1
|
Wang Y, Yan C, Feng X, Gao N, Gao JH, Song X. Simultaneous quantification of PCr, Cr, and pH in muscle CEST-MRI. Magn Reson Med 2025. [PMID: 40159898 DOI: 10.1002/mrm.30508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE CEST-MRI allows sensitive in vivo detection of PCr and Cr in muscle. However, the accurate quantification is difficult due to overlapped "peaks" from multiple solutes and mixed contributions from fractional concentration (f b $$ {f}_{\mathrm{b}} $$ ) and exchange rate (k b $$ {k}_{\mathrm{b}} $$ ). This study aims to achieve simultaneous and accurate mapping of PCr, Cr, and pH in muscle. METHODS A two-step quantification method was proposed, by considering the co-existence of PCr and Cr in muscle and their dynamic transition. Firstly, exchangeable protons resonating at +2.6 ppm (PCr 2.6 $$ {\mathrm{PCr}}_{2.6} $$ ) were quantified using our previous gQUCESOP. In the second gQUCESOP for resolving parameters at +1.9 ppm, we included both Cr's and another exchangeable guanidino proton of PCr resonating at +1.9 ppm (PCr 1.9 $$ {\mathrm{PCr}}_{1.9} $$ ), withf b $$ {f}_{\mathrm{b}} $$ andk b $$ {k}_{\mathrm{b}} $$ forPCr 1.9 $$ {\mathrm{PCr}}_{1.9} $$ estimated fromPCr 2.6 $$ {\mathrm{PCr}}_{2.6} $$ estimation in the first step. The method was validated by simulation and phantom study. In vivo rat experiments were performed at 9.4T, with pH measured also by 31P-MRS. RESULTS Simulation suggested an over-estimatedf b $$ {f}_{\mathrm{b}} $$ and an under-estimatedk b $$ {k}_{\mathrm{b}} $$ of Cr if including a non-neglectable content of PCr. For a phantom with mixed PCr and Cr, the proposed method allowed accurate calculation of both concentrations and pH. For in vivo rat scans performed before and right after euthanasia, our methods achieved coincidedf b $$ {f}_{\mathrm{b}} $$ andk b $$ {k}_{\mathrm{b}} $$ with literatures. Furthermore, the pH values from 31P-MRS,k b $$ {k}_{\mathrm{b}} $$ ofPCr 2.6 $$ {\mathrm{PCr}}_{2.6} $$ , andk b $$ {k}_{\mathrm{b}} $$ of Cr could verify each other. CONCLUSION The proposed method is promising for quantifying thef b $$ {f}_{\mathrm{b}} $$ andk b $$ {k}_{\mathrm{b}} $$ for both PCr and Cr in skeletal muscular tissue.
Collapse
Affiliation(s)
- Yi Wang
- School of Public Health Science and Engineering, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Caiwen Yan
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Xinhong Feng
- Department of Neurology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Nan Gao
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaolei Song
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Liu Y, Wu Y, Ji Y, Zhao B, Jin Z, Ju S, Chu YH, Liebig PA, Wang H, Li C, Zhang XY. pH Mapping of Gliomas Using Quantitative Chemical Exchange Saturation Transfer MRI: Quasi-Steady-State, Spillover-, and MT-Corrected Omega Plot Analysis. J Magn Reson Imaging 2024; 60:1444-1455. [PMID: 38236785 DOI: 10.1002/jmri.29241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Quantitative in-situ pH mapping of gliomas is important for therapeutic interventions, given its significant association with tumor progression, invasion, and metastasis. Although chemical exchange saturation transfer (CEST) offers a noninvasive way for pH imaging based on the pH-dependent exchange rate (ksw), the reliable quantification of ksw in glioma remains constrained due to technical challenges. PURPOSE To quantify the pH of gliomas by measuring the proton exchange rate through optimized omega plot analysis. STUDY TYPE Prospective. PHANTOMS/ANIMAL MODEL/SUBJECTS Creatine and murine brain lysates phantoms, six rats with glioma xenograft model, and three patients with World Health Organization grade 2-4 gliomas. FIELD STRENGTH/SEQUENCE 11.7 T, 7.0 T, CEST imaging, T2-weighted (T2W) imaging, and T1-mapping. ASSESSMENT Omega plot analysis, quasi-steady-state (QUASS) analysis, multi-pool Lorentzian fitting, amine and amide concentration-independent detection, pH enhanced method with the combination of amide and guanidyl (pHenh), and magnetization transfer ratio (MTR) were utilized for pH metric quantification. The clinical outcomes were determined through radiologic follow-up and histopathological analysis. STATISTICAL TESTS Mann-Whitney U test was performed to compare glioma with normal tissue, and Pearson's correlation analysis was used to assess the relationship between ksw and other parameters. RESULTS In vitro experiments reveal that the determined ksw at 2 ppm increases exponentially with pH (creatine phantoms: ksw = 106 + 0.147 × 10(pH-4.198); lysates: ksw = 185.1 + 0.101 × 10(pH-3.914)). Omega plot analysis exhibits a linear correlation between 1/MTRRex and 1/ω1 2 in the glioma xenografts (R2 > 0.98) and glioma patients (R2 > 0.99). The exchange rate in the rat glioma decreases compared to the contralateral normal tissue (349.46 ± 30.40 s-1 vs. 403.54 ± 51.01 s-1, P = 0.025), while keeping independence from changes in concentration (r = 0.5037, P = 0.095). Similar pattern was observed in human data. DATA CONCLUSION Utilizing QUASS-based, spillover-, and MT-corrected omega plot analysis for the measurement of exchange rates, offers a feasible method for quantifying pH within glioma. LEVEL OF EVIDENCE NA TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Ji
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Botao Zhao
- Ping An Technology Co., Ltd., Shenzhen, China
| | - Ziyi Jin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ying-Hua Chu
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | | | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Wang K, Ju L, Song Y, Blair L, Xie K, Liu C, Li A, Zhu D, Xu F, Liu G, Heo HY, Yadav N, Oeltzschner G, Edden RAE, Qin Q, Kamson DO, Xu J. Whole-cerebrum guanidino and amide CEST mapping at 3 T by a 3D stack-of-spirals gradient echo acquisition. Magn Reson Med 2024; 92:1456-1470. [PMID: 38748853 PMCID: PMC11262991 DOI: 10.1002/mrm.30134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.
