1
|
Morrison O, Destrade M, Tripathi BB. An atlas of the heterogeneous viscoelastic brain with local power-law attenuation synthesised using Prony-series. Acta Biomater 2023; 169:66-87. [PMID: 37507033 DOI: 10.1016/j.actbio.2023.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
This review addresses the acute need to acknowledge the mechanical heterogeneity of brain matter and to accurately calibrate its local viscoelastic material properties accordingly. Specifically, it is important to compile the existing and disparate literature on attenuation power-laws and dispersion to make progress in wave physics of brain matter, a field of research that has the potential to explain the mechanisms at play in diffuse axonal injury and mild traumatic brain injury in general. Currently, viscous effects in the brain are modelled using Prony-series, i.e., a sum of decaying exponentials at different relaxation times. Here we collect and synthesise the Prony-series coefficients appearing in the literature for twelve regions: brainstem, basal ganglia, cerebellum, corona radiata, corpus callosum, cortex, dentate gyrus, hippocampus, thalamus, grey matter, white matter, homogeneous brain, and for eight different mammals: pig, rat, human, mouse, cow, sheep, monkey and dog. Using this data, we compute the fractional-exponent attenuation power-laws for different tissues of the brain, the corresponding dispersion laws resulting from causality, and the averaged Prony-series coefficients. STATEMENT OF SIGNIFICANCE: Traumatic brain injuries are considered a silent epidemic and finite element methods (FEMs) are used in modelling brain deformation, requiring access to viscoelastic properties of brain. To the best of our knowledge, this work presents 1) the first multi-frequency viscoelastic atlas of the heterogeneous brain, 2) the first review focusing on viscoelastic modelling in both FEMs and experimental works, 3) the first attempt to conglomerate the disparate existing literature on the viscoelastic modelling of the brain and 4) the largest collection of viscoelastic parameters for the brain (212 different Prony-series spanning 12 different tissues and 8 different animal surrogates). Furthermore, this work presents the first brain atlas of attenuation power-laws essential for modelling shear waves in brain.
Collapse
Affiliation(s)
- Oisín Morrison
- School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland
| | - Michel Destrade
- School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland
| | - Bharat B Tripathi
- School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland.
| |
Collapse
|
2
|
Feng X, Li GY, Yun SH. Ultra-wideband optical coherence elastography from acoustic to ultrasonic frequencies. Nat Commun 2023; 14:4949. [PMID: 37587178 PMCID: PMC10432526 DOI: 10.1038/s41467-023-40625-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Visualizing viscoelastic waves in materials and tissues through noninvasive imaging is valuable for analyzing their mechanical properties and detecting internal anomalies. However, traditional elastography techniques have been limited by a maximum wave frequency below 1-10 kHz, which hampers temporal and spatial resolution. Here, we introduce an optical coherence elastography technique that overcomes the limitation by extending the frequency range to MHz. Our system can measure the stiffness of hard materials including bones and extract viscoelastic shear moduli for polymers and hydrogels in conventionally inaccessible ranges between 100 Hz and 1 MHz. The dispersion of Rayleigh surface waves across the ultrawide band allowed us to profile depth-dependent shear modulus in cartilages ex vivo and human skin in vivo with sub-mm anatomical resolution. This technique holds immense potential as a noninvasive measurement tool for material sciences, tissue engineering, and medical diagnostics.
Collapse
Affiliation(s)
- Xu Feng
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St. BAR-8, Boston, MA, 02114, USA
| | - Guo-Yang Li
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St. BAR-8, Boston, MA, 02114, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St. BAR-8, Boston, MA, 02114, USA.
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
3
|
Sattari S, Mariano CA, Eskandari M. Pressure-volume mechanics of inflating and deflating intact whole organ porcine lungs. J Biomech 2023; 157:111696. [PMID: 37413822 DOI: 10.1016/j.jbiomech.2023.111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Pressure-volume curves of the lung are classical measurements of lung function and are impacted by changes in lung structure due to disease or shifts in air-delivery volume or cycling rate. Diseased and preterm infant lungs have been found to show heterogeneous behavior which is highly frequency dependent. This breathing rate dependency has motivated the exploration of multi-frequency oscillatory ventilators to deliver volume oscillation with optimal frequencies for various portions of the lung to provide more uniform air distribution. The design of these advanced ventilators requires the examination of lung function and mechanics, and an improved understanding of the pressure-volume response of the lung. Therefore, to comprehensively analyze whole lung organ mechanics, we investigate six combinations of varying applied volumes and frequencies using ex-vivo porcine specimens and our custom-designed electromechanical breathing apparatus. Lung responses were evaluated through measurements of inflation and deflation slopes, static compliance, peak pressure and volume, as well as hysteresis, energy loss, and pressure relaxation. Generally, we observed that the lungs were stiffer when subjected to faster breathing rates and lower inflation volumes. The lungs exhibited greater inflation volume dependencies compared to frequency dependencies. This study's reported response of the lung to variations of inflation volume and breathing rate can help the optimization of conventional mechanical ventilators and inform the design of advanced ventilators. Although frequency dependency is found to be minimal in normal porcine lungs, this preliminary study lays a foundation for comparison with pathological lungs, which are known to demonstrate marked rate dependency.
