent pressure was similar to that obtained by HL-RT (p = 0.88, SMD = -0.02, 95% CI: -0.27 to 0.23), but muscle strength gain for BFR-RT applied with continuous pressure showed a less prominent increase than that for HL-RT (p < 0.05, SMD = -0.3, 95% CI: -0.48 to -0.11). Conclusion: In general, HL-RT produces superior muscle strength gains than BFR-RT. However, the application of individualized, incremental, and intermittent pressure exercise protocols in BFR-RT elicits comparable muscle strength gains to HL-RT. Our findings indicate that cuff pressure characteristics play a significant role in establishing a BFR-RT intervention program for enhancing muscle strength in healthy adults. Clinical Trial Registration: https://www.crd.york.ac.uk/PROSPERO/#recordDetails; Identifier: PROSPERO (CRD42022364934).
Collapse
Affiliation(s)
- Hualong Chang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Jing Yan
- College of Education, Anyang Normal University, Anyang, China
| | - Guiwei Lu
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Biao Chen
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Jianli Zhang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
13
|
Hornikel B, Saffold KS, Esco MR, Mota JA, Fedewa MV, Wind SA, Adams TL, Winchester LJ. Acute Responses to High-Intensity Back Squats with Bilateral Blood Flow Restriction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3555. [PMID: 36834246 PMCID: PMC9959773 DOI: 10.3390/ijerph20043555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
This study examined the acute effects of high-intensity resistance exercise with blood flow restriction (BFR) on performance and fatigue, metabolic stress, and markers of inflammation (interleukin-6 (IL-6)), muscle damage (myoglobin), angiogenesis (vascular endothelial growth factor (VEGF)). Thirteen resistance-trained participants (four female, 24.8 ± 4.7 years) performed four sets of barbell back-squats (75% 1RM) to failure under two conditions: blood flow restriction (BFR, bilateral 80% occlusion pressure) and control (CTRL). Completed repetitions and pre-post-exercise changes in maximal voluntary isometric contractions, countermovement jump, barbell mean propulsive velocity, and surface electromyography were recorded. Pre-post blood lactate (BLa) and venous blood samples for analysis of IL-6, myoglobin, and VEGF were collected. Ratings of perceived exertion (RPE) and pain were recorded for each set. Fewer repetitions were performed during BFR (25.5 ± 9.6 reps) compared to CTRL (43.4 ± 14.2 reps, p < 0.001), with greater repetitions performed during sets 1, 2, and 4 (p < 0.05) in CTRL. Although RPE between conditions was similar across all sets (p > 0.05), pain was greater in BFR across all sets (p < 0.05). Post-exercise fatigue was comparable between conditions. BLa was significantly greater in CTRL compared to BFR at two minutes (p = 0.001) but not four minutes post-exercise (p = 0.063). IL-6 was significantly elevated following BFR (p = 0.011). Comparable increases in myoglobin (p > 0.05) and no changes in VEGF were observed (p > 0.05). BFR increases the rate of muscular fatigue during high-intensity resistance exercise and acutely enhances IL-6 response, with significantly less total work performed, but increases pain perception, limiting implementation.
Collapse
Affiliation(s)
- Bjoern Hornikel
- Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Keith S. Saffold
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Michael R. Esco
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jacob A. Mota
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael V. Fedewa
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Stefanie A. Wind
- Department of Educational Studies in Psychology, Research Methodology, and Counseling, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Tiffany L. Adams
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lee J. Winchester
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
14
|
Reina-Ruiz ÁJ, Martínez-Cal J, Molina-Torres G, Romero-Galisteo RP, Galán-Mercant A, Carrasco-Vega E, González-Sánchez M. Effectiveness of Blood Flow Restriction on Functionality, Quality of Life and Pain in Patients with Neuromusculoskeletal Pathologies: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1401. [PMID: 36674158 PMCID: PMC9858892 DOI: 10.3390/ijerph20021401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Blood flow restriction is characterized as a method used during exercise at low loads of around 20-40% of a repetition maximum, or at a low-moderate intensity of aerobic exercise, in which cuffs that occlude the proximal part of the extremities can partially reduce arterial flow and fully restrict the venous flow of the musculature in order to achieve the same benefits as high-load exercise. OBJECTIVE The main objective of this systematic literature review was to analyze the effects of BFR intervention on pain, functionality, and quality of life in subjects with neuromusculoskeletal pathologies. METHODS The search to carry out was performed in PubMed, Cochrane, EMBASE, PEDro, CINHAL, SPORTDiscus, Trip Medical Database, and Scopus: "kaatsu" OR "ischemic training" OR "blood flow restriction" OR "occlusion resistance training" OR "vascular occlusion" OR "vascular restriction". RESULTS After identifying 486 papers and eliminating 175 of them due to duplication and 261 after reading the title and abstract, 50 papers were selected. Of all the selected articles, 28 were excluded for not presenting a score equal to or higher than 6 points on the PEDro scale and 8 for not analyzing the target outcome variables. Finally, 14 papers were selected for this systematic review. CONCLUSIONS The data collected indicate that the blood flow restriction tool is a therapeutic alternative due to its effectiveness under different exercise modalities. The benefits found include decreases in pain thresholds and improvement in the functionality and quality of life of the neuro-musculoskeletal patient during the first six weeks. However, the results provided by this tool are still not clear for medium- and long-term interventions.
Collapse
Affiliation(s)
- Álvaro Jesús Reina-Ruiz
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
| | - Jesús Martínez-Cal
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, 04120 Almería, Spain
| | - Guadalupe Molina-Torres
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almería, 04120 Almería, Spain
| | - Rita-Pilar Romero-Galisteo
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
- Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain
| | - Alejandro Galán-Mercant
- Institute of Biomedicine of Cádiz (INIBICA), 11009 Cádiz, Spain
- MOVE-IT Research Group, Department of Nursing and Physiotherapy, Faculty of Health Sciences, University of Cádiz, 11009 Cádiz, Spain
| | - Elio Carrasco-Vega
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
- Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain
| | - Manuel González-Sánchez
- Department of Physiotherapy, Faculty of Health Sciences, University of Málaga, 29071 Málaga, Spain
- Institute of Biomedicine of Málaga (IBIMA), 29010 Málaga, Spain
| |
Collapse
|
15
|
Ferlito JV, Rolnick N, Ferlito MV, De Marchi T, Deminice R, Salvador M. Acute effect of low-load resistance exercise with blood flow restriction on oxidative stress biomarkers: A systematic review and meta-analysis. PLoS One 2023; 18:e0283237. [PMID: 37083560 PMCID: PMC10121002 DOI: 10.1371/journal.pone.0283237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/03/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The purpose of this review was to analyze the acute effects of low-load resistance exercise with blood flow restriction (LLE-BFR) on oxidative stress markers in healthy individuals in comparison with LLE or high-load resistance exercise (HLRE) without BFR. MATERIALS AND METHODS A systematic review was performed in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. These searches were performed in CENTRAL, SPORTDiscus, EMBASE, PubMed, CINAHL and Virtual Health Library- VHL, which includes Lilacs, Medline and SciELO. The risk of bias and quality of evidence were assessed through the PEDro scale and GRADE system, respectively. RESULTS Thirteen randomized clinical trials were included in this review (total n = 158 subjects). Results showed lower post-exercise damage to lipids (SMD = -0.95 CI 95%: -1.49 to -0. 40, I2 = 0%, p = 0.0007), proteins (SMD = -1.39 CI 95%: -2.11 to -0.68, I2 = 51%, p = 0.0001) and redox imbalance (SMD = -0.96 CI 95%: -1.65 to -0.28, I2 = 0%, p = 0.006) in favor of LLRE-BFR compared to HLRE. HLRE presents higher post-exercise superoxide dismutase activity but in the other biomarkers and time points, no significant differences between conditions were observed. For LLRE-BFR and LLRE, we found no difference between the comparisons performed at any time point. CONCLUSIONS Based on the available evidence from randomized trials, providing very low or low certainty of evidence, this review demonstrates that LLRE-BFR promotes less oxidative stress when compared to HLRE but no difference in levels of oxidative damage biomarkers and endogenous antioxidants between LLRE. TRIAL REGISTRATION Register number: PROSPERO number: CRD42020183204.