Collapse
Affiliation(s)
- Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Licheng Ju
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lindsay Blair
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kevin Xie
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Claire Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Anna Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Dan Zhu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feng Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye-Young Heo
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirbhay Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georg Oeltzschner
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A. E. Edden
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qin Qin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Olayinka Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Huang J, Chen Z, van Zijl PCM, Law LH, Pemmasani Prabakaran RS, Park SW, Xu J, Chan KWY. Effect of inhaled oxygen level on dynamic glucose-enhanced MRI in mouse brain. Magn Reson Med 2024; 92:57-68. [PMID: 38308151 PMCID: PMC11055662 DOI: 10.1002/mrm.30035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/23/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
PURPOSE To investigate the effect of inhaled oxygen level on dynamic glucose enhanced (DGE) MRI in mouse brain tissue and CSF at 3 T. METHODS DGE data of brain tissue and CSF from mice under normoxia or hyperoxia were acquired in independent and interleaved experiments using on-resonance variable delay multi-pulse (onVDMP) MRI. A bolus of 0.15 mL filtered 50% D-glucose was injected through the tail vein over 1 min during DGE acquisition. MRS was acquired before and after DGE experiments to confirm the presence of D-glucose. RESULTS A significantly higher DGE effect under normoxia than under hyperoxia was observed in brain tissue (p = 0.0001 and p = 0.0002 for independent and interleaved experiments, respectively), but not in CSF (p > 0.3). This difference is attributed to the increased baseline MR tissue signal under hyperoxia induced by a shortened T1 and an increased BOLD effect. When switching from hyperoxia to normoxia without glucose injection, a signal change of ˜3.0% was found in brain tissue and a signal change of ˜1.5% was found in CSF. CONCLUSIONS DGE signal was significantly lower under hyperoxia than that under normoxia in brain tissue, but not in CSF. The reason is that DGE effect size of brain tissue is affected by the baseline signal, which could be influenced by T1 change and BOLD effect. Therefore, DGE experiments in which the oxygenation level is changed from baseline need to be interpreted carefully.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peter CM van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lok Hin Law
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Rohith Saai Pemmasani Prabakaran
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Se Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie WY Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Wang Y, Sun YX, Yang QY, Gao JH. A generalized QUCESOP method with evaluating CEST peak overlap. NMR IN BIOMEDICINE 2024; 37:e5098. [PMID: 38224670 DOI: 10.1002/nbm.5098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/26/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
The overlapping peaks of the target chemical exchange saturation transfer (CEST) solutes and other unknown CEST solutes affect the quantification results and accuracy of the chemical exchange parameters-the fractional concentration, f b , exchange rate, k b , and transverse relaxation rate, R 2 b -for the target solutes. However, to date, no method has been established for assessing the overlapping peaks. This study aimed to develop a method for quantifying the f b , k b , and R 2 b values of a specific CEST solute, as well as assessing the overlap between the CEST peaks of the specific solute(s) and other unknown solutes. A simplified R 1 ρ model was proposed, assuming linear approximation of the other solutes' contributions to R 1 ρ . A CEST data acquisition scheme was applied with various saturation offsets and saturation powers. In addition to fitting the f b , k b , and R 2 b values of the specific solute, the overlapping condition was evaluated based on the root mean square error (RMSE) between the trajectories of the acquired and synthesized data. Single-solute and multi-solute phantoms with various phosphocreatine (PCr) concentrations and pH values were used to calculate the f b and k b of PCr and the corresponding RMSE. The feasibility of RMSE for evaluating the overlapping condition, and the accurate fitting of f b and k b in weak overlapping conditions, were verified. Furthermore, the method was employed to quantify the nuclear Overhauser effect signal in rat brains and the PCr signal in rat skeletal muscles, providing results that were consistent with those reported in previous studies. In summary, the proposed approach can be applied to evaluate the overlapping condition of CEST peaks and quantify the f b , k b , and R 2 b values of specific solutes, if the weak overlapping condition is satisfied.
Collapse
Affiliation(s)
- Yi Wang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi-Xuan Sun
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiu-Yu Yang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
- McGovern Institute for Brain Research, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| |
Collapse
|
6
|
Zhou IY, Ji Y, Zhao Y, Malvika V, Sun PZ, Zu Z. Specific and rapid guanidinium CEST imaging using double saturation power and QUASS analysis in a rodent model of global ischemia. Magn Reson Med 2024; 91:1512-1527. [PMID: 38098305 PMCID: PMC10872646 DOI: 10.1002/mrm.29960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE Guanidinium CEST is sensitive to metabolic changes and pH variation in ischemia, and it can offer advantages over conventional pH-sensitive amide proton transfer (APT) imaging by providing hyperintense contrast in stroke lesions. However, quantifying guanidinium CEST is challenging due to multiple overlapping components and a close frequency offset from water. This study aims to evaluate the applicability of a new rapid and model-free CEST quantification method using double saturation power, termed DSP-CEST, for isolating the guanidinium CEST effect from confounding factors in ischemia. To further reduce acquisition time, the DSP-CEST was combined with a quasi-steady state (QUASS) CEST technique to process non-steady-state CEST signals. METHODS The specificity and accuracy of the DSP-CEST method in quantifying the guanidinium CEST effect were assessed by comparing simulated CEST signals with/without the contribution from confounding factors. The feasibility of this method for quantifying guanidinium CEST was evaluated in a rat model of global ischemia induced by cardiac arrest and compared to a conventional multiple-pool Lorentzian fit method. RESULTS The DSP-CEST method was successful in removing all confounding components and quantifying the guanidinium CEST signal increase in ischemia. This suggests that the DSP-CEST has the potential to provide hyperintense contrast in stroke lesions. Additionally, the DSP-CEST was shown to be a rapid method that does not require the acquisition of the entire or a portion of the CEST Z-spectrum that is required in conventional model-based fitting approaches. CONCLUSION This study highlights the potential of DSP-CEST as a valuable tool for rapid and specific detection of viable tissues.
