1
|
de Souza AM, da Silva Junior FC, Dantas ÉD, Galvão-Pereira MC, de Medeiros SRB, Luchiari AC. Temperature effects on development and lifelong behavior in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179172. [PMID: 40112540 DOI: 10.1016/j.scitotenv.2025.179172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/05/2024] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
In recent decades, global warming has intensified temperature changes, placing substantial pressure on organism survival. Understanding how temperature variations impact development and behavior is crucial for conservation strategies. This study examined how temperature affects zebrafish embryo development and behavior, focusing on mRNA expression changes under thermal challenges. Zebrafish embryos were reared at 27 °C (control), 22 °C, and 30 °C, monitored from 24 to 120 hpf for structural development, and tested for optomotor responses at 7 dpf. Juvenile (30 dpf) and adult (90 dpf) fish reared at 27 °C were subjected to acute temperature shifts (22 °C and 30 °C for 2 h), followed by behavioral assessments and brain sampling for hsp90a and hspb1 mRNA expression analysis. Survival rates were significantly lower at 22 °C, with higher hatching rates at 30 °C but decreased at 22 °C. Developmental abnormalities varied: head malformations were more common at 30 °C, pericardial and yolk sac edema at 22 °C, and tail malformations at both extremes. Optomotor responses were impaired in fish from 22 °C. Social and aggressive behaviors were mostly unaffected, but fish from extreme temperatures showed increased risk-taking and reduced response to alarm substances. hsp90a mRNA expression was elevated in fish raised at 30 °C and those exposed to the 30 °C challenge, while hspb1 mRNA expression remained stable across temperatures. Cooling environments detrimentally affected embryo growth and survival, while warmer conditions induced pronounced growth defects. Elevated temperatures posed greater risks, triggering heightened hsp90a expression crucial for stress adaptation. Understanding thermal variation impacts on embryo development is crucial for mitigating climate change effects on species' viability and reproduction.
Collapse
Affiliation(s)
- Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Graduate Program in Biotechnology, Biosciences Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil
| | | | - Éntony David Dantas
- Department of Chemical Engineering, Federal University of Rio Grande Do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59064-741, Brazil
| | - Maria Clara Galvão-Pereira
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Graduate Program in Biotechnology, Biosciences Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil
| | - Ana Carolina Luchiari
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Av. Sen. Salgado Filho 3000, Natal, RN 59078-970, Brazil.
| |
Collapse
|
2
|
Heilman SA, Schriever HC, Kostka D, Koenig KM, Gross JM. tet2 and tet3 regulate cell fate specification and differentiation events during retinal development. Sci Rep 2025; 15:10404. [PMID: 40140485 PMCID: PMC11947307 DOI: 10.1038/s41598-025-93825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Tet family methylcytosine dioxygenases recognize and oxidize 5-methyl-cytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Previous work demonstrated the requirement for Tet and 5hmC during zebrafish retinogenesis. tet2-/-;tet3-/- mutants possessed defects in the formation of differentiated retinal neurons, but the mechanisms underlying these defects are unknown. Here, we leveraged scRNAseq technologies to better understand cell type-specific deficits and molecular signatures underlying the tet2-/-;tet3-/- retinal phenotype. Our results identified defects in tet2-/-;tet3-/- retinae that included delayed specification of several retinal cell types, reduced maturity across late-stage cones, expansions of immature subpopulations of horizontal and bipolar cells, and altered biases of bipolar cell subtype fates at late differentiation stages. Together, these data highlight the critical role that tet2 and tet3 play as regulators of cell fate specification and terminal differentiation events during retinal development.
Collapse
Affiliation(s)
- Shea A Heilman
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hannah C Schriever
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis Kostka
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kristen M Koenig
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Heilman SA, Schriever HC, Kostka D, Koenig KM, Gross JM. tet2 and tet3 regulate cell fate specification and differentiation events during retinal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627071. [PMID: 39713311 PMCID: PMC11661121 DOI: 10.1101/2024.12.06.627071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Tet enzymes are epigenetic modifiers that impact gene expression via 5mC to 5hmC oxidation. Previous work demonstrated the requirement for Tet and 5hmC during zebrafish retinogenesis. tet2 -/- ;tet3 -/- mutants possessed defects in the formation of differentiated retinal neurons, but the mechanisms underlying these defects are unknown. Here, we leveraged scRNAseq technologies to better understand cell type-specific deficits and molecular signatures underlying the tet2 -/- ;tet3 -/- retinal phenotype. Our results identified defects in the tet2 -/- ;tet3 -/- retinae that included delayed specification of several retinal cell types, reduced maturity across late-stage cones, expansions of immature subpopulations of horizontal and bipolar cells, and altered biases of bipolar cell subtype fates at late differentiation stages. Together, these data highlight the critical role that tet2 and tet3 play as regulators of cell fate specification and terminal differentiation events during retinal development.
Collapse
Affiliation(s)
- Shea A Heilman
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Hannah C Schriever
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Dennis Kostka
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Kristen M Koenig
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Jeffrey M Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
4
|
Noble AR, Masek M, Hofmann C, Cuoco A, Rusterholz TDS, Özkoc H, Greter NR, Phelps IG, Vladimirov N, Kollmorgen S, Stoeckli E, Bachmann-Gagescu R. Shared and unique consequences of Joubert Syndrome gene dysfunction on the zebrafish central nervous system. Biol Open 2024; 13:bio060421. [PMID: 39400299 PMCID: PMC11583916 DOI: 10.1242/bio.060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Joubert Syndrome (JBTS) is a neurodevelopmental ciliopathy defined by a highly specific midbrain-hindbrain malformation, variably associated with additional neurological features. JBTS displays prominent genetic heterogeneity with >40 causative genes that encode proteins localising to the primary cilium, a sensory organelle that is essential for transduction of signalling pathways during neurodevelopment, among other vital functions. JBTS proteins localise to distinct ciliary subcompartments, suggesting diverse functions in cilium biology. Currently, there is no unifying pathomechanism to explain how dysfunction of such diverse primary cilia-related proteins results in such a highly specific brain abnormality. To identify the shared consequence of JBTS gene dysfunction, we carried out transcriptomic analysis using zebrafish mutants for the JBTS-causative genes cc2d2aw38, cep290fh297, inpp5ezh506, talpid3i264 and togaram1zh510 and the Bardet-Biedl syndrome-causative gene bbs1k742. We identified no commonly dysregulated signalling pathways in these mutants and yet all mutants displayed an enrichment of altered gene sets related to central nervous system function. We found that JBTS mutants have altered primary cilia throughout the brain but do not display abnormal brain morphology. Nonetheless, behavioural analyses revealed reduced locomotion and loss of postural control which, together with the transcriptomic results, hint at underlying abnormalities in neuronal activity and/or neuronal circuit function. These zebrafish models therefore offer the unique opportunity to study the role of primary cilia in neuronal function beyond early patterning, proliferation and differentiation.