Collapse
Affiliation(s)
- João Vitor Ferlito
- Oxidative Stress and Antioxidant Laboratory, Postgraduate Program in Biotechnology, University of Caxias Do Sul, Caxias do Sul, Brazil
| | - Nicholas Rolnick
- The Human Performance Mechanic, Lehman College, New York, NY, United States of America
| | - Marcos Vinicius Ferlito
- Oxidative Stress and Antioxidant Laboratory, Postgraduate Program in Biotechnology, University of Caxias Do Sul, Caxias do Sul, Brazil
| | - Thiago De Marchi
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Rafael Deminice
- Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Mirian Salvador
- Oxidative Stress and Antioxidant Laboratory, Postgraduate Program in Biotechnology, University of Caxias Do Sul, Caxias do Sul, Brazil
| |
Collapse
|
16
|
Rolnick N, Kimbrell K, de Queiros V. Beneath the cuff: Often overlooked and under-reported blood flow restriction device features and their potential impact on practice-A review of the current state of the research. Front Physiol 2023; 14:1089065. [PMID: 37064884 PMCID: PMC10099250 DOI: 10.3389/fphys.2023.1089065] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 04/18/2023] Open
Abstract
Training with blood flow restriction (BFR) has been shown to be a useful technique to improve muscle hypertrophy, muscle strength and a host of other physiological benefits in both healthy and clinical populations using low intensities [20%-30% 1-repetition maximum (1RM) or <50% maximum oxygen uptake (VO2max)]. However, as BFR training is gaining popularity in both practice and research, there is a lack of awareness for potentially important design characteristics and features associated with BFR cuff application that may impact the acute and longitudinal responses to training as well as the safety profile of BFR exercise. While cuff width and cuff material have been somewhat addressed in the literature, other cuff design and features have received less attention. This manuscript highlights additional cuff design and features and hypothesizes on their potential to impact the response and safety profile of BFR. Features including the presence of autoregulation during exercise, the type of bladder system used, the shape of the cuff, the set pressure versus the interface pressure, and the bladder length will be addressed as these variables have the potential to alter the responses to BFR training. As more devices enter the marketplace for consumer purchase, investigations specifically looking at their impact is warranted. We propose numerous avenues for future research to help shape the practice of BFR that may ultimately enhance efficacy and safety using a variety of BFR technologies.
Collapse
Affiliation(s)
- Nicholas Rolnick
- The Human Performance Mechanic, CUNY Lehman College, NY, United States
- *Correspondence: Nicholas Rolnick,
| | - Kyle Kimbrell
- Owens Recovery Science, San Antonio, TX, United States
| | - Victor de Queiros
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), NatalRN, Brazil
| |
Collapse
|
17
|
Yang Q, He XJ, Li YD, Zhang YZ, Ding CS, Li GX, Sun J. Dose-response relationship of blood flow restriction training on isometric muscle strength, maximum strength and lower limb extensor strength: A meta-analysis. Front Physiol 2022; 13:1046625. [PMID: 36589415 PMCID: PMC9800008 DOI: 10.3389/fphys.2022.1046625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
Objective: To perform a meta-analysis on the efficacy and dose-response relationship of blood flow restriction training on muscle strength reported worldwide. Methods: Thirty-four eligible articles with a total sample size of 549 participants were included in the meta-analysis. This study was performed using the method recommended by the Cochrane Handbook (https://training.cochrane.org/handbook), and the effect size was estimated using the standardized mean difference (SMD) and using RevMan 5.3 software (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, 2014). Results: The meta-analysis showed that blood flow restriction training increased the lower limb extensor muscle strength [SMD = 0.72, 95%; confidence interval (CI): 0.43 to 1.00, p < 0.01], knee extensor isokinetic torque SMD = 0.48 [95% CI: 0.24 to 0.73, p < 0.01], knee flexor isokinetic torque SMD = 0.39 [95% CI: 0.11 to 0.67, p < 0.01], and squat one-repetition maximum [SMD = 0.28, 95% CI: 0.01 to 0.55, p < 0.01]. There was no publication bias. Evaluation of dose-response relationship showed that the training load, mode, frequency, duration, and maximum cuff pressure affected the muscle function. Conclusion: blood flow restriction training. 16 significantly improved lower limb muscle strength, and the optimal training conditions consisted of a weight load smaller or equal to 30% of one-repetition maximum, training duration longer than 4 weeks, frequency of more than 3 times/week, and maximum cuff pressure lower than 200 mmHg. Systematic Review Registration: website, identifier registration number.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Sun
- *Correspondence: Guo Xing Li, ; Jian Sun,
| |
Collapse
|
18
|
Li S, Guo R, Yu T, Li S, Han T, Yu W. Effect of High-Intensity Interval Training Combined with Blood Flow Restriction at Different Phases on Abdominal Visceral Fat among Obese Adults: A Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11936. [PMID: 36231251 PMCID: PMC9565218 DOI: 10.3390/ijerph191911936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND High-intensity interval training (HIIT) and blood flow restriction (BFR) represent a critical nonpharmacological strategy to reduce the excess deposition of visceral fat, as well as relevant complications, among obese populations. Applying BFR at diverse phases may have different effects. Therefore, the exercise program of this study combined HIIT with BFR, so as to explore the effect of BFR on abdominal visceral fat area and its mechanism in different periods of HIIT. The aim is to provide a more effective exercise prescription for obese people who want to reduce visceral fat quickly. METHODS This study was a randomized controlled trial involving 72 obese adults. One week before intervention, both regional and whole-body fat masses, abdominal subcutaneous and visceral fat areas, variables of blood metabolism, and VO2max were recorded. Additionally, subjects with a matched fat percentage were randomized as a no-training control (C), HIIT (H), HIIT with BFR during interval (I), and HIIT with BFR during exercise (E) groups for 24 sessions within a 12-week period, using a cycle ergometer. During session one, this study recorded blood lactate, specific serum lipolytic hormones, rating of perceived exertion (RPE), and exercise heart rate (HR) and compared them among three groups. The baseline tests were repeated at 1 week after intervention. RESULTS There was no significant statistical difference in the indicators of each group at baseline (p > 0.05). The improvement of trunk fat mass and fat percentage of the I and E groups markedly increased relative to the H group (p < 0.05). Meanwhile, the I group had improved android fat mass and whole-body fat mass relative to group H (p < 0.05). Those exercise groups had markedly improved indices compared with the C group (p < 0.05). Additionally, the reduction in the I group had remarkably superior abdominal visceral fat areas (AVFA) to the H and E groups (p < 0.05). Immediately and 30 min following exercise, the E and I groups had remarkably increased growth hormone (GH) compared with the H group (p < 0.05). After exercise, the I group showed markedly increased epinephrine (EPI) compared with the H group (p < 0.05). The LA level in the I group evidently increased relative to the E group (p < 0.05), while that in the E group evidently increased compared with the H group (p < 0.05). CONCLUSION Compared with HIIT alone, HIIT with BFR can better improve the body-fat level and glucose metabolism. HIIT with BFR in the interval phase better reduces the abdominal visceral-fat level than in the exercise phase, which may be due to the increase in lipolytic hormone level caused by the higher physiological load.