Collapse
Affiliation(s)
- Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, US
| | - Yang Ji
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Viswanathan Malvika
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, US
- Primate Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, US
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, US
- Department of Biomedical Engineering, Vanderbilt University, Nashville, US
| |
Collapse
|
7
|
Ju L, Wang K, Schär M, Xu S, Rogers J, Zhu D, Qin Q, Weiss RG, Xu J. Simultaneous creatine and phosphocreatine mapping of skeletal muscle by CEST MRI at 3T. Magn Reson Med 2024; 91:942-954. [PMID: 37899691 PMCID: PMC10842434 DOI: 10.1002/mrm.29907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
PURPOSE To confirm that CrCEST in muscle exhibits a slow-exchanging process, and to obtain high-resolution amide, creatine (Cr), and phosphocreatine (PCr) maps of skeletal muscle using a POlynomial and Lorentzian Line-shape Fitting (PLOF) CEST at 3T. METHODS We used dynamic changes in PCr/CrCEST of mouse hindlimb before and after euthanasia to assign the Cr and PCr CEST peaks in the Z-spectrum at 3T and to obtain the optimum saturation parameters. Segmented 3D EPI was employed to obtain multi-slice amide, PCr, and Cr CEST maps of human skeletal muscle. Subsequently, the PCrCEST maps were calibrated using the PCr concentrations determined by 31 P MRS. RESULTS A comparison of the Z-spectra in mouse hindlimb before and after euthanasia indicated that CrCEST is a slow-exchanging process in muscle (<150.7 s-1 ). This allowed us to simultaneously extract PCr/CrCEST signals at 3T using the PLOF method. We determined optimal B1 values ranging from 0.3 to 0.6 μT for CrCEST in muscle and 0.3-1.2 μT for PCrCEST. For the study on human calf muscle, we determined an optimum saturation time of 2 s for both PCr/CrCEST (B1 = 0.6 μT). The PCr/CrCEST using 3D EPI were found to be comparable to those obtained using turbo spin echo (TSE). (3D EPI/TSE PCr: (2.6 ± 0.3) %/(2.3 ± 0.1) %; Cr: (1.3 ± 0.1) %/(1.4 ± 0.07) %). CONCLUSIONS Our study showed that in vivo CrCEST is a slow-exchanging process. Hence, amide, Cr, and PCr CEST in the skeletal muscle can be mapped simultaneously at 3T by PLOF CEST.
Collapse
Affiliation(s)
- Licheng Ju
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Rogers
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dan Zhu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qin Qin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert G. Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Wang K, Huang J, Ju L, Xu S, Gullapalli RP, Liang Y, Rogers J, Li Y, van Zijl PCM, Weiss RG, Chan KWY, Xu J. Creatine mapping of the brain at 3T by CEST MRI. Magn Reson Med 2024; 91:51-60. [PMID: 37814487 PMCID: PMC10843037 DOI: 10.1002/mrm.29876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE To assess the feasibility of CEST-based creatine (Cr) mapping in brain at 3T using the guanidino (Guan) proton resonance. METHODS Wild type and knockout mice with guanidinoacetate N-methyltransferase deficiency and low Cr and phosphocreatine (PCr) concentrations in the brain were used to assign the Cr and protein-based arginine contributions to the GuanCEST signal at 2.0 ppm. To quantify the Cr proton exchange rate, two-step Bloch-McConnell fitting was used to fit the extracted CrCEST line-shape and multi-B1 Z-spectral data. The pH response of GuanCEST was simulated to demonstrate its potential for pH mapping. RESULTS Brain Z-spectra of wild type and guanidinoacetate N-methyltransferase deficiency mice show a clear Guan proton peak at 2.0 ppm at 3T. The CrCEST signal contributes ∼23% to the GuanCEST signal at B1 = 0.8 μT, where a maximum CrCEST effect of 0.007 was detected. An exchange rate range of 200-300 s-1 was estimated for the Cr Guan protons. As revealed by the simulation, an elevated GuanCEST in the brain is observed when B1 is less than 0.4 μT at 3T, when intracellular pH reduces by 0.2. Conversely, the GuanCEST decreases when B1 is greater than 0.4 μT with the same pH drop. CONCLUSIONS CrCEST mapping is possible at 3T, which has potential for detecting intracellular pH and Cr concentration in brain.
Collapse
Affiliation(s)
- Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Licheng Ju
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Rogers
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C. M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert G. Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie W. Y. Chan
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Chen X, Wu J, Yang Y, Chen H, Zhou Y, Lin L, Wei Z, Xu J, Chen Z, Chen L. Boosting quantification accuracy of chemical exchange saturation transfer MRI with a spatial-spectral redundancy-based denoising method. NMR IN BIOMEDICINE 2024; 37:e5027. [PMID: 37644611 DOI: 10.1002/nbm.5027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a versatile technique that enables noninvasive detections of endogenous metabolites present in low concentrations in living tissue. However, CEST imaging suffers from an inherently low signal-to-noise ratio (SNR) due to the decreased water signal caused by the transfer of saturated spins. This limitation challenges the accuracy and reliability of quantification in CEST imaging. In this study, a novel spatial-spectral denoising method, called BOOST (suBspace denoising with nOnlocal lOw-rank constraint and Spectral local-smooThness regularization), was proposed to enhance the SNR of CEST images and boost quantification accuracy. More precisely, our method initially decomposes the noisy CEST images into a low-dimensional subspace by leveraging the global spectral low-rank prior. Subsequently, a spatial nonlocal self-similarity prior is applied to the subspace-based images. Simultaneously, the spectral local-smoothness property of Z-spectra is incorporated by imposing a weighted spectral total variation constraint. The efficiency and robustness of BOOST were validated in various scenarios, including numerical simulations and preclinical and clinical conditions, spanning magnetic field strengths from 3.0 to 11.7 T. The results demonstrated that BOOST outperforms state-of-the-art algorithms in terms of noise elimination. As a cost-effective and widely available post-processing method, BOOST can be easily integrated into existing CEST protocols, consequently promoting accuracy and reliability in detecting subtle CEST effects.
