1
|
Richerson WT, Aumann M, Song AK, Eisma JJ, Davis S, Milner L, Garza M, Taylor Davis L, Martin D, Jordan LC, Donahue MJ. Detectability of white matter cerebral blood flow using arterial spin labeling MRI in patients with sickle cell disease: Relevance of flow territory, bolus arrival time and hematocrit. J Cereb Blood Flow Metab 2025; 45:486-497. [PMID: 39253827 PMCID: PMC11572042 DOI: 10.1177/0271678x241270283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 09/11/2024]
Abstract
Sickle cell disease (SCD) is the most common genetic blood disorder, characterized by red cell hemolysis, anemia, and corresponding increased compensatory cerebral blood flow (CBF). SCD patients are at high risk for cerebral infarcts and CBF quantification is likely critical to assess infarct risk. Infarcts primarily localize to white matter (WM), yet arterial spin labeling (ASL) MRI, the most common non-invasive CBF approach, has poor WM CBF sensitivity owing to low WM CBF and long WM bolus arrival time (BAT). We hypothesize that anemia, and associated cerebral hyperemia, in SCD leads to improved WM detection with ASL. We performed 3-Tesla multi-delay pulsed ASL in SCD (n = 35; age = 30.5 ± 8.3 years) and control (n = 15; age = 28.7 ± 4.5 years) participants and applied t-tests at each inversion time within different flow territories, and determined which regions were significantly above noise floor (criteria: one-sided p < 0.05). Total WM CBF-weighted signal was primarily detectable outside of borderzone regions in SCD (CBF = 17.7 [range = 12.9-25.0] mL/100 g/min), but was largely unphysiological in control (CBF = 8.1 [range = 7.6-9.9)] mL/100 g/min) participants. WM BAT was reduced in SCD versus control participants (ΔBAT = 37 [range = 46-70] ms) and BAT directly correlated with hematocrit (Spearman's-ρ = 0.62; p < 0.001). Findings support the feasibility of WM CBF quantification using ASL in SCD participants for appropriately parameterized protocols.
Collapse
Affiliation(s)
- Wesley T Richerson
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Megan Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander K Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jarrod J Eisma
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samantha Davis
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren Milner
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria Garza
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - L Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dann Martin
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Song AK, Richerson WT, Aumann MA, Waddle SL, Jones RS, Davis S, Milner L, Custer C, Davis LT, Pruthi S, Martin D, Jordan LC, Donahue MJ. Cerebral vascular shunting and oxygen metabolism in sickle cell disease. Blood Adv 2025; 9:386-397. [PMID: 39546745 PMCID: PMC11787477 DOI: 10.1182/bloodadvances.2024014201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
ABSTRACT Patients with sickle cell disease (SCD) are at elevated risk of silent cerebral infarcts and strokes; however, they frequently lack established stroke risk factors (eg, macrovascular arterial steno-occlusion) and the mechanisms underlying such events are incompletely characterized. This study evaluated cerebral hemometabolism with respect to imaging markers of vascular shunting in 143 participants with SCD, including 73 pediatric (aged 6-17 years) and 70 adult (aged 18-40 years) participants using 3-Tesla brain magnetic resonance imaging (MRI). Vascular shunting was assessed in each patient using a previously published ordinal venous hyperintensity score (VHS) of 0, 1, or 2 on cerebral blood flow-weighted MRI. Participants with VHS of 2, indicative of the most rapid arteriovenous transit, had significantly reduced blood oxygen content (CaO2; 10.90 ± 1.69 mL O2/100 mL blood), oxygen extraction fraction (OEF; 33.52% ± 5.54%), and cerebral metabolic rate of oxygen consumption (CMRO2; 2.91 ± 0.69 mL O2/100 g tissue per minute) compared with their counterparts with VHS = 0 (CaO2 = 12.42 ± 1.58 mL O2/100 mL blood; OEF = 39.03% ± 3.80%; CMRO2 = 3.77 ± 0.84 mL O2/100 g tissue per minute) or VHS = 1 (CaO2 = 11.86 ± 1.73 mL O2/100 mL blood; OEF = 36.37% ± 5.11%; CMRO2 = 3.59 ± 0.78 mL O2/100 g tissue per minute). Both pediatric and adult patients with SCD presenting with greater imaging evidence of vascular shunting had mildly reduced OEF and CMRO2. These findings highlight that imaging markers of vascular shunting are associated with significant, albeit mild, evidence of reduced OEF and CMRO2 in patients with SCD.
Collapse
Affiliation(s)
- Alexander K. Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
| | - Wesley T. Richerson
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Megan A. Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Spencer L. Waddle
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - R. Sky Jones
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Samantha Davis
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Lauren Milner
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Chelsea Custer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - L. Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Sumit Pruthi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Dann Martin
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Lori C. Jordan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Manus J. Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN
| |
Collapse
|
3
|
Aumann MA, Richerson W, Song AK, Martin D, Davis LT, Davis SM, Milner LL, Kassim AA, DeBaun MR, Jordan LC, Donahue MJ. Cerebral Hemodynamic Responses to Disease-Modifying and Curative Sickle Cell Disease Therapies. Neurology 2025; 104:e210191. [PMID: 39705613 DOI: 10.1212/wnl.0000000000210191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Sickle cell disease (SCD) is a hemoglobinopathy resulting in hemoglobin-S production, hemolytic anemia, and elevated stroke risk. Treatments include oral hydroxyurea, blood transfusions, and hematopoietic stem cell transplantation (HSCT). Our objective was to evaluate the neurologic relevance of these therapies by characterizing how treatment-induced changes in hemoglobin (Hb) affect brain health biomarkers. METHODS In this interventional study, adults with and without SCD underwent a 3T-MRI at Vanderbilt University Medical Center at 2 time points before and after clinically indicated transfusion or HSCT or at 2 time points without the introduction of a new Hb-altering therapy (adult controls and patients with SCD on hydroxyurea). Cerebral blood flow (CBF; mL/100 g/min) and cerebral venous blood relaxation rate (s-1; a marker of Hb and blood oxygen content) responses were assessed to understand how these markers of brain health vary with Hb modulation. CBF was assessed with arterial spin labeling MRI, and blood relaxation rate was assessed using T2 relaxation under spin tagging MRI. Measures were pairwise compared within each cohort using a 2-tailed Wilcoxon signed-rank test, and regression was applied to evaluate the parameter and Hb change relationships. The significance criterion was 2-sided p < 0.05. RESULTS Adults with (n = 43; age 28.7 ± 7.7 years; 42% male) and without (n = 13; age 33.5 ± 12.2 years; 46% male) SCD were evaluated. In adults receiving hydroxyurea (n = 10), neither Hb, CBF, nor venous relaxation rate changed between time 1 (Hb = 8.6 ± 1.2 g/dL) and time 2 (Hb = 9.0 ± 1.8 g/dL) (all p > 0.05). In transfusion patients (n = 19), Hb increased from 8.2 ± 1.4 g/dL to 9.3 ± 1.3 g/dL before vs after transfusion (p < 0.001), paralleling a CBF decrease of 14.2 mL/100 g/min (p < 0.001) toward control levels. The venous relaxation rate did not change after transfusion (p = 0.71). In HSCT patients (n = 14), Hb increased from 8.9 ± 1.9 g/dL to 12.9 ± 2.7 g/dL (p < 0.001) before vs after transplant, paralleling CBF decreases from 68.16 ± 20.24 to 47.43 ± 12.59 mL/100 g/min (p < 0.001) and increase in venous relaxation rate (p = 0.004). Across the Hb spectrum, a CBF decrease of 5.02 mL/100 g/min per g/dL increase in Hb was observed. DISCUSSION Findings demonstrate improvement in cerebral hemodynamics after transfusion and transplant therapies compared with hydroxyurea therapy; quantitative relationships should provide a framework for using these measures as trial end points to assess how new SCD therapies affect brain health.
Collapse
Affiliation(s)
- Megan A Aumann
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Wesley Richerson
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Alexander K Song
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Dann Martin
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - L Taylor Davis
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Samantha M Davis
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Lauren L Milner
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Adetola A Kassim
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Michael R DeBaun
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Lori C Jordan
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Manus J Donahue
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| |
Collapse
|
4
|
Aumann MA, Richerson W, Song AK, Davis LT, Pruthi S, Davis S, Patel NJ, Custer C, Kassim AA, DeBaun MR, Donahue MJ, Jordan LC. Cerebral hemodynamic changes after haploidentical hematopoietic stem cell transplant in adults with sickle cell disease. Blood Adv 2024; 8:608-619. [PMID: 37883803 PMCID: PMC10838697 DOI: 10.1182/bloodadvances.2023010717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
ABSTRACT Preliminary evidence from a series of 4 adults with sickle cell disease (SCD) suggests that hematopoietic stem cell transplant (HSCT) improves cerebral hemodynamics. HSCT largely normalizes cerebral hemodynamics in children with SCD. We tested the hypothesis in adults with SCD that cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2) measured using magnetic resonance imaging, normalized to healthy values, comparing measurements from ∼1 month before to 12 to 24 months after HSCT (n = 11; age, 33.3 ± 8.9 years; 389 ± 150 days after HSCT) with age-, race- and sex-matched values from healthy adults without sickle trait (n = 28; age, 30.2 ± 5.6 years). Before transplant, 7 patients had neurological indications for transplant (eg, overt stroke) and 4 had nonneurological reasons for haploidentical bone marrow transplant (haplo-BMT). All received haplo-BMT from first-degree relatives (parent, sibling, or child donor) with reduced-intensity preparation and maintained engraftment. Before transplant, CBF was elevated (CBF, 69.11 ± 24.7 mL/100 g/min) compared with that of controls (P = .004). Mean CBF declined significantly after haplo-BMT (posttransplant CBF, 48.2 ± 13.9 mL/100 g/min; P = .003). OEF was not different from that of controls at baseline and did not change significantly after haplo-BMT (pretransplant, 43.1 ± 6.7%; posttransplant, 39.6 ± 7.0%; P = .34). After transplant, CBF and OEF were not significantly different from controls (CBF, 48.2 ± 13.4 mL/100 g/min; P = .78; and OEF, 39.6 ± 7.0%; P > .99). CMRO2 did not change significantly after haplo-BMT (pretransplant, 3.18 ± 0.87 mL O2/100 g/min; posttransplant, 2.95 ± 0.83; P = .56). Major complications of haplo-BMT included 1 infection-related death and 1 severe chronic graft-versus-host disease. Haplo-BMT in adults with SCD reduces CBF to that of control values and maintains OEF and CMRO2 on average at levels observed in healthy adult controls. The trial was registered at www.clinicaltrials.gov as #NCT01850108.