Collapse
Affiliation(s)
- Shuoqi Li
- College of Physical Education, Yangzhou University, Yangzhou 225009, China
| | - Rong Guo
- School of Foreign Languages, Ludong University, Yantai 264025, China
| | - Tao Yu
- Department of Physical Education, Shandong Weihai Sports Training Center, Weihai 264400, China
| | - Shiming Li
- Department of Physical Education, Ocean University of China, Qingdao 266100, China
| | - Tenghai Han
- Department of Physical Education, Weifang Medical University, Weifang 261053, China
| | - Wenbing Yu
- Department of Physical Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
19
|
Zheng H, Liu J, Wei J, Chen H, Tang S, Zhou Z. The Influence on Post-Activation Potentiation Exerted by Different Degrees of Blood Flow Restriction and Multi-Levels of Activation Intensity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10597. [PMID: 36078311 PMCID: PMC9517872 DOI: 10.3390/ijerph191710597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: To explore the influence on post-activation potentiation (PAP) when combining different degrees of blood flow restriction (BFR) with multi-levels of resistance training intensity of activation. (2) Purpose: To provide competitive athletes with a more efficient and feasible warm-up program. (3) Study Design: The same batch of subjects performed the vertical jump test of the warm-up procedure under different conditions, one traditional and six BFR procedures. (4) Methods: Participants performed seven counter movement jump (CMJ) tests in random order, including 90% one repetition maximum (1RM) without BFR (CON), and three levels of BFR (30%, 50%, 70%) combined with (30% and 50% 1RM) (BFR-30-30, BFR-30-50, BFR-50-30, BFR-50-50, BFR-70-30 and BFR-70-50). Jump height (H), mean power output (P), peak vertical ground reaction force (vGRF), and the mean rate of force development (RFD) were recorded and measured. (5) Results: Significantly increasing results were observed in: jump height: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4, 8 min), BFR-50-30 (8 min), BFR-50-50 (4, 8 min), BFR-70-30 (8 min), (p < 0.05); and power output: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4 min), BFR-50-30 (8 min), BFR-50-50 (4, 8 min) (p < 0.05); vGRF: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4, 8 min), BFR-50-30 (4 min), BFR-50-50 (4, 8 min) (p < 0.05); RFD: CON (8 min), BFR-30-30 (0, 4 min), BFR-30-50 (4 min), BFR-50-30 (4 min), BFR-50-50 (4 min) (p < 0.05). (5) Conclusions: low to moderate degrees of BFR procedures produced a similar PAP to traditional activation. Additionally, BFR-30-30, BFR-30-50, and BFR-50-50 were longer at PAP duration in comparison with CON.
Collapse
Affiliation(s)
- Hang Zheng
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Research Academy of Grand Health, Ningbo University, Ningbo 315211, China
| | - Jiajun Liu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Research Academy of Grand Health, Ningbo University, Ningbo 315211, China
| | - Jia Wei
- Shanghai University of Sport, Shanghai 200438, China
| | - Hui Chen
- School of Strength and Conditioning, Beijing Sport University, Beijing 100084, China
- School of Sports and Health Management, Chongqing University of Education, Chongqing 400067, China
| | - Shan Tang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Research Academy of Grand Health, Ningbo University, Ningbo 315211, China
| | - Zhexiao Zhou
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
- Research Academy of Grand Health, Ningbo University, Ningbo 315211, China
| |
Collapse
|
20
|
Tanaka T, Kubota A, Nozu S, Ozaki H, Kishimoto K, Nishio H, Takazawa Y. Effect of low-intensity exercise with blood flow restriction during rest intervals on muscle function and perception. Clin Physiol Funct Imaging 2022; 42:348-355. [PMID: 35765169 DOI: 10.1111/cpf.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE We assessed the effects of low-intensity exercise with blood flow restriction (BFR) during rest intervals on recovery of muscle function and pain during exercise and rest intervals. METHODS Participants were 10 males, and study arms of the participants were randomly assigned into three conditions; low-intensity exercise with BFR during rest intervals (rBFR), low-intensity exercise with BFR during exercise (eBFR) and low-intensity exercise only (EO). The exercise task was elbow flexion until repetition failure at 30% of 1 RM, and cuff pressure was 120 mmHg. The maximum voluntary isometric contraction (MVIC) and the muscle endurance (ME) were measured pre, post, 1 h, 24 h and 48 h after the exercise. Pain during exercise and rest intervals were evaluated using Numerical Rating Scale. RESULTS MVIC and ME significantly decreased after exercise in all conditions. Pain during exercise was lower in rBFR (4.2 ± 2.9) (p = 0.007) and EO (4.4 ± 2.7) (p = 0.014) conditions compared to eBFR condition (6.7 ± 1.7), but the pain during rest intervals was more intense in rBFR condition (5.2 ± 1.6) compared to eBFR (1.5 ± 1.4) and EO (1.7 ± 1.2) conditions (all: p < 0.001). CONCLUSION We discovered that recovery of muscle function was the same as BFR during rest intervals and BFR during exercise. Also, our results suggested that BFR itself may cause the perception of pain. Future studies are thus required to investigate the optimal dosage focusing on the pressure volume and intensity used in BFR during intervals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tsukasa Tanaka
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Atsushi Kubota
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Shojiro Nozu
- Institute of Health and Sports Science and Medicine, Juntendo University, Inzai, Chiba, Japan
| | - Hayao Ozaki
- School of Sport and Health Science, Tokai Gakuen University, Miyoshi, Aichi, Japan
| | - Kohei Kishimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hirofumi Nishio
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.,Department of Sports Medicine, Faculty of Medicine, Juntendo University, Hongo, Tokyo, Japan
| | - Yuji Takazawa
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan.,Institute of Health and Sports Science and Medicine, Juntendo University, Inzai, Chiba, Japan.,Department of Sports Medicine, Faculty of Medicine, Juntendo University, Hongo, Tokyo, Japan
| |
Collapse
|
21
|
Solsona R, Berthelot H, Borrani F, Sanchez AMJ. Mechanical, Cardiorespiratory, and Muscular Oxygenation Responses to Sprint Interval Exercises Under Different Hypoxic Conditions in Healthy Moderately Trained Men. Front Physiol 2022; 12:773950. [PMID: 34975526 PMCID: PMC8716850 DOI: 10.3389/fphys.2021.773950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/19/2021] [Indexed: 01/31/2023] Open
Abstract
Objective: The aim of this study was to determine the effects of sprint interval exercises (SIT) conducted under different conditions (hypoxia and blood flow restriction [BFR]) on mechanical, cardiorespiratory, and muscular O2 extraction responses. Methods: For this purpose, 13 healthy moderately trained men completed five bouts of 30 s all-out exercises interspaced by 4 min resting periods with lower limb bilateral BFR at 60% of the femoral artery occlusive pressure (BFR60) during the first 2 min of recovery, with gravity-induced BFR (pedaling in supine position; G-BFR), in a hypoxic chamber (FiO2≈13%; HYP) or without additional stress (NOR). Peak and average power, time to achieve peak power, rating of perceived exertion (RPE), and a fatigue index (FI) were analyzed. Gas exchanges and muscular oxygenation were measured by metabolic cart and NIRS, respectively. Heart rate (HR) and peripheral oxygen saturation (SpO2) were continuously recorded. Results: Regarding mechanical responses, peak and average power decreased after each sprint (p < 0.001) excepting between sprints four and five. Time to reach peak power increased between the three first sprints and sprint number five (p < 0.001). RPE increased throughout the exercises (p < 0.001). Of note, peak and average power, time to achieve peak power and RPE were lower in G-BFR (p < 0.001). Results also showed that SpO2 decreased in the last sprints for all the conditions and was lower for HYP (p < 0.001). In addition, Δ[O2Hb] increased in the last two sprints (p < 0.001). Concerning cardiorespiratory parameters, BFR60 application induced a decrease in gas exchange rates, which increased after its release compared to the other conditions (p < 0.001). Moreover, muscle blood concentration was higher for BFR60 (p < 0.001). Importantly, average and peak oxygen consumption and muscular oxyhemoglobin availability during sprints decreased for HYP (p < 0.001). Finally, the tissue saturation index was lower in G-BFR. Conclusions: Thus, SIT associated with G-BFR displayed lower mechanical, cardiorespiratory responses, and skeletal muscle oxygenation than the other conditions. Exercise with BFR60 promotes higher blood accumulation within working muscles, suggesting that BFR60 may additionally affect cellular stress. In addition, HYP and G-BFR induced local hypoxia with higher levels for G-BFR when considering both exercise bouts and recovery periods.