Collapse
Affiliation(s)
- Xinran Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Jian Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Yu Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Huan Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, Beijing, China
| | - Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Chen H, Chen X, Lin L, Cai S, Cai C, Chen Z, Xu J, Chen L. Learned spatiotemporal correlation priors for CEST image denoising using incorporated global-spectral convolution neural network. Magn Reson Med 2023; 90:2071-2088. [PMID: 37332198 DOI: 10.1002/mrm.29763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE To develop a deep learning-based method, dubbed Denoising CEST Network (DECENT), to fully exploit the spatiotemporal correlation prior to CEST image denoising. METHODS DECENT is composed of two parallel pathways with different convolution kernel sizes aiming to extract the global and spectral features embedded in CEST images. Each pathway consists of a modified U-Net with residual Encoder-Decoder network and 3D convolution. Fusion pathway with 1 × 1 × 1 convolution kernel is utilized to concatenate two parallel pathways, and the output of DECENT is noise-reduced CEST images. The performance of DECENT was validated in numerical simulations, egg white phantom experiments, and ischemic mouse brain and human skeletal muscle experiments in comparison with existing state-of-the-art denoising methods. RESULTS Rician noise was added to CEST images to mimic a low SNR situation for numerical simulation, egg white phantom experiment, and mouse brain experiments, while human skeletal muscle experiments were of inherently low SNR. From the denoising results evaluated by peak SNR (PSNR) and structural similarity index (SSIM), the proposed deep learning-based denoising method (DECENT) can achieve better performance compared to existing CEST denoising methods such as NLmCED, MLSVD, and BM4D, avoiding complicated parameter tuning or time-consuming iterative processes. CONCLUSIONS DECENT can well exploit the prior spatiotemporal correlation knowledge of CEST images and restore the noise-free images from their noisy observations, outperforming state-of-the-art denoising methods.
Collapse
Affiliation(s)
- Huan Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Xinran Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Liangjie Lin
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Zhang Z, Wang K, Park S, Li A, Li Y, Weiss R, Xu J. The exchange rate of creatine CEST in mouse brain. Magn Reson Med 2023; 90:373-384. [PMID: 37036030 PMCID: PMC11054327 DOI: 10.1002/mrm.29662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE To estimate the exchange rate of creatine (Cr) CEST and to evaluate the pH sensitivity of guanidinium (Guan) CEST in the mouse brain. METHODS Polynomial and Lorentzian line-shape fitting (PLOF) were implemented to extract the amine, amide, and Guan CEST signals from the brain Z-spectrum at 11.7T. Wild-type (WT) and knockout mice with the guanidinoacetate N-methyltransferase deficiency (GAMT-/- ) that have low Cr and phosphocreatine (PCr) concentrations in the brain were used to extract the CrCEST signal. To quantify the CrCEST exchange rate, a two-step Bloch-McConnell (BM) fitting was used to fit the CrCEST line-shape, B1 -dependent CrCEST, and the pH response with different B1 values. The pH in the brain cells was altered by hypercapnia to measure the pH sensitivity of GuanCEST. RESULTS Comparison between the Z-spectra of WT and GAMT-/- mice suggest that the CrCEST is between 20% and 25% of the GuanCEST in the Z-spectrum at 1.95 ppm between B1 = 0.8 and 2 μT. The CrCEST exchange rate was found to be around 240-480 s-1 in the mouse brain, which is significantly lower than that in solutions (∼1000 s-1 ). The hypercapnia study on the mouse brain revealed that CrCEST at B1 = 2 μT and amineCEST at B1 = 0.8 μT are highly sensitive to pH change in the WT mouse brain. CONCLUSIONS The in vivo CrCEST exchange rate is slow, and the acquisition parameters for the CrCEST should be adjusted accordingly. CrCEST is the major contribution to the opposite pH-dependence of GuanCEST signal under different conditions of B1 in the brain.
Collapse
Affiliation(s)
- Ziqin Zhang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sooyeon Park
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Xu J, Chung JJ, Jin T. Chemical exchange saturation transfer imaging of creatine, phosphocreatine, and protein arginine residue in tissues. NMR IN BIOMEDICINE 2023; 36:e4671. [PMID: 34978371 PMCID: PMC9250548 DOI: 10.1002/nbm.4671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/06/2021] [Accepted: 12/02/2021] [Indexed: 05/05/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has become a promising technique to assay target proteins and metabolites through their exchangeable protons, noninvasively. The ubiquity of creatine (Cr) and phosphocreatine (PCr) due to their pivotal roles in energy homeostasis through the creatine phosphate pathway has made them prime targets for CEST in the diagnosis and monitoring of disease pathologies, particularly in tissues heavily dependent on the maintenance of rich energy reserves. Guanidinium CEST from protein arginine residues (i.e. arginine CEST) can also provide information about the protein profile in tissue. However, numerous obfuscating factors stand as obstacles to the specificity of arginine, Cr, and PCr imaging through CEST, such as semisolid magnetization transfer, fast chemical exchanges such as primary amines, and the effects of nuclear Overhauser enhancement from aromatic and amide protons. In this review, the specific exchange properties of protein arginine residues, Cr, and PCr, along with their validation, are discussed, including the considerations necessary to target and tune their signal effects through CEST imaging. Additionally, strategies that have been employed to enhance the specificity of these exchanges in CEST imaging are described, along with how they have opened up possible applications of protein arginine residues, Cr and PCr CEST imaging in the study and diagnosis of pathology. A clear understanding of the capabilities and caveats of using CEST to image these vital metabolites and mitigation strategies is crucial to expanding the possibilities of this promising technology.