Collapse
Affiliation(s)
- Alexandra R. Noble
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Markus Masek
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Claudia Hofmann
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Arianna Cuoco
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | | | - Hayriye Özkoc
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Nadja R. Greter
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Ian G. Phelps
- Department of Pediatrics, University of Washington, Seattle, WA 8057, USA
| | - Nikita Vladimirov
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
- Brain Research Institute, University of Zurich, 98105 Zurich, Switzerland
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, 8057 Zurich, Switzerland
| | - Sepp Kollmorgen
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Esther Stoeckli
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
- Institute for Medical Genetics, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
5
|
Volz SN, Poulsen R, Hansen M, Holbech H. Bisphenol A alters retinal morphology, visually guided behavior, and thyroid hormone levels in zebrafish larvae. CHEMOSPHERE 2024; 348:140776. [PMID: 38000552 DOI: 10.1016/j.chemosphere.2023.140776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Bisphenols are industrial chemicals that are produced in large quantities and have been detected in all parts of the environment as well as in a multitude of different organisms including humans and fish. Several bisphenols, such as bisphenol A (BPA) and bisphenol F, have been shown to disrupt endocrine systems thereby affecting development and reproduction. While numerous studies investigated the effect of bisphenols on estrogen signaling, their impact on the thyroid hormone system (THS), which is vital for neurodevelopment including sensory development, has been explored to a lesser extent. The present work selected BPA as a representative for structurally similar bisphenols and assessed its impact on the THS as well as sensory development and function in zebrafish. To this end, zebrafish were exposed to BPA until up to 8 days post fertilization (dpf) and thyroid hormone levels, eye morphology, and sensory-mediated behaviors were analyzed. Zebrafish larvae exposed to BPA showed altered retinal layering, decreased motility across varying light conditions, and a loss of responsiveness to red light. Furthermore, whole-body levels of the thyroid hormones thyroxine (T4) and 3,5-diiodothyronine (3,5-T2) were significantly decreased in 5 dpf zebrafish. Taken together, BPA disrupted THS homeostasis and compromised visual development and function, which is pivotal for the survival of fish larvae. This work underlines the necessity for ongoing research on BPA and its numerous substitutes, particularly concerning their effects on the THS and neurodevelopment, to ensure a high level of protection for the environment and human health.
Collapse
Affiliation(s)
- Sina N Volz
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Rikke Poulsen
- Department of Environmental Science, University of Aarhus, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Martin Hansen
- Department of Environmental Science, University of Aarhus, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
6
|
Markert SM. Studying zebrafish nervous system structure and function in health and disease with electron microscopy. Dev Growth Differ 2023; 65:502-516. [PMID: 37740826 PMCID: PMC11520969 DOI: 10.1111/dgd.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Zebrafish (Danio rerio) is a well-established model for studying the nervous system. Findings in zebrafish often inform studies on human diseases of the nervous system and provide crucial insight into disease mechanisms. The functions of the nervous system often rely on communication between neurons. Signal transduction is achieved via release of signaling molecules in the form of neuropeptides or neurotransmitters at synapses. Snapshots of membrane dynamics of these processes are imaged by electron microscopy. Electron microscopy can reveal ultrastructure and thus synaptic processes. This is crucial both for mapping synaptic connections and for investigating synaptic functions. In addition, via volumetric electron microscopy, the overall architecture of the nervous system becomes accessible, where structure can inform function. Electron microscopy is thus of particular value for studying the nervous system. However, today a plethora of electron microscopy techniques and protocols exist. Which technique is most suitable highly depends on the research question and scope as well as on the type of tissue that is examined. This review gives an overview of the electron microcopy techniques used on the zebrafish nervous system. It aims to give researchers a guide on which techniques are suitable for their specific questions and capabilities as well as an overview of the capabilities of electron microscopy in neurobiological research in the zebrafish model.
Collapse
|
7
|
Shrestha AP, Saravanakumar A, Konadu B, Madireddy S, Gibert Y, Vaithianathan T. Embryonic Hyperglycemia Delays the Development of Retinal Synapses in a Zebrafish Model. Int J Mol Sci 2022; 23:ijms23179693. [PMID: 36077087 PMCID: PMC9456524 DOI: 10.3390/ijms23179693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Embryonic hyperglycemia negatively impacts retinal development, leading to abnormal visual behavior, altered timing of retinal progenitor differentiation, decreased numbers of retinal ganglion cells and Müller glia, and vascular leakage. Because synaptic disorganization is a prominent feature of many neurological diseases, the goal of the current work was to study the potential impact of hyperglycemia on retinal ribbon synapses during embryonic development. Our approach utilized reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence labeling to compare the transcription of synaptic proteins and their localization in hyperglycemic zebrafish embryos, respectively. Our data revealed that the maturity of synaptic ribbons was compromised in hyperglycemic zebrafish larvae, where altered ribeye expression coincided with the delay in establishing retinal ribbon synapses and an increase in the immature synaptic ribbons. Our results suggested that embryonic hyperglycemia disrupts retinal synapses by altering the development of the synaptic ribbon, which can lead to visual defects. Future studies using zebrafish models of hyperglycemia will allow us to study the underlying mechanisms of retinal synapse development.