Collapse
Affiliation(s)
- Megan A. Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Wesley Richerson
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Alexander K. Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - L. Taylor Davis
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN
| | - Sumit Pruthi
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN
| | - Samantha Davis
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Niral J. Patel
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Chelsea Custer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Adetola A. Kassim
- Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Michael R. DeBaun
- Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN
| | - Manus J. Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN
| | - Lori C. Jordan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
5
|
Damestani NL, Jacoby J, Yadav SM, Lovely AE, Michael A, Terpstra M, Eshghi M, Rashid B, Cruchaga C, Salat DH, Juttukonda MR. Associations between age, sex, APOE genotype, and regional vascular physiology in typically aging adults. Neuroimage 2023; 275:120167. [PMID: 37187365 PMCID: PMC10339339 DOI: 10.1016/j.neuroimage.2023.120167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
Altered blood flow in the human brain is characteristic of typical aging. However, numerous factors contribute to inter-individual variation in patterns of blood flow throughout the lifespan. To better understand the mechanisms behind such variation, we studied how sex and APOE genotype, a primary genetic risk factor for Alzheimer's disease (AD), influence associations between age and brain perfusion measures. We conducted a cross-sectional study of 562 participants from the Human Connectome Project - Aging (36 to >90 years of age). We found widespread associations between age and vascular parameters, where increasing age was associated with regional decreases in cerebral blood flow (CBF) and increases in arterial transit time (ATT). When grouped by sex and APOE genotype, interactions between group and age demonstrated that females had relatively greater CBF and lower ATT compared to males. Females carrying the APOEε4 allele showed the strongest association between CBF decline and ATT incline with age. This demonstrates that sex and genetic risk for AD modulate age-associated patterns of cerebral perfusion measures.
Collapse
Affiliation(s)
- Nikou L Damestani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - John Jacoby
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Shrikanth M Yadav
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Allison E Lovely
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Aurea Michael
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Melissa Terpstra
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | | | - Barnaly Rashid
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurologic Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston MA, USA
| | - Meher R Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
DeBeer T, Jordan LC, Waddle S, Lee C, Patel NJ, Garza M, Davis LT, Pruthi S, Jones S, Donahue MJ. Red cell exchange transfusions increase cerebral capillary transit times and may alter oxygen extraction in sickle cell disease. NMR IN BIOMEDICINE 2023; 36:e4889. [PMID: 36468659 PMCID: PMC10106384 DOI: 10.1002/nbm.4889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 05/17/2023]
Abstract
Persons with sickle cell disease (SCD) suffer from chronic hemolytic anemia, reduced blood oxygen content, and lifelong risk of silent and overt stroke. Major conventional stroke risk factors are absent in most individuals with SCD, yet nearly 50% have evidence of brain infarcts by the age of 30 years, indicating alternative etiologies for ischemia. We investigated whether radiological evidence of accelerated blood water transit through capillaries, visible on arterial spin labeling (ASL) magnetic resonance imaging, reduces following transfusion-induced increases in hemoglobin and relates to oxygen extraction fraction (OEF). Neurological evaluation along with anatomical and hemodynamic imaging with cerebral blood flow (CBF)-weighted pseudocontinuous ASL and OEF imaging with T2 -relaxation-under-spin-tagging were applied in sequence before and after blood transfusion therapy (n = 32) and in a comparator cohort of nontransfused SCD participants on hydroxyurea therapy scanned at two time points to assess stability without interim intervention (n = 13). OEF was calculated separately using models derived from human hemoglobin-F, hemoglobin-A, and hemoglobin-S. Gray matter CBF and dural sinus signal, indicative of rapid blood transit, were evaluated at each time point and compared with OEF using paired statistical tests (significance: two-sided p < 0.05). No significant change in sinus signal was observed in nontransfused participants (p = 0.650), but a reduction was observed in transfused participants (p = 0.034), consistent with slower red cell transit following transfusion. The dural sinus signal intensity was inversely associated with OEF pretransfusion (p = 0.011), but not posttransfusion. Study findings suggest that transfusion-induced increases in total hemoglobin may lengthen blood transit times through cerebral capillaries and alter cerebral OEF in SCD.
Collapse
Affiliation(s)
- Tonner DeBeer
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori C. Jordan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer Waddle
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chelsea Lee
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niral J. Patel
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria Garza
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - L. Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sumit Pruthi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sky Jones
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J. Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
7
|
Jones RS, Donahue MJ, Davis LT, Pruthi S, Waddle SL, Custer C, Patel NJ, DeBaun MR, Kassim AA, Rodeghier M, Jordan LC. Silent infarction in sickle cell disease is associated with brain volume loss in excess of infarct volume. Front Neurol 2023; 14:1112865. [PMID: 37064181 PMCID: PMC10102616 DOI: 10.3389/fneur.2023.1112865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Introduction Sickle cell disease (SCD) increases cerebral infarct risk, but reported effects on brain volume have varied. More detailed information using larger cohorts and contemporary methods could motivate the use of longitudinal brain volume assessment in SCD as an automated marker of disease stability or future progression. The purpose of this study was to rigorously evaluate whether children and young adults with SCD have reduced gray matter volume (GMV) and white matter volume (WMV) compared to healthy controls using high-resolution MRI. We tested the hypotheses that (i) elevated CBF, a marker of cerebral hemodynamic compensation in SCD, is associated with global and regional brain atrophy, and (ii) silent cerebral infarct burden is associated with brain atrophy in excess of infarct volume. Methods Healthy controls (n = 49) and SCD participants without overt stroke (n = 88) aged 7-32 years completed 3 T brain MRI; pseudocontinuous arterial spin labeling measured CBF. Multivariable linear regressions assessed associations of independent variables with GMV, WMV, and volumes of cortical/subcortical regions. Results Reduced hemoglobin was associated with reductions in both GMV (p = 0.032) and WMV (p = 0.005); reduced arterial oxygen content (CaO2) was also associated with reductions in GMV (p = 0.035) and WMV (p = 0.006). Elevated gray matter CBF was associated with reduced WMV (p = 0.018). Infarct burden was associated with reductions in WMV 30-fold greater than the infarct volume itself (p = 0.005). Increased GM CBF correlated with volumetric reductions of the insula and left and right caudate nuclei (p = 0.017, 0.017, 0.036, respectively). Infarct burden was associated with reduced left and right nucleus accumbens, right thalamus, and anterior corpus callosum volumes (p = 0.002, 0.002, 0.009, 0.002, respectively). Discussion We demonstrate that anemia and decreased CaO2 are associated with reductions in GMV and WMV in SCD. Increased CBF and infarct burden were also associated with reduced volume in subcortical structures. Global WMV deficits associated with infarct burden far exceed infarct volume itself. Hemodynamic compensation via increased cerebral blood flow in SCD seems inadequate to prevent brain volume loss. Our work highlights that silent cerebral infarcts are just a portion of the brain injury that occurs in SCD; brain volume is another potential biomarker of brain injury in SCD.
Collapse
Affiliation(s)
- R. Sky Jones
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Manus J. Donahue
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, United States
| | - L. Taylor Davis
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sumit Pruthi
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Spencer L. Waddle
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Chelsea Custer
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Niral J. Patel
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michael R. DeBaun
- Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease, Nashville, TN, United States
| | - Adetola A. Kassim
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Lori C. Jordan
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
8
|
Imaging of Suspected Stroke in Children, From the AJR Special Series on Emergency Radiology. AJR Am J Roentgenol 2023; 220:330-342. [PMID: 36043606 DOI: 10.2214/ajr.22.27816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pediatric stroke encompasses different causes, clinical presentations, and associated conditions across ages. Although it is relatively uncommon, pediatric stroke presents with poor short- and long-term outcomes in many cases. Because of a wide range of overlapping presenting symptoms between pediatric stroke and other more common conditions, such as migraine and seizures, stroke diagnosis can be challenging or delayed in children. When combined with a comprehensive medical history and physical examination, neuroimaging plays a crucial role in diagnosing stroke and differentiating stroke mimics. This review highlights the current neuroimaging workup for diagnosing pediatric stroke in the emergency department, describes advantages and disadvantages of different imaging modalities, highlights disorders that predispose children to infarct or hemorrhage, and presents an overview of stroke mimics. Key differences in the initial approach to suspected stroke between children and adults are also discussed.
Collapse
|
9
|
Ramos K, Guilliams KP, Fields ME. The Development of Neuroimaging Biomarkers for Cognitive Decline in Sickle Cell Disease. Hematol Oncol Clin North Am 2022; 36:1167-1186. [PMID: 36400537 PMCID: PMC9973749 DOI: 10.1016/j.hoc.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sickle cell disease (SCD) is complicated by neurologic complications including vasculopathy, hemorrhagic or ischemic overt stroke, silent cerebral infarcts and cognitive dysfunction. Patients with SCD, even in the absence of vasculopathy or stroke, have experience cognitive dysfunction that progresses with age. Transcranial Doppler ultrasound and structural brain MRI are currently used for primary and secondary stroke prevention, but laboratory or imaging biomarkers do not currently exist that are specific to the risk of cognitive dysfunction in patients with SCD. Recent investigations have used advanced MR sequences assessing cerebral hemodynamics, white matter microstructure and functional connectivity to better understand the pathophysiology of cognitive decline in SCD, with the long-term goal of developing neuroimaging biomarkers to be used in risk prediction algorithms and to assess the efficacy of treatment options for patients with SCD.
Collapse
Affiliation(s)
- Kristie Ramos
- Department of Pediatrics, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Kristin P Guilliams
- Department of Pediatrics, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Neurology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Melanie E Fields
- Department of Pediatrics, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Neurology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Stotesbury H, Hales PW, Koelbel M, Hood AM, Kawadler JM, Saunders DE, Sahota S, Rees DC, Wilkey O, Layton M, Pelidis M, Inusa BPD, Howard J, Chakravorty S, Clark CA, Kirkham FJ. Venous cerebral blood flow quantification and cognition in patients with sickle cell anemia. J Cereb Blood Flow Metab 2022; 42:1061-1077. [PMID: 34986673 PMCID: PMC9121533 DOI: 10.1177/0271678x211072391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022]
Abstract
Prior studies have described high venous signal qualitatively using arterial spin labelling (ASL) in patients with sickle cell anemia (SCA), consistent with arteriovenous shunting. We aimed to quantify the effect and explored cross-sectional associations with arterial oxygen content (CaO2), disease-modifying treatments, silent cerebral infarction (SCI), and cognitive performance. 94 patients with SCA and 42 controls underwent cognitive assessment and MRI with single- and multi- inflow time (TI) ASL sequences. Cerebral blood flow (CBF) and bolus arrival time (BAT) were examined across gray and white matter and high-signal regions of the sagittal sinus. Across gray and white matter, increases in CBF and reductions in BAT were observed in association with reduced CaO2 in patients, irrespective of sequence. Across high-signal sagittal sinus regions, CBF was also increased in association with reduced CaO2 using both sequences. However, BAT was increased rather than reduced in patients across these regions, with no association with CaO2. Using the multiTI sequence in patients, increases in CBF across white matter and high-signal sagittal sinus regions were associated with poorer cognitive performance. These novel findings highlight the utility of multiTI ASL in illuminating, and identifying objectively quantifiable and functionally significant markers of, regional hemodynamic stress in patients with SCA.
Collapse
Affiliation(s)
- Hanne Stotesbury
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - Patrick W Hales
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - Melanie Koelbel
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - Anna M Hood
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - Jamie M Kawadler
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - Dawn E Saunders
- Division of Psychology and Mental Health, Manchester Centre for Health Psychology, University of Manchester, Manchester, UK
| | - Sati Sahota
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - David C Rees
- Radiology, Great Ormond Hospital for Children NHS Trust, London, UK
| | | | - Mark Layton
- North Middlesex University Hospital NHS Foundation Trust, London, UK
| | - Maria Pelidis
- Haematology, Imperial College Healthcare NHS Foundation Trust, London, UK
| | - Baba PD Inusa
- Haematology, Imperial College Healthcare NHS Foundation Trust, London, UK
| | - Jo Howard
- Haematology, Imperial College Healthcare NHS Foundation Trust, London, UK
| | | | - Chris A Clark
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| | - Fenella J Kirkham
- Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, UK
| |
Collapse
|
11
|
Golay X, Ho ML. Multidelay ASL of the pediatric brain. Br J Radiol 2022; 95:20220034. [PMID: 35451851 PMCID: PMC10996417 DOI: 10.1259/bjr.20220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Arterial spin labeling (ASL) is a powerful noncontrast MRI technique for evaluation of cerebral blood flow (CBF). A key parameter in single-delay ASL is the choice of postlabel delay (PLD), which refers to the timing between the labeling of arterial free water and measurement of flow into the brain. Multidelay ASL (MDASL) utilizes several PLDs to improve the accuracy of CBF calculations using arterial transit time (ATT) correction. This approach is particularly helpful in situations where ATT is unknown, including young subjects and slow-flow conditions. In this article, we discuss the technical considerations for MDASL, including labeling techniques, quantitative metrics, and technical artefacts. We then provide a practical summary of key clinical applications with real-life imaging examples in the pediatric brain, including stroke, vasculopathy, hypoxic-ischemic injury, epilepsy, migraine, tumor, infection, and metabolic disease.