Collapse
Affiliation(s)
- Robert Solsona
- University of Perpignan Via Domitia (UPVD), Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR4640, Perpignan, France.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Hugues Berthelot
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Anthony M J Sanchez
- University of Perpignan Via Domitia (UPVD), Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), UR4640, Perpignan, France.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Hedt C, McCulloch PC, Harris JD, Lambert BS. Blood Flow Restriction Enhances Rehabilitation and Return to Sport: The Paradox of Proximal Performance. Arthrosc Sports Med Rehabil 2022; 4:e51-e63. [PMID: 35141536 PMCID: PMC8811501 DOI: 10.1016/j.asmr.2021.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
The use of blood flow restriction (BFR) within rehabilitation is rapidly increasing as further research is performed elucidating purported benefits such as improved muscular strength and size, neuromuscular control, decreased pain, and increased bone mineral density. Interestingly, these benefits are not isolated to structures distal to the occlusive stimulus. Proximal gains are of high interest to rehabilitation professionals, especially those working with patients who are limited due to pain or postsurgical precautions. The review to follow will focus on current evidence and ongoing hypotheses regarding physiologic responses to BFR, current clinical applications, proximal responses to BFR training, potential practical applications for rehabilitation and injury prevention, and directions for future research. Interestingly, benefits have been found in musculature proximal to the occlusive stimulus, which may lend promise to a greater variety of patient populations and conditions. Furthermore, an increasing demand for BFR use in the sports world warrants further research for performance research and recovery. LEVEL OF EVIDENCE Level V, expert opinion.
Collapse
Affiliation(s)
- Corbin Hedt
- Houston Methodist Orthopedics & Sports Medicine, Houston, Texas, U.S.A
| | | | - Joshua D. Harris
- Houston Methodist Orthopedics & Sports Medicine, Houston, Texas, U.S.A
| | | |
Collapse
|
23
|
Teixeira EL, de Salles Painelli V, Silva-Batista C, de Souza Barros T, Longo AR, Lasevicius T, Schoenfeld BJ, Aihara AY, de Almeida Peres B. Blood Flow Restriction Does Not Attenuate Short-Term Detraining-Induced Muscle Size and Strength Losses After Resistance Training With Blood Flow Restriction. J Strength Cond Res 2021; 35:2082-2088. [DOI: 10.1519/jsc.0000000000003148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Wilk M, Trybulski R, Krzysztofik M, Wojdala G, Campos Y, Zajac A, Lulińska E, Stastny P. Acute Effects of Different Blood Flow Restriction Protocols on Bar Velocity During the Squat Exercise. Front Physiol 2021; 12:652896. [PMID: 34234686 PMCID: PMC8255669 DOI: 10.3389/fphys.2021.652896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
The main goal of the present study was to evaluate the effects of different blood flow restriction (BFR) protocols (continuous and intermittent) on peak bar velocity (PV) and mean bar velocity (MV) during the squat exercise at progressive loads, from 40 to 90% 1RM. Eleven healthy men (age = 23.4 ± 3.1 years; body mass = 88.5 ± 12.1 kg; squat 1RM = 183.2 ± 30.7 kg; resistance training experience, 5.7 ± 3.6 years) performed experimental sessions once a week for 3 weeks in random and counterbalanced order: without BFR (NO-BFR), with intermittent BFR (I-BFR), and with continuous BFR (C-BFR). During the experimental session, the participants performed six sets of the barbell squat exercise with loads from 40 to 90% 1RM. In each set, they performed two repetitions. During the C-BFR session, the cuffs were maintained throughout the training session. During the I-BFR, the cuffs were used only during the exercise and released for each rest interval. The BFR pressure was set to ∼80% arterial occlusion pressure (AOP). Analyses of variance showed a statistically significant interaction for MV (p < 0.02; η2 = 0.18). However, the post hoc analysis did not show significant differences between particular conditions for particular loads. There was no significant condition × load interaction for PV (p = 0.16; η2 = 0.13). Furthermore, there were no main effects for conditions in MV (p = 0.38; η2 = 0.09) as well as in PV (p = 0.94; η2 = 0.01). The results indicate that the different BFR protocols used during lower body resistance exercises did not reduce peak bar velocity and mean bar velocity during the squat exercise performed with various loads.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Robert Trybulski
- Department of Medical Sciences, The Wojciech Korfanty School of Economics, Katowice, Poland.,Provita Zory Medical Center, Zory, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Grzegorz Wojdala
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Yuri Campos
- Postgraduate Program, Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Study Group and Research in Neuromuscular Responses, Federal University of Lavras, Lavras, Brazil
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Ewelina Lulińska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Petr Stastny
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| |
Collapse
|
25
|
Teixeira EL, Ugrinowitsch C, de Salles Painelli V, Silva-Batista C, Aihara AY, Cardoso FN, Roschel H, Tricoli V. Blood Flow Restriction Does Not Promote Additional Effects on Muscle Adaptations When Combined With High-Load Resistance Training Regardless of Blood Flow Restriction Protocol. J Strength Cond Res 2021; 35:1194-1200. [PMID: 33900254 DOI: 10.1519/jsc.0000000000003965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Teixeira, EL, Ugrinowitsch, C, de Salles Painelli, V, Silva-Batista, C, Aihara, AY, Cardoso, FN, Roschel, H, and Tricoli, V. Blood flow restriction does not promote additional effects on muscle adaptations when combined with high-load resistance training regardless of blood flow restriction protocol. J Strength Cond Res 35(5): 1194-1200, 2021-The aim of this study was to investigate, during high-load resistance training (HL-RT), the effect of blood flow restriction (BFR) applied during rest intervals (BFR-I) and muscle contractions (BFR-C) compared with HL-RT alone (no BFR), on maximum voluntary isometric contraction (MVIC), maximum dynamic strength (one repetition maximum [1RM]), quadriceps cross-sectional area (QCSA), blood lactate concentration ([La]), and root mean square of the surface electromyography (RMS-EMG) responses. Forty-nine healthy and untrained men (25 ± 6.2 years, 178.1 ± 5.3 cm and 78.8 ± 11.6 kg) trained twice per week, for 8 weeks. One leg of each subject performed HL-RT without BFR (HL-RT), whereas the contralateral leg was randomly allocated to 1 of 2 unilateral knee extension protocols: BFR-I or BFR-C (for all protocols, 3 × 8 repetitions, 70% 1RM). Maximum voluntary isometric contraction, 1RM, QCSA, and acute changes in [La] and RMS-EMG were assessed before and after training. The measurement of [La] and RMS-EMG was performed during the control sessions with the same relative load obtained after the 1RM test, before and after training. Similar increases in MVIC, 1RM, and QCSA were demonstrated among all conditions, with no significant difference between them. [La] increased for all protocols in pre-training and post-training, but it was higher for BFR-I compared with the remaining protocols. Increases in RMS-EMG occurred for all protocols in pre-training and post-training, with no significant difference between them. In conclusion, despite of a greater metabolic stress, BFR inclusion to HL-RT during rest intervals or muscle contraction did not promote any additive effect on muscle strength and hypertrophy.
Collapse
Affiliation(s)
- Emerson Luiz Teixeira
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil.,Strength Training Study and Research Group, Paulista University, UNIP, São Paulo, SP, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Vitor de Salles Painelli
- Strength Training Study and Research Group, Paulista University, UNIP, São Paulo, SP, Brazil.,Exercise Neuroscience Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil; and
| | - Carla Silva-Batista
- Strength Training Study and Research Group, Paulista University, UNIP, São Paulo, SP, Brazil.,Exercise Neuroscience Research Group, School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil; and
| | | | | | - Hamilton Roschel
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
26
|
Schwiete C, Franz A, Roth C, Behringer M. Effects of Resting vs. Continuous Blood-Flow Restriction-Training on Strength, Fatigue Resistance, Muscle Thickness, and Perceived Discomfort. Front Physiol 2021; 12:663665. [PMID: 33859576 PMCID: PMC8042206 DOI: 10.3389/fphys.2021.663665] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The purpose of this study was to clarify whether blood-flow restriction during resting intervals [resting blood-flow restriction (rBFR)] is comparable to a continuous BFR (cBFR) training regarding its effects on maximum strength, hypertrophy, fatigue resistance, and perceived discomfort. Materials and Methods: Nineteen recreationally trained participants performed four sets (30-15-15-15 repetitions) with 20% 1RM on a 45° leg press twice a week for 6 weeks (cBFR, n = 10; rBFR, n = 9). Maximum strength, fatigue resistance, muscle thickness, and girth were assessed at three timepoints (pre, mid, and post). Subjective pain and perceived exertion were determined immediately after training at two timepoints (mid and post). Results: Maximum strength (p < 0.001), fatigue resistance (p < 0.001), muscle thickness (p < 0.001), and girth (p = 0.008) increased in both groups over time with no differences between groups (p > 0.05). During the intervention, the rBFR group exposed significantly lower perceived pain and exertion values compared to cBFR (p < 0.05). Discussion: Resting blood-flow restriction training led to similar gains in strength, fatigue resistance, and muscle hypertrophy as cBFR training while provoking less discomfort and perceived exertion in participants. In summary, rBFR training could provide a meaningful alternative to cBFR as this study showed similar functional and structural changes as well as less discomfort.