Collapse
Affiliation(s)
- Samaneh Sattari
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Crystal A Mariano
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA; BREATHE Center, School of Medicine, University of California at Riverside, Riverside, CA, USA; Department of Bioengineering, University of California at Riverside, Riverside, CA, USA.
| |
Collapse
|
4
|
Corder RD, Vachieri RB, Martin ME, Taylor DK, Fleming JM, Khan SA. Linear and nonlinear rheology of liberase-treated breast cancer tumors. Biomater Sci 2023; 11:2186-2199. [PMID: 36744734 PMCID: PMC10023448 DOI: 10.1039/d3bm00038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular matrix (ECM) rigidity has been shown to increase the invasive properties of breast cancer cells, promoting transformation and metastasis through mechanotransduction. Reducing ECM stiffness via enzymatic digestion could be a promising approach to slowing breast cancer development by de-differentiation of breast cancer cells to less aggressive phenotypes and enhancing the effectiveness of existing chemotherapeutics via improved drug penetrance throughout the tumor. In this study, we examine the effects of injectable liberase (a blend of collagenase and thermolysin enzymes) treatments on the linear and nonlinear rheology of allograft 4T1 mouse mammary tumors. We perform two sets of in vivo mouse studies, in which either one or multiple treatment injections occur before the tumors are harvested for rheological analysis. The treatment groups in each study consist of a buffer control, free liberase enzyme in buffer, a thermoresponsive copolymer called LiquoGel (LQG) in buffer, and a combined, localized injection of LQG and liberase. All tumor samples exhibit gel-like linear rheological behavior with the elastic modulus significantly larger than the viscous modulus and both independent of frequency. Tumors that receive a single injection of localized liberase have significantly lower tumor volumes and lower tissue moduli at both the center and edge compared to buffer- and free liberase-injected control tumors, while tissue viscoelasticity remains relatively unaffected. Tumors injected multiple times with LQG and liberase also have lower tissue volumes but possess higher tissue moduli and lower viscoelasticities compared to the other treatment groups. We propose that a mechanotransductive mechanism could cause the formation of smaller but stiffer tumors after repeated, localized liberase injections. Large amplitude oscillatory shear (LAOS) experiments are also performed on tissues from the multiple injection study and the results are analyzed using MITlaos. LAOS analysis reveals that all 4T1 tumors from the multiple injection study exhibit nonlinear rheological behavior at high strains and strain rates. Examination of the Lissajous-Bowditch curves, Chebyshev coefficient ratios, elastic moduli, and dynamic viscosities demonstrate that the onset and type of nonlinear behavior is independent of treatment type and elastic modulus, suggesting that multiple liberase injections do not affect the nonlinear viscoelasticity of 4T1 tumors.
Collapse
Affiliation(s)
- Ria D Corder
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Robert B Vachieri
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Megan E Martin
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| | - Darlene K Taylor
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, 27707, USA
| | - Jodie M Fleming
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
5
|
Jugé L, Foley P, Hatt A, Yeung J, Bilston LE. Ex vivo bovine liver nonlinear viscoelastic properties: MR elastography and rheological measurements. J Mech Behav Biomed Mater 2023; 138:105638. [PMID: 36623403 DOI: 10.1016/j.jmbbm.2022.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Knowledge of the nonlinear viscoelastic properties of the liver is important, but the complex tissue behavior outside the linear viscoelastic regime has impeded their characterization, particularly in vivo. Combining static compression with magnetic resonance (MR) elastography has the potential to be a useful imaging method for assessing large deformation mechanical properties of soft tissues in vivo. However, this remains to be verified. Therefore this study aims first to determine whether MR elastography can measure the nonlinear mechanical properties of ex vivo bovine liver tissue under varying levels of uniform and focal preloads (up to 30%), and second to compare MR elastography-derived complex shear modulus with standard rheological measurements. METHOD Nine fresh bovine livers were collected from a local abattoir, and experiments were conducted within 12hr of death. Two cubic samples (∼10 × 10 × 10 cm3) were dissected from each liver and imaged using MR elastography (60 Hz) under 4 levels of uniform and focal preload (1, 10, 20, and 30% of sample width) to investigate the relationship between MR elastography-derived complex shear modulus (G∗) and the maximum principal Right Cauchy Green Strain (C11). Three tissue samples from each of the same 9 livers underwent oscillatory rheometry under the same 4 preloads (1, 10, 20, and 30% strain). MR elastography-derived complex shear modulus (G∗) from the uniform preload was validated against rheometry by fitting the frequency dependence of G∗ with a power-law and extrapolating rheometry-derived G∗ to 60 Hz. RESULTS MR elastography-derived G∗ increased with increasing compressive large deformation strain, and followed a power-law curve (G∗ = 1.73 × C11-0.38, R2 = 0.96). Similarly, rheometry-derived G∗ at 1 Hz, increasing from 0.66 ± 1.03 kPa (1% strain) to 1.84 ± 1.65 kPa (30% strain, RM one-way ANOVA, P < 0.001), and the frequency dependence of G∗ followed a power-law with the exponent decreasing from 0.13 to 0.06 with increasing preload. MR elastography-derived G∗ was 1.4-3.1 times higher than the extrapolated rheometry-derived G∗ at 60 Hz, but the strain dependence was consistent between rheometry and MR elastography measurements. CONCLUSIONS This study demonstrates that MR elastography can detect changes in ex vivo bovine liver complex shear modulus due to either uniform or focal preload and therefore can be a useful technique to characterize nonlinear viscoelastic properties of soft tissue, provided that strains applied to the tissue can be quantified. Although MR elastography could reliably characterize the strain dependence of the ex vivo bovine liver, MR elastography overestimated the complex shear modulus of the tissue compared to rheological measurements, particularly at lower preload (<10%). That is likely to be important in clinical hepatic MR elastography diagnosis studies if preload is not carefully considered. A limitation is the absence of overlapping frequency between rheometry and MR elastography for formal validation.