Collapse
Affiliation(s)
- Xavier Golay
- MR Neurophysics and Translational Neuroscience, UCL Queen
Square Institute of Neurology London, London,
England, UK
| | - Mai-Lan Ho
- Radiology, Nationwide Children’s Hospital and The Ohio
State University, Columbus, OH,
USA
| |
Collapse
|
12
|
Stotesbury H, Hales PW, Hood AM, Koelbel M, Kawadler JM, Saunders DE, Sahota S, Rees DC, Wilkey O, Layton M, Pelidis M, Inusa BPD, Howard J, Chakravorty S, Clark CA, Kirkham FJ. Individual Watershed Areas in Sickle Cell Anemia: An Arterial Spin Labeling Study. Front Physiol 2022; 13:865391. [PMID: 35592036 PMCID: PMC9110791 DOI: 10.3389/fphys.2022.865391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/22/2022] [Indexed: 12/25/2022] Open
Abstract
Previous studies have pointed to a role for regional cerebral hemodynamic stress in neurological complications in patients with sickle cell anemia (SCA), with watershed regions identified as particularly at risk of ischemic tissue injury. Using single- and multi-inflow time (TI) arterial spin labeling sequences (ASL) in 94 patients with SCA and 42 controls, the present study sought to investigate cerebral blood flow (CBF) and bolus arrival times (BAT) across gray matter, white matter with early arrival times, and in individual watershed areas (iWSAs). In iWSAs, associations between hemodynamic parameters, lesion burden, white matter integrity, and general cognitive performance were also explored. In patients, increases in CBF and reductions in BAT were observed in association with reduced arterial oxygen content across gray matter and white matter with early arrival times using both sequences (all p < 0.001, d = -1.55--2.21). Across iWSAs, there was a discrepancy between sequences, with estimates based on the single-TI sequence indicating higher CBF in association with reduced arterial oxygen content in SCA patients, and estimates based on the multi-TI sequence indicating no significant between-group differences or associations with arterial oxygen content. Lesion burden was similar between white matter with early arrival times and iWSAs in both patients and controls, and using both sequences, only trend-level associations between iWSA CBF and iWSA lesion burden were observed in patients. Further, using the multi-TI sequence in patients, increased iWSA CBF was associated with reduced iWSA microstructural tissue integrity and slower processing speed. Taken together, the results highlight the need for researchers to consider BAT when estimating CBF using single-TI sequences. Moreover, the findings demonstrate the feasibility of multi-TI ASL for objective delineation of iWSAs and for detection of regional hemodynamic stress that is associated with reduced microstructural tissue integrity and slower processing speed. This technique may hold promise for future studies and treatment trials.
Collapse
Affiliation(s)
- Hanne Stotesbury
- Imaging and Biophysics Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - Patrick W. Hales
- Imaging and Biophysics Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - Anna M. Hood
- Division of Psychology and Mental Health, Manchester Centre for Health Psychology, University of Manchester, Manchester, United Kingdom
| | - Melanie Koelbel
- Imaging and Biophysics Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - Jamie M. Kawadler
- Imaging and Biophysics Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - Dawn E. Saunders
- Radiology, Great Ormond Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Sati Sahota
- Imaging and Biophysics Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - David C. Rees
- Paediatric Haematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Olu Wilkey
- Paediatric Haematology and Oncology, North Middlesex University Hospital NHS Foundation Trust, London, United Kingdom
| | - Mark Layton
- Haematology, Imperial College Healthcare NHS Foundation Trust, London, United Kingdom
| | - Maria Pelidis
- Department of Haematology and Evelina Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Baba P. D. Inusa
- Department of Haematology and Evelina Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Jo Howard
- Department of Haematology and Evelina Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Subarna Chakravorty
- Paediatric Haematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Chris A. Clark
- Imaging and Biophysics Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| | - Fenella J. Kirkham
- Clinical Neurosciences Section, Developmental Neurosciences, UCL Great Ormond St. Institute of Child Health, London, United Kingdom
| |
Collapse
|
13
|
Lin Z, McIntyre T, Jiang D, Cannon A, Liu P, Tekes A, Casella JF, Slifer K, Lu H, Lance E. Brain Oxygen Extraction and Metabolism in Pediatric Patients With Sickle Cell Disease: Comparison of Four Calibration Models. Front Physiol 2022; 13:814979. [PMID: 35222083 PMCID: PMC8874251 DOI: 10.3389/fphys.2022.814979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/21/2022] [Indexed: 12/11/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy with an increased risk of neurological complications. Due to anemia and other factors related to the underlying hemoglobinopathy, cerebral blood flow (CBF) increases as compensation; however, the nature of alterations in oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) in SCD remains controversial, largely attributed to the different calibration models. In addition, limited studies have been done to investigate oxygen metabolism in pediatric patients. Thus, this study used a non-invasive T2-based MR oximetry, T2-Relaxation-Under-Spin-Tagging (TRUST) MRI, to measure oxygen homeostasis in pediatric patients with SCD using four different calibration models and examined its relationship to hematological measures. It was found that, compared with controls, SCD patients showed an increased CBF, unchanged total oxygen delivery and increased venous blood T2. The results of OEF and CMRO2 were dependent on the calibration models used. When using sickle-specific, hemoglobin S (HbS) level-dependent calibration, there was a decreased OEF and CMRO2, while the bovine model showed an opposite result. OEF and CMRO2 were also associated with hemoglobin and HbS level; the direction of the relationship was again dependent on the model. Future studies with in vivo calibration are needed to provide more accurate information on the T2-Yv relationship.
Collapse
Affiliation(s)
- Zixuan Lin
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tiffany McIntyre
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alicia Cannon
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aylin Tekes
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - James F. Casella
- Division of Pediatric Hematology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Keith Slifer
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Eboni Lance
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Eboni Lance,
| |
Collapse
|
14
|
Johnson SE, McKnight CD, Jordan LC, Claassen DO, Waddle S, Lee C, Garza M, Patel NJ, Davis LT, Pruthi S, Trujillo P, Chitale R, Fusco M, Donahue MJ. Choroid plexus perfusion in sickle cell disease and moyamoya vasculopathy: Implications for glymphatic flow. J Cereb Blood Flow Metab 2021; 41:2699-2711. [PMID: 33906512 PMCID: PMC8504961 DOI: 10.1177/0271678x211010731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cerebrospinal fluid (CSF) and interstitial fluid exchange have been shown to increase following pharmacologically-manipulated increases in cerebral arterial pulsatility, consistent with arterial pulsatility improving CSF circulation along perivascular glymphatic pathways. The choroid plexus (CP) complexes produce CSF, and CP activity may provide a centralized indicator of perivascular flow. We tested the primary hypothesis that elevated cortical cerebral blood volume and flow, present in sickle cell disease (SCD), is associated with fractionally-reduced CP perfusion relative to healthy adults, and the supplementary hypothesis that reduced arterial patency, present in moyamoya vasculopathy, is associated with elevated fractional CP perfusion relative to healthy adults. Participants (n = 75) provided informed consent and were scanned using a 3-Tesla arterial-spin-labeling MRI sequence for CP and cerebral gray matter (GM) perfusion quantification. ANOVA was used to calculate differences in CP-to-GM perfusion ratios between groups, and regression analyses applied to evaluate the dependence of the CP-to-GM perfusion ratio on group after co-varying for age and sex. ANOVA yielded significant (p < 0.001) group differences, with CP-to-GM perfusion ratios increasing between SCD (ratio = 0.93 ± 0.28), healthy (ratio = 1.04 ± 0.32), and moyamoya (ratio = 1.29 ± 0.32) participants, which was also consistent with regression analyses. Findings are consistent with CP perfusion being inversely associated with cortical perfusion.
Collapse
Affiliation(s)
- Skylar E Johnson
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori C Jordan
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer Waddle
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chelsea Lee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria Garza
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niral J Patel
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - L Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sumit Pruthi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rohan Chitale
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Fusco
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Mayer SL, Fields ME, Hulbert ML. Neurologic and Cognitive Outcomes in Sickle Cell Disease from Infancy through Adolescence. Neoreviews 2021; 22:e531-e539. [PMID: 34341160 DOI: 10.1542/neo.22-8-e531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Children with sickle cell disease (SCD) are at risk for neurologic and cognitive complications beginning in early childhood. Current treatment for SCD focuses on primary prevention of complications, such as hydroxyurea for prevention of pain and acute chest syndrome, and chronic transfusion therapy for children who are at high risk for strokes. In this article, the prevalence, pathophysiology, and available interventions to prevent and treat neurologic and cognitive complications of SCD will be reviewed.
Collapse
Affiliation(s)
- Sarah L Mayer
- Children's Hospital of Philadelphia, Philadelphia, PA
| | - Melanie E Fields
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Washington University in St Louis, St Louis, MO
| | - Monica L Hulbert
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Washington University in St Louis, St Louis, MO
| |
Collapse
|
16
|
Vu C, Bush A, Choi S, Borzage M, Miao X, Nederveen AJ, Coates TD, Wood JC. Reduced global cerebral oxygen metabolic rate in sickle cell disease and chronic anemias. Am J Hematol 2021; 96:901-913. [PMID: 33891719 PMCID: PMC8273150 DOI: 10.1002/ajh.26203] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Anemia is the most common blood disorder in the world. In patients with chronic anemia, such as sickle cell disease or major thalassemia, cerebral blood flow increases to compensate for decreased oxygen content. However, the effects of chronic anemia on oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) are less well understood. In this study, we examined 47 sickle-cell anemia subjects (age 21.7 ± 7.1, female 45%), 27 non-sickle anemic subjects (age 25.0 ± 10.4, female 52%) and 44 healthy controls (age 26.4 ± 10.6, female 71%) using MRI metrics of brain oxygenation and flow. Phase contrast MRI was used to measure resting cerebral blood flow, while T2 -relaxation-under-spin-tagging (TRUST) MRI with disease appropriate calibrations were used to measure OEF and CMRO2 . We observed that patients with sickle cell disease and other chronic anemias have decreased OEF and CMRO2 (respectively 27.4 ± 4.1% and 3.39 ± 0.71 ml O2 /100 g/min in sickle cell disease, 30.8 ± 5.2% and 3.53 ± 0.64 ml O2 /100 g/min in other anemias) compared to controls (36.7 ± 6.0% and 4.00 ± 0.65 ml O2 /100 g/min). Impaired CMRO2 was proportional to the degree of anemia severity. We further demonstrate striking concordance of the present work with pooled historical data from patients having broad etiologies for their anemia. The reduced cerebral oxygen extraction and metabolism are consistent with emerging data demonstrating increased non-nutritive flow, or physiological shunting, in sickle cell disease patients.