Collapse
Affiliation(s)
- Abhishek P. Shrestha
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ambalavanan Saravanakumar
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Program in Biology, Rhodes College, Memphis, TN 38112, USA
| | - Bridget Konadu
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Saivikram Madireddy
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thirumalini Vaithianathan
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-901-448-2786
| |
Collapse
|
8
|
Gatto E, Bruzzone M, Lucon-Xiccato T. Innate visual discrimination abilities of zebrafish larvae. Behav Processes 2021; 193:104534. [PMID: 34755638 DOI: 10.1016/j.beproc.2021.104534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
The ability to discriminate between objects visually plays a key role in animals' interactions with their environment because it enables them to recognise companions, prey, and predators. In the zebrafish, Danio rerio, hatching occurs early on during development (48-72 h post fertilisation), and the larvae must forage and evade predators despite their immature sensory and cognitive systems. Using a preference paradigm, we investigated whether larval zebrafish are nonetheless capable of discriminating between visual stimuli. We found that larvae discriminated not only between figures with different colours or different shapes, but also between two identical figures with different orientations and between sets of figures with different numerosities. By manipulating larvae's exposure to objects before the test, we demonstrated that their discrimination abilities are innate and do not depend upon experience. This study highlighted that zebrafish possess relatively sophisticated visual discrimination abilities even at the larval stage. These abilities likely improve larval survival via the recognition of biologically relevant stimuli.
Collapse
Affiliation(s)
- Elia Gatto
- Department of General Psychology, University of Padova, Padova, Italy.
| | - Matteo Bruzzone
- Department of General Psychology, University of Padova, Padova, Italy; Padua Neuroscience Center - PNC, University of Padova, Padova, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Dulla K, Slijkerman R, van Diepen HC, Albert S, Dona M, Beumer W, Turunen JJ, Chan HL, Schulkens IA, Vorthoren L, den Besten C, Buil L, Schmidt I, Miao J, Venselaar H, Zang J, Neuhauss SCF, Peters T, Broekman S, Pennings R, Kremer H, Platenburg G, Adamson P, de Vrieze E, van Wijk E. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations. Mol Ther 2021; 29:2441-2455. [PMID: 33895329 PMCID: PMC8353187 DOI: 10.1016/j.ymthe.2021.04.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). The two most recurrent mutations in USH2A, c.2299delG and c.2276G > T, both reside in exon 13. Skipping exon 13 from the USH2A transcript presents a potential treatment modality in which the resulting transcript is predicted to encode a slightly shortened usherin protein. Morpholino-induced skipping of ush2a exon 13 in zebrafish ush2armc1 mutants resulted in the production of usherinΔexon 13 protein and a completely restored retinal function. Antisense oligonucleotides were investigated for their potential to selectively induce human USH2A exon 13 skipping. Lead candidate QR-421a induced a concentration-dependent exon 13 skipping in induced pluripotent stem cell (iPSC)-derived photoreceptor precursors from an Usher syndrome patient homozygous for the c.2299delG mutation. Mouse surrogate mQR-421a reached the retinal outer nuclear layer after a single intravitreal injection and induced a detectable level of exon skipping until at least 6 months post-injection. In conclusion, QR-421a-induced exon skipping proves to be a highly promising treatment option for RP caused by mutations in USH2A exon 13.
Collapse
Affiliation(s)
- Kalyan Dulla
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Ralph Slijkerman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | | | - Silvia Albert
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Margo Dona
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Wouter Beumer
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Janne J Turunen
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Hee Lam Chan
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Iris A Schulkens
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Lars Vorthoren
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | | | - Levi Buil
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Iris Schmidt
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Jiayi Miao
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jingjing Zang
- University of Zürich, Institute of Molecular Life Sciences, 8057 Zürich, Switzerland
| | - Stephan C F Neuhauss
- University of Zürich, Institute of Molecular Life Sciences, 8057 Zürich, Switzerland
| | - Theo Peters
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Sanne Broekman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Ronald Pennings
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | | | - Peter Adamson
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands; UCL, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
10
|
Cassar S, Dunn C, Ramos MF. Zebrafish as an Animal Model for Ocular Toxicity Testing: A Review of Ocular Anatomy and Functional Assays. Toxicol Pathol 2020; 49:438-454. [PMID: 33063651 DOI: 10.1177/0192623320964748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Xenobiotics make their way into organisms from diverse sources including diet, medication, and pollution. Our understanding of ocular toxicities from xenobiotics in humans, livestock, and wildlife is growing thanks to laboratory animal models. Anatomy and physiology are conserved among vertebrate eyes, and studies with common mammalian preclinical species (rodent, dog) can predict human ocular toxicity. However, since the eye is susceptible to toxicities that may not involve a histological correlate, and these species rely heavily on smell and hearing to navigate their world, discovering visual deficits can be challenging with traditional animal models. Alternative models capable of identifying functional impacts on vision and requiring minimal amounts of chemical are valuable assets to toxicology. Human and zebrafish eyes are anatomically and functionally similar, and it has been reported that several common human ocular toxicants cause comparable toxicity in zebrafish. Vision develops rapidly in zebrafish; the tiny larvae rely on visual cues as early as 4 days, and behavioral responses to those cues can be monitored in high-throughput fashion. This article describes the comparative anatomy of the zebrafish eye, the notable differences from the mammalian eye, and presents practical applications of this underutilized model for assessment of ocular toxicity.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | - Christina Dunn
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | | |
Collapse
|
11
|
Charlton‐Perkins M, Almeida AD, MacDonald RB, Harris WA. Genetic control of cellular morphogenesis in Müller glia. Glia 2019; 67:1401-1411. [PMID: 30924555 PMCID: PMC6563441 DOI: 10.1002/glia.23615] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
Cell shape is critical for the proper function of every cell in every tissue in the body. This is especially true for the highly morphologically diverse neural and glia cells of the central nervous system. The molecular processes by which these, or indeed any, cells gain their particular cell-specific morphology remain largely unexplored. To identify the genes involved in the morphogenesis of the principal glial cell type in the vertebrate retina, the Müller glia (MG), we used genomic and CRISPR based strategies in zebrafish (Danio rerio). We identified 41 genes involved in various aspects of MG cell morphogenesis and revealed a striking concordance between the sequential steps of anatomical feature addition and the expression of cohorts of functionally related genes that regulate these steps. We noted that the many of the genes preferentially expressed in zebrafish MG showed conservation in glia across species suggesting evolutionarily conserved glial developmental pathways.