Collapse
Affiliation(s)
- Lauriane Jugé
- Neuroscience Research Australia, PO Box 1165, Randwick NSW 2031, Australia; University of New South Wales, Faculty of Medicine & Health, UNSW Sydney, 18 High St, Kensington NSW 2052, Australia
| | - Patrick Foley
- Neuroscience Research Australia, PO Box 1165, Randwick NSW 2031, Australia
| | - Alice Hatt
- Neuroscience Research Australia, PO Box 1165, Randwick NSW 2031, Australia
| | - Jade Yeung
- Neuroscience Research Australia, PO Box 1165, Randwick NSW 2031, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia, PO Box 1165, Randwick NSW 2031, Australia; University of New South Wales, Faculty of Medicine & Health, UNSW Sydney, 18 High St, Kensington NSW 2052, Australia.
| |
Collapse
|
6
|
Aunan-Diop JS, Andersen MCS, Friimose AI, Halle B, Pedersen CB, Mussmann B, Grønhøj MH, Nielsen TH, Jensen U, Poulsen FR. Virtual magnetic resonance elastography predicts the intraoperative consistency of meningiomas. J Neuroradiol 2022; 50:396-401. [DOI: 10.1016/j.neurad.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
7
|
Yushchenko M, Sarracanie M, Salameh N. Fast acquisition of propagating waves in humans with low-field MRI: Toward accessible MR elastography. SCIENCE ADVANCES 2022; 8:eabo5739. [PMID: 36083901 PMCID: PMC9462689 DOI: 10.1126/sciadv.abo5739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/22/2022] [Indexed: 05/29/2023]
Abstract
Most commonly used at clinical magnetic fields (1.5 to 3 T), magnetic resonance elastography (MRE) captures mechanical wave propagation to reconstruct the mechanical properties of soft tissue with MRI. However, in terms of noninvasively assessing disease progression in a broad range of organs (e.g., liver, breast, skeletal muscle, and brain), its accessibility is limited and its robustness is challenged when magnetic susceptibility differences are encountered. Low-field MRE offers an opportunity to overcome these issues, and yet it has never been demonstrated in vivo in humans with magnetic fields <1.5 T mainly because of the long acquisition times required to achieve a sufficient signal-to-noise ratio. Here, we describe a method to accelerate 3D motion-sensitized MR scans at 0.1 T using only 10% k-space sampling combined with a high-performance detector and an efficient encoding acquisition strategy. Its application is demonstrated in vivo in the human forearm for a single motion-encoding direction in less than 1 min.
Collapse
|
8
|
Khoonkari M, Liang D, Kamperman M, Kruyt FAE, van Rijn P. Physics of Brain Cancer: Multiscale Alterations of Glioblastoma Cells under Extracellular Matrix Stiffening. Pharmaceutics 2022; 14:pharmaceutics14051031. [PMID: 35631616 PMCID: PMC9145282 DOI: 10.3390/pharmaceutics14051031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
The biology and physics underlying glioblastoma is not yet completely understood, resulting in the limited efficacy of current clinical therapy. Recent studies have indicated the importance of mechanical stress on the development and malignancy of cancer. Various types of mechanical stress activate adaptive tumor cell responses that include alterations in the extracellular matrix (ECM) which have an impact on tumor malignancy. In this review, we describe and discuss the current knowledge of the effects of ECM alterations and mechanical stress on GBM aggressiveness. Gradual changes in the brain ECM have been connected to the biological and physical alterations of GBM cells. For example, increased expression of several ECM components such as glycosaminoglycans (GAGs), hyaluronic acid (HA), proteoglycans and fibrous proteins result in stiffening of the brain ECM, which alters inter- and intracellular signaling activity. Several mechanosensing signaling pathways have been identified that orchestrate adaptive responses, such as Hippo/YAP, CD44, and actin skeleton signaling, which remodel the cytoskeleton and affect cellular properties such as cell–cell/ECM interactions, growth, and migration/invasion of GBM cells. In vitro, hydrogels are used as a model to mimic the stiffening of the brain ECM and reconstruct its mechanics, which we also discuss. Overall, we provide an overview of the tumor microenvironmental landscape of GBM with a focus on ECM stiffening and its associated adaptive cellular signaling pathways and their possible therapeutic exploitation.
Collapse
Affiliation(s)
- Mohammad Khoonkari
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Dong Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
| | - Marleen Kamperman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Frank A. E. Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Correspondence: (F.A.E.K.); (P.v.R.)
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Correspondence: (F.A.E.K.); (P.v.R.)
| |
Collapse
|
9
|
Aunan-Diop JS, Pedersen CB, Halle B, Jensen U, Munthe S, Harbo F, Johannsson B, Poulsen FR. Magnetic resonance elastography in normal pressure hydrocephalus-a scoping review. Neurosurg Rev 2022; 45:1157-1169. [PMID: 34687356 DOI: 10.1007/s10143-021-01669-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 10/04/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Magnetic resonance elastography (MRE) of the brain allows quantitative measurement of tissue mechanics. Multiple studies are exploring possible applications in normal pressure hydrocephalus (NPH) in clinical and paraclinical contexts. This is of great interest in neurological surgery due to challenges related to diagnosis and prediction of treatment effects. In this scoping review, we present a topical overview and discuss the current literature, with particular attention to clinical implications and current challenges. METHODS The protocol was based on the PRISMA extension for scoping reviews. After a systematic database search (PubMed, Embase, and Web of Science), the articles were screened for relevance. Thirty articles were subject to detailed screening, and key technical and clinical data items were extracted. The inclusion criteria included the use of MRE on human subjects with NPH. RESULTS Seven articles were included in the final study. These studies had various objectives including the role of MRE in the assessment of regional elastic changes in NPH, shunt effect, and evaluation of NPH symptoms. MRE revealed patterns of mechanical changes in NPH that differed from other dementias. Regional MRE changes were associated with specific NPH signs and symptoms. Neurosurgical shunting caused partial normalization in tissue scaffold parameters. The studies were highly heterogeneous in technical aspects and design. CONCLUSION MRE studies in NPH are still limited by few participants, variable cohorts, inconsistent methodologies, and technical challenges, but the approach shows great potential for future clinical application.