Collapse
Affiliation(s)
- Chau Vu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Adam Bush
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
- Department of Radiology, Stanford University, Stanford, CA
| | - Soyoung Choi
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Matthew Borzage
- Division of Neonatology, Fetal and Neonatal Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Xin Miao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
| | - Aart J. Nederveen
- University of Amsterdam, Amsterdam UMC, Radiology and Nuclear Medicine, the Netherlands
| | - Thomas D. Coates
- Division of Hematology-Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA
- Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - John C. Wood
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
- Division of Cardiology, Departments of Pediatrics and Radiology, Children’s Hospital Los Angeles, Los Angeles, CA
| |
Collapse
|
17
|
Jordan LC, DeBaun MR, Donahue MJ. Advances in neuroimaging to improve care in sickle cell disease. Lancet Neurol 2021; 20:398-408. [PMID: 33894194 DOI: 10.1016/s1474-4422(20)30490-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022]
Abstract
Sickle cell disease is associated with progressive and increased neurological morbidity throughout the lifespan. In people with sickle cell anaemia (the most common and severe type of sickle cell disease), silent cerebral infarcts are found in more than a third of adolescents by age 18 years and roughly half of young adults by age 30 years, many of whom have cognitive impairment despite having few or no conventional stroke risk factors. Common anatomical neuroimaging in individuals with sickle disease can assess structural brain injury, such as stroke and silent cerebral infarcts; however, emerging advanced neuroimaging methods can provide novel insights into the pathophysiology of sickle cell disease, including insights into the cerebral haemodynamic and metabolic contributors of neurological injury. Advanced neuroimaging methods, particularly methods that report on aberrant cerebral blood flow and oxygen delivery, have potential for triaging patients for appropriate disease-modifying or curative therapies before they have irreversible neurological injury, and for confirming the benefit of new therapies on brain health in clinical trials.
Collapse
Affiliation(s)
- Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Michael R DeBaun
- Department of Pediatrics, Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
18
|
Stotesbury H, Kawadler JM, Saunders DE, Kirkham FJ. MRI detection of brain abnormality in sickle cell disease. Expert Rev Hematol 2021; 14:473-491. [PMID: 33612034 PMCID: PMC8315209 DOI: 10.1080/17474086.2021.1893687] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/18/2021] [Indexed: 02/08/2023]
Abstract
Introduction: Over the past decades, neuroimaging studies have clarified that a significant proportion of patients with sickle cell disease (SCD) have functionally significant brain abnormalities. Clinically, structural magnetic resonance imaging (MRI) sequences (T2, FLAIR, diffusion-weighted imaging) have been used by radiologists to diagnose chronic and acute cerebral infarction (both overt and clinically silent), while magnetic resonance angiography and venography have been used to diagnose arteriopathy and venous thrombosis. In research settings, imaging scientists are increasingly applying quantitative techniques to shine further light on underlying mechanisms.Areas covered: From a June 2020 PubMed search of 'magnetic' or 'MRI' and 'sickle' over the previous 5 years, we selected manuscripts on T1-based morphometric analysis, diffusion tensor imaging, arterial spin labeling, T2-oximetry, quantitative susceptibility, and connectivity.Expert Opinion: Quantitative MRI techniques are identifying structural and hemodynamic biomarkers associated with risk of neurological and neurocognitive complications. A growing body of evidence suggests that these biomarkers are sensitive to change with treatments, such as blood transfusion and hydroxyurea, indicating that they may hold promise as endpoints in future randomized clinical trials of novel approaches including hemoglobin F upregulation, reduction of polymerization, and gene therapy. With further validation, such techniques may eventually also improve neurological and neurocognitive risk stratification in this vulnerable population.
Collapse
Affiliation(s)
- Hanne Stotesbury
- Developmental Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jamie Michelle Kawadler
- Developmental Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dawn Elizabeth Saunders
- Developmental Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Fenella Jane Kirkham
- Developmental Neurosciences Section, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
19
|
Afzali-Hashemi L, Baas KPA, Schrantee A, Coolen BF, van Osch MJP, Spann SM, Nur E, Wood JC, Biemond BJ, Nederveen AJ. Impairment of Cerebrovascular Hemodynamics in Patients With Severe and Milder Forms of Sickle Cell Disease. Front Physiol 2021; 12:645205. [PMID: 33959037 PMCID: PMC8093944 DOI: 10.3389/fphys.2021.645205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/11/2021] [Indexed: 11/18/2022] Open
Abstract
In patients with sickle cell disease (SCD), cerebral blood flow (CBF) is elevated to counteract anemia and maintain oxygen supply to the brain. This may exhaust the vasodilating capacity of the vessels, possibly increasing the risk of silent cerebral infarctions (SCI). To further investigate cerebrovascular hemodynamics in SCD patients, we assessed CBF, arterial transit time (ATT), cerebrovascular reactivity of CBF and ATT (CVR CBF and CVR ATT ) and oxygen delivery in patients with different forms of SCD and matched healthy controls. We analyzed data of 52 patients with severe SCD (HbSS and HbSβ0-thal), 20 patients with mild SCD (HbSC and HbSβ+-thal) and 10 healthy matched controls (HbAA and HbAS). Time-encoded arterial spin labeling (ASL) scans were performed before and after a vasodilatory challenge using acetazolamide (ACZ). To identify predictors of CBF and ATT after vasodilation, regression analyses were performed. Oxygen delivery was calculated and associated with hemoglobin and fetal hemoglobin (HbF) levels. At baseline, severe SCD patients showed significantly higher CBF and lower ATT compared to both the mild SCD patients and healthy controls. As CBF postACZ was linearly related to CBF preACZ , CVR CBF decreased with disease severity. CVR ATT was also significantly affected in severe SCD patients compared to mild SCD patients and healthy controls. Considering all groups, women showed higher CBF postACZ than men (p < 0.01) independent of baseline CBF. Subsequently, post ACZ oxygen delivery was also higher in women (p < 0.05). Baseline, but not post ACZ, GM oxygen delivery increased with HbF levels. Our data showed that baseline CBF and ATT and CVR CBF and CVR ATT are most affected in severe SCD patients and to a lesser extent in patients with milder forms of SCD compared to healthy controls. Cerebrovascular vasoreactivity was mainly determined by baseline CBF, sex and HbF levels. The higher vascular reactivity observed in women could be related to their lower SCI prevalence, which remains an area of future work. Beneficial effects of HbF on oxygen delivery reflect changes in oxygen dissociation affinity from hemoglobin and were limited to baseline conditions suggesting that high HbF levels do not protect the brain upon a hemodynamic challenge, despite its positive effect on hemolysis.
Collapse
Affiliation(s)
- Liza Afzali-Hashemi
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Koen P. A. Baas
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam UMC, location AMC, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Stefan M. Spann
- Institute of Medical Engineering, Graz University of Technology, Graz, Austria
| | - Erfan Nur
- Department of Hematology, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - John C. Wood
- Division of Cardiology, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Bart J. Biemond
- Department of Hematology, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| |
Collapse
|
20
|
Petersen KJ, Donahue MJ, Claassen DO. Mapping the orbitofrontal cortex using temporal fluctuations in cerebral blood flow. Brain Behav 2021; 11:e02034. [PMID: 33438840 PMCID: PMC7994685 DOI: 10.1002/brb3.2034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION The orbitofrontal cortex (OFC) is involved in diverse cognitive and behavioral processes including incentive valuation, decision-making, and reinforcement learning. Anatomic and cytoarchitectonic studies divide the OFC along both medial-lateral and rostral-caudal axes. OFC regions diverge in structure and function, assessed in vivo using white matter tractography and blood oxygenation level-dependent (BOLD) MRI, respectively. However, interpretation of T2 *-weighted BOLD is limited by susceptibility artifacts in the inferior frontal lobes, with the spatial pattern of these artifacts frequently assuming the geometry of OFC organization. Here, we utilize a novel perfusion-weighted arterial spin labeling (ASL) functional connectivity approach, which is minimally susceptibility-weighted, to test the hypothesis that OFC topology reflects correlated temporal hemodynamic activity. METHODS In healthy participants (n = 20; age = 29.5 ± 7.3), 3D ASL scans were acquired (TR/TE = 3,900/13 ms; spatial resolution = 3.8 mm isotropic). To evaluate reproducibility, follow-up scanning on a separate day was performed on a participant subset (n = 8). ASL-based connectivity was modeled for gray matter OFC voxels, and k-means clustering (k = 2-8) applied to correlation statistics. RESULTS These approaches revealed both medial-lateral and rostral-caudal OFC divisions, confirming our hypothesis. Longitudinal reproducibility testing revealed 84% voxel clustering agreement between sessions for the k = 2 solution. CONCLUSION To our knowledge, this constitutes the first in vivo cortical parcellation based on perfusion fluctuations. Our approach confirms functional OFC subdivisions predicted from anatomy using a less susceptibility-sensitive method than the conventional approach.
Collapse
Affiliation(s)
- Kalen J. Petersen
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Manus J. Donahue
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Department of NeurologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of Psychiatry and Behavioral SciencesVanderbilt University Medical CenterNashvilleTNUSA
| | - Daniel O. Claassen
- Department of NeurologyVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
21
|
Juttukonda MR, Donahue MJ, Waddle SL, Davis LT, Lee CA, Patel NJ, Pruthi S, Kassim AA, Jordan LC. Reduced oxygen extraction efficiency in sickle cell anemia patients with evidence of cerebral capillary shunting. J Cereb Blood Flow Metab 2021; 41:546-560. [PMID: 32281458 PMCID: PMC7922746 DOI: 10.1177/0271678x20913123] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) utilizes arterial blood water as an endogenous contrast agent to provide a quantitative measure of cerebral blood flow (CBF). Recently, hyperintense signal within dural venous sinuses in ASL images of sickle cell anemia (SCA) patients has been shown to be consistent with elevated flow velocities and may indicate capillary shunting and reduced oxygen extraction. Here, we performed oxygen extraction fraction (OEF) and CBF measurements in adults (cumulative n = 114) with (n = 69) and without (n = 45) SCA to test the hypothesis that hyperintense venous ASL signal is associated with reduced OEF. Higher categorical scores of shunting on ASL MRI were associated with lower OEF in participants with silent cerebral infarcts or white matter hyperintensities (p = 0.003), but not in those without lesions (p = 0.551). These findings indicate that venous hyperintense signal in ASL images in SCA patients may represent a marker of capillary-level disturbances in oxygen exchange efficiency and small vessel pathology.