Collapse
Affiliation(s)
- Mark Charlton‐Perkins
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Alexandra D. Almeida
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Ryan B. MacDonald
- Department of Infection, Immunity and Cardiovascular Disease, Medical School and the Bateson CentreUniversity of SheffieldSheffieldUK
| | - William A. Harris
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
12
|
Pregnancy-Associated Plasma Protein-aa Regulates Photoreceptor Synaptic Development to Mediate Visually Guided Behavior. J Neurosci 2018; 38:5220-5236. [PMID: 29739870 DOI: 10.1523/jneurosci.0061-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/04/2018] [Accepted: 04/30/2018] [Indexed: 02/08/2023] Open
Abstract
To guide behavior, sensory systems detect the onset and offset of stimuli and process these distinct inputs via parallel pathways. In the retina, this strategy is implemented by splitting neural signals for light onset and offset via synapses connecting photoreceptors to ON and OFF bipolar cells, respectively. It remains poorly understood which molecular cues establish the architecture of this synaptic configuration to split light-onset and light-offset signals. A mutant with reduced synapses between photoreceptors and one bipolar cell type, but not the other, could reveal a critical cue. From this approach, we report a novel synaptic role for pregnancy-associated plasma protein aa (pappaa) in promoting the structure and function of cone synapses that transmit light-offset information. Electrophysiological and behavioral analyses indicated pappaa mutant zebrafish have dysfunctional cone-to-OFF bipolar cell synapses and impaired responses to light offset, but intact cone-to-ON bipolar cell synapses and light-onset responses. Ultrastructural analyses of pappaa mutant cones showed a lack of presynaptic domains at synapses with OFF bipolar cells. pappaa is expressed postsynaptically to the cones during retinal synaptogenesis and encodes a secreted metalloprotease known to stimulate insulin-like growth factor 1 (IGF1) signaling. Induction of dominant-negative IGF1 receptor expression during synaptogenesis reduced light-offset responses. Conversely, stimulating IGF1 signaling at this time improved pappaa mutants' light-offset responses and cone presynaptic structures. Together, our results indicate Pappaa-regulated IGF1 signaling as a novel pathway that establishes how cone synapses convey light-offset signals to guide behavior.SIGNIFICANCE STATEMENT Distinct sensory inputs, like stimulus onset and offset, are often split at distinct synapses into parallel circuits for processing. In the retina, photoreceptors and ON and OFF bipolar cells form discrete synapses to split neural signals coding light onset and offset, respectively. The molecular cues that establish this synaptic configuration to specifically convey light onset or offset remain unclear. Our work reveals a novel cue: pregnancy-associated plasma protein aa (pappaa), which regulates photoreceptor synaptic structure and function to specifically transmit light-offset information. Pappaa is a metalloprotease that stimulates local insulin-like growth factor 1 (IGF1) signaling. IGF1 promotes various aspects of synaptic development and function and is broadly expressed, thus requiring local regulators, like Pappaa, to govern its specificity.
Collapse
|
13
|
Haug MF, Gesemann M, Berger M, Neuhauss SCF. Phylogeny and distribution of protein kinase C variants in the zebrafish. J Comp Neurol 2018; 526:1097-1109. [DOI: 10.1002/cne.24395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Marion F. Haug
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology; Zurich CH-8057 Switzerland
| | - Matthias Gesemann
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology; Zurich CH-8057 Switzerland
| | - Manuela Berger
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology; Zurich CH-8057 Switzerland
| | - Stephan C. F. Neuhauss
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology; Zurich CH-8057 Switzerland
| |
Collapse
|
14
|
Noel NCL, Allison WT. Connectivity of cone photoreceptor telodendria in the zebrafish retina. J Comp Neurol 2017; 526:609-625. [PMID: 29127712 DOI: 10.1002/cne.24354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 01/29/2023]
Abstract
The connectivity amongst photoreceptors is critical to their function, as it underpins lateral inhibition and effective translation of stimuli into neural signals. Despite much work characterizing second-order interneurons in the outer retina, the synapses directly connecting photoreceptors have often been overlooked. Telodendria are fine processes that connect photoreceptor pedicles. They have been observed in diverse vertebrate groups, yet their roles in vision remain speculative. Here, we visualize telodendria via fluorescent protein expression in photoreceptor subtypes. We characterized short wavelength cone telodendria in adult and larval zebrafish retina. Additionally, in the larval retina, we investigated rod telodendria and UV cone telodendria in mutant and transgenic retinas with altered complements of cone types. In the adult retina, telodendria are twice as abundant and branch almost twice as often on blue cones compared to UV cones. Pedicles of neighboring UV and blue cones typically converge into contiguous pairs, despite the regular spacing of their cell bodies. In contrast to adults, larval UV cone telodendria are more numerous (1.3 times) than blue cone telodendria. UV cone telodendria are not detectably affected by ablation of blue cones, and are reduced twofold in mutant larval retina with few UV cones. We thus saw no evidence that telodendria increase in number in the absence of their typical cellular neighbors. We also found that larval rod telodendria are less abundant than short wavelength cone telodendria. In summary, we describe the development and morphology of zebrafish photoreceptor synaptic connectivity toward appreciating the function of telodendria in visual signal processing.
Collapse
Affiliation(s)
- Nicole C L Noel
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Abstract
The zebrafish (Danio rerio) possesses a vertebrate-type retina that is extraordinarily conserved in evolution. This well-organized and anatomically easily accessible part of the central nervous system has been widely investigated in zebrafish, promoting general understanding of retinal development, morphology, function and associated diseases. Over the recent years, genome and protein engineering as well as imaging techniques have experienced revolutionary advances and innovations, creating new possibilities and methods to study zebrafish development and function. In this review, we focus on some of these emerging technologies and how they may impact retinal research in the future. We place an emphasis on genetic techniques, such as transgenic approaches and the revolutionizing new possibilities in genome editing.