Collapse
Affiliation(s)
- Jan Saip Aunan-Diop
- Department of Neurosurgery, Odense University Hospital, Kløvervænget 47, Entrance 44, 5000, Odense C, Denmark.
- University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Christian Bonde Pedersen
- Department of Neurosurgery, Odense University Hospital, Kløvervænget 47, Entrance 44, 5000, Odense C, Denmark
| | - Bo Halle
- Department of Neurosurgery, Odense University Hospital, Kløvervænget 47, Entrance 44, 5000, Odense C, Denmark
| | - Ulla Jensen
- Department of Radiology, Odense University Hospital, Kløvervænget 47, Entrance 27, 5000, Odense C, Denmark
| | - Sune Munthe
- Department of Neurosurgery, Odense University Hospital, Kløvervænget 47, Entrance 44, 5000, Odense C, Denmark
| | - Fredrik Harbo
- Department of Radiology, Odense University Hospital, Kløvervænget 47, Entrance 27, 5000, Odense C, Denmark
| | - Bjarni Johannsson
- Department of Neurosurgery, Odense University Hospital, Kløvervænget 47, Entrance 44, 5000, Odense C, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, Kløvervænget 47, Entrance 44, 5000, Odense C, Denmark
- University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
10
|
Aunan-Diop JS, Halle B, Pedersen CB, Jensen U, Munthe S, Harbo F, Andersen MS, Poulsen FR. Magnetic Resonance Elastography in Intracranial Neoplasms: A Scoping Review. Top Magn Reson Imaging 2022; 31:9-22. [PMID: 35225840 DOI: 10.1097/rmr.0000000000000292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Magnetic resonance elastography (MRE) allows noninvasive assessment of intracranial tumor mechanics and may thus be predictive of intraoperative conditions. Variations in the use of technical terms complicate reading of current literature, and there is need of a review using consolidated nomenclature. OBJECTIVES We present an overview of current literature on MRE relating to human intracranial neoplasms using standardized nomenclature suggested by the MRE guidelines committee. We then discuss the implications of the findings, and suggest approaches for future research. METHOD We performed a systematic literature search in PubMed, Embase, and Web of Science; the articles were screened for relevance and then subjected to full text review. Technical terms were consolidated. RESULTS We identified 12 studies on MRE in patients with intracranial tumors, including meningiomas, glial tumors including glioblastomas, vestibular schwannomas, hemangiopericytoma, central nervous system lymphoma, pituitary macroadenomas, and brain metastases. The studies had varying objectives that included prediction of intraoperative consistency, histological separation, prediction of adhesiveness, and exploration of the mechanobiology of tumor invasiveness and malignancy. The technical terms were translated using standardized nomenclature. The literature was highly heterogeneous in terms of image acquisition techniques, post-processing, and study design and was generally limited by small and variable cohorts. CONCLUSIONS MRE shows potential in predicting tumor consistency, adhesion, and mechanical homogeneity. Furthermore, MRE provides insight into malignant tumor behavior and its relation to tissue mechanics. MRE is still at a preclinical stage, but technical advances, improved understanding of soft tissue rheological impact, and larger samples are likely to enable future clinical introduction.
Collapse
Affiliation(s)
- Jan Saip Aunan-Diop
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark
- Clinical Institute, University of Southern Denmark, BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense C, Denmark
| | - Bo Halle
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark
- Clinical Institute, University of Southern Denmark, BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense C, Denmark
| | - Christian Bonde Pedersen
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark
- Clinical Institute, University of Southern Denmark, BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense C, Denmark
| | - Ulla Jensen
- Department of Radiology, Odense University Hospital, 5000 Odense C, Denmark
| | - Sune Munthe
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark
- Clinical Institute, University of Southern Denmark, BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense C, Denmark
| | - Frederik Harbo
- Department of Radiology, Odense University Hospital, 5000 Odense C, Denmark
| | - Mikkel Schou Andersen
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark
- Clinical Institute, University of Southern Denmark, BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense C, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, 5000 Odense, Denmark
- Clinical Institute, University of Southern Denmark, BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
11
|
Jamal A, Bernardini A, Dini D. Microscale characterisation of the time-dependent mechanical behaviour of brain white matter. J Mech Behav Biomed Mater 2021; 125:104917. [PMID: 34710852 DOI: 10.1016/j.jmbbm.2021.104917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 01/08/2023]
Abstract
Brain mechanics is a topic of deep interest because of the significant role of mechanical cues in both brain function and form. Specifically, capturing the heterogeneous and anisotropic behaviour of cerebral white matter (WM) is extremely challenging and yet the data on WM at a spatial resolution relevant to tissue components are sparse. To investigate the time-dependent mechanical behaviour of WM, and its dependence on local microstructural features when subjected to small deformations, we conducted atomic force microscopy (AFM) stress relaxation experiments on corpus callosum (CC), corona radiata (CR) and fornix (FO) of fresh ovine brain. Our experimental results show a dependency of the tissue mechanical response on axons orientation, with e.g. the stiffness of perpendicular and parallel samples is different in all three regions of WM whereas the relaxation behaviour is different for the CC and FO regions. An inverse modelling approach was adopted to extract Prony series parameters of the tissue components, i.e. axons and extra cellular matrix with its accessory cells, from experimental data. Using a bottom-up approach, we developed analytical and FEA estimates that are in good agreement with our experimental results. Our systematic characterisation of sheep brain WM using a combination of AFM experiments and micromechanical models provide a significant contribution for predicting localised time-dependent mechanics of brain tissue. This information can lead to more accurate computational simulations, therefore aiding the development of surgical robotic solutions for drug delivery and accurate tissue mimics, as well as the determination of criteria for tissue injury and predict brain development and disease progression.