Collapse
Affiliation(s)
- Meher R Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer L Waddle
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry T Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chelsea A Lee
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niral J Patel
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sumit Pruthi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adetola A Kassim
- Department of Medicine, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori C Jordan
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Juttukonda MR, Li B, Almaktoum R, Stephens KA, Yochim KM, Yacoub E, Buckner RL, Salat DH. Characterizing cerebral hemodynamics across the adult lifespan with arterial spin labeling MRI data from the Human Connectome Project-Aging. Neuroimage 2021; 230:117807. [PMID: 33524575 PMCID: PMC8185881 DOI: 10.1016/j.neuroimage.2021.117807] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) has become a popular approach for studying cerebral hemodynamics in a range of disorders and has recently been included as part of the Human Connectome Project-Aging (HCP-A). Due to the high spatial resolution and multiple post-labeling delays, ASL data from HCP-A holds promise for localization of hemodynamic signals not only in gray matter but also in white matter. However, gleaning information about white matter hemodynamics with ASL is challenging due in part to longer blood arrival times in white matter compared to gray matter. In this work, we present an analytical approach for deriving measures of cerebral blood flow (CBF) and arterial transit times (ATT) from the ASL data from HCP-A and report on gray and white matter hemodynamics in a large cohort (n = 234) of typically aging adults (age 36–90 years). Pseudo-continuous ASL data were acquired with labeling duration = 1500 ms and five post-labeling delays = 200 ms, 700 ms, 1200, 1700 ms, and 2200 ms. ATT values were first calculated on a voxel-wise basis through normalized cross-correlation analysis of the acquired signal time course in that voxel and an expected time course based on an acquisition-specific Bloch simulation. CBF values were calculated using a two-compartment model and with age-appropriate blood water longitudinal relaxation times. Using this approach, we found that white matter CBF reduces (ρ = 0.39) and white matter ATT elongates (ρ = 0.42) with increasing age (p < 0.001). In addition, CBF is lower and ATTs are longer in white matter compared to gray matter across the adult lifespan (Wilcoxon signed-rank tests; p < 0.001). We also found sex differences with females exhibiting shorter white matter ATTs than males, independently of age (Wilcoxon rank-sum test; p < 0.001). Finally, we have shown that CBF and ATT values are spatially heterogeneous, with significant differences in cortical versus subcortical gray matter and juxtacortical versus periventricular white matter. These results serve as a characterization of normative physiology across the human lifespan against which hemodynamic impairment due to cerebrovascular or neurodegenerative diseases could be compared in future studies.
Collapse
Affiliation(s)
- Meher R Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Radiology, Harvard Medical School, Boston, MA, United States.
| | - Binyin Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Neurology, Ruijin Hospital & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Randa Almaktoum
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States
| | - Kimberly A Stephens
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States
| | - Kathryn M Yochim
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnessota, Minneapolis, MN, United States
| | - Randy L Buckner
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Psychology, Harvard University, Cambridge, MA, United States; Department of Neuroscience, Harvard University, Cambridge, MA, United States
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 Thirteenth Street, Suite, 2301, Charlestown 02129, MA, United States; Department of Radiology, Harvard Medical School, Boston, MA, United States; Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, United States
| |
Collapse
|
23
|
Yuan S, Jordan LC, Davis LT, Cogswell PM, Lee CA, Patel NJ, Waddle SL, Juttukonda M, Sky Jones R, Griffin A, Donahue MJ. A cross-sectional, case-control study of intracranial arterial wall thickness and complete blood count measures in sickle cell disease. Br J Haematol 2020; 192:769-777. [PMID: 33326595 DOI: 10.1111/bjh.17262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/25/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
In sickle cell disease (SCD), cerebral oxygen delivery is dependent on the cerebral vasculature's ability to increase blood flow and volume through relaxation of the smooth muscle that lines intracranial arteries. We hypothesised that anaemia extent and/or circulating markers of inflammation lead to concentric macrovascular arterial wall thickening, visible on intracranial vessel wall magnetic resonance imaging (VW-MRI). Adult and pediatric SCD (n = 69; age = 19.9 ± 8.6 years) participants and age- and sex-matched control participants (n = 38; age = 22.2 ± 8.9 years) underwent 3-Tesla VW-MRI; two raters measured basilar and bilateral supraclinoid internal carotid artery (ICA) wall thickness independently. Mean wall thickness was compared with demographic, cerebrovascular and haematological variables. Mean vessel wall thickness was elevated (P < 0·001) in SCD (1·07 ± 0·19 mm) compared to controls (0·97 ± 0·07 mm) after controlling for age and sex. Vessel wall thickness was higher in participants on chronic transfusions (P = 0·013). No significant relationship between vessel wall thickness and flow velocity, haematocrit, white blood cell count or platelet count was observed; however, trends (P < 0·10) for wall thickness increasing with decreasing haematocrit and increasing white blood cell count were noted. Findings are discussed in the context of how anaemia and circulating inflammatory markers may impact arterial wall morphology.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori C Jordan
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry T Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Petrice M Cogswell
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Chelsea A Lee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niral J Patel
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer L Waddle
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meher Juttukonda
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R Sky Jones
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allison Griffin
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
24
|
DeBeer T, Jordan LC, Lee CA, Patel NJ, Pruthi S, Waddle SL, Griffin AD, DeBaun MR, Donahue MJ. Evidence of transfusion-induced reductions in cerebral capillary shunting in sickle cell disease. Am J Hematol 2020; 95:E228-E230. [PMID: 32390261 DOI: 10.1002/ajh.25863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Tonner DeBeer
- Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville Tennessee USA
| | - Lori C. Jordan
- Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville Tennessee USA
- Pediatrics Vanderbilt University Medical Center Nashville Tennessee USA
| | - Chelsea A. Lee
- Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville Tennessee USA
- Pediatrics Vanderbilt University Medical Center Nashville Tennessee USA
| | - Niral J. Patel
- Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville Tennessee USA
- Pediatrics Vanderbilt University Medical Center Nashville Tennessee USA
| | - Sumit Pruthi
- Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville Tennessee USA
| | - Spencer L. Waddle
- Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville Tennessee USA
| | - Allison D. Griffin
- Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville Tennessee USA
| | - Michael R. DeBaun
- Hematology Vanderbilt University Medical Center Nashville Tennessee USA
| | - Manus J. Donahue
- Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville Tennessee USA
- Neurology Vanderbilt University Medical Center Nashville Tennessee USA
- Psychiatry and Behavioral Sciences Vanderbilt University Medical Center Nashville Tennessee USA
| |
Collapse
|
25
|
Vu C, Chai Y, Coloigner J, Nederveen AJ, Borzage M, Bush A, Wood JC. Quantitative perfusion mapping with induced transient hypoxia using BOLD MRI. Magn Reson Med 2020; 85:168-181. [PMID: 32767413 DOI: 10.1002/mrm.28422] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Gadolinium-based dynamic susceptibility contrast (DSC) is commonly used to characterize blood flow in patients with stroke and brain tumors. Unfortunately, gadolinium contrast administration has been associated with adverse reactions and long-term accumulation in tissues. In this work, we propose an alternative deoxygenation-based DSC (dDSC) method that uses a transient hypoxia gas paradigm to deliver a bolus of paramagnetic deoxygenated hemoglobin to the cerebral vasculature for perfusion imaging. METHODS Through traditional DSC tracer kinetic modeling, the MR signal change induced by this hypoxic bolus can be used to generate regional perfusion maps of cerebral blood flow, cerebral blood volume, and mean transit time. This gas paradigm and blood-oxygen-level-dependent (BOLD)-MRI were performed concurrently on a cohort of 66 healthy and chronically anemic subjects (age 23.5 ± 9.7, female 64%). RESULTS Our results showed reasonable global and regional agreement between dDSC and other flow techniques, such as phase contrast and arterial spin labeling. CONCLUSION In this proof-of-concept study, we demonstrated the feasibility of using transient hypoxia to generate a contrast bolus that mimics the effect of gadolinium and yields reasonable perfusion estimates. Looking forward, optimization of the hypoxia boluses and measurement of the arterial-input function is necessary to improve the accuracy of dDSC. Additionally, a cross-validation study of dDSC and DSC in brain tumor and ischemic stroke subjects is warranted to evaluate the clinical diagnostic utility of this approach.
Collapse
Affiliation(s)
- Chau Vu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Yaqiong Chai
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,Department of Radiology, CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Julie Coloigner
- Department of Radiology, CIBORG Laboratory, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Univ Rennes, CNRS, Inria, Inserm, IRISA UMR 6074, Empenn ERL U 1228, Rennes, France
| | - Aart J Nederveen
- Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Matthew Borzage
- Division of Neonatology, Fetal and Neonatal Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adam Bush
- Department of Radiology, Stanford University, Stanford, CA, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - John C Wood
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,Division of Cardiology, Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Petersen KJ, Garza M, Donahue PM, Harkins KD, Marton A, Titze J, Donahue MJ, Crescenzi R. Neuroimaging of Cerebral Blood Flow and Sodium in Women with Lipedema. Obesity (Silver Spring) 2020; 28:1292-1300. [PMID: 32568462 PMCID: PMC7360333 DOI: 10.1002/oby.22837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Lipedema is characterized by pain, fatigue, and excessive adipose tissue and sodium accumulation of the lower extremities. This case-control study aims to determine whether sodium or vascular dysfunction is present in the central nervous system. METHODS Brain magnetic resonance imaging was performed at 3 T in patients with lipedema (n = 15) and control (n = 18) participants matched for sex, age, race, and BMI. Standard anatomical imaging and intracranial angiography were applied to evaluate brain volume and vasculopathy, respectively; arterial spin labeling and sodium magnetic resonance imaging were applied to quantify cerebral blood flow (CBF) (milliliters per 100 grams of tissue/minute) and brain tissue sodium content (millimoles per liter), respectively. A Mann-Whitney U test (significance criteria P < 0.05) was applied to evaluate group differences. RESULTS No differences in tissue volume, white matter hyperintensities, intracranial vasculopathy, or tissue sodium content were observed between groups. Gray matter CBF was elevated (P = 0.03) in patients with lipedema (57.2 ± 9.6 mL per 100 g/min) versus control participants (49.8 ± 9.1 mL per 100 g/min). CONCLUSIONS Findings provide evidence that brain sodium and tissue fractions are similar between patients with lipedema and control participants and that patients with lipedema do not exhibit abnormal radiological indicators of intracranial vasculopathy or ischemic injury. Potential explanations for elevated CBF are discussed in the context of the growing literature on lipedema symptomatology and vascular dysfunction.
Collapse
Affiliation(s)
- Kalen J. Petersen
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
- Corresponding author: Kalen J. Petersen, PhD, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21 Avenue South, Medical Center North AA-1105B, Nashville, TN 37232, USA, Tel: +1 615.343.7182, Fax: +1 615.322.0734,
| | - Maria Garza
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Paula M.C. Donahue
- Physical Medicine and Rehabilitation, Vanderbilt University School of Medicine, Nashville TN, USA
- Dayani Center for Health and Wellness, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Kevin D. Harkins
- Biomedical Engineering, Vanderbilt University, Nashville TN, USA
| | - Adriana Marton
- Cardiovascular and Metabolic Disease, Duke-National University of Singapore Medical School
| | - Jens Titze
- Cardiovascular and Metabolic Disease, Duke-National University of Singapore Medical School
| | - Manus J. Donahue
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
- Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rachelle Crescenzi
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
| |
Collapse
|
27
|
Jordan LC, Kassim AA, Wilkerson KL, Lee CA, Waddle SL, Donahue MJ. Using novel magnetic resonance imaging methods to predict stroke risk in individuals with sickle cell anemia. Hematol Oncol Stem Cell Ther 2020; 13:76-84. [PMID: 32192979 DOI: 10.1016/j.hemonc.2019.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/11/2019] [Indexed: 11/28/2022] Open
Abstract
Sickle cell anemia (SCA) is a well-characterized monogenetic disorder with a high prevalence of cerebral vasculopathy, silent cerebral infarcts, and strokes. A significant mechanism for cerebral infarction in SCA is hemodynamic imbalance. To compensate for reduced oxygen-carrying capacity due to anemia, individuals with SCA have chronically elevated cerebral blood flow to maintain viable oxygen delivery to the brain tissue. Often the oxygen extraction fraction (ratio of oxygen consumed to oxygen delivered) is increased in more severely affected individuals. Subsequently, cerebrovascular reserve capacity, the ability of arterioles to dilate and further increase the cerebral blood volume and flow, will be reduced. These hemodynamic profiles have been associated with prior cerebral infarcts and increased evidence of disease severity. These cerebral hemodynamic parameters can be assessed noninvasively with noncontrast magnetic resonance imaging (MRI) of the brain utilizing specific MRI methods. This review focuses on using advanced neuroimaging methods to assess stroke risk in individuals with SCA, and such methods may be utilized before and after bone marrow or hematopoietic stem cell transplant to assess cerebral hemodynamic response. This manuscript is part of the Proceeding of The European Group for Blood and Marrow Transplantation (EBMT) Congress on Sickle Cell Disease, 16th-17 May 2019, Regensburg, Germany.