Collapse
Affiliation(s)
- Stephanie Niklaus
- a Institute of Molecular Life Sciences , University of Zurich , Zurich , Switzerland.,b Life Science Zurich Graduate Program - Neuroscience , Zurich , Switzerland
| | - Stephan C F Neuhauss
- a Institute of Molecular Life Sciences , University of Zurich , Zurich , Switzerland
| |
Collapse
|
16
|
Glasauer SMK, Wäger R, Gesemann M, Neuhauss SCF. mglur6b:EGFP Transgenic zebrafish suggest novel functions of metabotropic glutamate signaling in retina and other brain regions. J Comp Neurol 2016; 524:2363-78. [PMID: 27121676 DOI: 10.1002/cne.24029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 02/04/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are mainly known for regulating excitability of neurons. However, mGluR6 at the photoreceptor-ON bipolar cell synapse mediates sign inversion through glutamatergic inhibition. Although this is currently the only confirmed function of mGluR6, other functions have been suggested. Here we present Tg(mglur6b:EGFP)zh1, a new transgenic zebrafish line recapitulating endogenous expression of one of the two mglur6 paralogs in zebrafish. Investigating transgene as well as endogenous mglur6b expression within the zebrafish retina indicates that EGFP and mglur6b mRNA are not only expressed in bipolar cells, but also in a subset of ganglion and amacrine cells. The amacrine cells labeled in Tg(mglur6b:EGFP)zh1 constitute a novel cholinergic, non-GABAergic, non-starburst amacrine cell type described for the first time in teleost fishes. Apart from the retina, we found transgene expression in subsets of periventricular neurons of the hypothalamus, Purkinje cells of the cerebellum, various cell types of the optic tectum, and mitral/ruffed cells of the olfactory bulb. These findings suggest novel functions of mGluR6 besides sign inversion at ON bipolar cell dendrites, opening up the possibility that inhibitory glutamatergic signaling may be more prevalent than currently thought. J. Comp. Neurol. 524:2363-2378, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stella M K Glasauer
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland.,Life Science Zurich Graduate School, Ph.D. Program in Molecular Life Sciences, Zurich, Switzerland
| | - Robert Wäger
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
| | - Matthias Gesemann
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland
| | - Stephan C F Neuhauss
- University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland.,Life Science Zurich Graduate School, Ph.D. Program in Molecular Life Sciences, Zurich, Switzerland
| |
Collapse
|
17
|
Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light. Sci Rep 2016; 6:20821. [PMID: 26860393 PMCID: PMC4748410 DOI: 10.1038/srep20821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/12/2016] [Indexed: 12/02/2022] Open
Abstract
We developed new optic devices – singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light – for improvement of visual system functions. Tb3+ or Eu3+ singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb3+ or Eu3+ doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.
Collapse
|
18
|
|
19
|
Laranjeiro R, Whitmore D. Transcription factors involved in retinogenesis are co-opted by the circadian clock following photoreceptor differentiation. Development 2014; 141:2644-56. [PMID: 24924194 PMCID: PMC4146392 DOI: 10.1242/dev.104380] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The circadian clock is known to regulate a wide range of physiological and cellular processes, yet remarkably little is known about its role during embryo development. Zebrafish offer a unique opportunity to explore this issue, not only because a great deal is known about key developmental events in this species, but also because the clock starts on the very first day of development. In this study, we identified numerous rhythmic genes in zebrafish larvae, including the key transcriptional regulators neurod and cdx1b, which are involved in neuronal and intestinal differentiation, respectively. Rhythmic expression of neurod and several additional transcription factors was only observed in the developing retina. Surprisingly, these rhythms in expression commenced at a stage of development after these transcription factors are known to have played their essential role in photoreceptor differentiation. Furthermore, this circadian regulation was maintained in adult retina. Thus, once mature photoreceptors are formed, multiple retinal transcription factors fall under circadian clock control, at which point they appear to play a new and important role in regulating rhythmic elements in the phototransduction pathway.
Collapse
Affiliation(s)
- Ricardo Laranjeiro
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - David Whitmore
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| |
Collapse
|
20
|
Transmission from the dominant input shapes the stereotypic ratio of photoreceptor inputs onto horizontal cells. Nat Commun 2014; 5:3699. [PMID: 24832361 PMCID: PMC4061492 DOI: 10.1038/ncomms4699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 03/20/2014] [Indexed: 11/21/2022] Open
Abstract
Many neurons receive synapses in stereotypic proportions from converging but functionally distinct afferents. However, developmental mechanisms regulating synaptic convergence are not well understood. Here we describe a heterotypic mechanism by which one afferent controls synaptogenesis of another afferent, but not vice-versa. Like other CNS circuits, zebrafish retinal H3 horizontal cells undergo an initial period of remodeling, establishing synapses with UV and blue cones while eliminating red and green cone contacts. As development progresses, the horizontal cells selectively synapse with UV cones to generate a 5:1 UV-to-blue cone synapse ratio. Blue cone synaptogenesis increases in mutants lacking UV cones, and when transmitter release or visual stimulation of UV cones is perturbed. Connectivity is unaltered when blue cone transmission is suppressed. Moreover, there is no homotypic regulation of cone synaptogenesis by neurotransmission. Thus, biased connectivity in this circuit is established by an unusual activity-dependent, unidirectional control of synaptogenesis exerted by the dominant input.
Collapse
|
21
|
Gestri G, Link BA, Neuhauss SCF. The visual system of zebrafish and its use to model human ocular diseases. Dev Neurobiol 2012; 72:302-27. [PMID: 21595048 DOI: 10.1002/dneu.20919] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence, there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually driven behaviors in the newly hatched larvae.The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases.Here, we review the anatomy, physiology, and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases.