Collapse
Affiliation(s)
- Asad Jamal
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Andrea Bernardini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
12
|
Corder RD, Gadi SV, Vachieri RB, Jayes FL, Cullen JM, Khan SA, Taylor DK. Using rheology to quantify the effects of localized collagenase treatments on uterine fibroid digestion. Acta Biomater 2021; 134:443-452. [PMID: 34371168 DOI: 10.1016/j.actbio.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
Uterine fibroids are stiff, benign tumors containing excessive, disordered collagens that occur in 70-80% of women before age 50 and cause bleeding and pain. Collagenase Clostridium histolyticum (CCH) is a bacterial enzyme capable of digesting the collagens present in fibroids. By combining CCH with injectable drug delivery systems to enhance effectiveness, a new class of treatments could be developed to reduce the stiffness of fibroids, preventing the need for surgical removal and preserving fertility. In this work, we achieved localization of CCH via physical entrapment by co-injecting a thermoresponsive pNIPAM-based polymeric delivery system called LiquoGel (LQG), which undergoes a sol-gel transition upon heating. Toxicity study results for LQG injected subcutaneously into mice demonstrate that LQG does not induce lesions or other adverse effects. We then used rheology to quantify the effects of localized CCH injections on the modulus and viscoelasticity of uterine fibroids, which exhibit gel-like behavior, through ex vivo and in vivo digestion studies. Ex vivo CCH injections reduce the tissue modulus by over two orders of magnitude and co-injection of LQG enhances this effect. Rheological results from an in vivo digestion study in mice show a significant reduction in tissue modulus and increase in tissue viscoelasticity 7 days after a single injection of LQG+CCH. Parallel histological staining validates that the observed rheological changes correspond to an increase in collagen lysis after treatment by LQG+CCH. These results show promise for development of injectable and localized enzymatic therapies for uterine fibroids and other dense tumors. STATEMENT OF SIGNIFICANCE: Uterine fibroids are stiff, benign tumors containing high collagen levels that cause bleeding and pain in women. Fertility-preserving and minimally-invasive treatments to soften fibroids are needed as an alternative to surgical removal via hysterectomy. We demonstrate through ex vivo and in vivo studies that co-injecting a thermoresponsive polymer delivery system (LQG) alongside a bacterial collagenase (CCH) enzyme significantly increases treatment effectiveness at softening fibroids through CCH localization. We use rheology to measure the modulus and viscoelasticity of fibroids and histology to show that fibroid softening corresponds to a decrease in collagen after treatment with LQG+CCH. These results highlight the utility of rheology at quantifying tissue properties and present a promising injectable therapy for fibroids and other dense tumors.
Collapse
Affiliation(s)
- Ria D Corder
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27695, USA
| | - Sashi V Gadi
- Department of Chemistry and Biochemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA; Department of Population Health and Pathobiology, North Carolina State University, Campus Box 8401, Raleigh, NC 27695, USA
| | - Robert B Vachieri
- Department of Chemistry and Biochemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | - Friederike L Jayes
- Department of Obstetrics and Gynecology, Duke University, Campus Box 3084, Durham, NC 27710, USA
| | - John M Cullen
- Department of Population Health and Pathobiology, North Carolina State University, Campus Box 8401, Raleigh, NC 27695, USA
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, NC 27695, USA.
| | - Darlene K Taylor
- Department of Chemistry and Biochemistry, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA.
| |
Collapse
|
13
|
Babaei B, Fovargue D, Lloyd RA, Miller R, Jugé L, Kaplan M, Sinkus R, Nordsletten DA, Bilston LE. Magnetic Resonance Elastography Reconstruction for Anisotropic Tissues. Med Image Anal 2021; 74:102212. [PMID: 34587584 DOI: 10.1016/j.media.2021.102212] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/02/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022]
Abstract
Elastography has become widely used clinically for characterising changes in soft tissue mechanics that are associated with altered tissue structure and composition. However, some soft tissues, such as muscle, are not isotropic as is assumed in clinical elastography implementations. This limits the ability of these methods to capture changes in anisotropic tissues associated with disease. The objective of this study was to develop and validate a novel elastography reconstruction technique suitable for estimating the linear viscoelastic mechanical properties of transversely isotropic soft tissues. We derived a divergence-free formulation of the governing equations for acoustic wave propagation through a linearly transversely isotropic viscoelastic material, and transformed this into a weak form. This was then implemented into a finite element framework, enabling the analysis of wave input data and tissue structural fibre orientations, in this case based on diffusion tensor imaging. To validate the material constants obtained with this method, numerous in silico phantom experiments were run which encompassed a range of variations in wave input directions, material properties, fibre structure and noise. The method was also tested on ex vivo muscle and in vivo human volunteer calf muscles, and compared with a previous curl-based inversion method. The new method robustly extracted the transversely isotropic shear moduli (G⊥', G∥', G″) from the in silico phantom tests with minimal bias, including in the presence of experimentally realistic levels of noise in either fibre orientation or wave data. This new method performed better than the previous method in the presence of noise. Anisotropy estimates from the ex vivo muscle phantom agreed well with rheological tests. In vivo experiments on human calf muscles were able to detect increases in muscle shear moduli with passive muscle stretch. This new reconstruction method can be applied to quantify tissue mechanical properties of anisotropic soft tissues, such as muscle, in health and disease.