Collapse
Affiliation(s)
- Carsten Schwiete
- Department of Sports Medicine and Exercise Physiology, Institute of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexander Franz
- Department of Adult Reconstruction, ATOS Orthoparc Clinic Cologne, Cologne, Germany
| | - Christian Roth
- Department of Sports Medicine and Exercise Physiology, Institute of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael Behringer
- Department of Sports Medicine and Exercise Physiology, Institute of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Li S, Shaharudin S, Abdul Kadir MR. Effects of Blood Flow Restriction Training on Muscle Strength and Pain in Patients With Knee Injuries: A Meta-Analysis. Am J Phys Med Rehabil 2021; 100:337-344. [PMID: 33727516 DOI: 10.1097/phm.0000000000001567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Due to the pain caused by knee injuries, low-load resistance training with blood flow restriction (L-BFR) may be a potential adjuvant therapeutic tool in the rehabilitation of knee injuries. This review aimed to analyze the effectiveness of L-BFR training modality in knee rehabilitation. DESIGN A meta-analysis was conducted to determine the potential impact of blood flow restriction on patients with knee injuries. PubMed, EBSCO, and Web of Science databases were searched for eligible studies from January 2000 until January 2020. The mean differences of the data were analyzed using Revman 5.3 software with a 95% confidence interval. RESULTS Nine studies fulfilled the inclusion criteria. These studies involved 179 patients who received L-BFR, 96 patients who underwent high-load resistance training, and another 94 patients who underwent low-load resistance training. The analysis of pooled data showed that patients in both the L-BFR (standardized mean difference, 0.83 [0.53, 1.14], P < 0.01) and high-load resistance training (standardized mean difference, -0.09 [-0.43, 0.24], P = 0.58) groups experienced an increase in muscle strength after the training. In addition, pain score was significantly reduced in the L-BFR group compared with the other two groups (standardized mean difference, -0.61 [-1.19, -0.03], P = 0.04). CONCLUSIONS Muscle strength increased after L-BFR and high-load resistance training compared with low-load resistance training. Furthermore, pain score was significantly reduced after L-BFR. Hence, L-BFR is a potential intervention to be applied in rehabilitation of knee injuries.
Collapse
Affiliation(s)
- Shuoqi Li
- From the Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia (SL, SS); and School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, Malaysia (MRAK)
| | | | | |
Collapse
|
28
|
Gizzi L, Yavuz UŞ, Hillerkuss D, Geri T, Gneiting E, Domeier F, Schmitt S, Röhrle O. Variations in Muscle Activity and Exerted Torque During Temporary Blood Flow Restriction in Healthy Individuals. Front Bioeng Biotechnol 2021; 9:557761. [PMID: 33816445 PMCID: PMC8017222 DOI: 10.3389/fbioe.2021.557761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies suggest that transitory blood flow restriction (BFR) may improve the outcomes of training from anatomical (hypertrophy) and neural control perspectives. Whilst the chronic consequences of BFR on local metabolism and tissue adaptation have been extensively investigated, its acute effects on motor control are not yet fully understood. In this study, we compared the neuromechanical effects of continuous BFR against non-restricted circulation (atmospheric pressure—AP), during isometric elbow flexions. BFR was achieved applying external pressure either between systolic and diastolic (lower pressure—LP) or 1.3 times the systolic pressure (higher pressure—HP). Three levels of torque (15, 30, and 50% of the maximal voluntary contraction—MVC) were combined with the three levels of pressure for a total of 9 (randomized) test cases. Each condition was repeated 3 times. The protocol was administered to 12 healthy young adults. Neuromechanical measurements (torque and high-density electromyography—HDEMG) and reported discomfort were used to investigate the response of the central nervous system to BFR. The investigated variables were: root mean square (RMS), and area under the curve in the frequency domain—for the torque, and average RMS, median frequency and average muscle fibres conduction velocity—for the EMG. The discomfort caused by BFR was exacerbated by the level of torque and accumulated over time. The torque RMS value did not change across conditions and repetitions. Its spectral content, however, revealed a decrease in power at the tremor band (alpha-band, 5–15 Hz) which was enhanced by the level of pressure and the repetition number. The EMG amplitude showed no differences whilst the median frequency and the conduction velocity decreased over time and across trials, but only for the highest levels of torque and pressure. Taken together, our results show strong yet transitory effects of BFR that are compatible with a motor neuron pool inhibition caused by increased activity of type III and IV afferences, and a decreased activity of spindle afferents. We speculate that a compensation of the central drive may be necessary to maintain the mechanical output unchanged, despite disturbances in the afferent volley to the motor neuron pool.
Collapse
Affiliation(s)
- Leonardo Gizzi
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany
| | - Utku Ş Yavuz
- Department of Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Sciences, University of Twente, Enschede, Netherlands
| | - Dominic Hillerkuss
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany
| | - Tommaso Geri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Elena Gneiting
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany
| | - Franziska Domeier
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Computational Biophysics and Biorobotics, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Technology (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, Chair for Continuum Biomechanics and Mechanobiology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Technology (SC SimTech), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
29
|
Wilk M, Krzysztofik M, Jarosz J, Krol P, Leznicka K, Zajac A, Stastny P, Bogdanis GC. Impact of Ischemic Intra-Conditioning on Power Output and Bar Velocity of the Upper Limbs. Front Physiol 2021; 12:626915. [PMID: 33716773 PMCID: PMC7947627 DOI: 10.3389/fphys.2021.626915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/01/2021] [Indexed: 01/24/2023] Open
Abstract
This study evaluated the effects of ischemic conditioning on power output and bar velocity in the bench press exercise. Ten healthy males (age: 25 ± 2 years; body mass: 92 ± 8 kg; bench press one repetition maximum -1RM: 145 ± 13 kg), took part in two experimental sessions (with and without ischemia), 1 week apart in random and counterbalanced order. In the ischemic condition, cuffs placed around the upper part of the arms were inflated to 80% of arterial occlusion pressure before each set, while in the control condition there was no blood flow restriction. The exercise protocol included 5 sets of three repetitions each, against a resistance equal to 60% 1RM, with 5 min recovery intervals between sets. There was a main effect of condition for mean power output (MP) and mean bar velocity (MV) (p = 0.01), with overall MP being higher in ischemia than in control by 5.6 ± 4.1% (mean ± 90% compatibility limits), a standardized effect size (ES) of 0.51. Overall MV was also higher by 5.5 ± 4.0%, ES = 0.63. Peak power output (PP) and peak bar velocity (PV) were similar in set 1 of the control and ischemia condition (1039 ± 105 vs. 1054 ± 82 W; 684 ± 74 vs. 696 ± 53 W; 1.09 ± 0.07 vs. 1.12 ± 0.09 m/s; 0.81 ± 0.05 vs. 0.82 ± 0.05 m/s, p = 0.67 to 0.99, mean ± standard deviation). However, from set 3 onward (p = 0.03 to 0.001), PP and PV were higher in ischemia compared with control, with the highest difference observed in set 5 (10.9 ± 5.9%, ES = 0.73 for PP and 8.6 ± 4.6%; ES = 0.89 for PV). These results indicate that ischemia used before each set of the bench press exercise increases power output and bar velocity and this may be used as performance-enhancing stimulus during explosive resistance training.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Jakub Jarosz
