1
|
Skoracka K, Hryhorowicz S, Schulz P, Zawada A, Ratajczak-Pawłowska AE, Rychter AM, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. The role of leptin and ghrelin in the regulation of appetite in obesity. Peptides 2025; 186:171367. [PMID: 39983918 DOI: 10.1016/j.peptides.2025.171367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Leptin and ghrelin are two key hormones that play opposing roles in the regulation of appetite and energy balance. Ghrelin stimulates appetite and food intake following binding to receptors and the subsequent activation of orexigenic neurons in the arcuate nucleus. Leptin, conversely, has been demonstrated to suppress appetite and reduce food intake. This occurs through the inhibition of ghrelin-activated neurons, while simultaneously activating those that promote satiety and increase energy expenditure. A lack of biological response despite elevated leptin levels, which is known as leptin resistance, is observed in individuals with excess body weight and represents a significant challenge. As the dysregulation of ghrelin and leptin signalling has been linked to the development of obesity and other metabolic disorders, an in-depth understanding of the genetic determinants affecting these two hormones may facilitate a more comprehensive grasp of the intricate interactions that underpin the pathogenesis of obesity.
Collapse
Affiliation(s)
- Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland; Doctoral School, Poznan University of Medical Sciences, Bukowska 70, Poznan 60-812, Poland.
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, Poznan 60-479, Poland
| | - Piotr Schulz
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland
| | - Alicja Ewa Ratajczak-Pawłowska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland; Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan 60-355, Poland
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland; Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan 60-355, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, Poznan 60-479, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewski 49, Poznan 60-355, Poland; Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan 60-355, Poland.
| |
Collapse
|
2
|
Jonsdottir AB, Sveinbjornsson G, Thorolfsdottir RB, Tamlander M, Tragante V, Olafsdottir T, Rognvaldsson S, Sigurdsson A, Eggertsson HP, Aegisdottir HM, Arnar DO, Banasik K, Beyter D, Bjarnason RG, Bjornsdottir G, Brunak S, Topholm Bruun M, Dowsett J, Einarsson E, Einarsson G, Erikstrup C, Fridriksdottir R, Ghouse J, Gretarsdottir S, Halldorsson GH, Hansen T, Helgadottir A, Holm PC, Ivarsdottir EV, Iversen KK, Jensen BA, Jonsdottir I, Knight S, Knowlton KU, Kristmundsdottir S, Larusdottir AE, Magnusson OT, Masson G, Melsted P, Mikkelsen C, Moore KHS, Oddsson A, Olason PI, Palsson F, Pedersen OB, Schwinn M, Sigurdsson EL, Skaftason A, Stefansdottir L, Stefansson H, Steingrimsdottir T, Sturluson A, Styrkarsdottir U, Sørensen E, Teitsdottir UD, Thorgeirsson TE, Thorisson GA, Thorsteinsdottir U, Ulfarsson MO, Ullum H, Vikingsson A, Walters GB, Nadauld LD, Bundgaard H, Ostrowski SR, Helgason A, Halldorsson BV, Norddahl GL, Ripatti S, Gudbjartsson DF, Thorleifsson G, Steinthorsdottir V, Holm H, Sulem P, Stefansson K. Missense variants in FRS3 affect body mass index in populations of diverse ancestries. Nat Commun 2025; 16:2694. [PMID: 40133257 PMCID: PMC11937519 DOI: 10.1038/s41467-025-57753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Obesity is associated with adverse effects on health and quality of life. Improved understanding of its underlying pathophysiology is essential for developing counteractive measures. To search for sequence variants with large effects on BMI, we perform a multi-ancestry meta-analysis of 13 genome-wide association studies on BMI, including data derived from 1,534,555 individuals of European ancestry, 339,657 of Asian ancestry, and 130,968 of African ancestry. We identify an intergenic 262,760 base pair deletion at the MC4R locus that associates with 4.11 kg/m2 higher BMI per allele, likely through downregulation of MC4R. Moreover, a rare FRS3 missense variant, p.Glu115Lys, only found in individuals from Finland, associates with 1.09 kg/m2 lower BMI per allele. We also detect three other low-frequency FRS3 missense variants that associate with BMI with smaller effects and are enriched in different ancestries. We characterize FRS3 as a BMI-associated gene, encoding an adaptor protein known to act downstream of BDNF and TrkB, which regulate appetite, food intake, and energy expenditure through unknown signaling pathways. The work presented here contributes to the biological foundation of obesity by providing a convincing downstream component of the BDNF-TrkB pathway, which could potentially be targeted for obesity treatment.
Collapse
Affiliation(s)
- Andrea B Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | | | | | - Max Tamlander
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | - Hildur M Aegisdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - David O Arnar
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Division of Cardiology, Cardiovascular Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Karina Banasik
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ragnar G Bjarnason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Children's Medical Center, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Søren Brunak
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Joseph Dowsett
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Jonas Ghouse
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Gisli H Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter C Holm
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Kasper Karmark Iversen
- Department of Cardiology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Stacey Knight
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
| | - Kirk U Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Adalheidur E Larusdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Pall Melsted
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Michael Schwinn
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Emil L Sigurdsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Development Centre for Primary Healthcare in Iceland, Primary Health Care of the Capital Area, Reykjavik, Iceland
| | | | | | | | - Thora Steingrimsdottir
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Obstetrics and Gynecology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | - Magnus O Ulfarsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | | | - Arnor Vikingsson
- Department of Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agnar Helgason
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | | | - Samuli Ripatti
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Clinicum, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
3
|
Minniakhmetov IR, Khusainova RI, Vasyukova OV, Kopytina DA, Yalaev BI, Salakhov RR, Guseynova RM, Peterkova VA, Mokrysheva NG. Molecular Genetic Architecture of Morbid Obesity in Russian Children. Biomedicines 2025; 13:756. [PMID: 40149731 PMCID: PMC11939864 DOI: 10.3390/biomedicines13030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Over the past few decades, the prevalence of obesity has significantly increased worldwide, particularly among children. This trend represents a global health challenge. Considering the pivotal role of obesity in the development of metabolic disorders, the identification and characterization of pathogenic gene variants in children with severe forms of obesity are key priorities in fundamental endocrinology. Methods: We performed whole-exome sequencing (WES) in 163 Russian children with morbid obesity and identified 96 pathogenic or likely pathogenic variants in 61 genes. These variants were clinically significant in 64 children (38.79% of the cohort). Results: Notably, 42 of the identified variants have not been previously described in the literature or reported in existing databases. Conclusions: The findings of this study will enable a more personalized approach to the diagnosis and treatment of patients with syndromic and polygenic forms of obesity. Moreover, these results advance our understanding of the genetic architecture of obesity in the Russian population.
Collapse
Affiliation(s)
- Ildar R. Minniakhmetov
- Endocrinology Research Centre, 117292 Moscow, Russia; (R.I.K.); (O.V.V.); (D.A.K.); (B.I.Y.); (R.R.S.); (R.M.G.); (V.A.P.); (N.G.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Grajales-Reyes JG. Advances in energy balance & metabolism circuitry. ADVANCES IN GENETICS 2025; 113:1-28. [PMID: 40409794 DOI: 10.1016/bs.adgen.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Advancements in informatics, genetics, and neuroscience have greatly expanded our understanding of how the central nervous system (CNS) regulates energy balance and metabolism. This chapter explores the key neural circuits within the hypothalamus and brainstem that integrate behavioral and physiological processes to maintain metabolic homeostasis. It also examines the dynamic interplay between the CNS and peripheral organs, mediated through hormonal and neuronal signals, which fine-tune appetite, energy expenditure, and body weight. Furthermore, we highlight groundbreaking research that unveils molecular and cellular pathways governing energy regulation, representing a new frontier in addressing obesity and metabolic disorders. Innovative approaches, such as neurogenetic and neuromodulation techniques, are explored as promising strategies for improving weight management and metabolic health. By providing a comprehensive perspective on the mechanisms underlying energy balance, this chapter underscores the transformative potential of emerging therapeutic innovations.
Collapse
Affiliation(s)
- Jose G Grajales-Reyes
- Department of Anesthesiology, Yale University, New Haven, CT, United States; Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
5
|
Kato T, Matsuzawa F, Shojima N, Yamauchi T. Pathogenic variants in the fibronectin type III domain of leptin receptor: Molecular dynamics simulation and structural analysis. J Mol Graph Model 2025; 135:108912. [PMID: 39608136 DOI: 10.1016/j.jmgm.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Several case reports have identified leptin receptor (LEPR) variants associated with severe obesity in humans. However, the structure of LEPR has only been partially understood until recently, and few studies have investigated the detrimental effects of these variants on the protein's three-dimensional structure. Notably, fibronectin type III (FnIII) domains play a crucial role in signal transduction. In this study, we examined the impact of 10 variants within the FnIII domains on LEPR structure using molecular dynamics (MD) simulations and structural analysis. Our 300 ns MD simulations revealed that the C604S variant, which disrupts a key disulfide bond, significantly increased the overall root-mean-square deviation (RMSD) of the FnIII-2 and FnIII-3 domains, indicating destabilization of the interdomain rigidity required for proper signaling. Variants such as P639L, N718S, and W646C also induced abnormal bending and rotational misalignment between the FnIII domains, contributing to interdomain destabilization. Structural analysis identified folding nuclei and demonstrated that L662S, W664R, H684P, and S723F destabilize the internal domain. Variants affecting interdomain resulted in lower-than-expected damage prediction scores by bioinformatics tools. This study is expected to contribute to the elucidation of the disease-causing mechanisms of missense variants in the leptin receptor.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fumiko Matsuzawa
- Tokyo R&D Center, Altif Laboratories, Inc., 3F Shiodome Building, 1-2-20 Kaigan, Minato-ku, Tokyo, 105-0022, Japan
| | - Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
6
|
Ribeiro G, Schellekens H, Cuesta-Marti C, Maneschy I, Ismael S, Cuevas-Sierra A, Martínez JA, Silvestre MP, Marques C, Moreira-Rosário A, Faria A, Moreno LA, Calhau C. A menu for microbes: unraveling appetite regulation and weight dynamics through the microbiota-brain connection across the lifespan. Am J Physiol Gastrointest Liver Physiol 2025; 328:G206-G228. [PMID: 39811913 DOI: 10.1152/ajpgi.00227.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior. Therefore, the role of the microbiota-gut-brain axis in appetite and obesity is receiving increased attention. Omics approaches such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics in appetite and weight regulation offer new opportunities for featuring obesity phenotypes. Furthermore, gut-microbiota-targeted approaches such as pre-, pro-, post-, and synbiotic, personalized nutrition, and fecal microbiota transplantation are novel avenues for precision treatments. The aim of this narrative review is 1) to provide an overview of the role of the microbiota-gut-brain axis in appetite regulation across the lifespan and 2) to discuss the potential of omics and gut microbiota-targeted approaches to deepen understanding of appetite regulation and obesity.
Collapse
Affiliation(s)
- Gabriela Ribeiro
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Cristina Cuesta-Marti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Ivie Maneschy
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Shámila Ismael
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Amanda Cuevas-Sierra
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - Marta P Silvestre
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cláudia Marques
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - André Moreira-Rosário
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Faria
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Luis A Moreno
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Conceição Calhau
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Saeed S, Bonnefond A, Froguel P. Obesity: exploring its connection to brain function through genetic and genomic perspectives. Mol Psychiatry 2025; 30:651-658. [PMID: 39237720 PMCID: PMC11746128 DOI: 10.1038/s41380-024-02737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Obesity represents an escalating global health burden with profound medical and economic impacts. The conventional perspective on obesity revolves around its classification as a "pure" metabolic disorder, marked by an imbalance between calorie consumption and energy expenditure. Present knowledge, however, recognizes the intricate interaction of rare or frequent genetic factors that favor the development of obesity, together with the emergence of neurodevelopmental and mental abnormalities, phenotypes that are modulated by environmental factors such as lifestyle. Thirty years of human genetic research has unveiled >20 genes, causing severe early-onset monogenic obesity and ~1000 loci associated with common polygenic obesity, most of those expressed in the brain, depicting obesity as a neurological and mental condition. Therefore, obesity's association with brain function should be better recognized. In this context, this review seeks to broaden the current perspective by elucidating the genetic determinants that contribute to both obesity and neurodevelopmental and mental dysfunctions. We conduct a detailed examination of recent genetic findings, correlating them with clinical and behavioral phenotypes associated with obesity. This includes how polygenic obesity, influenced by a myriad of genetic variants, impacts brain regions associated with addiction and reward, differentiating it from monogenic forms. The continuum between non-syndromic and syndromic monogenic obesity, with evidence from neurodevelopmental and cognitive assessments, is also addressed. Current therapeutic approaches that target these genetic mechanisms, yielding improved clinical outcomes and cognitive advantages, are discussed. To sum up, this review corroborates the genetic underpinnings of obesity, affirming its classification as a neurological disorder that may have broader implications for neurodevelopmental and mental conditions. It highlights the promising intersection of genetics, genomics, and neurobiology as a foundation for developing tailored medical approaches to treat obesity and its related neurological aspects.
Collapse
Affiliation(s)
- Sadia Saeed
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Amélie Bonnefond
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Philippe Froguel
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France.