Collapse
Affiliation(s)
- Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julius Juhyun Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Liu Y, Gauthier GC, Gendelman HE, Bade AN. Dual-Peak Lorentzian CEST MRI for antiretroviral drug brain distribution. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:63-69. [PMID: 37027345 PMCID: PMC10070014 DOI: 10.1515/nipt-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
Abstract
Objectives Spatial-temporal biodistribution of antiretroviral drugs (ARVs) can now be achieved using MRI by utilizing chemical exchange saturation transfer (CEST) contrasts. However, the presence of biomolecules in tissue limits the specificity of current CEST methods. To overcome this limitation, a Lorentzian line-shape fitting algorithm was developed that simultaneously fits CEST peaks of ARV protons on its Z-spectrum. Case presentation This algorithm was tested on the common first line ARV, lamivudine (3TC), that has two peaks resulting from amino (-NH2) and hydroxyl (-OH) protons in 3TC. The developed dual-peak Lorentzian function fitted these two peaks simultaneously, and used the ratio of -NH2 and -OH CEST contrasts as a constraint parameter to measure 3TC presence in brains of drug-treated mice. 3TC biodistribution calculated using the new algorithm was compared against actual drug levels measured using UPLC-MS/MS. In comparison to the method that employs the -NH2 CEST peak only, the dual-peak Lorentzian fitting algorithm showed stronger correlation with brain tissue 3TC levels, signifying estimation of actual drug levels. Conclusions We concluded that 3TC levels can be extracted from confounding CEST effects of tissue biomolecules resulting in improved specificity for drug mapping. This algorithm can be expanded to measure a variety of ARVs using CEST MRI.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gabriel C. Gauthier
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N. Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
14
|
Wang K, Park S, Kamson DO, Li Y, Liu G, Xu J. Guanidinium and amide CEST mapping of human brain by high spectral resolution CEST at 3 T. Magn Reson Med 2023; 89:177-191. [PMID: 36063502 PMCID: PMC9617768 DOI: 10.1002/mrm.29440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To extract guanidinium (Guan) and amide CEST on the human brain at 3 T MRI with the high spectral resolution (HSR) CEST combined with the polynomial Lorentzian line-shape fitting (PLOF). METHODS Continuous wave (cw) turbo spin-echo (TSE) CEST was implemented to obtain the optimum saturation parameters. Both Guan and amide CEST peaks were extracted and quantified using the PLOF method. The NMR spectra on the egg white phantoms were acquired to reveal the fitting range and the contributions to the amide and GuanCEST. Two types of CEST approaches, including cw gradient- and spin-echo (cwGRASE) and steady state EPI (ssEPI), were implemented to acquire multi-slice HSR-CEST. RESULTS GuanCEST can be extracted with the PLOF method at 3 T, and the optimumB 1 = 0.6 μ T $$ {\mathrm{B}}_1=0.6\kern0.2em \upmu \mathrm{T} $$ was determined for GuanCEST in white matter (WM) and 1.0 μT in gray matter (GM). The optimum B1 = 0.8-1 μT was found for amideCEST. AmideCEST is lower in both WM and GM collected with ssEPI compared to those by cwGRASE (ssEPI = [1.27-1.63]%; cwGRASE = [2.19-2.25]%). The coefficients of variation (COV) of the amide and Guan CEST in both WM and GM for ssEPI (COV: 28.6-33.4%) are significantly higher than those of cwGRASE (COV: 8.6-18.8%). Completely different WM/GM contrasts for Guan and amide CEST were observed between ssEPI and cwGRASE. The amideCEST was found to have originated from the unstructured amide protons as suggested by the NMR spectrum of the unfolded proteins in egg white. CONCLUSION Guan and amide CEST mapping can be achieved by the HSR-CEST at 3 T combing with the PLOF method.
Collapse
Affiliation(s)
- Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sooyeon Park
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - David Olayinka Kamson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Zaiss M, Jin T, Kim SG, Gochberg DF. Theory of chemical exchange saturation transfer MRI in the context of different magnetic fields. NMR IN BIOMEDICINE 2022; 35:e4789. [PMID: 35704180 DOI: 10.1002/nbm.4789] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a versatile MRI method that provides contrast based on the level of molecular and metabolic activity. This contrast arises from indirect measurement of protons in low concentration molecules that are exchanging with the abundant water proton pool. The indirect measurement is based on magnetization transfer of radio frequency (rf)-prepared magnetization from the small pool to the water pool. The signal can be modeled by the Bloch-McConnell equations combining standard magnetization dynamics and chemical exchange processes. In this article, we review analytical solutions of the Bloch-McConnell equations and especially the derived CEST signal equations and their implications. The analytical solutions give direct insight into the dependency of measurable CEST effects on underlying parameters such as the exchange rate and concentration of the solute pools, but also on the system parameters such as the rf irradiation field B1 , as well as the static magnetic field B0 . These theoretical field-strength dependencies and their influence on sequence design are highlighted herein. In vivo results of different groups making use of these field-strength benefits/dependencies are reviewed and discussed.