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Pawel Krol
- College of Medical Sciences, Institute of Physical Culture Studies, University of Rzeszów, Rzeszów, Poland
| | - Katarzyna Leznicka
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Adam Zajac
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Petr Stastny
- Faculty of Physical Education and Sport, Department of Sport Games, Charles University, Prague, Czechia
| | - Gregory C. Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
30
|
Teixeira EL, Painelli VDS, Schoenfeld BJ, Silva-Batista C, Longo AR, Aihara AY, Cardoso FN, Peres BDA, Tricoli V. Perceptual and Neuromuscular Responses Adapt Similarly Between High-Load Resistance Training and Low-Load Resistance Training With Blood Flow Restriction. J Strength Cond Res 2020; 36:2410-2416. [PMID: 33306591 DOI: 10.1519/jsc.0000000000003879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Teixeira, EL, Painelli, VdS, Schoenfeld, BJ, Silva-Batista, C, Longo, AR, Aihara, AY, Cardoso, FN, Peres, BdA, and Tricoli, V. Perceptual and neuromuscular responses adapt similarly between high-load resistance training and low-load resistance training with blood flow restriction. J Strength Cond Res XX(X): 000-000, 2020-This study compared the effects of 8 weeks of low-load resistance training with blood flow restriction (LL-BFR) and high-load resistance training (HL-RT) on perceptual responses (rating of perceived exertion [RPE] and pain), quadriceps cross-sectional area (QCSA), and muscle strength (1 repetition maximum [RM]). Sixteen physically active men trained twice per week, for 8 weeks. One leg performed LL-BFR (3 sets of 15 repetitions, 20% 1RM), whereas the contralateral leg performed HL-RT (3 sets of 8 repetitions, 70% 1RM). Rating of perceived exertion and pain were evaluated immediately after the first and last training sessions, whereas QCSA and 1RM were assessed at baseline and after training. Rating of perceived exertion was significantly lower (6.8 ± 1.1 vs. 8.1 ± 0.8, p = 0.001) and pain significantly higher (7.1 ± 1.2 vs. 5.8 ± 1.8, p = 0.02) for LL-BFR than that for HL-RT before training. Significant reductions in RPE and pain were shown for both protocols after training (both p < 0.0001), although no between-protocol differences were shown in absolute changes (p = 0.10 and p = 0.48, respectively). Both LL-BFR and HL-RT were similarly effective in increasing QCSA (7.0 ± 3.8% and 6.3 ± 4.1%, respectively; both p < 0.0001) and 1RM (6.9 ± 4.1% and 13.7 ± 5.9%, respectively; both P < 0.0001), although absolute changes for 1RM in HL-RT were greater than LL-BFR (p = 0.001). In conclusion, LL-BFR produces lower RPE values and a higher pain perception than HL-RT. However, consistent application of these approaches result in chronic adaptations so that there are no differences in perceptual responses over the course of time. In addition, muscle strength is optimized with HL-RT despite similar increases in muscle hypertrophy between conditions.
Collapse
Affiliation(s)
- Emerson Luiz Teixeira
- Strength Training Study and Research Group, Paulista University, UNIP, São Paulo, SP, Brazil.,School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - Vitor de Salles Painelli
- Strength Training Study and Research Group, Paulista University, UNIP, São Paulo, SP, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | | | - Carla Silva-Batista
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil.,School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Ariel Roberth Longo
- Strength Training Study and Research Group, Paulista University, UNIP, São Paulo, SP, Brazil
| | | | | | | | - Valmor Tricoli
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
31
|
Wilk M, Gepfert M, Krzysztofik M, Stastny P, Zajac A, Bogdanis GC. Acute Effects of Continuous and Intermittent Blood Flow Restriction on Movement Velocity During Bench Press Exercise Against Different Loads. Front Physiol 2020; 11:569915. [PMID: 33329020 PMCID: PMC7728989 DOI: 10.3389/fphys.2020.569915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023] Open
Abstract
This study evaluated the effects of continuous and intermittent blood flow restriction (BFR) with 70% of full arterial occlusion pressure on bar velocity during the bench press exercise against a wide range of resistive loads. Eleven strength-trained males (age: 23.5 ± 1.4 years; resistance training experience: 2.8 ± 0.8 years, maximal bench press strength - 1RM = 101.8 ± 13.9 kg; body mass = 79.8 ± 10.4 kg), performed three different testing protocols in random and counterbalanced order: without BFR (NO-BFR); intermittent BFR (I-BFR) and continuous BFR (C-BFR). During each experimental session, subjects performed eight sets of two repetitions each, with increasing loads from 20 to 90% 1RM (10% steps), and 3 min rest between each set. In the C-BFR condition occlusion was kept throughout the trial, while in the I-BFR, occlusion was released during each 3 min rest interval. Peak bar velocity (PV) during the bench press exercise was higher by 12-17% in both I-BFR and C-BFR compared with NO-BFR only at the loads of 20, 30, 40, and 50% 1RM (p < 0.001), while performance at higher loads remained unchanged. Mean bar velocity (MV) was unaffected by occlusion (p = 0.342). These results indicate that BFR during bench press exercise increases PV and this may be used as an enhanced stimulus during explosive resistance training. At higher workloads, bench press performance was not negatively affected by BFR, indicating that the benefits of exercise under occlusion can be obtained while explosive performance is not impaired.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Mariola Gepfert
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Petr Stastny
- Department of Sport Games, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Gregory C. Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
32
|
Anthierens A, Olivier N, Thevenon A, Mucci P. Benefits of a four-week functional restoration program in chronic low back pain patients and three-month follow-up: focus on paraspinal muscle aerobic metabolism responses to exercise. J Sports Med Phys Fitness 2020; 60:1558-1566. [PMID: 32608937 DOI: 10.23736/s0022-4707.20.11113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Chronic low back pain (CLBP) is a major health concern characterized by paraspinal muscle fatigability. This can be improved following a functional restoration program. Muscle fatigability can be related to impairment in aerobic metabolism responses. In this study, we investigated paraspinal muscles aerobic metabolism in CLBP patients before and after a functional restoration program, in order to determine if the enhancement in patients' condition following the program is associated to changes in metabolism responses. METHODS Twenty-two CLBP patients (11 women, 11 men; 41.6±1.8 years; 73.7±3.1 kg; 1.74±0.02 m) were evaluated before and after a 4-week functional restoration program, with exercise therapy as the main component. Three months later, 12 patients were seen for a follow-up visit. During each testing session, patients performed a five-minute isokinetic trunk extension exercise in measuring pulmonary gas exchanges and paraspinal muscle oxygenation. Mechanical efficiency and onset V̇O<inf>2</inf> kinetics were also calculated, in addition to usual questionnaires and exercises designed to evaluate psychosocial and physical factors. RESULTS At the end of the program, paraspinal muscle oxygenation, mechanical efficiency, and the V̇O<inf>2</inf> onset kinetics were improved (P<0.05). All measures remained stable during the three-month follow-up except for paraspinal muscle oxygenation, which deteriorated (P<0.05). Return-to-work was associated with the level of workday physical activities and to a decrease in fear-avoidance beliefs. CONCLUSIONS At the end of the program, aerobic metabolism responses were improved in paraspinal muscles in patients. These improvements were not associated with return-to-work, which was primarily influenced by socio-psychological factors.