- University of Lille, Lille University Hospital, Lille, France.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
8
|
Kahveci A, Kurt I, Turan S, Guran T, Bereket A, Haliloglu B. Real-life experience on efficacy and safety of setmelanotide treatment in prepubertal children. Eur J Endocrinol 2025; 192:K15-K18. [PMID: 39891402 DOI: 10.1093/ejendo/lvaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/09/2024] [Indexed: 02/03/2025]
Abstract
Monogenic obesity, characterized by severe, early-onset obesity due to single-gene defects, often resists traditional weight management strategies. This report presents real-life experiences on the efficacy and safety of setmelanotide, an MC4R agonist, in 4 prepubertal children (ages 3-9) with LEPR and POMC deficiencies. Findings indicate that setmelanotide is effective at lower doses in our patients with POMC deficiency (0.3-0.5 mg/day) than the patients with LEPR deficiency (2.5 mg/day). Treatment was generally well-tolerated, with injection site reactions and hyperpigmentation as common side effects. As novel findings, gonadotropin-related effects such as hypothalamo-pituitary-gonadal axis activation and testicular descent were observed in 2 patients. Growth deceleration was noted in 2 children, and recovery from central hypothyroidism in 1 patient with POMC deficiency. Overall, setmelanotide appears to be effective and well-tolerated in young children with monogenic obesity. However, further studies are necessary to evaluate the long-term effects of early intervention on growth and pubertal development.
Collapse
Affiliation(s)
- Ahmet Kahveci
- Department of Paediatric Endocrinology and Diabetology, Marmara University School of Medicine, Istanbul 34899, Turkiye
| | - Ilknur Kurt
- Department of Paediatric Endocrinology and Diabetology, Marmara University School of Medicine, Istanbul 34899, Turkiye
| | - Serap Turan
- Department of Paediatric Endocrinology and Diabetology, Marmara University School of Medicine, Istanbul 34899, Turkiye
| | - Tulay Guran
- Department of Paediatric Endocrinology and Diabetology, Marmara University School of Medicine, Istanbul 34899, Turkiye
| | - Abdullah Bereket
- Department of Paediatric Endocrinology and Diabetology, Marmara University School of Medicine, Istanbul 34899, Turkiye
| | - Belma Haliloglu
- Department of Paediatric Endocrinology and Diabetology, Marmara University School of Medicine, Istanbul 34899, Turkiye
| |
Collapse
|
9
|
De Paula GC, Simões RF, Garcia-Serrano AM, Duarte JMN. High-fat and High-sucrose Diet-induced Hypothalamic Inflammation Shows Sex Specific Features in Mice. Neurochem Res 2024; 49:3356-3366. [PMID: 39302596 PMCID: PMC11502605 DOI: 10.1007/s11064-024-04243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Hypothalamic inflammation underlies diet-induced obesity and diabetes in rodent models. While diet normalization largely allows for recovery from metabolic impairment, it remains unknown whether long-term hypothalamic inflammation induced by obesogenic diets is a reversible process. In this study, we aimed at determining sex specificity of hypothalamic neuroinflammation and gliosis in mice fed a fat- and sugar-rich diet, and their reversibility upon diet normalization. Mice were fed a 60%-fat diet complemented by a 20% sucrose drink (HFHSD) for 3 days or 24 weeks, followed by a third group that had their diet normalized for the last 8 weeks of the study (reverse diet group, RevD). We determined the expression of pro- and anti-inflammatory cytokines, and of the inflammatory cell markers IBA1, CD68, GFAP and EMR1 in the hypothalamus, and analyzed morphology of microglia (IBA-1+ cells) and astrocytes (GFAP+ cells) in the arcuate nucleus. After 3 days of HFHSD feeding, male mice showed over-expression of IL-13, IL-18, IFN-γ, CD68 and EMR1 and reduced expression of IL-10, while females showed increased IL-6 and IBA1 and reduced IL-13, compared to controls. After 24 weeks of HFHSD exposure, male mice showed a general depression in the expression of cytokines, with prominent reduction of TNF-α, IL-6 and IL-13, but increased TGF-β, while female mice showed over-expression of IFN-γ and IL-18. Furthermore, both female and male mice showed some degree of gliosis after HFHSD feeding for 24 weeks. In mice of both sexes, diet normalization after prolonged HFHSD feeding resulted in partial neuroinflammation recovery in the hypothalamus, but gliosis was only recovered in females. In sum, HFHSD-fed mice display sex-specific inflammatory processes in the hypothalamus that are not fully reversible after diet normalization.
Collapse
Affiliation(s)
- Gabriela C De Paula
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden.
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
| | - Rui F Simões
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alba M Garcia-Serrano
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Souaiaia T, Wu HM, Ori APS, Choi SW, Hoggart CJ, O'Reilly PF. Striking Departures from Polygenic Architecture in the Tails of Complex Traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624155. [PMID: 39605697 PMCID: PMC11601658 DOI: 10.1101/2024.11.18.624155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Understanding the genetic architecture of human traits is of key biological, medical and evolutionary importance[1]. Despite much progress, little is known about how genetic architecture varies across the trait continuum and, in particular, if it differs in the tails of complex traits, where disease often occurs. Here, applying a novel approach based on polygenic scores, we reveal striking departures from polygenic architecture across 148 quantitative trait tails, consistent with distinct concentrations of high-impact rare alleles in one or both tails of most of the traits. We demonstrate replication of these results across ancestries, cohorts, repeat measures, and using an orthogonal family-based approach[2]. Furthermore, trait tails with inferred enrichment of rare alleles are associated with more exome study hits, reduced fecundity, advanced paternal age, and lower predictive accuracy of polygenic scores. Finally, we find evidence of ongoing selection consistent with the observed departures in polygenicity and demonstrate, via simulation, that traits under stabilising selection are expected to have tails enriched for rare, large-effect alleles. Overall, our findings suggest that while common variants of small effect likely account for most of the heritability in complex traits[3], rare variants of large effect are often more important in the trait tails, particularly among individuals at highest risk of disease. Our study has implications for rare variant discovery, the utility of polygenic scores, the study of selection in humans, and for the relative importance of common and rare variants to complex traits and diseases.
Collapse
Affiliation(s)
- Tade Souaiaia
- Department of Cellular Biology, Suny Downstate Health Sciences University, Brooklyn, NY, USA
| | - Hei Man Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, NY, NY, USA
| | - Anil P S Ori
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, NY, NY, USA
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Shing Wan Choi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, NY, NY, USA
| | - Clive J Hoggart
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, NY, NY, USA
| | - Paul F O'Reilly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, NY, NY, USA
| |
Collapse
|
11
|
Renard E, Thevenard-Berger A, Meyre D. Medical semiology of patients with monogenic obesity: A systematic review. Obes Rev 2024; 25:e13797. [PMID: 38956946 DOI: 10.1111/obr.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Patients with monogenic obesity display numerous medical features on top of hyperphagic obesity, but no study to date has provided an exhaustive description of their semiology. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases from inception to January 2022 to identify studies that described symptoms of patients carrying pathogenic mutations in at least one of eight monogenic obesity genes (ADCY3, LEP, LEPR, MC3R, MC4R, MRAP2, PCSK1, and POMC). Of 5207 identified references, 269 were deemed eligible after title and abstract screening, full-text reading, and risk of bias and quality assessment. Data extraction included mutation spectrum and mode of inheritance, clinical presentation (e.g., anthropometry, energy intake and eating behaviors, digestive function, puberty and fertility, cognitive features, infectious diseases, morphological characteristics, chronic respiratory disease, and cardiovascular disease), biological characteristics (metabolic profile, endocrinology, hematology), radiological features, and treatments. The review provides an exhaustive description of mandatory, non-mandatory, and unique symptoms in heterozygous and homozygous carriers of mutation in eight monogenic obesity genes. This information is critical to help clinicians to orient genetic testing in subsets of patients with suspected monogenic obesity and provide actionable treatments (e.g., recombinant leptin and MC4R agonist).
Collapse
Affiliation(s)
- Emeline Renard
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Department of Pediatrics, University Hospital of Nancy, Nancy, France
| | | | - David Meyre
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, University Hospital of Nancy, Nancy, France
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| |
Collapse
|
12
|
Mao H, Kim GH, Pan L, Qi L. Regulation of leptin signaling and diet-induced obesity by SEL1L-HRD1 ER-associated degradation in POMC expressing neurons. Nat Commun 2024; 15:8435. [PMID: 39343970 PMCID: PMC11439921 DOI: 10.1038/s41467-024-52743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Endoplasmic reticulum (ER) homeostasis in the hypothalamus has been implicated in the pathogenesis of diet-induced obesity (DIO) and type 2 diabetes; however, the underlying molecular mechanism remain vague and debatable. Here we report that SEL1L-HRD1 protein complex of the highly conserved ER-associated protein degradation (ERAD) machinery in POMC-expressing neurons ameliorates diet-induced obesity and its associated complications, partly by regulating the turnover of the long isoform of Leptin receptors (LepRb). Loss of SEL1L in POMC-expressing neurons attenuates leptin signaling and predisposes mice to HFD-associated pathologies including fatty liver, glucose intolerance, insulin and leptin resistance. Mechanistically, nascent LepRb, both wildtype and disease-associated Cys604Ser variant, are misfolding prone and bona fide substrates of SEL1L-HRD1 ERAD. In the absence of SEL1L-HRD1 ERAD, LepRb are largely retained in the ER, in an ER stress-independent manner. This study uncovers an important role of SEL1L-HRD1 ERAD in the pathogenesis of central leptin resistance and leptin signaling.
Collapse
Affiliation(s)
- Hancheng Mao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Geun Hyang Kim
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York, NY, 10591, USA
| | - Linxiu Pan
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
13
|
von Schnurbein J, Zorn S, Nunziata A, Brandt S, Moepps B, Funcke JB, Hussain K, Farooqi IS, Fischer-Posovszky P, Wabitsch M. Classification of Congenital Leptin Deficiency. J Clin Endocrinol Metab 2024; 109:2602-2616. [PMID: 38470203 PMCID: PMC11403321 DOI: 10.1210/clinem/dgae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE Biallelic pathogenic leptin gene variants cause severe early-onset obesity usually associated with low or undetectable circulating leptin levels. Recently, variants have been described resulting in secreted mutant forms of the hormone leptin with either biologically inactive or antagonistic properties. METHODS We conducted a systematic literature research supplemented by unpublished data from patients at our center as well as new in vitro analyses to provide a systematic classification of congenital leptin deficiency based on the molecular and functional characteristics of the underlying leptin variants and investigated the correlation of disease subtype with severity of the clinical phenotype. RESULTS A total of 28 distinct homozygous leptin variants were identified in 148 patients. The identified variants can be divided into 3 different subtypes of congenital leptin deficiency: classical hormone deficiency (21 variants in 128 patients), biologically inactive hormone (3 variants in 12 patients), and antagonistic hormone (3 variants in 7 patients). Only 1 variant (n = 1 patient) remained unclassified. Patients with biological inactive leptin have a higher percentage of 95th body mass index percentile compared to patients with classical hormone deficiency. While patients with both classical hormone deficiency and biological inactive hormone can be treated with the same starting dose of metreleptin, patients with antagonistic hormone need a variant-tailored treatment approach to overcome the antagonistic properties of the variant leptin. MAIN CONCLUSION Categorization of leptin variants based on molecular and functional characteristics helps to determine the most adequate approach to treatment of patients with congenital leptin deficiency.
Collapse
Affiliation(s)
- Julia von Schnurbein
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
| | - Stefanie Zorn
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
| | - Adriana Nunziata
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
| | - Stephanie Brandt
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
| | - Barbara Moepps
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, 89075, Germany
| | - Jan-Bernd Funcke
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatrics, Sidra Medicine, OPC, C6-340, PO Box 26999, Doha, Qatar
| | - I Sadaf Farooqi
- Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Pamela Fischer-Posovszky
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, 89075, Germany
| |
Collapse
|
14
|
Li H, Liu G, Lu B, Zhou X. Novel compound heterozygous mutations in LEP responsible for obesity in a Chinese family. Mol Genet Metab Rep 2024; 40:101114. [PMID: 39041042 PMCID: PMC11261292 DOI: 10.1016/j.ymgmr.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Background Early childhood obesity poses a significant global public health challenge, necessitating the identification of treatable causes, particularly congenital leptin deficiencies. Serum leptin level measurement aids in diagnosing these rare contributors, guiding effective management. Methods A Chinese family with early-onset obesity underwent LEP mutational screening via direct sequencing. mRNA expression and protein stability patterns of LEP were separately analyzed using qPCR and bioinformatics. Results We present a case of a 12.5-year-old girl born to non-obese, non-consanguineous Chinese parents, exhibiting low leptin levels. Leptin gene sequencing revealed novel compound heterozygous mutations in exon 3. RT-PCR analysis showed the mutation didn't affect leptin production. Bioinformatics analysis indicated the variant rendered the leptin protein unstable. Conclusion Loss-of-function mutations in LEP underlies early-onset obesity in the patient.