Collapse
Affiliation(s)
- Moritz Zaiss
- High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tao Jin
- NeuroImaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Huang J, Lai JHC, Han X, Chen Z, Xiao P, Liu Y, Chen L, Xu J, Chan KWY. Sensitivity schemes for dynamic glucose-enhanced magnetic resonance imaging to detect glucose uptake and clearance in mouse brain at 3 T. NMR IN BIOMEDICINE 2022; 35:e4640. [PMID: 34750891 DOI: 10.1002/nbm.4640] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/30/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
We investigated three dynamic glucose-enhanced (DGE) MRI methods for sensitively monitoring glucose uptake and clearance in both brain parenchyma and cerebrospinal fluid (CSF) at clinical field strength (3 T). By comparing three sequences, namely, Carr-Purcell-Meiboom-Gill (CPMG), on-resonance variable delay multipulse (onVDMP), and on-resonance spin-lock (onSL), a high-sensitivity DGE MRI scheme with truncated multilinear singular value decomposition (MLSVD) denoising was proposed. The CPMG method showed the highest sensitivity in detecting the parenchymal DGE signal among the three methods, while both onVDMP and onSL were more robust for CSF DGE imaging. Here, onVDMP was applied for CSF imaging, as it displayed the best stability of the DGE results in this study. The truncated MLSVD denoising method was incorporated to further improve the sensitivity. The proposed DGE MRI scheme was examined in mouse brain with 50%/25%/12.5% w/w D-glucose injections. The results showed that this combination could detect DGE signal changes from the brain parenchyma and CSF with as low as a 12.5% w/w D-glucose injection. The proposed DGE MRI schemes could sensitively detect the glucose signal change from brain parenchyma and CSF after D-glucose injection at a clinically relevant concentration, demonstrating high potential for clinical translation.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peng Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yang Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Lin Chen
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jiadi Xu
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
17
|
Huang J, Chen Z, Park SW, Lai JHC, Chan KWY. Molecular Imaging of Brain Tumors and Drug Delivery Using CEST MRI: Promises and Challenges. Pharmaceutics 2022; 14:451. [PMID: 35214183 PMCID: PMC8880023 DOI: 10.3390/pharmaceutics14020451] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) detects molecules in their natural forms in a sensitive and non-invasive manner. This makes it a robust approach to assess brain tumors and related molecular alterations using endogenous molecules, such as proteins/peptides, and drugs approved for clinical use. In this review, we will discuss the promises of CEST MRI in the identification of tumors, tumor grading, detecting molecular alterations related to isocitrate dehydrogenase (IDH) and O-6-methylguanine-DNA methyltransferase (MGMT), assessment of treatment effects, and using multiple contrasts of CEST to develop theranostic approaches for cancer treatments. Promising applications include (i) using the CEST contrast of amide protons of proteins/peptides to detect brain tumors, such as glioblastoma multiforme (GBM) and low-grade gliomas; (ii) using multiple CEST contrasts for tumor stratification, and (iii) evaluation of the efficacy of drug delivery without the need of metallic or radioactive labels. These promising applications have raised enthusiasm, however, the use of CEST MRI is not trivial. CEST contrast depends on the pulse sequences, saturation parameters, methods used to analyze the CEST spectrum (i.e., Z-spectrum), and, importantly, how to interpret changes in CEST contrast and related molecular alterations in the brain. Emerging pulse sequence designs and data analysis approaches, including those assisted with deep learning, have enhanced the capability of CEST MRI in detecting molecules in brain tumors. CEST has become a specific marker for tumor grading and has the potential for prognosis and theranostics in brain tumors. With increasing understanding of the technical aspects and associated molecular alterations detected by CEST MRI, this young field is expected to have wide clinical applications in the near future.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Zhu D, He B, Zhang M, Wan Y, Liu R, Wang L, Zhang Y, Li Y, Gao F. A Multimodal MR Imaging Study of the Effect of Hippocampal Damage on Affective and Cognitive Functions in a Rat Model of Chronic Exposure to a Plateau Environment. Neurochem Res 2022; 47:979-1000. [PMID: 34981302 PMCID: PMC8891211 DOI: 10.1007/s11064-021-03498-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023]
Abstract
Prolonged exposure to high altitudes above 2500 m above sea level (a.s.l.) can cause cognitive and behavioral dysfunctions. Herein, we sought to investigate the effects of chronic exposure to plateau hypoxia on the hippocampus in a rat model by using voxel-based morphometry, creatine chemical exchange saturation transfer (CrCEST) and dynamic contrast-enhanced MR imaging techniques. 58 healthy 4-week-old male rats were randomized into plateau hypoxia rats (H group) as the experimental group and plain rats (P group) as the control group. H group rats were transported from Chengdu (500 m a.s.l.), a city in a plateau located in southwestern China, to the Qinghai-Tibet Plateau (4250 m a.s.l.), Yushu, China, and then fed for 8 months there, while P group rats were fed in Chengdu (500 m a.s.l.), China. After 8 months of exposure to plateau hypoxia, open-field and elevated plus maze tests revealed that the anxiety-like behavior of the H group rats was more serious than that of the P group rats, and the Morris water maze test revealed impaired spatial memory function in the H group rats. Multimodal MR imaging analysis revealed a decreased volume of the regional gray matter, lower CrCEST contrast and higher transport coefficient Ktrans in the hippocampus compared with the P group rats. Further correlation analysis found associations of quantitative MRI parameters of the hippocampus with the behavioral performance of H group rats. In this study, we validated the viability of using noninvasive multimodal MR imaging techniques to evaluate the effects of chronic exposure to a plateau hypoxic environment on the hippocampus.
Collapse
Affiliation(s)
- Dongyong Zhu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Mengdi Zhang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Yixuan Wan
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Ruibin Liu
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310030, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhang
- Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310030, China
| | - Yunqing Li
- Department of Anatomy and KK Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China. .,Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Boyd PS, Breitling J, Korzowski A, Zaiss M, Franke VL, Mueller-Decker K, Glinka A, Ladd ME, Bachert P, Goerke S. Mapping intracellular pH in tumors using amide and guanidyl CEST-MRI at 9.4 T. Magn Reson Med 2021; 87:2436-2452. [PMID: 34958684 DOI: 10.1002/mrm.29133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE In principle, non-invasive mapping of the intracellular pH (pHi ) in vivo is possible using endogenous chemical exchange saturation transfer (CEST)-MRI of the amide and guanidyl signals. However, the application for cancer imaging is still impeded, as current state-of-the-art approaches do not allow for simultaneous compensation of concomitant effects that vary within tumors. In this study, we present a novel method for absolute pHi mapping using endogenous CEST-MRI, which simultaneously compensates for concentration changes, superimposing CEST signals, magnetization transfer contrast, and spillover dilution. THEORY AND METHODS Compensation of the concomitant effects was achieved by a ratiometric approach (i.e. the ratio of one CEST signal at different B1 ) in combination with the relaxation-compensated inverse magnetization transfer ratio MTRRex and a separate first-order polynomial-Lorentzian fit of the amide and guanidyl signals at 9.4 T. Calibration of pH values was accomplished using in vivo-like model suspensions from porcine brain lysates. Applicability of the presented method in vivo was demonstrated in n = 19 tumor-bearing mice. RESULTS In porcine brain lysates, measurement of pH was feasible over a broad range of physiologically relevant pH values of 6.2 to 8.0, while being independent of changes in concentration. A median pHi of approximately 7.2 was found in the lesions of 19 tumor-bearing mice. CONCLUSION The presented method enables non-invasive mapping of absolute pHi values in tumors using CEST-MRI, which was so far prevented by concomitant effects. Consequently, pre-clinical studies on pHi changes in tumors are possible allowing the assessment of pHi in vivo as a biomarker for cancer diagnosis or treatment monitoring.
