1
|
Hu Q, Wang S, Zhang W, Qu J, Liu GH. Unraveling brain aging through the lens of oral microbiota. Neural Regen Res 2025; 20:1930-1943. [PMID: 38993126 PMCID: PMC11691463 DOI: 10.4103/nrr.nrr-d-23-01761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
The oral cavity is a complex physiological community encompassing a wide range of microorganisms. Dysbiosis of oral microbiota can lead to various oral infectious diseases, such as periodontitis and tooth decay, and even affect systemic health, including brain aging and neurodegenerative diseases. Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration, indicating potential avenues for intervention strategies. In this review, we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases, and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration. We also highlight advances in therapeutic development grounded in the realm of oral microbes, with the goal of advancing brain health and promoting healthy aging.
Collapse
Affiliation(s)
- Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
2
|
Kordi R, Andrews TJ, Hicar MD. Infections, genetics, and Alzheimer's disease: Exploring the pathogenic factors for innovative therapies. Virology 2025; 607:110523. [PMID: 40174330 DOI: 10.1016/j.virol.2025.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that creates a significant global health challenge and profoundly affects patients and their families. Recent research has highlighted the critical role of microorganisms, particularly viral infections, in the pathogenesis of AD. The involvement of viral infections in AD pathogenesis is predominantly attributed to their ability to induce neuroinflammation and amyloid beta (Aβ) deposition in the brain. The extant research exploring the relationship between viruses and AD has focused largely on Herpesviridae family. Traces of Herpesviruses, such as Herpes Simplex Virus-1 and Epstein Barr Virus, have been found in the brains of patients with AD. These viruses are thought to contribute to the disease progression by triggering chronic inflammatory responses in the brain. They can remain dormant in the brain, and become reactivated due to stress, a secondary viral infection, or immune-senescence in older adults. This review focuses on the association between Herpesviridae and bacterial infections with AD. We explore the genetic factors that might regulate viral illness and discuss clinical trials investigating antiviral and anti-inflammatory agents as possible therapeutic strategies to mitigate cognitive decline in patients with AD. In summary, understanding the interplay between infections, genetic factors, and AD pathogenesis may pave the way for novel therapeutic approaches, facilitating better management and possibly even prevent this debilitating disease.
Collapse
Affiliation(s)
- Ramesh Kordi
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Ted J Andrews
- Department of Pediatrics, Division of Developmental Pediatrics and Rehabilitation, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Mark D Hicar
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
3
|
Bathini P, Brai E, Balin BJ, Bimler L, Corry DB, Devanand DP, Doty RL, Ehrlich GD, Eimer WA, Fulop T, Hahn DL, Hammond CJ, Infanti J, Itzhaki R, Lathe R, Little CS, McLeod R, Moein ST, Nelson AR, Perry G, Shemesh OA, Tanzi RE, Webley WC, Schultek NM, Alberi Auber L. Sensory Dysfunction, Microbial Infections, and Host Responses in Alzheimer's Disease. J Infect Dis 2024; 230:S150-S164. [PMID: 39255393 DOI: 10.1093/infdis/jiae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Sensory functions of organs of the head and neck allow humans to interact with the environment and establish social bonds. With aging, smell, taste, vision, and hearing decline. Evidence suggests that accelerated impairment in sensory abilities can reflect a shift from healthy to pathological aging, including the development of Alzheimer's disease (AD) and other neurological disorders. While the drivers of early sensory alteration in AD are not elucidated, insults such as trauma and infections can affect sensory function. Herein, we review the involvement of the major head and neck sensory systems in AD, with emphasis on microbes exploiting sensory pathways to enter the brain (the "gateway" hypothesis) and the potential feedback loop by which sensory function may be impacted by central nervous system infection. We emphasize detection of sensory changes as first-line surveillance in senior adults to identify and remove potential insults, like microbial infections, that could precipitate brain pathology.