Collapse
Affiliation(s)
- Hui Li
- Department of Anesthesiology, Zibo Central Hospital, Binzhou Medical University, 255036 Zibo, China
| | - Guodong Liu
- Department of Gastroenterology, Zibo Central Hospital, Binzhou Medical University, 255036 Zibo, China
| | - Bei Lu
- Department of Nuclear Medicine and Radiotherapy, Zibo Central Hospital, Binzhou Medical University, 255036 Zibo, China
| | - Xin Zhou
- Department of Gastroenterology, Zibo Central Hospital, Binzhou Medical University, 255036 Zibo, China
| |
Collapse
|
15
|
Baird HJM, Shun-Shion AS, Mendes de Oliveira E, Stalder D, Liang L, Eden J, Chambers JE, Farooqi IS, Gershlick DC, Fazakerley DJ. A quantitative pipeline to assess secretion of human leptin coding variants reveals mechanisms underlying leptin deficiencies. J Biol Chem 2024; 300:107562. [PMID: 39002670 PMCID: PMC11366920 DOI: 10.1016/j.jbc.2024.107562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
The hormone leptin, primarily secreted by adipocytes, plays a crucial role in regulating whole-body energy homeostasis. Homozygous loss-of-function mutations in the leptin gene (LEP) cause hyperphagia and severe obesity, primarily through alterations in leptin's affinity for its receptor or changes in serum leptin concentrations. Although serum concentrations are influenced by various factors (e.g., gene expression, protein synthesis, stability in the serum), proper delivery of leptin from its site of synthesis in the endoplasmic reticulum via the secretory pathway to the extracellular serum is a critical step. However, the regulatory mechanisms and specific machinery involved in this trafficking route, particularly in the context of human LEP mutations, remain largely unexplored. We have employed the Retention Using Selective Hooks system to elucidate the secretory pathway of leptin. We have refined this system into a medium-throughput assay for examining the pathophysiology of a range of obesity-associated LEP variants. Our results reveal that leptin follows the default secretory pathway, with no additional regulatory steps identified prior to secretion. Through screening of leptin variants, we identified three mutations that lead to proteasomal degradation of leptin and one variant that significantly decreased leptin secretion, likely through aberrant disulfide bond formation. These observations have identified novel pathogenic effects of leptin variants, which can be informative for therapeutics and diagnostics. Finally, our novel quantitative screening platform can be adapted for other secreted proteins.
Collapse
Affiliation(s)
- Harry J M Baird
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Amber S Shun-Shion
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Edson Mendes de Oliveira
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Lu Liang
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Jessica Eden
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Joseph E Chambers
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - I Sadaf Farooqi
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
16
|
Rajcsanyi LS, Zheng Y, Herpertz-Dahlmann B, Seitz J, de Zwaan M, Herzog W, Ehrlich S, Zipfel S, Giel K, Egberts K, Burghardt R, Föcker M, Antel J, Fischer-Posovszky P, Hebebrand J, Hinney A. Unexpected identification of obesity-associated mutations in LEP and MC4R genes in patients with anorexia nervosa. Sci Rep 2024; 14:7067. [PMID: 38528040 PMCID: PMC10963783 DOI: 10.1038/s41598-024-57517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
Mutations leading to a reduced or loss of function in genes of the leptin-melanocortin system confer a risk for monogenic forms of obesity. Yet, gain of function variants in the melanocortin-4-receptor (MC4R) gene predispose to a lower BMI. In individuals with reduced body weight, we thus expected mutations leading to an enhanced function in the respective genes, like leptin (LEP) and MC4R. Therefore, we have Sanger sequenced the coding regions of LEP and MC4R in 462 female patients with anorexia nervosa (AN), and 445 healthy-lean controls. In total, we have observed four and eight variants in LEP and MC4R, respectively. Previous studies showed different functional in vitro effects for the detected frameshift and non-synonymous variants: (1) LEP: reduced/loss of function (p.Val94Met), (2) MC4R: gain of function (p.Val103Ile, p.Ile251Leu), reduced or loss of function (p.Thr112Met, p.Ser127Leu, p.Leu211fsX) and without functional in vitro data (p.Val50Leut). In LEP, the variant p.Val94Met was detected in one patient with AN. For MC4R variants, one patient with AN carried the frameshift variant p.Leu211fsX. One patient with AN was heterozygous for two variants at the MC4R (p.Val103Ile and p.Ser127Leu). All other functionally relevant variants were detected in similar frequencies in patients with AN and lean individuals.
Collapse
Affiliation(s)
- Luisa Sophie Rajcsanyi
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 174, 45147, Essen, Germany.
- Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Essen, Germany.
- Section for Molecular Genetics of Mental Disorders, University Hospital Essen, Essen, Germany.
- Institute of Sex- and Gender-Sensitive Medicine, University Hospital Essen, Essen, Germany.
| | - Yiran Zheng
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 174, 45147, Essen, Germany
- Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Essen, Germany
| | - Beate Herpertz-Dahlmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 174, 45147, Essen, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Martina de Zwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Wolfgang Herzog
- Department of Internal Medicine II, General Internal and Psychosomatic Medicine, University of Heidelberg, Heidelberg, Germany
| | - Stefan Ehrlich
- Eating Disorders Research and Treatment Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Stephan Zipfel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
- Center of Excellence in Eating Disorders KOMET, Tübingen, Germany
| | - Katrin Giel
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
- Center of Excellence in Eating Disorders KOMET, Tübingen, Germany
| | - Karin Egberts
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Roland Burghardt
- Oberberg Clinic for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Fasanenkiez, Berlin, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, University Hospital Münster, Munster, Germany
- LWL-University Hospital Hamm for Child and Adolescent Psychiatry, Ruhr-University Bochum, Hamm, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 174, 45147, Essen, Germany
- Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Essen, Germany
| | | | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 174, 45147, Essen, Germany
- Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 174, 45147, Essen, Germany
- Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Essen, Germany
- Section for Molecular Genetics of Mental Disorders, University Hospital Essen, Essen, Germany
- Institute of Sex- and Gender-Sensitive Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
17
|
Mohammed I, Haris B, Al-Barazenji T, Vasudeva D, Tomei S, Al Azwani I, Dauleh H, Shehzad S, Chirayath S, Mohamadsalih G, Petrovski G, Khalifa A, Love DR, Al-Shafai M, Hussain K. Understanding the Genetics of Early-Onset Obesity in a Cohort of Children From Qatar. J Clin Endocrinol Metab 2023; 108:3201-3213. [PMID: 37329217 PMCID: PMC10655519 DOI: 10.1210/clinem/dgad366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Monogenic obesity is a rare form of obesity due to pathogenic variants in genes implicated in the leptin-melanocortin signaling pathway and accounts for around 5% of severe early-onset obesity. Mutations in the genes encoding the MC4R, leptin, and leptin receptor are commonly reported in various populations to cause monogenic obesity. Determining the genetic cause has important clinical benefits as novel therapeutic interventions are now available for some forms of monogenic obesity. OBJECTIVE To unravel the genetic causes of early-onset obesity in the population of Qatar. METHODS In total, 243 patients with early-onset obesity (above the 95% percentile) and age of onset below 10 years were screened for monogenic obesity variants using a targeted gene panel, consisting of 52 obesity-related genes. RESULTS Thirty rare variants potentially associated with obesity were identified in 36 of 243 (14.8%) probands in 15 candidate genes (LEP, LEPR, POMC, MC3R, MC4R, MRAP2, SH2B1, BDNF, NTRK2, DYRK1B, SIM1, GNAS, ADCY3, RAI1, and BBS2). Twenty-three of the variants identified were novel to this study and the rest, 7 variants, were previously reported in literature. Variants in MC4R were the most common cause of obesity in our cohort (19%) and the c.485C>T p.T162I variant was the most frequent MC4R variant seen in 5 patients. CONCLUSION We identified likely pathogenic/pathogenic variants that seem to explain the phenotype of around 14.8% of our cases. Variants in the MC4R gene are the commonest cause of early-onset obesity in our population. Our study represents the largest monogenic obesity cohort in the Middle East and revealed novel obesity variants in this understudied population. Functional studies will be required to elucidate the molecular mechanism of their pathogenicity.
Collapse
Affiliation(s)
- Idris Mohammed
- College of Health & Life Sciences, Hamad Bin Khalifa University, PO Box 34110, Doha, Qatar
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Basma Haris
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Tara Al-Barazenji
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Dhanya Vasudeva
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Sara Tomei
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Iman Al Azwani
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Hajar Dauleh
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Saira Shehzad
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Shiga Chirayath
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Ghassan Mohamadsalih
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Goran Petrovski
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Amel Khalifa
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Donald R Love
- Division of Genetic Pathology, Department of Pathology, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| |
Collapse
|
18
|
Saeed S, Khanam R, Janjua QM, Manzoor J, Ning L, Hanook S, Canouil M, Ali M, Ayesha H, Khan WI, Farooqi IS, Yeo GSH, O'Rahilly S, Bonnefond A, Butt TA, Arslan M, Froguel P. High morbidity and mortality in children with untreated congenital deficiency of leptin or its receptor. Cell Rep Med 2023; 4:101187. [PMID: 37659411 PMCID: PMC10518629 DOI: 10.1016/j.xcrm.2023.101187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 08/11/2023] [Indexed: 09/04/2023]
Abstract
The long-term clinical outcomes of severe obesity due to leptin signaling deficiency are unknown. We carry out a retrospective cross-sectional investigation of a large cohort of children with leptin (LEP), LEP receptor (LEPR), or melanocortin 4 receptor (MC4R) deficiency (n = 145) to evaluate the progression of the disease. The affected individuals undergo physical, clinical, and metabolic evaluations. We report a very high mortality in children with LEP (26%) or LEPR deficiency (9%), mainly due to severe pulmonary and gastrointestinal infections. In addition, 40% of surviving children with LEP or LEPR deficiency experience life-threatening episodes of lung or gastrointestinal infections. Although precision drugs are currently available for LEP and LEPR deficiencies, as yet, they are not accessible in Pakistan. An appreciation of the severe impact of LEP or LEPR deficiency on morbidity and early mortality, educational attainment, and the attendant stigmatization should spur efforts to deliver the available life-saving drugs to these children as a matter of urgency.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France.
| | - Roohia Khanam
- KAM School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Qasim M Janjua
- Department of Physiology and Biophysics, College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Oman
| | - Jaida Manzoor
- Department of Paediatric Endocrinology, Children's Hospital, Lahore, Pakistan
| | - Lijiao Ning
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France
| | - Sharoon Hanook
- Department of Statistics, Forman Christian College, Lahore, Pakistan
| | - Mickaël Canouil
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France
| | - Muhammad Ali
- Paediatric Endocrinology, Mayo Hospital, Lahore, Pakistan
| | - Hina Ayesha
- Department of Paediatrics, Punjab Medical College, Faisalabad, Pakistan
| | - Waqas I Khan
- The Children Hospital and the Institute of Child Health, Multan, Pakistan
| | - I Sadaf Farooqi
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Giles S H Yeo
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Stephen O'Rahilly
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Amélie Bonnefond
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France
| | - Taeed A Butt
- Department of Pediatrics, Fatima Memorial Hospital, Lahore, Pakistan
| | - Muhammad Arslan
- KAM School of Life Sciences, Forman Christian College, Lahore, Pakistan.
| | - Philippe Froguel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France; University of Lille, Lille University Hospital, Lille, France.