Collapse
Affiliation(s)
- Agathe Anthierens
- ULR 7369 - URePSSS, Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France -
| | - Nicolas Olivier
- ULR 7369 - URePSSS, Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| | - Andre Thevenon
- ULR 7369 - URePSSS, Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France.,CHRU Lille, Service de Médecine Physique et de Réadaptation Fonctionnelle, Lille, France
| | - Patrick Mucci
- ULR 7369 - URePSSS, Unité de Recherche Pluridisciplinaire Sport Santé Société, Université Lille, Université Artois, Université Littoral Côte d'Opale, Lille, France
| |
Collapse
|
33
|
Wilk M, Krzysztofik M, Filip A, Lockie RG, Zajac A. The Acute Effects of External Compression With Blood Flow Restriction on Maximal Strength and Strength-Endurance Performance of the Upper Limbs. Front Physiol 2020; 11:567. [PMID: 32587525 PMCID: PMC7298135 DOI: 10.3389/fphys.2020.00567] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/07/2020] [Indexed: 11/23/2022] Open
Abstract
The main goal of the present study was to evaluate the acute effects external compression with blood flow restriction (BFR) at 100 and 150% of full arterial occlusion pressure (AOP) on maximal strength and strength-endurance performance during the bench press (BP) exercise. The study included 12 strength-trained male subjects (age = 23.2 ± 2.66 years; body mass = 75.3 ± 6.33 kg; height = 179.1 ± 3.82 cm), experienced in resistance training (5.7 ± 2.93 years). During the experimental sessions in a randomized crossover design, the subjects performed a 1 repetition maximum (1RM) test and three sets of the BP using 60% 1RM to failure with three different conditions: without BFR (NO-BFR); BFR with a pressure of 100% AOP (BFR100); and BFR with a pressure of 150% AOP (BFR150). The differences between the NO-BFR, BFR100, and BFR150 conditions were examined using repeated measures ANOVA. The ANOVA indicated significant main effect for condition in 1RM, number of performed repetitions (REP), and time under tension (TUT) (p < 0.01). Post hoc analyses for the main effect indicated significant increases in 1RM (p < 0.01; 95.00 ± 15.37 vs 91.87 ± 15.99), REP (p < 0.01; 17.56 ± 3.36 vs 15.67 ± 5.24), and TUT (p < 0.01; 32.89 ± 6.40 vs 28.72 ± 6.18) for the BFR150 condition compared to NO-BFR. Furthermore, significant increases in REP (p = 0.03; 17.56 ± 3.36 vs 16.47 ± 4.01) and TUT (p = 0.03; 32.89 ± 6.40 vs 30.00 ± 6.45) were observed for the BFR150 condition compared to the BFR100. The results of the present study indicate that high external compression increases maximal strength evaluated by the 1RM test, as well as endurance performance during three sets of the BP exercise.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Aleksandra Filip
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Robert G Lockie
- Center for Sports Performance, Department of Kinesiology, California State University, Fullerton, Fullerton, CA, United States
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| |
Collapse
|
34
|
Wilk M, Krzysztofik M, Filip A, Szkudlarek A, Lockie RG, Zajac A. Does Post-Activation Performance Enhancement Occur During the Bench Press Exercise under Blood Flow Restriction? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3752. [PMID: 32466396 PMCID: PMC7312758 DOI: 10.3390/ijerph17113752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022]
Abstract
Background: The aim of the present study was to evaluate the effects of post-activation performance enhancement (PAPE) during successive sets of the bench press (BP) exercise under blood flow restriction (BFR). Methods: The study included 10 strength-trained males (age = 29.8 ± 4.6 years; body mass = 94.3 ± 3.6 kg; BP 1-repetition maximum (1RM) = 168.5 ± 26.4 kg). The experiment was performed following a randomized crossover design, where each participant performed two different exercise protocols: under blood flow restriction (BFR) and control test protocol (CONT) without blood flow restriction. During the experimental sessions, the study participants performed 3 sets of 3 repetitions of the BP exercise at 70%1RM with a 5 min rest interval between sets. The differences in peak power output (PP), mean power output (MP), peak bar velocity (PV), and mean bar velocity (MV) between the CONT and BFR conditions were examined using 2-way (condition × set) repeated measures ANOVA. Furthermore, t-test comparisons between conditions were made for the set 2-set 1, set 3-set 1, and set 3-set 2 delta values for all variables. Results: The post hoc results for condition × set interaction in PP showed a significant increase in set 2 compared to set 1 for BFR (p < 0.01) and CONT (p = 0.01) conditions, a significant increase in set 3 compared to set 1 for the CONT (p = 0.01) condition, as well as a significant decrease in set 3 compared to set 1 for BFR condition occurred (p < 0.01). The post hoc results for condition × set interaction in PV showed a significant increase in set 2 compared to set 1 for BFR (p < 0.01) and CONT (p = 0.01) conditions, a significant increase in set 3 compared to set 1 for CONT (p = 0.03) condition, as well as a significant decrease in set 3 compared to set 1 for BFR condition (p < 0.01). The t-test comparisons showed significant differences in PP (p < 0.01) and PV (p = 0.01) for set 3-set 2 delta values between BFR and CONT conditions. Conclusion: The PAPE effect was analyzed through changes in power output and bar velocity that occurred under both the CONT and BFR conditions. However, the effects of PAPE have different kinetics in successive sets for BFR and for CONT conditions.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (A.F.); (A.Z.)
| | - Michal Krzysztofik
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (A.F.); (A.Z.)
| | - Aleksandra Filip
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (A.F.); (A.Z.)
| | - Agnieszka Szkudlarek
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Robert G. Lockie
- Center for Sports Performance, Department of Kinesiology, California State University, Fullerton, CA 92831, USA;
| | - Adam Zajac
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland; (M.K.); (A.F.); (A.Z.)
| |
Collapse
|
35
|
Wilk M, Krzysztofik M, Filip A, Zajac A, Bogdanis GC, Lockie RG. Short-Term Blood Flow Restriction Increases Power Output and Bar Velocity During the Bench Press. J Strength Cond Res 2020; 36:2082-2088. [PMID: 32379236 DOI: 10.1519/jsc.0000000000003649] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wilk, M, Krzysztofik, M, Filip, A, Zajac, A, Bogdanis, GC, and Lockie, RG. Short-term blood flow restriction increases power output and bar velocity during the bench press. J Strength Cond Res XX(X): 000-000, 2020-This study examined the effect of blood flow restriction (BFR) with 2 different types of cuffs on peak power output (PP), mean power output (MP), peak bar velocity (PV), and mean bar velocity (MV) in the bench press exercise (BP). Fourteen healthy strength-trained male athletes (age = 27.6 ± 3.5 years; body mass = 84.1 ± 8.0 kg; height = 175.8 ± 6.7 cm; BP 1 repetition maximum [RM] = 138.6 ± 17.8 kg) performed 3 different testing protocols as follows: without BFR (NO-BFR), BFR with a narrow cuff (BFRNARROW), and BFR with a wide cuff (BFRWIDE) in a randomized crossover design. During all sessions, subjects performed one set of 3 repetitions of the BP exercise using 70% 1RM. Cuff pressure was set to approximately 90% full arterial occlusion pressure of the upper limb at rest. Analyses of variance showed an increase in PP (by 21%, p < 0.01; effect size [ES] = 1.67), MP (by 16%, p < 0.01; ES = 0.93), PV (by 22%, p < 0.01; ES = 1.79), and MV (by 21%, p < 0.01; ES = 1.36) during BFRWIDE compared with NO-BFR and a significant increase in PP (by 15%, p < 0.01; ES = 1.07), MP (by 17%, p < 0.01; ES = 0.78), PV (by 18%, p < 0.01; ES = 1.65), and MV (by 13% p < 0.01; ES = 1.00) during BFRWIDE compared with BFRNARROW. There were no significant differences in any of the variable between NO-BFR and BFRNARROW. The results of the study indicate that short-term BFR training increases power output and bar velocity during the BP exercise. However, only BFRWIDE significantly influenced bar velocity and power output, which indicates that the width of the cuff is a critical factor determining acute exercise adaptation during BFR resistance training.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Aleksandra Filip
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Gregory C Bogdanis
- School of P.E. and Sport Science, National & Kapodistrian University of Athens, Athens, Greece
| | - Robert G Lockie
- Center for Sports Performance, Department of Kinesiology, California State University, Fullerton, Fullerton, California
| |
Collapse
|
36
|
Ishizaka H, Uematsu A, Mizushima Y, Nozawa N, Katayanagi S, Matsumoto K, Nishikawa K, Takahashi R, Arakawa T, Sawaguchi T, Yasuda T, Yamaguchi S, Ogawa H, Shibasaki I, Toyoda S, Hortobágyi T, Fukuda H, Inoue T, Mizushima T, Nakajima T. Blood Flow Restriction Increases the Neural Activation of the Knee Extensors During Very Low-Intensity Leg Extension Exercise in Cardiovascular Patients: A Pilot Study. J Clin Med 2019; 8:jcm8081252. [PMID: 31430903 PMCID: PMC6723568 DOI: 10.3390/jcm8081252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Blood flow restriction (BFR) has the potential to augment muscle activation, which underlies strengthening and hypertrophic effects of exercise on skeletal muscle. We quantified the effects of BFR on muscle activation in the rectus femoris (RF), the vastus lateralis (VL), and the vastus medialis (VM) in concentric and eccentric contraction phases of low-intensity (10% and 20% of one repetition maximum) leg extension in seven cardiovascular patients who performed leg extension in four conditions: at 10% and 20% intensities with and without BFR. Each condition consisted of three sets of 30 trials with 30 s of rest between sets and 5 min of rest between conditions. Electromyographic activity (EMG) from RF, VL, and VM for 30 repetitions was divided into blocks of 10 trials and averaged for each block in each muscle. At 10% intensity, BFR increased EMG of all muscles across the three blocks in both concentric and eccentric contraction phases. At 20% intensity, EMG activity in response to BFR tended to not to increase further than what it was at 10% intensity. We concluded that very low 10% intensity exercise with BFR may maximize the benefits of BFR on muscle activation and minimize exercise burden on cardiovascular patients.