Collapse
Affiliation(s)
- Lori C Jordan
- Pediatrics-Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Adetola A Kassim
- Medicine-Division of Hematology/Stem Cell Transplantation, Vanderbilt-Meharry Sickle Cell Center for Excellence, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karina L Wilkerson
- Medicine-Division of Hematology/Stem Cell Transplantation, Vanderbilt-Meharry Sickle Cell Center for Excellence, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chelsea A Lee
- Pediatrics-Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer L Waddle
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA; Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
28
|
Ikwuanusi I, Jordan LC, Lee CA, Patel NJ, Waddle S, Pruthi S, Davis LT, Griffin A, DeBaun MR, Kassim AA, Donahue MJ. Cerebral hemodynamics and metabolism are similar in sickle cell disease patients with hemoglobin SS and Sβ 0 thalassemia phenotypes. Am J Hematol 2020; 95:E66-E68. [PMID: 31814164 DOI: 10.1002/ajh.25698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Ifeanyi Ikwuanusi
- Department of RadiologyVanderbilt University Medical Center Nashville Tennessee
| | - Lori C. Jordan
- Department of RadiologyVanderbilt University Medical Center Nashville Tennessee
- Department of Pediatrics, Division of Pediatric NeurologyVanderbilt University Medical Center Nashville Tennessee
- Department of NeurologyVanderbilt University Medical Center Nashville Tennessee
| | - Chelsea A. Lee
- Department of RadiologyVanderbilt University Medical Center Nashville Tennessee
- Department of Pediatrics, Division of Pediatric NeurologyVanderbilt University Medical Center Nashville Tennessee
| | - Niral J. Patel
- Department of RadiologyVanderbilt University Medical Center Nashville Tennessee
- Department of Pediatrics, Division of Pediatric NeurologyVanderbilt University Medical Center Nashville Tennessee
| | - Spencer Waddle
- Department of RadiologyVanderbilt University Medical Center Nashville Tennessee
| | - Sumit Pruthi
- Department of RadiologyVanderbilt University Medical Center Nashville Tennessee
| | - L. Taylor Davis
- Department of RadiologyVanderbilt University Medical Center Nashville Tennessee
| | - Allison Griffin
- Department of RadiologyVanderbilt University Medical Center Nashville Tennessee
| | - Michael R. DeBaun
- Department of Pediatrics, Vanderbilt‐Meharry Center for Excellence in Sickle Cell DiseaseVanderbilt University Medical Center Nashville Tennessee
- Department of Internal Medicine, Division of Hematology/OncologyVanderbilt University Medical Center Nashville Tennessee
| | - Adetola A. Kassim
- Department of Internal Medicine, Division of Hematology/OncologyVanderbilt University Medical Center Nashville Tennessee
| | - Manus J. Donahue
- Department of RadiologyVanderbilt University Medical Center Nashville Tennessee
- Department of NeurologyVanderbilt University Medical Center Nashville Tennessee
- Department of PsychiatryVanderbilt University Medical Center Nashville Tennessee
| |
Collapse
|
29
|
Li W, Xu X, Liu P, Strouse JJ, Casella JF, Lu H, van Zijl PCM, Qin Q. Quantification of whole-brain oxygenation extraction fraction and cerebral metabolic rate of oxygen consumption in adults with sickle cell anemia using individual T 2 -based oxygenation calibrations. Magn Reson Med 2019; 83:1066-1080. [PMID: 31483528 DOI: 10.1002/mrm.27972] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE To evaluate different T2 -oxygenation calibrations for estimating venous oxygenation in people with sickle cell anemia (SCA). METHODS Blood T2 values were measured at 3 T in the internal jugular veins of 12 healthy volunteers and 11 SCA participants with no history of stroke, recent transfusion, or renal impairment. T2 -oxygenation relationships of both sickled and normal blood samples were calibrated individually and compared with values generated from published models. After converting venous T2 values to venous oxygenation, whole-brain oxygen extraction fraction and cerebral metabolic rate of oxygen were calculated. RESULTS Sickle blood samples' oxygenation values calculated from our individual calibrations agreed well with measurements using a blood analyzer, whereas previous T2 calibrations based on normal blood samples showed 13%-19% underestimation. Meanwhile, oxygenation values calculated from previous grouped T2 calibration for sickle blood agreed well with experimental measurement on averaged values, but showed up to 20% variation for several individual samples. Using individual T2 calibrations, the whole-brain oxygen extraction fraction and cerebral metabolic rate of oxygen of SCA participants were 0.38 ± 0.08 and 172 ± 42 µmol/min/100 g, respectively, which were comparable to those values measured on healthy volunteers. CONCLUSION Our results confirm that sickle blood T2 values not only depend on the hematocrit and oxygenation values, but also on other hematological factors. The individual T2 calibrations minimized the effect of heterogeneity of sickle blood between different SCA populations and improved the accuracy of T2 -based oximetry. The measured oxygen extraction fraction and cerebral metabolic rate of oxygen of this group of SCA participants were found to not differ significantly from those of healthy individuals.
Collapse
Affiliation(s)
- Wenbo Li
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Peiying Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John J Strouse
- Department of Pediatrics, Division of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Hematology, Duke University, Durham, North Carolina
| | - James F Casella
- Department of Pediatrics, Division of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Qin Qin
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
30
|
Stotesbury H, Kawadler JM, Hales PW, Saunders DE, Clark CA, Kirkham FJ. Vascular Instability and Neurological Morbidity in Sickle Cell Disease: An Integrative Framework. Front Neurol 2019; 10:871. [PMID: 31474929 PMCID: PMC6705232 DOI: 10.3389/fneur.2019.00871] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
It is well-established that patients with sickle cell disease (SCD) are at substantial risk of neurological complications, including overt and silent stroke, microstructural injury, and cognitive difficulties. Yet the underlying mechanisms remain poorly understood, partly because findings have largely been considered in isolation. Here, we review mechanistic pathways for which there is accumulating evidence and propose an integrative systems-biology framework for understanding neurological risk. Drawing upon work from other vascular beds in SCD, as well as the wider stroke literature, we propose that macro-circulatory hyper-perfusion, regions of relative micro-circulatory hypo-perfusion, and an exhaustion of cerebral reserve mechanisms, together lead to a state of cerebral vascular instability. We suggest that in this state, tissue oxygen supply is fragile and easily perturbed by changes in clinical condition, with the potential for stroke and/or microstructural injury if metabolic demand exceeds tissue oxygenation. This framework brings together recent developments in the field, highlights outstanding questions, and offers a first step toward a linking pathophysiological explanation of neurological risk that may help inform future screening and treatment strategies.
Collapse
Affiliation(s)
- Hanne Stotesbury
- Developmental Neurosciences, UCL Great Ormond Institute of Child Health, London, United Kingdom
| | - Jamie M Kawadler
- Developmental Neurosciences, UCL Great Ormond Institute of Child Health, London, United Kingdom
| | - Patrick W Hales
- Developmental Neurosciences, UCL Great Ormond Institute of Child Health, London, United Kingdom
| | - Dawn E Saunders
- Developmental Neurosciences, UCL Great Ormond Institute of Child Health, London, United Kingdom.,Department of Radiology, Great Ormond Hospital, London, United Kingdom
| | - Christopher A Clark
- Developmental Neurosciences, UCL Great Ormond Institute of Child Health, London, United Kingdom
| | - Fenella J Kirkham
- Developmental Neurosciences, UCL Great Ormond Institute of Child Health, London, United Kingdom.,Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom.,Department of Child Health, University Hospital Southampton, Southampton, United Kingdom.,Department of Paediatric Neurology, Kings College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
31
|
Krishnamurthy R, Wang DJJ, Cervantes B, McAllister A, Nelson E, Karampinos DC, Hu HH. Recent Advances in Pediatric Brain, Spine, and Neuromuscular Magnetic Resonance Imaging Techniques. Pediatr Neurol 2019; 96:7-23. [PMID: 31023603 DOI: 10.1016/j.pediatrneurol.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful radiologic tool with the ability to generate a variety of proton-based signal contrast from tissues. Owing to this immense flexibility in signal generation, new MRI techniques are constantly being developed, tested, and optimized for clinical utility. In addition, the safe and nonionizing nature of MRI makes it a suitable modality for imaging in children. In this review article, we summarize a few of the most popular advances in MRI techniques in recent years. In particular, we highlight how these new developments have affected brain, spine, and neuromuscular imaging and focus on their applications in pediatric patients. In the first part of the review, we discuss new approaches such as multiphase and multidelay arterial spin labeling for quantitative perfusion and angiography of the brain, amide proton transfer MRI of the brain, MRI of brachial plexus and lumbar plexus nerves (i.e., neurography), and T2 mapping and fat characterization in neuromuscular diseases. In the second part of the review, we focus on describing new data acquisition strategies in accelerated MRI aimed collectively at reducing the scan time, including simultaneous multislice imaging, compressed sensing, synthetic MRI, and magnetic resonance fingerprinting. In discussing the aforementioned, the review also summarizes the advantages and disadvantages of each method and their current state of commercial availability from MRI vendors.