| |
Collapse
|
19
|
Saeed S, Ning L, Badreddine A, Mirza MU, Boissel M, Khanam R, Manzoor J, Janjua QM, Khan WI, Toussaint B, Vaillant E, Amanzougarene S, Derhourhi M, Trant JF, Siegert AM, Lam BYH, Yeo GS, Chabraoui L, Touzani A, Kulkarni A, Farooqi IS, Bonnefond A, Arslan M, Froguel P. Biallelic Mutations in P4HTM Cause Syndromic Obesity. Diabetes 2023; 72:1228-1234. [PMID: 37083980 PMCID: PMC7617486 DOI: 10.2337/db22-1017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
We previously demonstrated that 50% of children with obesity from consanguineous families from Pakistan carry pathogenic variants in known monogenic obesity genes. Here, we have discovered a novel monogenetic recessive form of severe childhood obesity using an in-house computational staged approach. The analysis included whole-exome sequencing data of 366 children with severe obesity, 1,000 individuals of the Pakistan Risk of Myocardial Infarction Study (PROMIS) study, and 200,000 participants of the UK Biobank to prioritize genes harboring rare homozygous variants with putative effect on human obesity. We identified five rare or novel homozygous missense mutations predicted deleterious in five consanguineous families in P4HTM encoding prolyl 4-hydroxylase transmembrane (P4H-TM). We further found two additional homozygous missense mutations in children with severe obesity of Indian and Moroccan origin. Molecular dynamics simulation suggested that these mutations destabilized the active conformation of the substrate binding domain. Most carriers also presented with hypotonia, cognitive impairment, and/or developmental delay. Three of the five probands died of pneumonia during the first 2 years of the follow-up. P4HTM deficiency is a novel form of syndromic obesity, affecting 1.5% of our children with obesity associated with high mortality. P4H-TM is a hypoxia-inducible factor that is necessary for survival and adaptation under oxygen deprivation, but the role of this pathway in energy homeostasis and obesity pathophysiology remains to be elucidated.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Inserm UMR 1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Lijiao Ning
- Inserm UMR 1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Alaa Badreddine
- Inserm UMR 1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, WindsorON, Canada
| | - Mathilde Boissel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Inserm UMR 1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Roohia Khanam
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Jaida Manzoor
- Department of Paediatric Endocrinology, Children’s Hospital, Lahore, Pakistan
| | - Qasim M Janjua
- Department of Physiology and Biophysics, National University of Science and Technology, Sohar, Oman
| | - Waqas I. Khan
- The Children Hospital and the Institute of Child Health, Multan, Pakistan
| | - Bénédicte Toussaint
- Inserm UMR 1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR 1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Souhila Amanzougarene
- Inserm UMR 1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR 1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, WindsorON, Canada
| | - Anna-Maria Siegert
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Brian Y. H. Lam
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Giles S.H. Yeo
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Layachi Chabraoui
- Laboratory of Biochemistry and Molecular Biology -Faculty of Medicine and Pharmacy -University V MohamedRabat, Moroccoo
| | - Asmae Touzani
- Children’s Hospital of Rabat and Laboratory of Biochemistry and Molecular Biology - Faculty of Medicine and Pharmacy -University V MohamedRabat -Moroccoo
| | - Abhishek Kulkarni
- Department of Paediatric Endocrinology, Sir HN Reliance Foundation & SRCC Children’s Hospital, Mumbai, India
| | - I. Sadaf Farooqi
- Medical Research Council Metabolic Diseases Unit, Wellcome-MRC Institute of Metabolic Science - Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Amélie Bonnefond
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Inserm UMR 1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| | - Muhammad Arslan
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Philippe Froguel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Inserm UMR 1283, CNRS UMR 8199, EGID, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
| |
Collapse
|
20
|
Besci Ö, Fırat SN, Özen S, Çetinkaya S, Akın L, Kör Y, Pekkolay Z, Özalkak Ş, Özsu E, Erdeve ŞS, Poyrazoğlu Ş, Berberoğlu M, Aydın M, Omma T, Akıncı B, Demir K, Oral EA. A National Multicenter Study of Leptin and Leptin Receptor Deficiency and Systematic Review. J Clin Endocrinol Metab 2023; 108:2371-2388. [PMID: 36825860 DOI: 10.1210/clinem/dgad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
CONTEXT Homozygous leptin (LEP) and leptin receptor (LEPR) variants lead to childhood-onset obesity. OBJECTIVE To present new cases with LEP and LEPR deficiency, report the long-term follow-up of previously described patients, and to define, based on all reported cases in literature, genotype-phenotype relationships. METHODS Our cohort included 18 patients (LEP = 11, LEPR = 7), 8 of whom had been previously reported. A systematic literature review was conducted in July 2022. Forty-two of 47 studies on LEP/LEPR were selected. RESULTS Of 10 new cases, 2 novel pathogenic variants were identified in LEP (c.16delC) and LEPR (c.40 + 5G > C). Eleven patients with LEP deficiency received metreleptin, 4 of whom had been treated for over 20 years. One patient developed loss of efficacy associated with neutralizing antibody development. Of 152 patients, including 134 cases from the literature review in addition to our cases, frameshift variants were the most common (48%) in LEP and missense variants (35%) in LEPR. Patients with LEP deficiency were diagnosed at a younger age [3 (9) vs 7 (13) years, P = .02] and had a higher median body mass index (BMI) SD score [3.1 (2) vs 2.8 (1) kg/m2, P = 0.02], which was more closely associated with frameshift variants (P = .02). Patients with LEP deficiency were more likely to have hyperinsulinemia (P = .02). CONCLUSION Frameshift variants were more common in patients with LEP deficiency whereas missense variants were more common in LEPR deficiency. Patients with LEP deficiency were identified at younger ages, had higher BMI SD scores, and had higher rates of hyperinsulinemia than patients with LEPR deficiency. Eleven patients benefitted from long-term metreleptin, with 1 losing efficacy due to neutralizing antibodies.
Collapse
Affiliation(s)
- Özge Besci
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir 35340, Turkey
| | - Sevde Nur Fırat
- Division of Endocrinology and Metabolism, University of Health Sciences Ankara Training and Research Hospital, Ankara 06230, Turkey
| | - Samim Özen
- Division of Pediatric Endocrinology, Faculty of Medicine, Ege University, İzmir 35100, Turkey
| | - Semra Çetinkaya
- Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Ankara 06010, Turkey
| | - Leyla Akın
- Division of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55030, Turkey
| | - Yılmaz Kör
- Division of Pediatric Endocrinology, Ministry of Health, Adana Public Hospitals Association, Adana City Hospital, Adana 01040, Turkey
| | - Zafer Pekkolay
- Division of Endocrinology and Metabolism, Dicle University Faculty of Medicine, Diyarbakır 21280, Turkey
| | - Şervan Özalkak
- Division Pediatric Endocrinology, Diyarbakir Gazi Yaşargil Training and Research Hospital, Diyarbakır 21070, Turkey
| | - Elif Özsu
- Department of Pediatric Endocrinology, Ankara University Faculty of Medicine, Ankara 06100, Turkey
| | - Şenay Savaş Erdeve
- Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Ankara 06010, Turkey
| | - Şükran Poyrazoğlu
- Department of Pediatric Endocrinology, Istanbul University Istanbul Faculty of Medicine, İstanbul 34098, Turkey
| | - Merih Berberoğlu
- Department of Pediatric Endocrinology, Ankara University Faculty of Medicine, Ankara 06100, Turkey
| | - Murat Aydın
- Division of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55030, Turkey
| | - Tülay Omma
- Division of Endocrinology and Metabolism, University of Health Sciences Ankara Training and Research Hospital, Ankara 06230, Turkey
| | - Barış Akıncı
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University, İzmir 35340, Turkey
| | - Korcan Demir
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir 35340, Turkey
| | - Elif Arioglu Oral
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
21
|
Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. Connecting the dots in the associations between diet, obesity, cancer, and microRNAs. Semin Cancer Biol 2023; 93:52-69. [PMID: 37156343 DOI: 10.1016/j.semcancer.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The prevalence of obesity has reached pandemic levels worldwide, leading to a lower quality of life and higher health costs. Obesity is a major risk factor for noncommunicable diseases, including cancer, although obesity is one of the major preventable causes of cancer. Lifestyle factors, such as dietary quality and patterns, are also closely related to the onset and development of obesity and cancer. However, the mechanisms underlying the complex association between diet, obesity, and cancer remain unclear. In the past few decades, microRNAs (miRNAs), a class of small non-coding RNAs, have been demonstrated to play critical roles in biological processes such as cell differentiation, proliferation, and metabolism, highlighting their importance in disease development and suppression and as therapeutic targets. miRNA expression levels can be modulated by diet and are involved in cancer and obesity-related diseases. Circulating miRNAs can also mediate cell-to-cell communications. These multiple aspects of miRNAs present challenges in understanding and integrating their mechanism of action. Here, we introduce a general consideration of the associations between diet, obesity, and cancer and review the current knowledge of the molecular functions of miRNA in each context. A comprehensive understanding of the interplay between diet, obesity, and cancer could be valuable for the development of effective preventive and therapeutic strategies in future.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Tokyo NODAI Research Institure, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan; Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Nishiyama
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Daisuke Kuriki
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Naoki Kawada
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
22
|
Mazen IH, El-Gammal MA, Elaidy AA, Anwar GM, Ashaat EA, Abdel-Ghafar SF, Abdel-Hamid MS. Congenital leptin and leptin receptor deficiencies in nine new families: identification of six novel variants and review of literature. Mol Genet Genomics 2023; 298:919-929. [PMID: 37140700 DOI: 10.1007/s00438-023-02025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Early childhood obesity is a real public health problem worldwide. Identifying the etiologies, especially treatable and preventable causes, can direct health professionals toward proper management. Measurement of serum leptin levels is helpful in the diagnosis of congenital leptin and leptin receptor deficiencies which are considered important rare causes of early childhood obesity. The main aim of this study was to investigate the frequency of LEP, LEPR, and MC4R gene variants among a cohort of Egyptian patients with severe early onset obesity. The current cross-sectional study included 30 children who developed obesity during the first year of life with BMI > 2SD (for age and sex). The studied patients were subjected to full medical history taking, anthropometric measurements, serum leptin and insulin assays, and genetic testing of LEP, LEPR and MC4R. Disease causing variants in LEP and LEPR were identified in 10/30 patients with a detection rate of 30%. Eight different homozygous variants (two pathogenic, three likely pathogenic, and three variants of uncertain significant) were identified in the two genes, including six previously unreported LEPR variants. Of them, a new frameshift variant in LEPR gene (c.1045delT, p.S349Lfs*22) was recurrent in two unrelated families and seems to have a founder effect in our population. In conclusion, we reported ten new patients with leptin and leptin receptor deficiencies and identified six novel LEPR variants expanding the mutational spectrum of this rare disorder. Furthermore, the diagnosis of these patients helped us in genetic counseling and patients' managements specially with the availability of drugs for LEP and LEPR deficiencies.
Collapse
Affiliation(s)
- Inas H Mazen
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mona A El-Gammal
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Aya A Elaidy
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ghada M Anwar
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Sherif F Abdel-Ghafar
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Eltahrir Street, Dokki, Cairo, 12311, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Eltahrir Street, Dokki, Cairo, 12311, Egypt.
| |
Collapse
|
23
|
Nwayyir HA, Mutasher EM, Alabid OM, Jabbar MA, Abdulraheem Al-Kawaz WH, Alidrisi HA, Alabbood M, Chabek M, AlZubaidi M, Al-Khazrajy LA, Abd Alhaleem IS, Al-Hilfi ADA, Ali FM, AlBayati A, Al Saffar HB, Khazaal FAK. Recommendations for the prevention and management of obesity in the Iraqi population. Postgrad Med 2023:1-15. [PMID: 36803631 DOI: 10.1080/00325481.2023.2172914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Obesity is a chronic metabolic disease that has become one of the leading causes of disability and death in the world, affecting not only adults but also children and adolescents. In Iraq, one third of the adult population is overweight and another third obese. Clinical diagnosis is accomplished by measuring body mass index (BMI) and waist circumference (a marker for intra-visceral fat and higher metabolic and cardiovascular disease risk). A complex interaction between behavioral, social (rapid urbanization), environmental and genetic factors underlies the etiology of the disease. Treatment options for obesity may include a multicomponent approach, involving dietary changes to reduce calorie intake, an increase in physical activity, behavioral modification, pharmacotherapy and bariatric surgery. The purpose for these recommendations is to develop a management plan and standards of care that are relevant to the Iraqi population and that can prevent/manage obesity and obesity-related complications, for the promotion of a healthy community.
Collapse
Affiliation(s)
- Hussein Ali Nwayyir
- University of Basra, College of Medicine, Department of Endocrinology, Faiha Specialized Diabetes, Endocrine and Metabolism Centre, Iraq
| | - Esraa Majid Mutasher
- Department of Pediatric Endocrinology, Children Welfare Teaching Hospital, Medical City Complex, Iraq
| | | | | | | | | | - Majid Alabbood
- Department of Endocrinology, Almawani Hospital, Basra, Iraq
| | - Muhammed Chabek
- Consultant Obstetrics and Gynecology, Private Practice, Iraq
| | - Munib AlZubaidi
- Department of paediatrics, University of Baghdad College of Medicine, Iraq
| | - Lujain Anwar Al-Khazrajy
- Department of Family medicine, Consultant Family Physician, Al-Kindy College of Medicine, University of Baghdad, Iraq
| | | | | | | | - Ali AlBayati
- Department of Endocrinology Consultant Endocrinology, Professor of medicine, Babylon medical college, Iraq
| | | | | |
Collapse
|
24
|
Nalbantoğlu Ö, Hazan F, Acar S, Gürsoy S, Özkan B. Screening of non-syndromic early-onset child and adolescent obese patients in terms of LEP, LEPR, MC4R and POMC gene variants by next-generation sequencing. J Pediatr Endocrinol Metab 2022; 35:1041-1050. [PMID: 35801948 DOI: 10.1515/jpem-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Non-syndromic monogenic obesity is a rare cause of early-onset severe obesity in the childhood period. The aim of this study was to screen four obesity related genes (LEP, LEPR, MC4R and POMC) in children and adolescents who had severe, non-syndromic early onset obesity. METHODS Next-generation sequencing of all exons in LEP, LEPR, MC4R and POMC was performed in 154 children and adolescents with early onset severe obesity obesity. RESULTS Fifteen different variants in nineteen patients were identified with a variant detection rate of 12.3%. While six different heterozygous variants were observed in MC4R gene (10/154 patients; 6.5%), five different variants in POMC gene (four of them were heterozygous and one of them was homozygous) (6/154 patients; 3.9%) and four different homozygous variants in LEPR gene (3/154 patients; 1.9%) were described. However, no variants were detected in the LEP gene. The most common pathogenic variant was c.496G>A in MC4R gene, which was detected in four unrelated patients. Six novel variants (6/15 variants; 40%) were described in seven patients. Four of them including c.233C>A and c.752T>C in MC4R gene and c.761dup and c.1221dup in LEPR gene were evaluated as pathogenic or likely pathogenic. CONCLUSIONS In conclusion, MC4R variants are the most common genetic cause of monogenic early-onset obesity, consistent with the literature. The c.496G>A variant in MC4R gene is highly prevalent in early-onset obese patients.