Collapse
Affiliation(s)
- Gaia Gestri
- Department of Cell and Developmental Biology, University College, London,UK.
| | | | | |
Collapse
|
22
|
Romero-Alemán MM, Monzón-Mayor M, Santos E, Lang DM, Yanes C. Neuronal and glial differentiation during lizard (Gallotia galloti) visual system ontogeny. J Comp Neurol 2012; 520:2163-84. [PMID: 22173915 DOI: 10.1002/cne.23034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We studied the histogenesis of the lizard visual system (E30 to adulthood) by using a selection of immunohistochemical markers that had proved relevant for other vertebrates. By E30, the Pax6(+) pseudostratified retinal epithelium shows few newborn retinal ganglion cells (RGCs) in the centrodorsal region expressing neuron- and synaptic-specific markers such as betaIII-tubulin (Tuj1), synaptic vesicle protein-2 (SV2), and vesicular glutamate transporter-1 (VGLUT1). Concurrently, pioneer RGC axons run among the Pax2(+) astroglia in the optic nerve and reach the superficial optic tectum. Between E30 and E35, the optic chiasm and optic tract remain acellular, but the latter contains radial processes with subpial endfeet expressing vimentin (Vim). From E35, neuron- and synaptic-specific stainings spread in the retina and optic tectum, whereas retinal Pax6, and Tuj1/SV2 in RGC axons decrease. Müller glia and abundant optic nerve glia express a variety of glia-specific markers until adulthood. Subpopulations of optic nerve glia are also VGLUT1(+) and cluster differentiation-44 (CD44)-positive but cytokeratin-negative, unlike the case in other regeneration-competent species. Specifically, coexpression of CD44/Vim and glutamine synthetase (GS)/VGLUT1 reflects glial specialization, insofar as most CD44(+) glia are GS(-). In the adult optic tract and tectum, radial glia and free astroglia coexist. The latter show different immunocharacterization (Pax2(-)/CD44(-) /Vim(-)) compared with that in the optic nerve. We conclude that upregulation of Tuj1 and SV2 is required for axonal outgrowth and search for appropriate targets, whereas Pax2(+) optic nerve astroglia and Vim(+) radial glia may aid in early axonal guidance. Spontaneous axonal regrowth seems to succeed despite the heterogeneous mammalian-like glial environment in the lizard optic nerve.
Collapse
Affiliation(s)
- M M Romero-Alemán
- Departamento de Morfología (Biología Celular), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas, Canary Islands, Spain.
| | | | | | | | | |
Collapse
|
23
|
Tarboush R, Chapman GB, Connaughton VP. Ultrastructure of the distal retina of the adult zebrafish, Danio rerio. Tissue Cell 2012; 44:264-79. [PMID: 22608306 DOI: 10.1016/j.tice.2012.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 02/07/2012] [Accepted: 04/20/2012] [Indexed: 01/01/2023]
Abstract
The organization, morphological characteristics, and synaptic structure of photoreceptors in the adult zebrafish retina were studied using light and electron microscopy. Adult photoreceptors show a typical ordered tier arrangement with rods easily distinguished from cones based on outer segment (OS) morphology. Both rods and cones contain mitochondria within the inner segments (IS), including the large, electron-dense megamitochondria previously described (Kim et al.) Four major ultrastructural differences were observed between zebrafish rods and cones: (1) the membranes of cone lamellar disks showed a wider variety of relationships to the plasma membrane than those of rods, (2) cone pedicles typically had multiple synaptic ribbons, while rod spherules had 1-2 ribbons, (3) synaptic ribbons in rod spherules were ∼2 times longer than ribbons in cone pedicles, and (4) rod spherules had a more electron-dense cytoplasm than cone pedicles. Examination of photoreceptor terminals identified four synaptic relationships at cone pedicles: (1) invaginating contacts postsynaptic to cone ribbons forming dyad, triad, and quadrad synapses, (2) presumed gap junctions connecting adjacent postsynaptic processes invaginating into cone terminals, (3) basal junctions away from synaptic ribbons, and (4) gap junctions between adjacent photoreceptor terminals. More vitread and slightly farther removed from photoreceptor terminals, extracellular microtubule-like structures were identified in association with presumed horizontal cell processes in the OPL. These findings, the first to document the ultrastructure of the distal retina in adult zebrafish, indicate that zebrafish photoreceptors have many characteristics similar to other species, further supporting the use of zebrafish as a model for the vertebrate visual system.
Collapse
Affiliation(s)
- R Tarboush
- Department of Biology, American University, Washington, DC 20016, USA.
| | | | | |
Collapse
|
24
|
Alderton W. Assessment of Effects on Visual Function in Larval Zebrafish. Zebrafish 2011. [DOI: 10.1002/9781118102138.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
25
|
Renninger SL, Schonthaler HB, Neuhauss SCF, Dahm R. Investigating the genetics of visual processing, function and behaviour in zebrafish. Neurogenetics 2011; 12:97-116. [PMID: 21267617 DOI: 10.1007/s10048-011-0273-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/04/2011] [Indexed: 12/11/2022]
Abstract
Over the past three decades, the zebrafish has been proven to be an excellent model to investigate the genetic control of vertebrate embryonic development, and it is now also increasingly used to study behaviour and adult physiology. Moreover, mutagenesis approaches have resulted in large collections of mutants with phenotypes that resemble human pathologies, suggesting that these lines can be used to model diseases and screen drug candidates. With the recent development of new methods for gene targeting and manipulating or monitoring gene expression, the range of genetic modifications now possible in zebrafish is increasing rapidly. Combined with the classical strengths of the zebrafish as a model organism, these advances are set to substantially expand the type of biological questions that can be addressed in this species. In this review, we outline how the potential of the zebrafish can be harvested in the context of eye development and visual function. We review recent technological advances used to study the formation of the eyes and visual areas of the brain, visual processing on the cellular, subcellular and molecular level, and the genetics of visual behaviour in vertebrates.
Collapse
Affiliation(s)
- Sabine L Renninger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
26
|
Abstract
AbstractZebrafish are an existing model for genetic and developmental studies due to their rapid external development and transparent embryos, which allow easy manipulation and observation of early developmental stages. The application of the zebrafish model to vision research has allowed for examination of retinal development and the characteristics of different retinal cell types, including bipolar cells. In particular, bipolar cell development, including differentiation, maturation, and gene expression, has been documented, as has physiological properties, such as voltage- and ligand-gated currents, and neurotransmitter receptor and ion channel expression. Mutant strains and transgenic lines have been used to document how bipolar cell connections and/or development may be altered, and toxicological studies examining how environmental factors may impact bipolar cell activity have been performed. The purpose of this paper was to review the existing literature on zebrafish bipolar cells, to provide a comprehensive overview of current information pertaining to this retinal cell type.