Collapse
Affiliation(s)
- Behzad Babaei
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Daniel Fovargue
- School of Biomedical Engineering and Imaging Sciences, The Rayne Institute, King's College London, SE1 7EH, London, United Kingdom
| | - Robert A Lloyd
- Neuroscience Research Australia, Sydney, NSW, Australia; Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Renee Miller
- School of Biomedical Engineering and Imaging Sciences, The Rayne Institute, King's College London, SE1 7EH, London, United Kingdom
| | - Lauriane Jugé
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Max Kaplan
- Neuroscience Research Australia, Sydney, NSW, Australia; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ralph Sinkus
- School of Biomedical Engineering and Imaging Sciences, The Rayne Institute, King's College London, SE1 7EH, London, United Kingdom
| | - David A Nordsletten
- School of Biomedical Engineering and Imaging Sciences, The Rayne Institute, King's College London, SE1 7EH, London, United Kingdom; Department of Surgery and Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Lynne E Bilston
- Neuroscience Research Australia, Sydney, NSW, Australia; Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Nanomechanical Hallmarks of Helicobacter pylori Infection in Pediatric Patients. Int J Mol Sci 2021; 22:ijms22115624. [PMID: 34070700 PMCID: PMC8198391 DOI: 10.3390/ijms22115624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background: the molecular mechanism of gastric cancer development related to Helicobacter pylori (H. pylori) infection has not been fully understood, and further studies are still needed. Information regarding nanomechanical aspects of pathophysiological events that occur during H. pylori infection can be crucial in the development of new prevention, treatment, and diagnostic measures against clinical consequences associated with H. pylori infection, including gastric ulcer, duodenal ulcer, and gastric cancer. Methods: in this study, we assessed mechanical properties of children’s healthy and H. pylori positive stomach tissues and the mechanical response of human gastric cells exposed to heat-treated H. pylori cells using atomic force microscopy (AFM NanoWizard 4 BioScience JPK Instruments Bruker). Elastic modulus (i.e., the Young’s modulus) was derived from the Hertz–Sneddon model applied to force-indentation curves. Human tissue samples were evaluated using rapid urease tests to identify H. pylori positive samples, and the presence of H. pylori cells in those samples was confirmed using immunohistopathological staining. Results and conclusion: collected data suggest that nanomechanical properties of infected tissue might be considered as markers indicated H. pylori presence since infected tissues are softer than uninfected ones. At the cellular level, this mechanical response is at least partially mediated by cell cytoskeleton remodeling indicating that gastric cells are able to tune their mechanical properties when subjected to the presence of H. pylori products. Persistent fluctuations of tissue mechanical properties in response to H. pylori infection might, in the long-term, promote induction of cancer development.
Collapse
|
15
|
Baruffaldi D, Palmara G, Pirri C, Frascella F. 3D Cell Culture: Recent Development in Materials with Tunable Stiffness. ACS APPLIED BIO MATERIALS 2021; 4:2233-2250. [PMID: 35014348 DOI: 10.1021/acsabm.0c01472] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is widely accepted that three-dimensional cell culture systems simulate physiological conditions better than traditional 2D systems. Although extracellular matrix components strongly modulate cell behavior, several studies underlined the importance of mechanosensing in the control of different cell functions such as growth, proliferation, differentiation, and migration. Human tissues are characterized by different degrees of stiffness, and various pathologies (e.g., tumor or fibrosis) cause changes in the mechanical properties through the alteration of the extracellular matrix structure. Additionally, these modifications have an impact on disease progression and on therapy response. Hence, the development of platforms whose stiffness could be modulated may improve our knowledge of cell behavior under different mechanical stress stimuli. In this review, we have analyzed the mechanical diversity of healthy and diseased tissues, and we have summarized recently developed materials with a wide range of stiffness.
Collapse
Affiliation(s)
- Désirée Baruffaldi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - Gianluca Palmara
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| | - Candido Pirri
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,Center for Sustainable Futures@Polito, Istituto Italiano di Tecnologia, Via Livorno 60, Turin 10144, Italy
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy.,PolitoBIOMed Lab, Politecnico di Torino, C.so Duca degli Abruzzi 24, Turin 10129, Italy
| |
Collapse
|
16
|
Manduca A, Bayly PJ, Ehman RL, Kolipaka A, Royston TJ, Sack I, Sinkus R, Van Beers BE. MR elastography: Principles, guidelines, and terminology. Magn Reson Med 2020; 85:2377-2390. [PMID: 33296103 DOI: 10.1002/mrm.28627] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Magnetic resonance elastography (MRE) is a phase contrast-based MRI technique that can measure displacement due to propagating mechanical waves, from which material properties such as shear modulus can be calculated. Magnetic resonance elastography can be thought of as quantitative, noninvasive palpation. It is increasing in clinical importance, has become widespread in the diagnosis and staging of liver fibrosis, and additional clinical applications are being explored. However, publications have reported MRE results using many different parameters, acquisition techniques, processing methods, and varied nomenclature. The diversity of terminology can lead to confusion (particularly among clinicians) about the meaning of and interpretation of MRE results. This paper was written by the MRE Guidelines Committee, a group formalized at the first meeting of the ISMRM MRE Study Group, to clarify and move toward standardization of MRE nomenclature. The purpose of this paper is to (1) explain MRE terminology and concepts to those not familiar with them, (2) define "good practices" for practitioners of MRE, and (3) identify opportunities to standardize terminology, to avoid confusion.
Collapse
Affiliation(s)
- Armando Manduca
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Philip J Bayly
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Richard L Ehman
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Arunark Kolipaka
- Department of Radiology, Ohio State University, Columbus, Ohio, USA
| | - Thomas J Royston
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ingolf Sack
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Sinkus
- Imaging Sciences & Biomedical Engineering, Kings College London, London, United Kingdom
| | | |
Collapse
|
17
|
Deptuła P, Łysik D, Pogoda K, Cieśluk M, Namiot A, Mystkowska J, Król G, Głuszek S, Janmey PA, Bucki R. Tissue Rheology as a Possible Complementary Procedure to Advance Histological Diagnosis of Colon Cancer. ACS Biomater Sci Eng 2020; 6:5620-5631. [PMID: 33062848 PMCID: PMC7549092 DOI: 10.1021/acsbiomaterials.0c00975] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
Abstract
![]()
In recent years,
rheological measurements of cells and tissues
at physiological and pathological stages have become an essential
method to determine how forces and changes in mechanical properties
contribute to disease development and progression, but there is no
standardization of this procedure so far. In this study, we evaluate
the potential of nanoscale atomic force microscopy (AFM) and macroscopic
shear rheometry to assess the mechanical properties of healthy and
cancerous human colon tissues. The direct comparison of tissue mechanical
behavior under uniaxial and shear deformation shows that cancerous
tissues not only are stiffer compared to healthy tissue but also respond
differently when shear and compressive stresses are applied. These
results suggest that rheological parameters can be useful measures
of colon cancer mechanopathology. Additionally, we extend the list
of biological materials exhibiting compressional stiffening and shear
weakening effects to human colon tumors. These mechanical responses
might be promising mechanomarkers and become part of the new procedures
in colon cancer diagnosis. Enrichment of histopathological grading
with rheological assessment of tissue mechanical properties will potentially
allow more accurate colon cancer diagnosis and improve prognosis.