Collapse
Affiliation(s)
- Özlem Nalbantoğlu
- Clinic of Pediatric Endocrinology, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Filiz Hazan
- Clinic of Medical Genetics, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Sezer Acar
- Clinic of Pediatric Endocrinology, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Semra Gürsoy
- Clinic of Pediatric Genetics, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Behzat Özkan
- Clinic of Pediatric Endocrinology, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
25
|
Hebebrand J, Hildebrandt T, Schlögl H, Seitz J, Denecke S, Vieira D, Gradl-Dietsch G, Peters T, Antel J, Lau D, Fulton S. The role of hypoleptinemia in the psychological and behavioral adaptation to starvation: implications for anorexia nervosa. Neurosci Biobehav Rev 2022; 141:104807. [PMID: 35931221 DOI: 10.1016/j.neubiorev.2022.104807] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 12/17/2022]
Abstract
This narrative review aims to pinpoint mental and behavioral effects of starvation, which may be triggered by hypoleptinemia and as such may be amenable to treatment with leptin receptor agonists. The reduced leptin secretion results from the continuous loss of fat mass, thus initiating a graded triggering of diverse starvation related adaptive functions. In light of leptin receptors located in several peripheral tissues and many brain regions adaptations may extend beyond those of the hypothalamus-pituitary-end organ-axes. We focus on gastrointestinal tract and reward system as relevant examples of peripheral and central effects of leptin. Despite its association with extreme obesity, congenital leptin deficiency with its many parallels to a state of starvation allows the elucidation of mental symptoms amenable to treatment with exogenous leptin in both ob/ob mice and humans with this autosomal recessive disorder. For starvation induced behavioral changes with an intact leptin signaling we particularly focus on rodent models for which proof of concept has been provided for the causative role of hypoleptinemia. For humans, we highlight the major cognitive, emotional and behavioral findings of the Minnesota Starvation Experiment to contrast them with results obtained upon a lesser degree of caloric restriction. Evidence for hypoleptinemia induced mental changes also stems from findings obtained in lipodystrophies. In light of the recently reported beneficial cognitive, emotional and behavioral effects of metreleptin-administration in anorexia nervosa we discuss potential implications for the treatment of this eating disorder. We postulate that leptin has profound psychopharmacological effects in the state of starvation.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Tom Hildebrandt
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Haiko Schlögl
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH University Hospital Aachen, Germany
| | - Saskia Denecke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Diana Vieira
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Gertraud Gradl-Dietsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - David Lau
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| | - Stephanie Fulton
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| |
Collapse
|
26
|
AbouHashem N, Al-Shafai K, Al-Shafai M. The genetic elucidation of monogenic obesity in the Arab world: a systematic review. J Pediatr Endocrinol Metab 2022; 35:699-707. [PMID: 35437977 DOI: 10.1515/jpem-2021-0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/21/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Investigation of monogenic obesity (MO), a rare condition caused by a single gene variant(s), especially in consanguineous populations, is a powerful approach for obtaining novel insights into the genetic alterations involved. Here, we present a systematic review of the genetics of MO in the 22 Arab countries and apply protein modeling in silico to the missense variants reported. METHODS We searched four literature databases (PubMed, Web of Science, Science Direct and Scopus) from the time of their first creation until December 2020, utilizing broad search terms to capture all genetic studies related to MO in the Arab countries. Only articles published in peer-reviewed journals involving subjects from at least one of the 22 Arab countries and dealing with genetic variants related to MO were included. Protein modelling of the variants identified was performed using PyMOL. RESULTS The 30 cases with severe early-onset obesity identified in 13 studies carried 14 variants in five genes (LEP, LEPR, POMC, MC4R and CPE). All of these variants were pathogenic, homozygous and carried by members of consanguineous families. CONCLUSION Despite the elevated presence of consanguinity in the Arab countries, the genetic origins of MO remain largely unexplained and require additional studies, both of a genetic and functional character.
Collapse
Affiliation(s)
- Nadien AbouHashem
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
27
|
Socol CT, Chira A, Martinez-Sanchez MA, Nuñez-Sanchez MA, Maerescu CM, Mierlita D, Rusu AV, Ruiz-Alcaraz AJ, Trif M, Ramos-Molina B. Leptin Signaling in Obesity and Colorectal Cancer. Int J Mol Sci 2022; 23:4713. [PMID: 35563103 PMCID: PMC9102849 DOI: 10.3390/ijms23094713] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/05/2022] Open
Abstract
Obesity and colorectal cancer (CRC) are among the leading diseases causing deaths in the world, showing a complex multifactorial pathology. Obesity is considered a risk factor in CRC development through inflammation, metabolic, and signaling processes. Leptin is one of the most important adipokines related to obesity and an important proinflammatory marker, mainly expressed in adipose tissue, with many genetic variation profiles, many related influencing factors, and various functions that have been ascribed but not yet fully understood and elucidated, the most important ones being related to energy metabolism, as well as endocrine and immune systems. Aberrant signaling and genetic variations of leptin are correlated with obesity and CRC, with the genetic causality showing both inherited and acquired events, in addition to lifestyle and environmental risk factors; these might also be related to specific pathogenic pathways at different time points. Moreover, mutation gain is a crucial factor enabling the genetic process of CRC. Currently, the inconsistent and insufficient data related to leptin's relationship with obesity and CRC indicate the necessity of further related studies. This review summarizes the current knowledge on leptin genetics and its potential relationship with the main pathogenic pathways of obesity and CRC, in an attempt to understand the molecular mechanisms of these associations, in the context of inconsistent and contradictory data. The understanding of these mechanisms linking obesity and CRC could help to develop novel therapeutic targets and prevention strategies, resulting in a better prognosis and management of these diseases.
Collapse
Affiliation(s)
| | - Alexandra Chira
- 2nd Medical Clinic, Department of Internal Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Maria Antonia Martinez-Sanchez
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.A.M.-S.); (M.A.N.-S.)
| | - Maria Angeles Nuñez-Sanchez
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.A.M.-S.); (M.A.N.-S.)
| | | | - Daniel Mierlita
- Department of Nutrition, University of Oradea, 410048 Oradea, Romania;
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Antonio Jose Ruiz-Alcaraz
- Department of Biochemistry and Molecular B and Immunology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain;
| | - Monica Trif
- Department of Food Research, Centiv GmbH, 28857 Syke, Germany;
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain; (M.A.M.-S.); (M.A.N.-S.)
| |
Collapse
|
28
|
Saeed S, Janjua QM, Haseeb A, Khanam R, Durand E, Vaillant E, Ning L, Badreddine A, Berberian L, Boissel M, Amanzougarene S, Canouil M, Derhourhi M, Bonnefond A, Arslan M, Froguel P. Rare Variant Analysis of Obesity-Associated Genes in Young Adults With Severe Obesity From a Consanguineous Population of Pakistan. Diabetes 2022; 71:694-705. [PMID: 35061034 DOI: 10.2337/db21-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022]
Abstract
Recent advances in genetic analysis have significantly helped in progressively attenuating the heritability gap of obesity and have brought into focus monogenic variants that disrupt the melanocortin signaling. In a previous study, next-generation sequencing revealed a monogenic etiology in ∼50% of the children with severe obesity from a consanguineous population in Pakistan. Here we assess rare variants in obesity-causing genes in young adults with severe obesity from the same region. Genomic DNA from 126 randomly selected young adult obese subjects (BMI 37.2 ± 0.3 kg/m2; age 18.4 ± 0.3 years) was screened by conventional or augmented whole-exome analysis for point mutations and copy number variants (CNVs). Leptin, insulin, and cortisol levels were measured by ELISA. We identified 13 subjects carrying 13 different pathogenic or likely pathogenic variants in LEPR, PCSK1, MC4R, NTRK2, POMC, SH2B1, and SIM1. We also identified for the first time in the human, two homozygous stop-gain mutations in ASNSD1 and IFI16 genes. Inactivation of these genes in mouse models has been shown to result in obesity. Additionally, we describe nine homozygous mutations (seven missense, one stop-gain, and one stop-loss) and four copy-loss CNVs in genes or genomic regions previously linked to obesity-associated traits by genome-wide association studies. Unexpectedly, in contrast to obese children, pathogenic mutations in LEP and LEPR were either absent or rare in this cohort of young adults. High morbidity and mortality risks and social disadvantage of children with LEP or LEPR deficiency may in part explain this difference between the two cohorts.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Qasim M Janjua
- Department of Physiology and Biophysics, National University of Science and Technology, Sohar, Oman
| | - Attiya Haseeb
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Roohia Khanam
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Emmanuelle Durand
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Lijiao Ning
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Alaa Badreddine
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Lionel Berberian
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Mathilde Boissel
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Souhila Amanzougarene
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Mickaël Canouil
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Amélie Bonnefond
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Muhammad Arslan
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Philippe Froguel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| |
Collapse
|
29
|
Abstract
The prevalence of obesity has tripled over the past four decades, imposing an enormous burden on people's health. Polygenic (or common) obesity and rare, severe, early-onset monogenic obesity are often polarized as distinct diseases. However, gene discovery studies for both forms of obesity show that they have shared genetic and biological underpinnings, pointing to a key role for the brain in the control of body weight. Genome-wide association studies (GWAS) with increasing sample sizes and advances in sequencing technology are the main drivers behind a recent flurry of new discoveries. However, it is the post-GWAS, cross-disciplinary collaborations, which combine new omics technologies and analytical approaches, that have started to facilitate translation of genetic loci into meaningful biology and new avenues for treatment.
Collapse
Affiliation(s)
- Ruth J. F. Loos
- grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark ,grid.59734.3c0000 0001 0670 2351Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Giles S. H. Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| |
Collapse
|
30
|
Koerber-Rosso I, Brandt S, von Schnurbein J, Fischer-Posovszky P, Hoegel J, Rabenstein H, Siebert R, Wabitsch M. A fresh look to the phenotype in mono-allelic likely pathogenic variants of the leptin and the leptin receptor gene. Mol Cell Pediatr 2021; 8:10. [PMID: 34448070 PMCID: PMC8390564 DOI: 10.1186/s40348-021-00119-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Leptin (LEP) and leptin receptor (LEPR) play a major role in energy homeostasis, metabolism, and reproductive function. While effects of biallelic likely pathogenic variants (-/-) on the phenotype are well characterized, effects of mono-allelic likely pathogenic variants (wt/-) in the LEP and LEPR gene on the phenotype compared to wild-type homozygosity (wt/wt) have not been systematically investigated. We identified in our systematic review 44 animal studies (15 on Lep, 29 on Lepr) and 39 studies in humans reporting on 130 mono-allelic likely pathogenic variant carriers with 20 distinct LEP variants and 108 heterozygous mono-allelic likely pathogenic variant carriers with 35 distinct LEPR variants. We found indications for a higher weight status in carriers of mono-allelic likely pathogenic variant in the leptin and in the leptin receptor gene compared to wt/wt, in both animal and human studies. In addition, animal studies showed higher body fat percentage in Lep and Lepr wt/- vs wt/wt. Animal studies provided indications for lower leptin levels in Lep wt/- vs. wt/wt and indications for higher leptin levels in Lepr wt/- vs wt/wt. Data on leptin levels in human studies was limited. Evidence for an impaired metabolism in mono-allelic likely pathogenic variants of the leptin and in leptin receptor gene was not conclusive (animal and human studies). Mono-allelic likely pathogenic variants in the leptin and in leptin receptor gene have phenotypic effects disposing to increased body weight and fat accumulation.
Collapse
Affiliation(s)
- Ingrid Koerber-Rosso
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Stephanie Brandt
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Julia von Schnurbein
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Josef Hoegel
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Hannah Rabenstein
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm, University Medical Center Ulm, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
31
|
Salum KCR, Rolando JDM, Zembrzuski VM, Carneiro JRI, Mello CB, Maya-Monteiro CM, Bozza PT, Kohlrausch FB, da Fonseca ACP. When Leptin Is Not There: A Review of What Nonsyndromic Monogenic Obesity Cases Tell Us and the Benefits of Exogenous Leptin. Front Endocrinol (Lausanne) 2021; 12:722441. [PMID: 34504472 PMCID: PMC8421737 DOI: 10.3389/fendo.2021.722441] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity is a pandemic condition of complex etiology, resulting from the increasing exposition to obesogenic environmental factors combined with genetic susceptibility. In the past two decades, advances in genetic research identified variants of the leptin-melanocortin pathway coding for genes, which are related to the potentiation of satiety and hunger, immune system, and fertility. Here, we review cases of congenital leptin deficiency and the possible beneficial effects of leptin replacement therapy. In summary, the cases presented here show clinical phenotypes of disrupted bodily energy homeostasis, biochemical and hormonal disorders, and abnormal immune response. Some phenotypes can be partially reversed by exogenous administration of leptin. With this review, we aim to contribute to the understanding of leptin gene mutations as targets for obesity diagnostics and treatment strategies.