Collapse
|
27
|
|
28
|
Zhang RW, Wei HP, Xia YM, Du JL. Development of light response and GABAergic excitation-to-inhibition switch in zebrafish retinal ganglion cells. J Physiol 2010; 588:2557-69. [PMID: 20498234 PMCID: PMC2916988 DOI: 10.1113/jphysiol.2010.187088] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 05/17/2010] [Indexed: 01/02/2023] Open
Abstract
The zebrafish retina has been an important model for studying morphological development of neural circuits in vivo. However, its functional development is not yet well understood. To investigate the functional development of zebrafish retina, we developed an in vivo patch-clamp whole-cell recording technique in intact zebrafish larvae. We first examined the developmental profile of light-evoked responses (LERs) in retinal ganglion cells (RGCs) from 2 to 9 days post-fertilization (dpf). Unstable LERs were first observed at 2.5 dpf. By 4 dpf, RGCs exhibited reliable light responses. As the GABAergic system is critical for retinal development, we then performed in vivo gramicidin perforated-patch whole-cell recording to characterize the developmental change of GABAergic action in RGCs. The reversal potential of GABA-induced currents (E(GABA)) in RGCs gradually shifted from depolarized to hyperpolarized levels during 2-4 dpf and the excitation-to-inhibition (E-I) switch of GABAergic action occurred at around 2.5 dpf when RGCs became light sensitive. Meanwhile, GABAergic transmission upstream to RGCs also became inhibitory by 2.5 dpf. Furthermore, down-regulation of the K(+)/Cl() co-transporter (KCC2) by the morpholino oligonucleotide-based knockdown approach, which shifted RGC E(GABA) towards a more depolarized level and thus delayed the E-I switch by one day, postponed the appearance of RGC LERs by one day. In addition, RGCs exhibited correlated giant inward current (GICs) during 2.5-3.5 dpf. The period of GICs was shifted to 3-4.5 dpf by KCC2 knockdown. Taken together, the GABAergic E-I switch occurs coincidently with the emergence of light responses and GICs in zebrafish RGCs, and may contribute to the functional development of retinal circuits.
Collapse
Affiliation(s)
- Rong-wei Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
29
|
Haug MF, Biehlmaier O, Mueller KP, Neuhauss SC. Visual acuity in larval zebrafish: behavior and histology. Front Zool 2010; 7:8. [PMID: 20193078 PMCID: PMC2848032 DOI: 10.1186/1742-9994-7-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 03/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background Visual acuity, the ability of the visual system to distinguish two separate objects at a given angular distance, is influenced by the optical and neuronal properties of the visual system. Although many factors may contribute, the ultimate limit is photoreceptor spacing. In general, at least one unstimulated photoreceptor flanked by two stimulated ones is needed to perceive two objects as separate. This critical interval is also referred to as the Nyquist frequency and is according to the Shannon sampling theorem the highest spatial frequency where a pattern can be faithfully transmitted. We measured visual acuity in a behavioral experiment and compared the data to the physical limit given by photoreceptor spacing in zebrafish larvae. Results We determined visual acuity by using the optokinetic response (OKR), reflexive eye movements in response to whole field movements of the visual scene. By altering the spatial frequency we determined the visual acuity at approximately 0.16 cycles/degree (cpd) (minimum separable angle = 3.1°). On histological sections we measured the retinal magnification factor and the distance between double cones, that are thought to mediate motion perception. These measurements set the physical limit at 0.24 cpd (2.1°). Conclusion The maximal spatial information as limited by photoreceptor spacing can not be fully utilized in a motion dependent visual behavior, arguing that the larval zebrafish visual system has not matured enough to optimally translate visual information into behavior. Nevertheless behavioral acuity is remarkable close to its maximal value, given the immature state of young zebrafish larvae.
Collapse
Affiliation(s)
- Marion F Haug
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | |
Collapse
|
30
|
Samardzija M, Neuhauss SCF, Joly S, Kurz-Levin M, Grimm C. Animal Models for Retinal Degeneration. NEUROMETHODS 2010. [DOI: 10.1007/978-1-60761-541-5_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
|
32
|
Abstract
The zebrafish is one of the leading models for the analysis of the vertebrate visual system. A wide assortment of molecular, genetic, and cell biological approaches is available to study zebrafish visual system development and function. As new techniques become available, genetic analysis and imaging continue to be the strengths of the zebrafish model. In particular, recent developments in the use of transposons and zinc finger nucleases to produce new generations of mutant strains enhance both forward and reverse genetic analysis. Similarly, the imaging of developmental and physiological processes benefits from a wide assortment of fluorescent proteins and the ways to express them in the embryo. The zebrafish is also highly attractive for high-throughput screening of small molecules, a promising strategy to search for compounds with therapeutic potential. Here we discuss experimental approaches used in the zebrafish model to study morphogenetic transformations, cell fate decisions, and the differentiation of fine morphological features that ultimately lead to the formation of the functional vertebrate visual system.
Collapse
Affiliation(s)
- Andrei Avanesov
- Division of Craniofacial and Molecular Genetics, Tufts University, Boston, Massachusetts, USA
| | | |
Collapse
|
33
|
Bahadori R, Biehlmaier O, Zeitz C, Labhart T, Makhankov YV, Forster U, Gesemann M, Berger W, Neuhauss SCF. Nyctalopin is essential for synaptic transmission in the cone dominated zebrafish retina. Eur J Neurosci 2007; 24:1664-74. [PMID: 17004930 DOI: 10.1111/j.1460-9568.2006.05053.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first synapse in the vertebrate visual system is the photoreceptor synapse between rod and cone photoreceptors and the second-order bipolar cells. Although mutations in the nyctalopin gene (NYX) in humans lead to congenital stationary night blindness (CSNB1), affecting synaptic transmission between both types of photoreceptors and ON-bipolar cells, the function of nyctalopin in cone-dominant animal models has not been studied. Because the larval zebrafish retina is cone-dominant, we isolated the zebrafish nyx ortholog and raised a polyclonal antibody against the protein. Nyctalopin is expressed postsynaptically in both synaptic layers of the retina. Functional disruption via morpholino antisense injection leads to characteristic defects in the electroretinogram and defects in visual contrast sensitivity. We therefore demonstrated that nyctalopin plays a similar role in retinal synapse function in the cone pathway as in the rod pathway, thereby creating a genetic model for CSNB1 and its effects on cone vision.