Collapse
Affiliation(s)
- Philip S Boyd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Johannes Breitling
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Korzowski
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moritz Zaiss
- Division of Neuroradiology in Radiological Institute, University Hospital of Erlangen, Erlangen, Germany
| | - Vanessa L Franke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Karin Mueller-Decker
- Core Facility Tumor Models (Center for Preclinical Research), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Glinka
- Division of Molecular Embryology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
BADE AN, GENDELMAN HE, MCMILLAN J, LIU Y. Chemical exchange saturation transfer for detection of antiretroviral drugs in brain tissue. AIDS 2021; 35:1733-1741. [PMID: 34049358 PMCID: PMC8373768 DOI: 10.1097/qad.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Antiretroviral drug theranostics facilitates the monitoring of biodistribution and efficacy of therapies designed to target HIV type-1 (HIV-1) reservoirs. To this end, we have now deployed intrinsic drug chemical exchange saturation transfer (CEST) contrasts to detect antiretroviral drugs within the central nervous system (CNS). DESIGN AND METHODS CEST effects for lamivudine (3TC) and emtricitabine (FTC) were measured by asymmetric magnetization transfer ratio analyses. The biodistribution of 3TC in different brain sub-regions of C57BL/6 mice treated with lipopolysaccharides was determined using MRI. CEST effects of 3TC protons were quantitated by Lorentzian fitting analysis. 3TC levels in plasma and brain regions were measured using ultraperformance liquid chromatography tandem mass spectrometry to affirm the CEST test results. RESULTS CEST effects of the hydroxyl and amino protons in 3TC and FTC linearly correlated to drug concentrations. 3TC was successfully detected in vivo in brain sub-regions by MRI. The imaging results were validated by measurements of CNS drug concentrations. CONCLUSION CEST contrasts can be used to detect antiretroviral drugs using MRI. Such detection can be used to assess spatial--temporal drug biodistribution. This is most notable within the CNS where drug biodistribution may be more limited with the final goal of better understanding antiretroviral drug-associated efficacy and potential toxicity.
Collapse
Affiliation(s)
- Aditya N. BADE
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Howard E. GENDELMAN
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - JoEllyn MCMILLAN
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yutong LIU
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
21
|
Chen L, van Zijl PC, Wei Z, Lu H, Duan W, Wong PC, Li T, Xu J. Early detection of Alzheimer's disease using creatine chemical exchange saturation transfer magnetic resonance imaging. Neuroimage 2021; 236:118071. [PMID: 33878375 PMCID: PMC8321389 DOI: 10.1016/j.neuroimage.2021.118071] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 01/29/2023] Open
Abstract
Detecting Alzheimer's disease (AD) at an early stage brings a lot of benefits including disease management and actions to slow the progression of the disease. Here, we demonstrate that reduced creatine chemical exchange saturation transfer (CrCEST) contrast has the potential to serve as a new biomarker for early detection of AD. The results on wild type (WT) mice and two age-matched AD models, namely tauopathy (Tau) and Aβ amyloidosis (APP), indicated that CrCEST contrasts of the cortex and corpus callosum in the APP and Tau mice were significantly reduced compared to WT counterpart at an early stage (6-7 months) (p < 0.011). Two main causes of the reduced CrCEST contrast, i.e. cerebral pH and creatine concentration, were investigated. From phantom and hypercapnia experiments, CrCEST showed excellent sensitivity to pH variations. From MRS results, the creatine concentration in WT and AD mouse brain was equivalent, which suggests that the reduced CrCEST contrast was dominated by cerebral pH change involved in the progression of AD. Immunohistochemical analysis revealed that the abnormal cerebral pH in AD mice may relate to neuroinflammation, a known factor that can cause pH reduction.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip C. Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Sui R, Chen L, Li Y, Huang J, Chan KWY, Xu X, van Zijl PCM, Xu J. Whole-brain amide CEST imaging at 3T with a steady-state radial MRI acquisition. Magn Reson Med 2021; 86:893-906. [PMID: 33772859 PMCID: PMC8076068 DOI: 10.1002/mrm.28770] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop a steady-state saturation with radial readout chemical exchange saturation transfer (starCEST) for acquiring CEST images at 3 Tesla (T). The polynomial Lorentzian line-shape fitting approach was further developed for extracting amideCEST intensities at this field. METHOD StarCEST MRI using periodically rotated overlapping parallel lines with enhanced reconstruction-based spatial sampling was implemented to acquire Z-spectra that are robust to brain motion. Multi-linear singular value decomposition postprocessing was applied to enhance the CEST SNR. The egg white phantom studies were performed at 3T to reveal the contributions to the 3.5 ppm CEST signal. Based on the phantom validation, the amideCEST peak was quantified using the polynomial Lorentzian line-shape fitting, which exploits the inverse relationship between Z-spectral intensity and the longitudinal relaxation rate in the rotating frame. The 3D turbo spin echo CEST was also performed to compare with the starCEST method. RESULTS The amideCEST peak showed a negligible peak B1 dependence between 1.2 µT and 2.4 µT. The amideCEST images acquired with starCEST showed much improved image quality, SNR, and motion robustness compared to the conventional 3D turbo spin echo CEST method with the same scan time. The amideCEST contrast extracted by the polynomial Lorentzian line-shape fitting method trended toward a stronger gray matter signal (1.32% ± 0.30%) than white matter (0.92% ± 0.08%; P = .02, n = 5). When calculating the magnetization transfer contrast and T1 -corrected rotating frame relaxation rate maps, amideCEST again was not significantly different for white matter and gray matter. CONCLUSION Rapid multi-slice amideCEST mapping can be achieved by the starCEST method (< 5 min) at 3T by combing with the polynomial Lorentzian line-shape fitting method.