Collapse
Affiliation(s)
- Hayato Ishizaka
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Azusa Uematsu
- Department of Health and Sport Sciences, Premedical Sciences, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan.
| | - Yuta Mizushima
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Naohiro Nozawa
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Satoshi Katayanagi
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Kazuhisa Matsumoto
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Kaori Nishikawa
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Reiko Takahashi
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Tomoe Arakawa
- Department of Rehabilitation, Dokkyo Medical University Hospital, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Tatsuya Sawaguchi
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Tomohiro Yasuda
- School of Nursing, Seirei Christopher University, Hamamatsu, Shizuoka 433-8558, Japan
| | - Suomi Yamaguchi
- Department of Cardiology and Nephrology, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Hironaga Ogawa
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Ikuko Shibasaki
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Tibor Hortobágyi
- University Medical Center Groningen, University of Groningen, Groningen, Groningen 9713 GZ, The Netherlands
| | - Hirotsugu Fukuda
- Department of Cardiac and Vascular Surgery, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Teruo Inoue
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Takashi Mizushima
- Department of Rehabilitation, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, School of Medicine, Dokkyo Medical University, Shimotsuga-gun, Tochigi 321-0293, Japan
| |
Collapse
|
37
|
Amani-Shalamzari S, Rajabi S, Rajabi H, Gahreman DE, Paton C, Bayati M, Rosemann T, Nikolaidis PT, Knechtle B. Effects of Blood Flow Restriction and Exercise Intensity on Aerobic, Anaerobic, and Muscle Strength Adaptations in Physically Active Collegiate Women. Front Physiol 2019; 10:810. [PMID: 31297065 PMCID: PMC6607282 DOI: 10.3389/fphys.2019.00810] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to compare the effects of different combinations of blood flow restriction (BFR) pressure and exercise intensity on aerobic, anaerobic, and muscle strength adaptations in physically active collegiate women. Thirty-two women (age 22.8 ± 2.9 years; body mass index 22.3 ± 2.7 kg/m2) were randomly assigned into four experimental training groups: (a) increasing BFR pressure with constant exercise intensity (IP-CE), (b) constant partial BFR pressure with increasing exercise intensity (CPp-IE), (c) constant complete BFR pressure with increasing exercise intensity (CPC-IE), and (d) increasing BFR pressure with increasing exercise intensity (IP-IE). The participants completed 12 training sessions comprised of repeated bouts of 2 min running on a treadmill with BFR interspersed by 1-min recovery without BFR. Participants completed a series of tests to assess muscle strength, aerobic, and anaerobic performances. Muscle strength, anaerobic power, and aerobic parameters including maximum oxygen consumption (VO2max), time to fatigue (TTF), velocity at VO2max (vVO2max), and running economy (RE) improved in all groups (p ≤ 0.01). The CPC-IE group outscored the other groups in muscle strength, RE, and TTF (p < 0.05). In summary, participants with complete occlusion experienced the greatest improvements in muscle strength, aerobic, and anaerobic parameters possibly due to increased oxygen deficiency and higher metabolic stress.
Collapse
Affiliation(s)
- Sadegh Amani-Shalamzari
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
| | - Saeedeh Rajabi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
| | - Hamid Rajabi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
| | - Daniel E Gahreman
- College of Health and Human Sciences, Charles Darwin University, Darwin, NT, Australia
| | - Carl Paton
- Faculty of Health and Sport Science, Eastern Institute of Technology, Napier, New Zealand
| | - Mahdi Bayati
- Department of Exercise Physiology, Sports Medicine Research Center, Sport Sciences Research Institute, Tehran, Iran
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | | | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.,Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
| |
Collapse
|
38
|
Blood Flow Restriction Resistance Exercise as a Rehabilitation Modality Following Orthopaedic Surgery: A Review of Venous Thromboembolism Risk. J Orthop Sports Phys Ther 2019; 49:17-27. [PMID: 30208794 DOI: 10.2519/jospt.2019.8375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synopsis Restoration of skeletal muscle mass and strength is critical to successful outcomes following orthopaedic surgery. Blood flow restriction (BFR) resistance exercise has emerged as a promising means of augmenting traditional low-intensity physical rehabilitation exercise and has yielded successful outcomes in a wide range of applications. Though BFR is well tolerated and safe for most individuals, patients who have undergone orthopaedic surgery may be an exception, due to their heightened risk for venous thromboembolism (VTE). While the pathogenesis of VTE is multifactorial and specific to the individual, it is commonly described as a combination of blood stasis, endothelial injury, and alterations in the constituents of the blood leading to hypercoagulability. The collective literature suggests that, given the pathogenic mechanisms of VTE, limited use of a wide, partially occluding cuff during resistance exercise should be low risk, and the likelihood that BFR would directly cause a VTE event is remote. Alternatively, it is plausible that BFR may enhance blood flow and promote fibrinolysis. Of greater concern is the individual with pre-existing asymptomatic VTE, which could be dislodged during BFR. However, it is unknown whether the direct risk associated with BFR is greater than the risk accompanying traditional exercise alone. Presently, there are no universally agreed-upon standards indicating which postsurgical orthopaedic patients may perform BFR safely. While excluding all these patients from BFR may be overly cautious, clinicians need to thoroughly screen for VTE signs and symptoms, be cognizant of each patient's risk factors, and use proper equipment and prescription methods prior to initiating BFR. J Orthop Sports Phys Ther 2019;49(1):17-27. Epub 12 Sep 2018. doi:10.2519/jospt.2019.8375.
Collapse
|
39
|
Bunevicius K, Grunovas A, Venckunas T, Poderiene K, Trinkunas E, Poderys J. Blood flow restriction late in recovery after heavy resistance exercise hampers muscle recuperation. Eur J Appl Physiol 2017; 118:313-320. [PMID: 29214460 DOI: 10.1007/s00421-017-3771-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aimed to examine the effect of acute blood flow restriction during the late recovery phase between two resistance exercise bouts on muscular endurance and oxygenation. METHODS Amateur male middle- and long-distance runners performed two bouts of one-leg dynamic plantar flexion exercise to failure with the load equivalent to 75% of maximum. Subjects were randomly assigned into two experimental groups with thigh occlusion pressure between bouts at either 120 or 200 mmHg with 20 min of passive rest in between, and two control groups without any blood flow restriction separated by either 5 or 20 min of rest. Blood flow restriction in the experimental groups was implemented during the last 15 min of recovery. Calf arterial blood flow and muscle oxygenation were measured by venous occlusion plethysmography and near-infrared spectroscopy, respectively. RESULTS Decrease of muscular oxygenation and blood flow during recovery between exercise bouts depended on the applied occlusion pressure. When compared with bout 1, work capacity in the experimental groups during bout 2 was reduced by 9.3 ± 2.2% with 120 mmHg and by 10.5 ± 3.1% (p < 0.05) with 200 mmHg occlusion pressure. In the control groups, work capacity was restored after 20 min (- 3.9 ± 3.2%, p > 0.05) but not after 5-min recovery (- 20.0 ± 1.8%, p < 0.05). CONCLUSIONS Blood flow restriction late in recovery after a heavy resistance exercise bout decreased muscle oxygenation and work capacity during the subsequent heavy resistance exercise bout.
Collapse
Affiliation(s)
- Kestutis Bunevicius
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania.
| | - Albinas Grunovas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| | - Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| | - Kristina Poderiene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| | - Eugenijus Trinkunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| | - Jonas Poderys
- Institute of Sport Science and Innovations, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| |
Collapse
|