Collapse
Affiliation(s)
- Ronja Bahadori
- Swiss Federal Institute of Technology (ETH) Zurich, Department of Biology, at the University Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Zilberman-Peled B, Ron B, Gross A, Finberg JPM, Gothilf Y. A possible new role for fish retinal serotonin-N-acetyltransferase-1 (AANAT1): Dopamine metabolism. Brain Res 2006; 1073-1074:220-8. [PMID: 16427617 DOI: 10.1016/j.brainres.2005.12.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 12/08/2005] [Accepted: 12/08/2005] [Indexed: 11/29/2022]
Abstract
Serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase, AANAT) is the key enzyme in the generation of melatonin rhythms in the pineal gland and retinal photoreceptors. Rhythmic AANAT activity drives rhythmic melatonin production in these tissues. Two AANATs, AANAT1 and AANAT2, are present in teleost fish species. Different spatial expression patterns, enzyme kinetics and substrate preferences suggest that they may have different functions. Enzyme activity assays revealed that recombinant seabream and zebrafish AANAT1s, but not AANAT2s, acetylate dopamine with kinetic characteristics that are similar to those for tryptamine acetylation. High performance liquid chromatography analysis of seabream retinal extracts indicated the presence of N-acetyldopamine. Time-of-day analysis of retinal AANAT activity and concentration of melatonin, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and N-acetyldopamine revealed a daily pattern of retinal melatonin and N-acetyldopamine production that are correlated with retinal AANAT1 activity. In situ hybridization analysis of seabream retinal sections indicated that tyrosine hydroxylase is expressed in the inner nuclear layer (INL) and that AANAT1 is expressed in the outer nuclear layer (ONL) and INL. Together, these observations point to the possibility that dopamine is acetylated by retinal AANAT1 in the INL. Such novel activity of AANAT1 may reflect an important function in the circadian physiology of the retina.
Collapse
Affiliation(s)
- Bina Zilberman-Peled
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
36
|
Nam RH, Kim W, Lee CJ. NMDA receptor-dependent long-term potentiation in the telencephalon of the zebrafish. Neurosci Lett 2005; 370:248-51. [PMID: 15488332 DOI: 10.1016/j.neulet.2004.08.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 08/14/2004] [Accepted: 08/16/2004] [Indexed: 11/29/2022]
Abstract
In Mg2+ -free aCSF, bursting discharges were induced in the posterior telencephalon of zebrafish following an electrical stimulation of the anterior telencephalon. The bursting discharges were partially reduced by CNQX (10 microM), an AMPA receptor antagonist, and the remaining activity was completely blocked by an additional treatment of APV (50 microM), an NMDA receptor antagonist. Long-term potentiation that lasted more than 1 h was also induced after 20 min of perfusion with KCl (10 mM). The degree of KCl-induced long-term potentiation (K-LTP) was reduced when a concomitant electrical stimulation was not delivered during a KCl perfusion. K-LTP was blocked by APV (50 microM) but not by nifedipine (1 microM), an L-type Ca2+ channel blocker. Furthermore, K-LTP was not induced in the presence of a broad spectrum inhibitor for protein kinases, H-7 (10 microM). These results suggest that NMDA receptors and protein kinases play important roles in the synaptic plasticity of the zebrafish brain.
Collapse
Affiliation(s)
- Ryoung-Hee Nam
- Department of Biological Sciences, College of Natural Sciences, Inha University, 253 Yong-Hyun Dong, Nam-Gu, Incheon 402-751, Korea
| | | | | |
Collapse
|
37
|
Page-McCaw PS, Chung SC, Muto A, Roeser T, Staub W, Finger-Baier KC, Korenbrot JI, Baier H. Retinal network adaptation to bright light requires tyrosinase. Nat Neurosci 2004; 7:1329-36. [PMID: 15516923 DOI: 10.1038/nn1344] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 08/26/2004] [Indexed: 11/08/2022]
Abstract
The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish sdy gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the sdy mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes. This behavioral deficit was phenocopied in fully pigmented fish by inhibiting tyrosinase and thus does not depend on the absence of melanin pigment in sdy. Electroretinograms showed that the dark-adapted retinal network recovers sensitivity to a pulse of light more slowly in sdy mutants than in wild types. This failure is localized in the retinal neural network, postsynaptic to photoreceptors. We propose that retinal pigment epithelium (which normally expresses tyrosinase) secretes a modulatory factor, possibly L-DOPA, which regulates light adaptation in the retinal circuitry.
Collapse
Affiliation(s)
- Patrick S Page-McCaw
- University of California, San Francisco, Department of Physiology, Program in Neuroscience, 513 Parnassus Ave., San Francisco, California 94143-0444, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Similar to other vertebrate species, the zebrafish retina is simpler than other regions of the central nervous system (CNS). Relative simplicity, rapid development, and accessibility to genetic analysis make the zebrafish retina an excellent model system for the studies of neurogenesis in the vertebrate CNS. Numerous genetic screens have led to isolation of an impressive collection of mutations affecting the retina and the retinotectal projection in zebrafish. Mutant phenotypes are being studied using a rich variety of markers: antibodies, RNA probes, retrograde and anterograde tracers, as well as transgenic lines. Particularly impressive progress has been made in the characterization of the zebrafish genome. Consequently, positional and candidate cloning of mutant genes are now fairly easy to accomplish in zebrafish. Many mutant genes have, in fact, already been cloned and their analysis has provided important insights into the gene circuitry that regulates retinal neurogenesis. Genetic screens for visual system defects will continue in the future and progressively more sophisticated screening approaches will make it possible to detect a variety of subtle mutant phenotypes in retinal development. The remarkable evolutionary conservation of the vertebrate eye provides the basis for the use of the zebrafish retina as a model of human disorders. Some of the genetic defects of the zebrafish retina indeed resemble human retinopathies. As new techniques are being introduced and improved at a rapid pace, the zebrafish will continue to be an important organism for the studies of the vertebrate visual system.
Collapse
Affiliation(s)
- Andrei Avanesov
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|