Collapse
Affiliation(s)
- Ran Sui
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kannie W. Y. Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter C. M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Chen L, Wei Z, Chan KWY, Li Y, Suchal K, Bi S, Huang J, Xu X, Wong PC, Lu H, van Zijl PCM, Li T, Xu J. D-Glucose uptake and clearance in the tauopathy Alzheimer's disease mouse brain detected by on-resonance variable delay multiple pulse MRI. J Cereb Blood Flow Metab 2021; 41:1013-1025. [PMID: 32669023 PMCID: PMC8054725 DOI: 10.1177/0271678x20941264] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
In this study, we applied on-resonance variable delay multiple pulse (onVDMP) MRI to study D-glucose uptake in a mouse model of Alzheimer's disease (AD) tauopathy and demonstrated its feasibility in discriminating AD mice from wild-type mice. The D-glucose uptake in the cortex of AD mice (1.70 ± 1.33%) was significantly reduced compared to that of wild-type mice (5.42 ± 0.70%, p = 0.0051). Also, a slower D-glucose uptake rate was found in the cerebrospinal fluid (CSF) of AD mice (0.08 ± 0.01 min-1) compared to their wild-type counterpart (0.56 ± 0.1 min-1, p < 0.001), which suggests the presence of an impaired glucose transporter on both blood-brain and blood-CSF barriers of these AD mice. Clearance of D-glucose was observed in the CSF of wild-type mice but not AD mice, which suggests dysfunction of the glymphatic system in the AD mice. The results in this study indicate that onVDMP MRI could be a cost-effective and widely available method for simultaneously evaluating glucose transporter and glymphatic function of AD. This study also suggests that tau protein affects the D-glucose uptake and glymphatic impairment in AD at a time point preceding neurofibrillary tangle pathology.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie WY Chan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kapil Suchal
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sheng Bi
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiang Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip C Wong
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter CM van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tong Li
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Liu G, van Zijl PC. CEST (Chemical Exchange Saturation Transfer) MR Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Takahashi Y, Kioka H, Saito S, Fukuhara S, Asano Y, Takashima S, Yoshioka Y, Sakata Y. Accurate Estimation of the Duration of Testicular Ischemia Using Creatine Chemical Exchange Saturation Transfer (
CrCEST
) Imaging. J Magn Reson Imaging 2020; 53:1559-1567. [DOI: 10.1002/jmri.27456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yusuke Takahashi
- Department of Cardiovascular Medicine Osaka University Graduate School of Medicine Suita Japan
- Department of Molecular Pharmacology National Cerebral and Cardiovascular Center Research Institute Suita Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine Osaka University Graduate School of Medicine Suita Japan
| | - Shigeyoshi Saito
- Division of Health Sciences, Department of Medical Physics and Engineering Osaka University Graduate School of Medicine Suita Japan
- Department of Biomedical Imaging National Cardiovascular and Cerebral Research Center Suita Japan
| | - Shinichiro Fukuhara
- Department of Urology Osaka University Graduate School of Medicine Suita Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine Osaka University Graduate School of Medicine Suita Japan
| | - Seiji Takashima
- Department of Medical Biochemistry Osaka University Graduate School of Frontier Bioscience Suita Japan
| | - Yoshichika Yoshioka
- Laboratory of Biofunctional Imaging, Graduate School of Frontier Biosciences Osaka University Suita Japan
- Center for Information and Neural Networks (CiNet) Osaka University and Information and Communications Technology (NICT) Suita Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine Osaka University Graduate School of Medicine Suita Japan
| |
Collapse
|
26
|
Chen L, Cao S, Koehler RC, van Zijl PCM, Xu J. High-sensitivity CEST mapping using a spatiotemporal correlation-enhanced method. Magn Reson Med 2020; 84:3342-3350. [PMID: 32597519 PMCID: PMC7722217 DOI: 10.1002/mrm.28380] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/01/2020] [Accepted: 05/23/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE To obtain high-sensitivity CEST maps by exploiting the spatiotemporal correlation between CEST images. METHODS A postprocessing method accomplished by multilinear singular value decomposition (MLSVD) was used to enhance the CEST SNR by exploiting the correlation between the Z-spectrum for each voxel and the low-rank property of the overall CEST data. The performance of this method was evaluated using CrCEST in ischemic mouse brain at 11.7 tesla. Then, MLSVD CEST was applied to obtain Cr, amide, and amine CEST maps of the ischemic mouse brain to demonstrate its general applications. RESULTS Complex-valued Gaussian noise was added to CEST k-space data to mimic a low SNR situation. MLSVD CEST analysis was able to suppress the noise, recover the degraded CEST peak, and provide better CrCEST quality compared to the smoothing and singular value decomposition (SVD)-based denoising methods. High-resolution Cr, amide, and amine CEST maps of an ischemic stroke using MLSVD CEST suggest that CrCEST is also a sensitive pH mapping method, and a wide range of pH changes can be detected by combing CrCEST with amine CEST at high magnetic fields. CONCLUSION MLSVD CEST provides a simple and efficient way to improve the SNR of CEST images.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Corresponding Author: Lin Chen, Ph.D., Kennedy Krieger Institute, Johns Hopkins University School of Medicine, 707 N. Broadway, Baltimore, MD, 21205,
| | - Suyi Cao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C. M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|