Collapse
Affiliation(s)
- Kaio Cezar Rodrigues Salum
- Human Genetic Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Niterói, Brazil
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jônatas de Mendonça Rolando
- Human Genetic Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Niterói, Brazil
| | | | - João Regis Ivar Carneiro
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cicero Brasileiro Mello
- Human Genetic Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Niterói, Brazil
| | | | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fabiana Barzotto Kohlrausch
- Human Genetic Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Niterói, Brazil
| | - Ana Carolina Proença da Fonseca
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Impaired Leptin Signalling in Obesity: Is Leptin a New Thermolipokine? Int J Mol Sci 2021; 22:ijms22126445. [PMID: 34208585 PMCID: PMC8235268 DOI: 10.3390/ijms22126445] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Leptin is a principal adipose-derived hormone mostly implicated in the regulation of energy balance through the activation of anorexigenic neuronal pathways. Comprehensive studies have established that the maintenance of certain concentrations of circulating leptin is essential to avoid an imbalance in nutrient intake. Indeed, genetic modifications of the leptin/leptin receptor axis and the obesogenic environment may induce changes in leptin levels or action in a manner that accelerates metabolic dysfunctions, resulting in a hyperphagic status and adipose tissue expansion. As a result, a vicious cycle begins wherein hyperleptinaemia and leptin resistance occur, in turn leading to increased food intake and fat enlargement, which is followed by leptin overproduction. In addition, in the context of obesity, a defective thermoregulatory response is associated with impaired leptin signalling overall within the ventromedial nucleus of the hypothalamus. These recent findings highlight the role of leptin in the regulation of adaptive thermogenesis, thus suggesting leptin to be potentially considered as a new thermolipokine. This review provides new insight into the link between obesity, hyperleptinaemia, leptin resistance and leptin deficiency, focusing on the ability to restore leptin sensitiveness by way of enhanced thermogenic responses and highlighting novel anti-obesity therapeutic strategies.
Collapse
|
33
|
Study of LEP, MRAP2 and POMC genes as potential causes of severe obesity in Brazilian patients. Eat Weight Disord 2021; 26:1399-1408. [PMID: 32578125 DOI: 10.1007/s40519-020-00946-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Monogenic forms of obesity are caused by single-gene variants which affect the energy homeostasis by increasing food intake and decreasing energy expenditure. Most of these variants result from disruption of the leptin-melanocortin signaling, which can cause severe early-onset obesity and hyperphagia. These mutation have been identified in genes encoding essential proteins to this pathway, including leptin (LEP), melanocortin 2 receptor accessory proteins 2 (MRAP2) and proopiomelanocortin (POMC). We aimed to investigate the prevalence of LEP, MRAP2 and POMC rare variants in severely obese adults, who developed obesity during childhood. To the best of our knowledge, this is the first study screening rare variants of these genes in patients from Brazil. METHODS A total of 122 Brazilian severely obese patients (BMI ≥ 35 kg/m2) were screened for the coding regions of LEP, MRAP2 and POMC by Sanger sequencing. All patients are candidates to the bariatric surgery. Clinical characteristics were described in patients with novel and/or potentially pathogenic variants. RESULTS Sixteen different variants were identified in these genes, of which two were novel. Among them, one previous variant with potentially deleterious effect in MRAP2 (p.Arg125Cys) was found. In addition, two heterozygous mutations in POMC (p.Phe87Leu and p.Arg90Leu) were predicted to impair protein function. We also observed a POMC homozygous 9 bp insertion (p.Gly99_Ala100insSerSerGly) in three patients. No pathogenic variant was observed in LEP. CONCLUSION Our study described for the first time the prevalence of rare potentially pathogenic MRAP2 and POMC variants in a cohort of Brazilian severely obese adults. LEVEL OF EVIDENCE Level V, cross-sectional descriptive study.
Collapse
|
34
|
Yeo GSH, Chao DHM, Siegert AM, Koerperich ZM, Ericson MD, Simonds SE, Larson CM, Luquet S, Clarke I, Sharma S, Clément K, Cowley MA, Haskell-Luevano C, Van Der Ploeg L, Adan RAH. The melanocortin pathway and energy homeostasis: From discovery to obesity therapy. Mol Metab 2021; 48:101206. [PMID: 33684608 PMCID: PMC8050006 DOI: 10.1016/j.molmet.2021.101206] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Over the past 20 years, insights from human and mouse genetics have illuminated the central role of the brain leptin-melanocortin pathway in controlling mammalian food intake, with genetic disruption resulting in extreme obesity, and more subtle polymorphic variations influencing the population distribution of body weight. At the end of 2020, the U.S. Food and Drug Administration (FDA) approved setmelanotide, a melanocortin 4 receptor agonist, for use in individuals with severe obesity due to either pro-opiomelanocortin (POMC), proprotein convertase subtilisin/kexin type 1 (PCSK1), or leptin receptor (LEPR) deficiency. SCOPE OF REVIEW Herein, we chart the melanocortin pathway's history, explore its pharmacology, genetics, and physiology, and describe how a neuropeptidergic circuit became an important druggable obesity target. MAJOR CONCLUSIONS Unravelling the genetics of the subset of severe obesity has revealed the importance of the melanocortin pathway in appetitive control; coupling this with studying the molecular pharmacology of compounds that bind melanocortin receptors has brought a new obesity drug to the market. This process provides a drug discovery template for complex disorders, which for setmelanotide took 25 years to transform from a single gene into an approved drug.
Collapse
Affiliation(s)
- Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | | | - Anna-Maria Siegert
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| | - Zoe M Koerperich
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Stephanie E Simonds
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Courtney M Larson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.
| | - Iain Clarke
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | - Karine Clément
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France, Sorbonne Université, INSERM, Nutrition and Obesity: Systemic Approaches (NutriOmics) Research Unit, Paris, France.
| | - Michael A Cowley
- Metabolism, Diabetes, and Obesity Programme, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA 55455.
| | | | - Roger A H Adan
- Department of Translational Neuroscience, UMCU Brain Centre, University Medical Centre Utrecht, Utrecht University, the Netherlands; Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Sweden.
| |
Collapse
|
35
|
Hestbaek L, Aartun E, Côté P, Hartvigsen J. Spinal pain increases the risk of becoming overweight in Danish schoolchildren. Sci Rep 2021; 11:10235. [PMID: 33986373 PMCID: PMC8119474 DOI: 10.1038/s41598-021-89595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/27/2021] [Indexed: 12/03/2022] Open
Abstract
Spinal pain is common in adolescence, and overweight in children and adolescence is an increasing public health problem globally. Since musculoskeletal pain is a known barrier for physical activity which potentially can lead to overweight, the primary objective of this study was to determine if self-reported lifetime spinal pain in 2010 was associated with being overweight or obese in 2012 in a cohort of 1080 normal-weighted Danish children, aged 11–13 years at baseline. Overweight was based on body mass index measured by trained staff. Spinal pain was self-reported by questionnaires during school hours. Estimates were adjusted for relevant covariates. The 2-year incidence rate of overweight was 5.3% (95% CI 3.98–7.58) for children with spinal pain at baseline versus 1.6% (95% CI 0.19–5.45) for children without. There was stepwise and statistically significant increased risk of overweight with increasing frequency of pain and for having pain in more than one part of the spine. Despite the short follow-up time where only 40 children developed overweight, these results indicate that spinal pain might increase the risk of subsequent overweight.
Collapse
Affiliation(s)
- Lise Hestbaek
- The Chiropractic Knowledge Hub, Odense, Denmark. .,Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
| | | | - Pierre Côté
- Centre for Disability Prevention and Rehabilitation, Ontario Tech University, Toronto, Canada
| | - Jan Hartvigsen
- The Chiropractic Knowledge Hub, Odense, Denmark.,Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
36
|
Berger C, Klöting N. Leptin Receptor Compound Heterozygosity in Humans and Animal Models. Int J Mol Sci 2021; 22:4475. [PMID: 33922961 PMCID: PMC8123313 DOI: 10.3390/ijms22094475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
Leptin and its receptor are essential for regulating food intake, energy expenditure, glucose homeostasis and fertility. Mutations within leptin or the leptin receptor cause early-onset obesity and hyperphagia, as described in human and animal models. The effect of both heterozygous and homozygous variants is much more investigated than compound heterozygous ones. Recently, we discovered a spontaneous compound heterozygous mutation within the leptin receptor, resulting in a considerably more obese phenotype than described for the homozygous leptin receptor deficient mice. Accordingly, we focus on compound heterozygous mutations of the leptin receptor and their effects on health, as well as possible therapy options in human and animal models in this review.
Collapse
Affiliation(s)
- Claudia Berger
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, 04103 Leipzig, Germany;
| | - Nora Klöting
- Medical Department III, Endocrinology, Nephrology, Rheumatology, CRC1052, University of Leipzig Medical Center, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
37
|
Ginete C, Serrasqueiro B, Silva-Nunes J, Veiga L, Brito M. Identification of Genetic Variants in 65 Obesity Related Genes in a Cohort of Portuguese Obese Individuals. Genes (Basel) 2021; 12:603. [PMID: 33921825 PMCID: PMC8073382 DOI: 10.3390/genes12040603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is a major public health problem, which has a strong genetic component that interplays with environmental factors. Several genes are known to be implicated in the regulation of body weight. The identification of alleles that can be associated with obesity is a key element to control this pandemic. On the basis of a Portuguese population, 65 obesity-related genes are sequenced using Next-Generation Sequencing (NGS) in 72 individuals with obesity, in order to identify variants associated with monogenic obesity and potential risk factors. A total of 429 variants are identified, 129 of which had already been associated with the phenotype. Comparing our results with the European and Global frequencies, from 1000 Genomes project, 23 potential risk variants are identified. Six new variants are discovered in heterozygous carriers: four missense (genes ALMS1-NM_015120.4:c.5552C>T; SORCS1-NM_001013031.2:c.1072A>G and NM_001013031.2: c.2491A>C; TMEM67-NM_153704.5:c.158A>G) and two synonymous (genes BBS1-NM_024649.4:c.1437C>T; TMEM67-NM_153704.5:c.2583T>C). Functional studies should be performed to validate these new findings and evaluate their penetrance and pathogenicity. Regardless of no cases of monogenic obesity being identified, this kind of investigational study is important when we are still trying to understand the aetiology and pathophysiology of obesity. This will allow the identification of rare variants associated with obesity and the study of their prevalence in specific populational groups.
Collapse
Affiliation(s)
- Catarina Ginete
- H&TRC Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (B.S.); (J.S.-N.); (L.V.)
| | - Bernardo Serrasqueiro
- H&TRC Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (B.S.); (J.S.-N.); (L.V.)
| | - José Silva-Nunes
- H&TRC Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (B.S.); (J.S.-N.); (L.V.)
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de Lisboa Central, 1150-199 Lisbon, Portugal
- NOVA Medical School/Faculdade de Ciências Médicas, New University of Lisbon, 1169-056 Lisbon, Portugal
| | - Luísa Veiga
- H&TRC Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (B.S.); (J.S.-N.); (L.V.)
| | - Miguel Brito
- H&TRC Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (C.G.); (B.S.); (J.S.-N.); (L.V.)
| |
Collapse
|
38
|
Zhu L, Yang X, Li J, Jia X, Bai X, Zhao Y, Cheng W, Shu M, Zhu Y, Jin S. Leptin gene-targeted editing in ob/ob mouse adipose tissue based on the CRISPR/Cas9 system. J Genet Genomics 2021; 48:134-146. [PMID: 33931338 DOI: 10.1016/j.jgg.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 01/13/2023]
Abstract
Gene therapy has become the most effective treatment for monogenic diseases. Congenital LEPTIN deficiency is a rare autosomal recessive monogenic obesity syndrome caused by mutations in the Leptin gene. Ob/ob mouse is a monogenic obesity model, which carries a homozygous point mutation of C to T in Exon 2 of the Leptin gene. Here, we attempted to edit the mutated Leptin gene in ob/ob mice preadipocytes and inguinal adipose tissues using CRISPR/Cas9 to correct the C to T mutation and restore the production of LEPTIN protein by adipocytes. The edited preadipocytes exhibit a correction of 5.5% of Leptin alleles and produce normal LEPTIN protein when differentiated into mature adipocytes. The ob/ob mice display correction of 1.67% of Leptin alleles, which is sufficient to restore the production and physiological functions of LEPTIN protein, such as suppressing appetite and alleviating insulin resistance. Our study suggests CRISPR/Cas9-mediated in situ genome editing as a feasible therapeutic strategy for human monogenic diseases, and paves the way for further research on efficient delivery system in potential future clinical application.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pediatrics, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyan Yang
- Department of Pharmacology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Jia
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangli Bai
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Zhao
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenzhuo Cheng
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Zhu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
39
|
The MC4R p.Ile269Asn mutation confers a high risk for type 2 diabetes in the Mexican population via obesity dependent and independent effects. Sci Rep 2021; 11:3097. [PMID: 33542413 PMCID: PMC7862248 DOI: 10.1038/s41598-021-82728-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/25/2021] [Indexed: 11/08/2022] Open
Abstract
We investigated the association between the loss-of-function mutation MC4R p.Ile269Asn and T2D risk in the Mexican population. We enrolled 6929 adults [3175 T2D cases and 3754 normal glucose tolerant (NGT) controls] and 994 NGT children in the study. Anthropometric data and T2D-related quantitative traits were studied in 994 NGT children and 3754 NGT adults. The MC4R p.Ile269Asn mutation was genotyped using TaqMan. The MC4R p.Ile269Asn mutation was associated with T2D [OR = 2.00, 95% confidence interval (CI) 1.35-2.97, p = 0.00057] in Mexican adults. Additional adjustment for body-mass index (BMI) attenuated but did not remove the association (OR = 1.70, 95% CI 1.13-2.56, p = 0.011). The MC4R p.Ile269Asn mutation was associated with T2D (OR = 1.88, 95% CI 1.14-3.08, p = 0.013) in a subset of 1269 T2D cases and 1269 NGT controls matched for sex, age, and BMI. A mediation analysis estimated that BMI accounts for 22.7% of the association between MC4R p.Ile269Asn mutation and T2D risk (p = 4.55 × 10-6). An association was observed between the MC4R p.Ile269Asn mutation and BMI in NGT children and adults (children: beta = 3.731 ± 0.958, p = 0.0001; adults: beta = 2.269 ± 0.536, p = 2.3 × 10-5). In contrast, the mutation was not associated with T2D-related quantitative traits. We demonstrate that the MC4R p.Ile269Asn mutation predisposes to T2D via obesity-dependent and independent effects in the Mexican population.