Collapse
Affiliation(s)
- Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Dawid Łysik
- Institute of Biomedical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Andrzej Namiot
- Department of Human Anatomy, Medical University of Bialystok, 15-230 Bialystok, Poland
| | - Joanna Mystkowska
- Institute of Biomedical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Grzegorz Król
- Department of Microbiology and Immunology, Jan Kochanowski University, 25-516 Kielce, Poland
| | - Stanisław Głuszek
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, 25-369 Kielce, Poland.,Clinic for General, Oncologic and Endocrine Surgery, Regional Hospital, 25-736 Kielce, Poland
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Departments of Physiology and Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| |
Collapse
|
18
|
Lan PS, Glaser KJ, Ehman RL, Glover GH. Imaging brain function with simultaneous BOLD and viscoelasticity contrast: fMRI/fMRE. Neuroimage 2020; 211:116592. [PMID: 32014553 DOI: 10.1016/j.neuroimage.2020.116592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/25/2019] [Accepted: 01/28/2020] [Indexed: 01/10/2023] Open
Abstract
Magnetic resonance elastography (MRE) is emerging as a new tool for studying viscoelastic changes in the brain resulting from functional processes. Here, we demonstrate a novel time series method to generate robust functional magnetic resonance elastography (fMRE) activation maps in response to a visual task with a flashing checkerboard stimulus. Using a single-shot spin-echo (SS-SE) pulse sequence, the underlying raw images inherently contain blood-oxygen-level dependent (BOLD) contrast, allowing simultaneous generation of functional magnetic resonance imaging (fMRI) activation maps from the magnitude and functional magnetic resonance elastography (fMRE) maps from the phase. This allows an accurate comparison of the spatially localized stiffness (fMRE) and BOLD (fMRI) changes within a single scan, eliminating confounds inherent in separately acquired scans. Results indicate that tissue stiffness within the visual cortex increases 6-11% with visual stimuli, whereas the BOLD signal change was 1-2%. Furthermore, the fMRE and fMRI activation maps have strong spatial overlap within the visual cortex, providing convincing evidence that fMRE is possible in the brain. However, the fMRE temporal SNR (tSNRfMRE) maps are heterogeneous across the brain. Using a dictionary matching approach to characterize the time series, the viscoelastic changes are consistent with a viscoelastic response function (VRF) time constant of 12.1 s ± 3.0 s for a first-order exponential decay, or a shape parameter of 8.1 s ± 1.4 s for a gamma-variate.
Collapse
Affiliation(s)
- Patricia S Lan
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.
| | - Kevin J Glaser
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Gary H Glover
- Department of Radiology, Stanford University, 1201 Welch Road, Stanford, CA, 94305, USA
| |
Collapse
|
19
|
Strijkers GJ, Araujo EC, Azzabou N, Bendahan D, Blamire A, Burakiewicz J, Carlier PG, Damon B, Deligianni X, Froeling M, Heerschap A, Hollingsworth KG, Hooijmans MT, Karampinos DC, Loudos G, Madelin G, Marty B, Nagel AM, Nederveen AJ, Nelissen JL, Santini F, Scheidegger O, Schick F, Sinclair C, Sinkus R, de Sousa PL, Straub V, Walter G, Kan HE. Exploration of New Contrasts, Targets, and MR Imaging and Spectroscopy Techniques for Neuromuscular Disease - A Workshop Report of Working Group 3 of the Biomedicine and Molecular Biosciences COST Action BM1304 MYO-MRI. J Neuromuscul Dis 2020; 6:1-30. [PMID: 30714967 PMCID: PMC6398566 DOI: 10.3233/jnd-180333] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (MRI and MRS) are showing increasing promise as an outcome measure in clinical trials for these diseases. In 2013, the European Union funded the COST (co-operation in science and technology) action BM1304 called MYO-MRI (www.myo-mri.eu), with the overall aim to advance novel MRI and MRS techniques for both diagnosis and quantitative monitoring of neuromuscular diseases through sharing of expertise and data, joint development of protocols, opportunities for young researchers and creation of an online atlas of muscle MRI and MRS. In this report, the topics that were discussed in the framework of working group 3, which had the objective to: Explore new contrasts, new targets and new imaging techniques for NMD are described. The report is written by the scientists who attended the meetings and presented their data. An overview is given on the different contrasts that MRI can generate and their application, clinical needs and desired readouts, and emerging methods.