Collapse
Affiliation(s)
| | - Danny J J Wang
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Barbara Cervantes
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | | - Eric Nelson
- Center for Biobehavioral Health, Nationwide Children's Hospital, Columbus, Ohio
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | |
Collapse
|
32
|
Jordan LC, Juttukonda MR, Kassim AA, DeBaun MR, Davis LT, Pruthi S, Patel NJ, Lee CA, Waddle SL, Donahue MJ. Haploidentical bone marrow transplantation improves cerebral hemodynamics in adults with sickle cell disease. Am J Hematol 2019; 94:E155-E158. [PMID: 30838684 DOI: 10.1002/ajh.25455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Lori C. Jordan
- Division of Pediatric Neurology, Department of PediatricsVanderbilt University Medical Center Nashville Tennessee
- Department of NeurologyVanderbilt University Medical Center Nashville Tennessee
| | - Meher R. Juttukonda
- Department of Radiology and Radiological SciencesVanderbilt University Medical Center Nashville Tennessee
| | - Adetola A. Kassim
- Division of Hematology, Department of MedicineVanderbilt University Medical Center Nashville Tennessee
| | - Michael R. DeBaun
- Division of Hematology/Oncology, Department of PediatricsVanderbilt University Medical Center Nashville Tennessee
| | - Larry T. Davis
- Department of Radiology and Radiological SciencesVanderbilt University Medical Center Nashville Tennessee
| | - Sumit Pruthi
- Department of Radiology and Radiological SciencesVanderbilt University Medical Center Nashville Tennessee
| | - Niral J. Patel
- Division of Pediatric Neurology, Department of PediatricsVanderbilt University Medical Center Nashville Tennessee
| | - Chelsea A. Lee
- Division of Pediatric Neurology, Department of PediatricsVanderbilt University Medical Center Nashville Tennessee
| | - Spencer L. Waddle
- Department of Radiology and Radiological SciencesVanderbilt University Medical Center Nashville Tennessee
| | - Manus J. Donahue
- Department of NeurologyVanderbilt University Medical Center Nashville Tennessee
- Department of Radiology and Radiological SciencesVanderbilt University Medical Center Nashville Tennessee
- Department of Psychiatry and Behavioral SciencesVanderbilt University Medical Center Nashville Tennessee
- Department of Physics and AstronomyVanderbilt University Nashville Tennessee
| |
Collapse
|
33
|
Juttukonda MR, Donahue MJ, Davis LT, Gindville MC, Lee CA, Patel NJ, Kassim AA, Pruthi S, Hendrikse J, Jordan LC. Preliminary evidence for cerebral capillary shunting in adults with sickle cell anemia. J Cereb Blood Flow Metab 2019; 39:1099-1110. [PMID: 29260615 PMCID: PMC6547194 DOI: 10.1177/0271678x17746808] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated flow velocities in adults with sickle cell anemia (SCA) may cause rapid erythrocyte transit through capillaries. This phenomenon could present as dural venous sinus hyperintensity on arterial spin labeling (ASL)-MRI and could be indicative of capillary shunting. Here, the prevalence of ASL venous hyperintensities and association with relevant physiology in adults with SCA was investigated. SCA ( n = 46) and age-matched control ( n = 16) volunteers were recruited for 3.0 T MRI. Pseudo-continuous ASL-MRI was acquired for cerebral blood flow (CBF) calculation and venous hyperintensity determination; venous signal intensity and a categorical venous score (three raters; 0 = no hyperintensity, 1 = focal hyperintensity, and 2 = diffuse hyperintensity) were recorded. Flow velocity in cervical internal carotid artery segments was determined from phase contrast data (venc = 40 cm/s) and whole-brain oxygen extraction fraction (OEF) was determined from T2-relaxation-under-spin-tagging MRI. Cerebral metabolic rate of oxygen was calculated as the product of OEF, CBF, and blood oxygen content. ASL venous hyperintensities were significantly ( p < 0.001) more prevalent in SCA (65%) relative to control (6%) participants and were associated with elevated flow velocities ( p = 0.03). CBF ( p < 0.001), but not OEF, increased with increasing hyperintensity score. Prospective trials that evaluate this construct as a possible marker of impaired oxygen delivery and stroke risk may be warranted.
Collapse
Affiliation(s)
- Meher R Juttukonda
- 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,2 Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,3 Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA.,4 Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
| | - Larry T Davis
- 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melissa C Gindville
- 5 Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chelsea A Lee
- 5 Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niral J Patel
- 5 Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adetola A Kassim
- 6 Department of Medicine, Division of Hematology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sumit Pruthi
- 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeroen Hendrikse
- 7 Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lori C Jordan
- 2 Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,5 Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
34
|
Croal PL, Leung J, Phillips CL, Serafin MG, Kassner A. Quantification of pathophysiological alterations in venous oxygen saturation: A comparison of global MR susceptometry techniques. Magn Reson Imaging 2019; 58:18-23. [PMID: 30639755 DOI: 10.1016/j.mri.2019.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to compare the Infinite Cylinder and Forward Field methods of quantifying global venous oxygen saturation (Yv) in the superior sagittal sinus (SSS) from MRI phase data, and assess their applicability in systemic cerebrovascular disease.15 children with sickle cell disease (SCD) and 10 healthy age-matched controls were imaged on a 3.0 T MRI system. Anatomical and phase data around the superior sagittal sinus were acquired from a clinically available susceptibility weighted imaging sequence and converted to Yv using the Infinite Cylinder and Forward Field methods. Yv was significantly higher when calculated using the Infinite Cylinder method compared to the Forward Field method in both patients (p = 0.003) and controls (p < 0.001). A significant difference in Yv was observed between patients and controls for the Forward Field method only (p = 0.006). While various implementations of Yv quantification can be used in practice, the results can differ significantly. Simplistic models such as the Infinite Cylinder method may be easier to implement, but their dependence on broad assumptions can lead to an overestimation of Yv, and may reduce the sensitivity to pathophysiological changes in Yv.
Collapse
Affiliation(s)
- Paula L Croal
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Biomedical Engineering, The University of Oxford, Oxford, United Kingdom
| | - Jackie Leung
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Charly L Phillips
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Malambing G Serafin
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrea Kassner
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
Multi-phase 3D arterial spin labeling brain MRI in assessing cerebral blood perfusion and arterial transit times in children at 3T. Clin Imaging 2018; 53:210-220. [PMID: 30439588 DOI: 10.1016/j.clinimag.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND 3D pseudocontinuous arterial spin labeling (pCASL) with a single post-labeling delay time is commonly used to measure cerebral blood flow (CBF). Multi-phase pCASL has been developed to simultaneously estimate CBF and arterial transit time (ATT). PURPOSE To evaluate the clinical feasibility of multi-phase 3D pCASL in pediatric patients, and to compare the estimation of ATT and CBF via linear weighted-delay and traditional non-linear iterative curve-fitting routines. MATERIAL & METHODS Forty patients (average age: 8.6 y, 5 d-22.4 y) referred for routine brain MRI underwent additional 5-7 min of pCASL scans at 3T using 5 PLDs between 300 and 2300 ms. Data were post-processed by two algorithms for estimating CBF and ATT. Average CBF and ATT values were computed for vascular territories including the anterior, middle and posterior cerebral arteries as well as regions based on the Alberta Stroke Program Early CT Score template. Pearson correlation coefficients and linear regression were used for statistical analysis. The clinical value of multi-phase CASL was evaluated by a neuroradiologist based on asymmetric CBF and ATT maps in patients. RESULTS All pCASL scans were successfully completed, generating diagnostic results. CBF computed from weighted-delay and curve-fitting methods agreed strongly, with Pearson correlation coefficients ranging from 0.97-0.99 across the measured regions (p < 0.05). Correlation coefficients for ATT ranged from 0.87-0.96 (p < 0.05). CBF and ATT maps were found to add valuable information to clinical diagnosis in 17 of 40 pediatric patients. CONCLUSION Our preliminary results demonstrate the feasibility and potential clinical utility of multi-phase pCASL for simultaneous CBF and ATT quantification in pediatric patients.
Collapse
|
36
|
Juttukonda MR, Lee CA, Patel NJ, Davis LT, Waddle SL, Gindville MC, Pruthi S, Kassim AA, DeBaun MR, Donahue MJ, Jordan LC. Differential cerebral hemometabolic responses to blood transfusions in adults and children with sickle cell anemia. J Magn Reson Imaging 2018; 49:466-477. [PMID: 30324698 DOI: 10.1002/jmri.26213] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Blood transfusions are administered to children and adults with sickle cell anemia (SCA) for secondary stroke prevention, or as treatment for recurrent pain crises or acute anemia, but transfusion effects on cerebral hemodynamics and metabolism are not well-characterized. PURPOSE To compare blood transfusion-induced changes in hemometabolic parameters, including oxygen extraction fraction (OEF) and cerebral blood flow (CBF), within and between adults and children with SCA. STUDY TYPE Prospective, longitudinal study. SUBJECTS Adults with SCA (n = 16) receiving simple (n = 7) or exchange (n = 9) transfusions and children with SCA (n = 11) receiving exchange transfusions were scanned once when hematocrit was near nadir and again within 7 days of transfusion. Adult controls without SCA or sickle trait (n = 7) were scanned twice on separate days. FIELD STRENGTH/SEQUENCE 3.0T T1 -weighted, T2 -weighted, and T2 -relaxation-under-spin-tagging (TRUST) imaging, and phase contrast angiography. ASSESSMENT Global OEF was computed as the relative difference between venous oxygenation (from TRUST) and arterial oxygenation (from pulse oximetry). Global CBF was computed as total blood flow to the brain normalized by intracranial tissue volume. STATISTICAL TESTS Hemometabolic variables were compared using two-sided Wilcoxon signed-rank tests; associations were analyzed using two-sided Spearman's correlation testing. RESULTS In adults with SCA, posttransfusion OEF = 0.38 ± 0.05 was lower (P = 0.001) than pretransfusion OEF = 0.45 ± 0.09. A change in OEF was correlated with increases in hematocrit (P = 0.02; rho = -0.62) and with pretransfusion hematocrit (P = 0.02; rho = 0.65). OEF changes after transfusion were greater (P = 0.002) in adults receiving simple versus exchange transfusions. Posttransfusion CBF = 77.7 ± 26.4 ml/100g/min was not different (P = 0.27) from pretransfusion CBF = 82.3 ± 30.2 ml/100g/min. In children with SCA, both posttransfusion OEF = 0.28 ± 0.04 and CBF = 76.4 ± 26.4 were lower than pretransfusion OEF = 0.36 ± 0.06 (P = 0.004) and CBF = 96.4 ± 16.5 (P = 0.004). DATA CONCLUSION Cerebral OEF reduces following transfusions in adults and children with SCA. CBF reduces following transfusions more often in children compared to adults, indicating that vascular reserve capacity may remain near exhaustion posttransfusion in many adults. LEVEL OF EVIDENCE 2 Technical Efficacy Stage 5 J. Magn. Reson. Imaging 2019;49:466-477.
Collapse
Affiliation(s)
- Meher R Juttukonda
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chelsea A Lee
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Niral J Patel
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Larry T Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Spencer L Waddle
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Melissa C Gindville
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sumit Pruthi
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adetola A Kassim
- Department of Medicine, Division of Hematology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael R DeBaun
- Department of Pediatrics, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
37
|
Watchmaker JM, Juttukonda MR, Davis LT, Scott AO, Faraco CC, Gindville MC, Jordan LC, Cogswell PM, Jefferson AL, Kirshner HS, Donahue MJ. Hemodynamic mechanisms underlying elevated oxygen extraction fraction (OEF) in moyamoya and sickle cell anemia patients. J Cereb Blood Flow Metab 2018; 38:1618-1630. [PMID: 28029271 PMCID: PMC6125968 DOI: 10.1177/0271678x16682509] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Moyamoya is a bilateral, complex cerebrovascular condition characterized by progressive non-atherosclerotic intracranial stenosis and collateral vessel formation. Moyamoya treatment focuses on restoring cerebral blood flow (CBF) through surgical revascularization, however stratifying patients for revascularization requires abilities to quantify how well parenchyma is compensating for arterial steno-occlusion. Globally elevated oxygen extraction fraction (OEF) secondary to CBF reduction may serve as a biomarker for tissue health in moyamoya patients, as suggested in patients with sickle cell anemia (SCA) and reduced oxygen carrying capacity. Here, OEF was measured (TRUST-MRI) to test the hypothesis that OEF is globally elevated in patients with moyamoya (n = 18) and SCA (n = 18) relative to age-matched controls (n = 43). Mechanisms underlying the hypothesized OEF increases were evaluated by performing sequential CBF-weighted, cerebrovascular reactivity (CVR)-weighted, and structural MRI. Patients were stratified by treatment and non-parametric tests applied to compare study variables (significance: two-sided P < 0.05). OEF was significantly elevated in moyamoya participants (interquartile range = 0.38-0.45) compared to controls (interquartile range = 0.29-0.38), similar to participants with SCA (interquartile range = 0.37-0.45). CBF was inversely correlated with OEF in moyamoya participants. Elevated OEF was only weakly related to reductions in CVR, consistent with basal CBF level, rather than vascular reserve capacity, being most closely associated with OEF.