Collapse
|
40
|
Santos JL, Cortés VA. Eating behaviour in contrasting adiposity phenotypes: Monogenic obesity and congenital generalized lipodystrophy. Obes Rev 2021; 22:e13114. [PMID: 33030294 DOI: 10.1111/obr.13114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Most known types of nonsyndromic monogenic obesity are caused by rare mutations in genes of the leptin-melanocortin pathway controlling appetite and adiposity. In contrast, congenital generalized lipodystrophy represents the most extreme form of leanness in humans caused by recessive mutations in four genes involved in phospholipid/triglyceride synthesis and lipid droplet/caveolae structure. In this disease, the inability to store triglyceride in adipocytes results in hypoleptinemia and ectopic hepatic and muscle fat accumulation leading to fatty liver, hypertriglyceridemia and severe insulin resistance. As a result of hypoleptinemia, patients with lipodystrophy show alterations in eating behaviour characterized by constant increased energy intake. As it occurs in obesity caused by genetic leptin deficiency, exogenous leptin rapidly reduces hunger scores in patients with congenital generalized lipodystrophy, with additional beneficial effects on glucose homeostasis and metabolic profile normalization. The melanocortin-4 receptor agonist setmelanotide has been used in the treatment of monogenic obesities. There is only one report on the effect of setmelanotide in a patient with partial lipodystrophy resulting in mild reductions in hunger scores, with no improvements in metabolic status. The assessment of contrasting phenotypes of obesity/leanness represents an adequate strategy to understand the pathophysiology and altered eating behaviour associated with adipose tissue excessive accumulation/paucity.
Collapse
Affiliation(s)
- José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Víctor A Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
41
|
Salum KCR, de Souza GO, Abreu GDM, Campos Junior M, Kohlrausch FB, Carneiro JRI, Nogueira Neto JF, Magno FCCM, Rosado EL, Palhinha L, Maya-Monteiro CM, de Cabello GMK, Cabello PH, Bozza PT, Zembrzuski VM, da Fonseca ACP. Identification of a Rare and Potential Pathogenic MC4R Variant in a Brazilian Patient With Adulthood-Onset Severe Obesity. Front Genet 2020; 11:608840. [PMID: 33362866 PMCID: PMC7756028 DOI: 10.3389/fgene.2020.608840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Background The melanocortinergic pathway orchestrates the energy homeostasis and impairments in this system often lead to an increase in body weight. Rare variants in the melanocortin 4 receptor (MC4R) gene resulting in partial or complete loss of function have been described with autosomal co-dominant inheritance. These mutations are the most common cause of non-syndromic monogenic obesity. In this context, this study aimed to sequence the MC4R gene in a Brazilian cohort of adults with severe obesity. Methods This study included 163 unrelated probands with Body Mass Index (BMI) ≥ 35 kg/m2, stratified into three groups, according to the period of obesity onset. From the total sample, 25 patients were enrolled in the childhood-onset group (0–11 years), 19 patients in the adolescence/youth-onset group (12–21 years), and 119 patients in the adult-onset group (>21 years). Blood pressure, anthropometric and biochemical characteristics were obtained, and the MC4R coding region of each subject’s DNA was assessed using automated Sanger sequencing. Results Significant anthropometric differences between the groups were observed. Higher body weight and BMI medians were found in patients with childhood-onset or adolescence/youth-onset when compared to the adulthood-onset obesity group. A total of five mutations were identified, including four missense variants: p.Ser36Thr, p.Val103Ile, p.Ala175Thr, and p.Ile251Leu. Additionally, we observed one synonymous variant (p.Ile198=). The p.Ala175Thr variant was identified in a female case with severe obesity and adulthood-onset. This variant was previously described as a partial loss-of-function mutation, in which the minor allele poses dominant-negative effect, probably resulting in reduced cAMP activity. Conclusion This study showed a prevalence of common and rare variants in a cohort of Brazilian adults with severe obesity and candidates to bariatric surgery. We have identified a rare potentially pathogenic MC4R variant in a Brazilian patient with severe and adulthood-onset obesity.
Collapse
Affiliation(s)
- Kaio Cezar Rodrigues Salum
- Human Genetic Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Niterói, Brazil.,Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Mário Campos Junior
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fabiana Barzotto Kohlrausch
- Human Genetic Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Niterói, Brazil
| | - João Regis Ivar Carneiro
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Eliane Lopes Rosado
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Pedro Hernán Cabello
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Human Genetics Laboratory, Grande Rio University, Rio de Janeiro, Brazil
| | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Ana Carolina Proença da Fonseca
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Rare genetic forms of obesity: From gene to therapy. Physiol Behav 2020; 227:113134. [DOI: 10.1016/j.physbeh.2020.113134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023]
|
43
|
Vos N, Oussaada SM, Cooiman MI, Kleinendorst L, Ter Horst KW, Hazebroek EJ, Romijn JA, Serlie MJ, Mannens MMAM, van Haelst MM. Bariatric Surgery for Monogenic Non-syndromic and Syndromic Obesity Disorders. Curr Diab Rep 2020; 20:44. [PMID: 32729070 PMCID: PMC7391392 DOI: 10.1007/s11892-020-01327-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The global prevalence of obesity has increased rapidly over the last decades, posing a severe threat to human health. Currently, bariatric surgery is the most effective therapy for patients with morbid obesity. It is unknown whether this treatment is also suitable for patients with obesity due to a confirmed genetic defect (genetic obesity disorders). Therefore, this review aims to elucidate the role of bariatric surgery in the treatment of genetic obesity. RECENT FINDINGS In monogenic non-syndromic obesity, an underlying genetic defect seems to be the most important factor determining the efficacy of bariatric surgery. In syndromic obesity, bariatric surgery result data are scarce, and even though some promising follow-up results have been reported, caution is required as patients with more severe behavioral and developmental disorders might have poorer outcomes. There is limited evidence in support of bariatric surgery as a treatment option for genetic obesity disorders; hence, no strong statements can be made regarding the efficacy and safety of these procedures for these patients. However, considering that patients with genetic obesity often present with life-threatening obesity-related comorbidities, we believe that bariatric surgery could be considered a last-resort treatment option in selected patients.
Collapse
Affiliation(s)
- Niels Vos
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, Amsterdam, The Netherlands
| | - Sabrina M Oussaada
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Mellody I Cooiman
- Department of Bariatric Surgery, Rijnstate Hospital and Vitalys Clinic, Arnhem, The Netherlands
| | - Lotte Kleinendorst
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, Amsterdam, The Netherlands
| | - Kasper W Ter Horst
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Eric J Hazebroek
- Department of Bariatric Surgery, Rijnstate Hospital and Vitalys Clinic, Arnhem, The Netherlands
| | - Johannes A Romijn
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Mireille J Serlie
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marcel M A M Mannens
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, Amsterdam, The Netherlands
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, Amsterdam, The Netherlands.
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Saeed S, Arslan M, Manzoor J, Din SM, Janjua QM, Ayesha H, Ain QT, Inam L, Lobbens S, Vaillant E, Durand E, Derhourhi M, Amanzougarene S, Badreddine A, Berberian L, Gaget S, Khan WI, Butt TA, Bonnefond A, Froguel P. Genetic Causes of Severe Childhood Obesity: A Remarkably High Prevalence in an Inbred Population of Pakistan. Diabetes 2020; 69:1424-1438. [PMID: 32349990 DOI: 10.2337/db19-1238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/25/2020] [Indexed: 11/13/2022]
Abstract
Monogenic forms of obesity have been identified in ≤10% of severely obese European patients. However, the overall spectrum of deleterious variants (point mutations and structural variants) responsible for childhood severe obesity remains elusive. In this study, we genetically screened 225 severely obese children from consanguineous Pakistani families through a combination of techniques, including an in-house-developed augmented whole-exome sequencing method (CoDE-seq) that enables simultaneous detection of whole-exome copy number variations (CNVs) and point mutations in coding regions. We identified 110 (49%) probands carrying 55 different pathogenic point mutations and CNVs in 13 genes/loci responsible for nonsyndromic and syndromic monofactorial obesity. CoDE-seq also identified 28 rare or novel CNVs associated with intellectual disability in 22 additional obese subjects (10%). Additionally, we highlight variants in candidate genes for obesity warranting further investigation. Altogether, 59% of cases in the studied cohort are likely to have a discrete genetic cause, with 13% of these as a result of CNVs, demonstrating a remarkably higher prevalence of monofactorial obesity than hitherto reported and a plausible overlapping of obesity and intellectual disabilities in several cases. Finally, inbred populations with a high prevalence of obesity provide unique, genetically enriched material in the quest of new genes/variants influencing energy balance.
Collapse
Affiliation(s)
- Sadia Saeed
- Université de Lille, INSERM UMR1283, CNRS-UMR 8199-European Genomic Institute for Diabetes, and Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Muhammad Arslan
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Jaida Manzoor
- Department of Paediatric Endocrinology, Children's Hospital, Lahore, Pakistan
| | - Sadia M Din
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Qasim M Janjua
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
- Department of Physiology, University College of Medicine and Dentistry, University of Lahore, Lahore, Pakistan
| | - Hina Ayesha
- Department of Paediatrics, Punjab Medical College, Faisalabad, Pakistan
| | - Qura-Tul Ain
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Laraib Inam
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Stephane Lobbens
- Université de Lille, INSERM UMR1283, CNRS-UMR 8199-European Genomic Institute for Diabetes, and Lille University Hospital, Lille, France
| | - Emmanuel Vaillant
- Université de Lille, INSERM UMR1283, CNRS-UMR 8199-European Genomic Institute for Diabetes, and Lille University Hospital, Lille, France
| | - Emmanuelle Durand
- Université de Lille, INSERM UMR1283, CNRS-UMR 8199-European Genomic Institute for Diabetes, and Lille University Hospital, Lille, France
| | - Mehdi Derhourhi
- Université de Lille, INSERM UMR1283, CNRS-UMR 8199-European Genomic Institute for Diabetes, and Lille University Hospital, Lille, France
| | - Souhila Amanzougarene
- Université de Lille, INSERM UMR1283, CNRS-UMR 8199-European Genomic Institute for Diabetes, and Lille University Hospital, Lille, France
| | - Alaa Badreddine
- Université de Lille, INSERM UMR1283, CNRS-UMR 8199-European Genomic Institute for Diabetes, and Lille University Hospital, Lille, France
| | - Lionel Berberian
- Université de Lille, INSERM UMR1283, CNRS-UMR 8199-European Genomic Institute for Diabetes, and Lille University Hospital, Lille, France
| | - Stefan Gaget
- Université de Lille, INSERM UMR1283, CNRS-UMR 8199-European Genomic Institute for Diabetes, and Lille University Hospital, Lille, France
| | - Waqas I Khan
- The Children Hospital and the Institute of Child Health, Multan, Pakistan
| | - Taeed A Butt
- Department of Pediatrics, Fatima Memorial Hospital, Lahore, Pakistan
| | - Amélie Bonnefond
- Université de Lille, INSERM UMR1283, CNRS-UMR 8199-European Genomic Institute for Diabetes, and Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Philippe Froguel
- Université de Lille, INSERM UMR1283, CNRS-UMR 8199-European Genomic Institute for Diabetes, and Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| |
Collapse
|
45
|
Razolli DS, de Araújo TM, Sant Apos Ana MR, Kirwan P, Cintra DE, Merkle FT, Velloso LA. Proopiomelanocortin Processing in the Hypothalamus Is Directly Regulated by Saturated Fat: Implications for the Development of Obesity. Neuroendocrinology 2020; 110:92-104. [PMID: 31104058 PMCID: PMC7614303 DOI: 10.1159/000501023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/17/2019] [Indexed: 02/02/2023]
Abstract
In outbred mice, susceptibility or resistance to diet-induced obesity is associated with rapid changes in hypothalamic proopiomelanocortin (POMC) levels. Here, we evaluated 3 hypotheses that potentially explain the development of the different obesity phenotypes in outbred Swiss mice. First, rapid and differential changes in the gut microbiota in obesity-prone (OP) and obesity-resistant (OR) mice fed on a high-fat diet (HFD) might cause differential efficiencies in fatty acid harvesting leading to changes in systemic fatty acid concentrations that in turn affect POMC expression and processing. Second, independently of the gut microbiota, OP mice might have increased blood fatty acid levels after the introduction of a HFD, which could affect POMC expression and processing. Third, fatty acids might act directly in the hypothalamus to differentially regulate POMC expression and/or processing in OP and OR mice. We evaluated OP and OR male Swiss mice using 16S rRNA sequencing for the determination of gut microbiota; gas chromatography for blood lipid determination; and immunoblot and real-time polymerase chain reaction for protein and transcript determination and indirect calorimetry. Some experiments were performed with human pluripotent stem cells differentiated into hypothalamic neurons. We did not find evidence supporting the first 2 hypotheses. However, we found that in OP but not in OR mice, palmitate induces a rapid increase in hypothalamic POMC, which is followed by increased expression of proprotein convertase subtilisin/kexin type 1 PC1/3. Lentiviral inhibition of hypothalamic PC1/3 increased caloric intake and body mass in both OP and OR mice. In human stem cell-derived hypothalamic cells, we found that palmitate potently suppressed the production of POMC-derived peptides. Palmitate directly regulates PC1/3 in OP mice and likely has a functional impact on POMC processing.