Collapse
Affiliation(s)
| | - Ericky C.A. Araujo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jedrek Burakiewicz
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Bruce Damon
- Vanderbilt University Medical Center, Nashville, USA
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Arend Heerschap
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany & Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fritz Schick
- University of Tübingen, Section on Experimental Radiology, Tübingen, Germany
| | | | | | | | - Volker Straub
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Hermien E. Kan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
20
|
Abstract
A rising wave of technologies and instruments are enabling more labs and clinics to make a variety of measurements related to tissue viscoelastic properties. These instruments include elastography imaging scanners, rheological shear viscometers, and a variety of calibrated stress-strain analyzers. From these many sources of disparate data, a common step in analyzing results is to fit the measurements of tissue response to some viscoelastic model. In the best scenario, this places the measurements within a theoretical framework and enables meaningful comparisons of the parameters against other types of tissues. However, there is a large set of established rheological models, even within the class of linear, causal, viscoelastic solid models, so which of these should be chosen? Is it simply a matter of best fit to a minimum mean squared error of the model to several data points? We argue that the long history of biomechanics, including the concept of the extended relaxation spectrum, along with data collected from viscoelastic soft tissues over an extended range of times and frequencies, and the theoretical framework of multiple relaxation models which model the multi-scale nature of physical tissues, all lead to the conclusion that fractional derivative models represent the most succinct and meaningful models of soft tissue viscoelastic behavior. These arguments are presented with the goal of clarifying some distinctions between, and consequences of, some of the most commonly used models, and with the longer term goal of reaching a consensus among different sub-fields in acoustics, biomechanics, and elastography that have common interests in comparing tissue measurements.
Collapse
Affiliation(s)
- K J Parker
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
21
|
Nelissen JL, Sinkus R, Nicolay K, Nederveen AJ, Oomens CW, Strijkers GJ. Magnetic resonance elastography of skeletal muscle deep tissue injury. NMR IN BIOMEDICINE 2019; 32:e4087. [PMID: 30897280 PMCID: PMC6593838 DOI: 10.1002/nbm.4087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 05/31/2023]
Abstract
The current state-of-the-art diagnosis method for deep tissue injury in muscle, a subcategory of pressure ulcers, is palpation. It is recognized that deep tissue injury is frequently preceded by altered biomechanical properties. A quantitative understanding of the changes in biomechanical properties preceding and during deep tissue injury development is therefore highly desired. In this paper we quantified the spatial-temporal changes in mechanical properties upon damage development and recovery in a rat model of deep tissue injury. Deep tissue injury was induced in nine rats by two hours of sustained deformation of the tibialis anterior muscle. Magnetic resonance elastography (MRE), T2 -weighted, and T2 -mapping measurements were performed before, directly after indentation, and at several timepoints during a 14-day follow-up. The results revealed a local hotspot of elevated shear modulus (from 3.30 ± 0.14 kPa before to 4.22 ± 0.90 kPa after) near the center of deformation at Day 0, whereas the T2 was elevated in a larger area. During recovery there was a clear difference in the time course of the shear modulus and T2 . Whereas T2 showed a gradual normalization towards baseline, the shear modulus dropped below baseline from Day 3 up to Day 10 (from 3.29 ± 0.07 kPa before to 2.68 ± 0.23 kPa at Day 10, P < 0.001), followed by a normalization at Day 14. In conclusion, we found an initial increase in shear modulus directly after two hours of damage-inducing deformation, which was followed by decreased shear modulus from Day 3 up to Day 10, and subsequent normalization. The lower shear modulus originates from the moderate to severe degeneration of the muscle. MRE stiffness values were affected in a smaller area as compared with T2 . Since T2 elevation is related to edema, distributing along the muscle fibers proximally and distally from the injury, we suggest that MRE is more specific than T2 for localization of the actual damaged area.
Collapse
Affiliation(s)
- Jules L. Nelissen
- Biomedical NMR, Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Biomedical Engineering and Physics, Academic Medical CenterAmsterdamThe Netherlands
- Department of Radiology and Nuclear Medicine, Academic Medical CenterAmsterdamThe Netherlands
| | - Ralph Sinkus
- Image Sciences & Biomedical Engineering, King's College LondonLondonUK
| | - Klaas Nicolay
- Biomedical NMR, Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Academic Medical CenterAmsterdamThe Netherlands
| | - Cees W.J. Oomens
- Soft Tissue Engineering and Mechanobiology, Biomedical EngineeringEindhoven University of TechnologyThe Netherlands
| | - Gustav J. Strijkers
- Biomedical Engineering and Physics, Academic Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
22
|
Qian L, Sun Y, Tong Q, Tian J, Ren Z, Zhao H. Indentation response in porcine brain under electric fields. SOFT MATTER 2019; 15:623-632. [PMID: 30608501 DOI: 10.1039/c8sm01272e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electric fields in the environment can have profound effects on brain function and behavior. In clinical practice, some noninvasive/microinvasive therapies with electrical fields such as transcranial electrical stimulation (tES), deep brain stimulation (DBS), and electroconvulsive therapy (ECT) have emerged as powerful tools for the treatment of neuropsychiatric disorders and neuromodulation. Nonetheless, currently, most studies focus on the mechanisms and effects of therapies and do not to address the mechanical properties of brain tissue under electric fields. Thus, the mechanical behavior of brain tissue, which plays an important role in modulating both brain form and brain function, should be given attention. The present study addresses this paucity by presenting, for the first time, the mechanical properties of brain tissue under various intensities of direct current electric field (0, 2, 5, 10, 20, and 50 V) using a custom-designed indentation device. Prior to brain indentation, validation tests were performed in different hydrogels to ensure that there was no interference in the electric fields from the indentation device. Subsequently, the load trace data obtained from the indentation-relaxation tests was fitted to both linear elastic and viscoelastic models to characterize the sensitivity of the mechanical behavior of the brain tissue to the electric fields. The brain tissue was found to be softened at a higher electric field level and less viscous, and substantially responded more quickly with an increase in electric field. The explanations for the above behaviors were further discussed based on the analysis of the resistance and thermal responses during the testing process. Understanding the effect of electric fields on brain tissue at the mechanical level can provide a better understanding of the mechanisms of some therapies, which may be beneficial to guide therapy protocols.
Collapse
Affiliation(s)
- Long Qian
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Yifan Sun
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Qian Tong
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Jiyu Tian
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Zhuang Ren
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|