Collapse
Affiliation(s)
- Jennifer M Watchmaker
- 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, USA
| | - Meher R Juttukonda
- 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, USA
| | - Larry T Davis
- 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, USA
| | - Allison O Scott
- 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, USA
| | - Carlos C Faraco
- 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, USA
| | - Melissa C Gindville
- 2 Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Lori C Jordan
- 2 Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Petrice M Cogswell
- 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, USA
| | - Angela L Jefferson
- 3 Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA.,4 Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Howard S Kirshner
- 4 Department of Neurology, Vanderbilt University Medical Center, Nashville, USA
| | - Manus J Donahue
- 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, USA.,4 Department of Neurology, Vanderbilt University Medical Center, Nashville, USA.,5 Department of Psychiatry, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
38
|
Bush AM, Coates TD, Wood JC. Diminished cerebral oxygen extraction and metabolic rate in sickle cell disease using T2 relaxation under spin tagging MRI. Magn Reson Med 2018; 80:294-303. [PMID: 29194727 PMCID: PMC5876140 DOI: 10.1002/mrm.27015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 11/09/2022]
Abstract
PURPOSE T2 MRI oximetry can noninvasively determine oxygen saturation (Y) but requires empirical MR calibration models to convert the measured blood transverse relaxation (T2b ) into Y. The accuracy of existing T2b models in the presence of blood disorders such as sickle cell disease (SCD) remains unknown. METHODS A Carr Purcell Meiboom Gill T2 preparation sequence was used to make 83 whole blood measurements from 11 subjects with SCD to derive an ex vivo sickle hemoglobin (HbS) T2b model. Forearm venous blood gas, sagittal sinus T2 (T2 Relaxation Under Spin Tagging) and total brain blood flow (phase contrast MRI) were measured in 37 healthy controls and 33 SCD subjects (age 24.6 ± 10.2 years). Cerebral oxygen saturation, extraction fraction, and metabolic rate estimates were calculated using three separate T2b models. Cerebral and forearm oxygen extraction fraction were compared. RESULTS Ex vivo, SCD blood had greater saturation dependent relaxivity than control blood, with a weak dependence on HbS and no dependence on hematocrit. In vivo, the HbS T2b model predicted Yv values with lowest coefficient of variation (compared with existing T2b models) and the strongest correlation with peripheral venous oximetry (r2 = .29). The HbS T2b model predicted systematically higher Yv measurements in SCD patients (73 ± 5 and 61 ± 6; P < 0.0001) which was mirrored by peripheral venous measurements (75 ± 20 and 45 ± 20; P < 0.0001). CONCLUSION Cerebral and peripheral oxygen extraction are decreased in SCD patients, suggesting either blood flow is increased beyond metabolic demands or the presence of physiological arterial-venous shunting. Magn Reson Med 80:294-303, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Adam M Bush
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Thomas D Coates
- Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - John C Wood
- Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, California, USA
| |
Collapse
|
39
|
Kawadler JM, Hales PW, Barker S, Cox TCS, Kirkham FJ, Clark CA. Cerebral perfusion characteristics show differences in younger versus older children with sickle cell anaemia: Results from a multiple-inflow-time arterial spin labelling study. NMR IN BIOMEDICINE 2018; 31:e3915. [PMID: 29601112 DOI: 10.1002/nbm.3915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
Sickle cell anaemia (SCA) is associated with chronic anaemia and oxygen desaturation, which elevate cerebral blood flow (CBF) and increase the risk of neurocognitive complications. Arterial spin labelling (ASL) provides a methodology for measuring CBF non-invasively; however, ASL techniques using only a single inflow time are not sufficient to fully characterize abnormal haemodynamic behaviour in SCA. This study investigated haemodynamic parameters from a multi-inflow-time ASL acquisition in younger (8-12 years) and older (13-18 years) children with SCA with and without silent cerebral infarction (SCI+/-) (n = 20 and 19 respectively, 6 and 4 SCI+ respectively) and healthy controls (n = 9 and 7 respectively). Compared with controls, CBF was elevated globally in both groups of patients. In the younger SCA patients, blood oxygen content was negatively correlated with CBF in the middle and posterior cerebral artery territories and significantly positively correlated with bolus arrival time (BAT) in the anterior and middle cerebral artery territories. In older children, SCA patients had significantly shorter BAT than healthy controls and there was a significant negative correlation between CBF and oxygen content only in the territory of the posterior cerebral artery, with a trend for a correlation in the anterior cerebral artery but no relationship for the middle cerebral artery territory. In the younger group, SCI+ patients had significantly higher CBF in the posterior cerebral artery territory (SCI+ mean = 92.78 ml/100 g/min; SCI- mean = 72.71 ml/100 g/min; F = 4.28, p = 0.04), but this no longer reached significance when two children with abnormal transcranial Doppler and one with haemoglobin SC disease were excluded, and there were no significant differences between patients with and without SCI in the older children. With age, there appears to be increasing disparity between patients and controls in terms of the relationship between CBF and oxygen content in the anterior circulation, potentially predicting the risk of acute and chronic compromise of brain tissue.
Collapse
Affiliation(s)
- Jamie M Kawadler
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Patrick W Hales
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon Barker
- Wessex Neurological Centre and Child Health, University Hospital Southampton, Southampton, UK
| | - Timothy C S Cox
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | - Fenella J Kirkham
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Wessex Neurological Centre and Child Health, University Hospital Southampton, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Chris A Clark
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
40
|
Guilliams KP, Fields ME, Ragan DK, Eldeniz C, Binkley MM, Chen Y, Comiskey LS, Doctor A, Hulbert ML, Shimony JS, Vo KD, McKinstry RC, An H, Lee JM, Ford AL. Red cell exchange transfusions lower cerebral blood flow and oxygen extraction fraction in pediatric sickle cell anemia. Blood 2018; 131:1012-1021. [PMID: 29255068 PMCID: PMC5833262 DOI: 10.1182/blood-2017-06-789842] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/04/2017] [Indexed: 01/13/2023] Open
Abstract
Blood transfusions are the mainstay of stroke prevention in pediatric sickle cell anemia (SCA), but the physiology conferring this benefit is unclear. Cerebral blood flow (CBF) and oxygen extraction fraction (OEF) are elevated in SCA, likely compensating for reduced arterial oxygen content (CaO2). We hypothesized that exchange transfusions would decrease CBF and OEF by increasing CaO2, thereby relieving cerebral oxygen metabolic stress. Twenty-one children with SCA receiving chronic transfusion therapy (CTT) underwent magnetic resonance imaging before and after exchange transfusions. Arterial spin labeling and asymmetric spin echo sequences measured CBF and OEF, respectively, which were compared pre- and posttransfusion. Volumes of tissue with OEF above successive thresholds (36%, 38%, and 40%), as a metric of regional metabolic stress, were compared pre- and posttransfusion. Transfusions increased hemoglobin (Hb; from 9.1 to 10.3 g/dL; P < .001) and decreased Hb S (from 39.7% to 24.3%; P < .001). Transfusions reduced CBF (from 88 to 82.4 mL/100 g per minute; P = .004) and OEF (from 34.4% to 31.2%; P < .001). At all thresholds, transfusions reduced the volume of peak OEF found in the deep white matter, a location at high infarct risk in SCA (P < .001). Reduction of elevated CBF and OEF, both globally and regionally, suggests that CTT mitigates infarct risk in pediatric SCA by relieving cerebral metabolic stress at patient- and tissue-specific levels.
Collapse
Affiliation(s)
| | | | | | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; and
| | - Michael M Binkley
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO
| | | | | | | | | | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; and
| | - Katie D Vo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; and
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; and
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; and
| | - Jin-Moo Lee
- Department of Neurology
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; and
| | | |
Collapse
|
41
|
Bright MG, Croal PL, Blockley NP, Bulte DP. Multiparametric measurement of cerebral physiology using calibrated fMRI. Neuroimage 2017; 187:128-144. [PMID: 29277404 DOI: 10.1016/j.neuroimage.2017.12.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
The ultimate goal of calibrated fMRI is the quantitative imaging of oxygen metabolism (CMRO2), and this has been the focus of numerous methods and approaches. However, one underappreciated aspect of this quest is that in the drive to measure CMRO2, many other physiological parameters of interest are often acquired along the way. This can significantly increase the value of the dataset, providing greater information that is clinically relevant, or detail that can disambiguate the cause of signal variations. This can also be somewhat of a double-edged sword: calibrated fMRI experiments combine multiple parameters into a physiological model that requires multiple steps, thereby providing more opportunity for error propagation and increasing the noise and error of the final derived values. As with all measurements, there is a trade-off between imaging time, spatial resolution, coverage, and accuracy. In this review, we provide a brief overview of the benefits and pitfalls of extracting multiparametric measurements of cerebral physiology through calibrated fMRI experiments.
Collapse
Affiliation(s)
- Molly G Bright
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Paula L Croal
- IBME, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Nicholas P Blockley
- FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel P Bulte
- IBME, Department of Engineering Science, University of Oxford, Oxford, UK; FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
42
|
Bush A, Chai Y, Choi SY, Vaclavu L, Holland S, Nederveen A, Coates T, Wood J. Pseudo continuous arterial spin labeling quantification in anemic subjects with hyperemic cerebral blood flow. Magn Reson Imaging 2017; 47:137-146. [PMID: 29229306 DOI: 10.1016/j.mri.2017.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/16/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE To investigate possible sources of quantification errors in global cerebral blood flow (CBF) measurements by comparing pseudo continuous arterial spin labeling (PCASL) and phase contrast (PC) MRI in anemic, hyperemic subjects. METHODS All studies were performed on a Philips 3T Achieva MRI scanner. PC and PCASL CBF examinations were performed in 10 healthy, young adult subjects and 18 young adults with chronic anemia syndromes including sickle cell disease and thalassemia. CBF estimates from single and two compartment ASL kinetic models were compared. Numerical simulation and flow phantom experiments were used to explore the effects of blood velocity and B1+ on CBF quantification and labeling efficiency. RESULTS PCASL CBF underestimated PC in both populations using a single compartment model (30.1±9.2% control, 45.2±17.2% anemia). Agreement substantially improved using a two-compartment model (-8.0±6.0% control, 11.7±12.3% anemia). Four of the anemic subjects exhibited venous outflow of ASL signal, suggestive of cerebrovascular shunt, possibly confounding PC-PCASL comparisons. Additionally, sub-study experiments demonstrated that B1+ was diminished at the labeling plane (82.9±5.1%), resulting in suboptimal labeling efficiency. Correcting labeling efficiency for diminished B1+, PCASL slightly overestimated PC CBF in controls (-15.4±6.8%) and resulted in better matching of CBF estimates in anemic subjects (0.7±10.0% without outflow, 10.5±9.4% with outflow). CONCLUSIONS This work demonstrates that a two-compartment model is critical for PCASL quantification in hyperemic subjects. Venous outflow and B1+ under-excitation may also contribute to flow underestimation, but further study of these effects is required.
Collapse
Affiliation(s)
- Adam Bush
- Department of Radiology, Stanford University, Palo Alto, CA, United States; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Yaqiong Chai
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - So Young Choi
- Neurosciences Program, University of Southern California, Los Angeles, CA, United States
| | - Lena Vaclavu
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Scott Holland
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Aart Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Thomas Coates
- Division of Hematology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - John Wood
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|