Collapse
Affiliation(s)
- Daniela S Razolli
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Thiago M de Araújo
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marcella R Sant Apos Ana
- Laboratory of Nutritional Genomics, School of Applied Science, University of Campinas, Limeira, Brazil
| | - Peter Kirwan
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust, Medical Research Council Institute of Metabolic Science, and Wellcome Trust Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Dennys E Cintra
- Laboratory of Nutritional Genomics, School of Applied Science, University of Campinas, Limeira, Brazil
| | - Florian T Merkle
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust, Medical Research Council Institute of Metabolic Science, and Wellcome Trust Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Licio A Velloso
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil,
| |
Collapse
|
46
|
Niazi RK, Gjesing AP, Hollensted M, Have CT, Borisevich D, Grarup N, Pedersen O, Ullah A, Shahid G, Shafqat I, Gul A, Hansen T. Screening of 31 genes involved in monogenic forms of obesity in 23 Pakistani probands with early-onset childhood obesity: a case report. BMC MEDICAL GENETICS 2019; 20:152. [PMID: 31488071 PMCID: PMC6727494 DOI: 10.1186/s12881-019-0886-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/29/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Consanguine families display a high degree of homozygosity which increases the risk of family members suffering from autosomal recessive disorders. Thus, homozygous mutations in monogenic obesity genes may be a more frequent cause of childhood obesity in a consanguineous population. METHODS We identified 23 probands from 23 Pakistani families displaying autosomal recessive obesity. We have previously excluded mutations in MC4R, LEP and LEPR in all probands. Using a chip-based, target-region capture array, 31 genes involved in monogenic forms of obesity, were screened in all probands. RESULTS We identified 31 rare non-synonymous possibly pathogenic variants (28 missense and three nonsense) within the 31 selected genes. All variants were heterozygous, thus no homozygous pathogenic variants were found. Two of the rare heterozygous nonsense variants identified (p.R75X and p.R481X) were found in BBS9 within one proband, suggesting that obesity is caused by compound heterozygosity. Sequencing of the parents supported the compound heterozygous nature of obesity as each parent was carrying one of the variants. Subsequent clinical investigation strongly indicated that the proband had Bardet-Biedl syndrome. CONCLUSIONS Mutation screening in 31 genes among probands with severe early-onset obesity from Pakistani families did not reveal the presence of homozygous obesity causing variants. However, a compound heterozygote carrier of BBS9 mutations was identified, indicating that compound heterozygosity must not be overlooked when investigating the genetic etiology of severe childhood obesity in populations with a high degree of consanguinity.
Collapse
Affiliation(s)
- Robina Khan Niazi
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Children Hospital, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Anette Prior Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hollensted
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Theil Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmitrii Borisevich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, PIMS, Islamabad, Pakistan
| | - Gulbin Shahid
- Children Hospital, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Ifrah Shafqat
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Asma Gul
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Hu XJ, Yang J, Xie XL, Lv FH, Cao YH, Li WR, Liu MJ, Wang YT, Li JQ, Liu YG, Ren YL, Shen ZQ, Wang F, Hehua EE, Han JL, Li MH. The Genome Landscape of Tibetan Sheep Reveals Adaptive Introgression from Argali and the History of Early Human Settlements on the Qinghai-Tibetan Plateau. Mol Biol Evol 2019; 36:283-303. [PMID: 30445533 PMCID: PMC6367989 DOI: 10.1093/molbev/msy208] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tibetan sheep are the most common and widespread domesticated animals on the Qinghai-Tibetan Plateau (QTP) and have played an essential role in the permanent human occupation of this high-altitude region. However, the precise timing, route, and process of sheep pastoralism in the QTP region remain poorly established, and little is known about the underlying genomic changes that occurred during the process. Here, we investigate the genomic variation in Tibetan sheep using whole-genome sequences, single nucleotide polymorphism arrays, mitochondrial DNA, and Y-chromosomal variants in 986 samples throughout their distribution range. We detect strong signatures of selection in genes involved in the hypoxia and ultraviolet signaling pathways (e.g., HIF-1 pathway and HBB and MITF genes) and in genes associated with morphological traits such as horn size and shape (e.g., RXFP2). We identify clear signals of argali (Ovis ammon) introgression into sympatric Tibetan sheep, covering 5.23-5.79% of their genomes. The introgressed genomic regions are enriched in genes related to oxygen transportation system, sensory perception, and morphological phenotypes, in particular the genes HBB and RXFP2 with strong signs of adaptive introgression. The spatial distribution of genomic diversity and demographic reconstruction of the history of Tibetan sheep show a stepwise pattern of colonization with their initial spread onto the QTP from its northeastern part ∼3,100 years ago, followed by further southwest expansion to the central QTP ∼1,300 years ago. Together with archeological evidence, the date and route reveal the history of human expansions on the QTP by the Tang-Bo Ancient Road during the late Holocene. Our findings contribute to a depth understanding of early pastoralism and the local adaptation of Tibetan sheep as well as the late-Holocene human occupation of the QTP.
Collapse
Affiliation(s)
- Xiao-Ju Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ji Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Feng-Hua Lv
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yin-Hong Cao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Wen-Rong Li
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ming-Jun Liu
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Jin-Quan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Gang Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yan-Lin Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Zhi-Qiang Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - EEr Hehua
- Grass-Feeding Livestock Engineering Technology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Meng-Hua Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| |
Collapse
|
48
|
Armağan C, Yılmaz C, Koç A, Abacı A, Ülgenalp A, Böber E, Erçal D, Demir K. A toddler with a novel LEPR mutation. Hormones (Athens) 2019; 18:237-240. [PMID: 30778850 DOI: 10.1007/s42000-019-00097-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
There are numerous causes, such as environmental factors, medications, endocrine disorders, and genetic factors, that can lead to obesity. However, severe early-onset obesity with abnormal feeding behavior, mental retardation, dysmorphic features, organ-specific developmental abnormalities, and endocrine disorders suggest a genetic etiology. Mutations in genes related to the leptin-melanocortin pathway play a key role in genetic obesity. This pathway controls hypothalamic regulation of food intake. A few cases have been reported to have mutations in leptin (LEP) or leptin receptor (LEPR) genes. The cases had severe early-onset obesity, hyperphagia, and additional features, such as altered immune function, hypogonadism, and hypothyroidism. We present a 3-year-old male patient with severe early-onset obesity whose genetic analysis revealed a homozygous, novel, and pathogenic variant (c.1603+2T>C) in LEPR.
Collapse
Affiliation(s)
- Coşkun Armağan
- Department of Pediatrics, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Ceren Yılmaz
- Division of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Altuğ Koç
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Ayhan Abacı
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, 35340, Balçova, Izmir, Turkey
| | - Ayfer Ülgenalp
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Ece Böber
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, 35340, Balçova, Izmir, Turkey
| | - Derya Erçal
- Division of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Korcan Demir
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, 35340, Balçova, Izmir, Turkey.
| |
Collapse
|
49
|
Yupanqui-Lozno H, Bastarrachea RA, Yupanqui-Velazco ME, Alvarez-Jaramillo M, Medina-Méndez E, Giraldo-Peña AP, Arias-Serrano A, Torres-Forero C, Garcia-Ordoñez AM, Mastronardi CA, Restrepo CM, Rodriguez-Ayala E, Nava-Gonzalez EJ, Arcos-Burgos M, Kent JW, Cole SA, Licinio J, Celis-Regalado LG. Congenital Leptin Deficiency and Leptin Gene Missense Mutation Found in Two Colombian Sisters with Severe Obesity. Genes (Basel) 2019; 10:genes10050342. [PMID: 31067764 PMCID: PMC6562380 DOI: 10.3390/genes10050342] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Congenital leptin deficiency is a recessive genetic disorder associated with severe early-onset obesity. It is caused by mutations in the leptin (LEP) gene, which encodes the protein product leptin. These mutations may cause nonsense-mediated mRNA decay, defective secretion or the phenomenon of biologically inactive leptin, but typically lead to an absence of circulating leptin, resulting in a rare type of monogenic extreme obesity with intense hyperphagia, and serious metabolic abnormalities. Methods: We present two severely obese sisters from Colombia, members of the same lineal consanguinity. Their serum leptin was measured by MicroELISA. DNA sequencing was performed on MiSeq equipment (Illumina) of a next-generation sequencing (NGS) panel involving genes related to severe obesity, including LEP. Results: Direct sequencing of the coding region of LEP gene in the sisters revealed a novel homozygous missense mutation in exon 3 [NM_002303.3], C350G>T [p.C117F]. Detailed information and clinical measurements of these sisters were also collected. Their serum leptin levels were undetectable despite their markedly elevated fat mass. Conclusions: The mutation of LEP, absence of detectable leptin, and the severe obesity found in these sisters provide the first evidence of monogenic leptin deficiency reported in the continents of North and South America.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Claudio A Mastronardi
- NeuRos, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia.
| | - Carlos M Restrepo
- GeniURos, CIGGUR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia.
| | | | | | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Instituto de Investigaciones Médicas. Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Jack W Kent
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Julio Licinio
- SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
50
|
Morell-Azanza L, Ojeda-Rodríguez A, Giuranna J, Azcona-SanJulián MC, Hebebrand J, Marti A, Hinney A. Melanocortin-4 Receptor and Lipocalin 2 Gene Variants in Spanish Children with Abdominal Obesity: Effects on BMI-SDS After a Lifestyle Intervention. Nutrients 2019; 11:E960. [PMID: 31035493 PMCID: PMC6566731 DOI: 10.3390/nu11050960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 11/24/2022] Open
Abstract
Mutations leading to a reduced function of the melanocortin-4 receptor (MC4R) exert a major gene effect on extreme obesity. Recently it was shown that the bone derived hormone lipocalin 2 (LCN2) binds to the MC4R and activates a MC4R dependent anorexigenic pathway. We identified mutations in both genes and screened the effects of MC4R and LCN2 mutations on eating behavior and weight change after a lifestyle intervention. One hundred and twelve children (11.24 ± 2.6 years, BMI-SDS 2.91 ± 1.07) with abdominal obesity participated in a lifestyle intervention. MC4R and LCN2 coding regions were screened by Sanger sequencing. Eating behavior was assessed at baseline with the Children Eating Behavior Questionnaire (CEBQ). We detected three previously described non-synonymous MC4R variants (Glu42Lys, Thr150Ile, and Arg305Gln) and one non-synonymous polymorphism (Ile251Leu). Regarding LCN2, one known non-synonymous variant (Thr124Met) was detected. Eating behavior was described in carriers of the MC4R and LCN2 mutation and in non-carriers. MC4R and LCN2 mutations were detected in 2.42% and 0.84%, respectively, of Spanish children with abdominal obesity. A number of subjects with functional mutation variants in MC4R and LCN2 were able to achieve a reduction in BMI-SDS after a lifestyle intervention.
Collapse
Affiliation(s)
- Lydia Morell-Azanza
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, c/Irunlarrea, 1. 31008 Pamplona, Spain.
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea, 3. 31008, Pamplona , Spain.
| | - Ana Ojeda-Rodríguez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, c/Irunlarrea, 1. 31008 Pamplona, Spain.
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea, 3. 31008, Pamplona , Spain.
| | - Johanna Giuranna
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 174, D-45147, Essen,Germany.
| | - Mª Cristina Azcona-SanJulián
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea, 3. 31008, Pamplona , Spain.
- Paediatric Endocrinology Unit, Department of Paediatrics, Clínica Universidad de Navarra,c/ Pío XII, 36. 31008 Pamplona, Spain.
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 174, D-45147, Essen,Germany.
| | - Amelia Marti
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, c/Irunlarrea, 1. 31008 Pamplona, Spain.
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, c/Irunlarrea, 3. 31008, Pamplona , Spain.
- Biomedical Research Centre Network on Obesity and Nutrition (CIBERobn), Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Av. Monforte de Lemos, 3-5. 28029 Madrid, Spain.
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 174, D-45147, Essen,Germany.
| |
Collapse
|