Collapse
Affiliation(s)
- Praveen Bathini
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
| | | | - Brian J Balin
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Lynn Bimler
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - David B Corry
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Biology of Inflammation Center, and the Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology and Immunology, Dan L. Duncan Comprehensive Cancer Center, Biology of Inflammation Center, and the Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Davangere P Devanand
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Psychiatry and Neurology, Irving Medical Center, Columbia University, New York, USA
| | - Richard L Doty
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Smell and Taste Center, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Garth D Ehrlich
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - William A Eimer
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Tamas Fulop
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Research Center on Aging, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David L Hahn
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Christine J Hammond
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Joseph Infanti
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Ruth Itzhaki
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Institute of Population Ageing, University of Oxford, Oxford, United Kingdom
| | - Richard Lathe
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Christopher Scott Little
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Rima McLeod
- Departments of Ophthalmology and Visual Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics Infectious Diseases, University of Chicago, Chicago, Illinois, USA
| | - Shima T Moein
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Smell and Taste Center, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - George Perry
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Or A Shemesh
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rudolph E Tanzi
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Wilmore C Webley
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nikki M Schultek
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Lavinia Alberi Auber
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- BrainFit4Life, Fribourg, Switzerland
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
- VitalizeDx, Epalinges, Switzerland
- VitalizeDx Eu, Trieste, Italy
| |
Collapse
|
4
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
5
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
6
|
Zhao M, Wang Y, Shen Y, Wei C, Zhang G, Sun L. A review of the roles of pathogens in Alzheimer's disease. Front Neurosci 2024; 18:1439055. [PMID: 39224577 PMCID: PMC11366636 DOI: 10.3389/fnins.2024.1439055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease (AD) is one of the leading causes of dementia and is characterized by memory loss, mental and behavioral abnormalities, and impaired ability to perform daily activities. Even as a global disease that threatens human health, effective treatments to slow the progression of AD have not been found, despite intensive research and significant investment. In recent years, the role of infections in the etiology of AD has sparked intense debate. Pathogens invade the central nervous system through a damaged blood-brain barrier or nerve trunk and disrupt the neuronal structure and function as well as homeostasis of the brain microenvironment through a series of molecular biological events. In this review, we summarize the various pathogens involved in AD pathology, discuss potential interactions between pathogens and AD, and provide an overview of the promising future of anti-pathogenic therapies for AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Sun
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
7
|
Lorkiewicz P, Waszkiewicz N. Viral infections in etiology of mental disorders: a broad analysis of cytokine profile similarities - a narrative review. Front Cell Infect Microbiol 2024; 14:1423739. [PMID: 39206043 PMCID: PMC11349683 DOI: 10.3389/fcimb.2024.1423739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus and the associated mental health complications have renewed scholarly interest in the relationship between viral infections and the development of mental illnesses, a topic that was extensively discussed in the previous century in the context of other viruses, such as influenza. The most probable and analyzable mechanism through which viruses influence the onset of mental illnesses is the inflammation they provoke. Both infections and mental illnesses share a common characteristic: an imbalance in inflammatory factors. In this study, we sought to analyze and compare cytokine profiles in individuals infected with viruses and those suffering from mental illnesses. The objective was to determine whether specific viral diseases can increase the risk of specific mental disorders and whether this risk can be predicted based on the cytokine profile of the viral disease. To this end, we reviewed existing literature, constructed cytokine profiles for various mental and viral diseases, and conducted comparative analyses. The collected data indicate that the risk of developing a specific mental illness cannot be determined solely based on cytokine profiles. However, it was observed that the combination of IL-8 and IL-10 is frequently associated with psychotic symptoms. Therefore, to assess the risk of mental disorders in infected patients, it is imperative to consider the type of virus, the mental complications commonly associated with it, the predominant cytokines to evaluate the risk of psychotic symptoms, and additional patient-specific risk factors.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
8
|
James LM, Tsilibary EP, Wanberg EJ, Georgopoulos AP. Negative Association of Cognitive Performance With Blood Serum Neurotoxicity and Its Modulation by Human Herpes Virus 5 (HHV5) Seropositivity in Healthy Women. Neurosci Insights 2024; 19:26331055241258436. [PMID: 38827247 PMCID: PMC11143810 DOI: 10.1177/26331055241258436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Identification of early influences on cognitive decline is of paramount importance in order to stem the impacts of decrements in cognitive functioning and to potentially intervene. Thus, here we focused on 132 healthy adult women (age range 26-98 years) to (a) determine whether factors circulating in serum may exert neurotoxic effects in vitro, (b) evaluate associations between serum neurotoxicity and cognitive performance, and (c) assess the influence of human herpes virus (HHV) seroprevalence and other factors on apoptosis and cognitive performance. The results documented that the addition of serum from healthy adult women to neural cell cultures resulted in apoptosis, indicating the presence of circulating neurotoxic factors in the serum. Furthermore, apoptosis increased with age, and was associated with decreased cognitive performance. Stepwise regression evaluating the influence of 6 HHVs on apoptosis and cognitive function revealed that only HHV5 (cytomegalovirus; CMV) seropositivity was significantly associated with apoptosis and cognitive decline, controlling for age. These findings document neurotoxic effects of serum from healthy women across the adult lifespan and suggest a unique detrimental influence associated with CMV seropositivity.
Collapse
Affiliation(s)
- Lisa M James
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Effie-Photini Tsilibary
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Erik J Wanberg
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
9
|
Gale SD, Farrer TJ, Erbstoesser R, MacLean S, Hedges DW. Human Cytomegalovirus Infection and Neurocognitive and Neuropsychiatric Health. Pathogens 2024; 13:417. [PMID: 38787269 PMCID: PMC11123947 DOI: 10.3390/pathogens13050417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
A common infection, human cytomegalovirus (HCMV) has been associated with a variety of human diseases, including cardiovascular disease and possibly certain cancers. HCMV has also been associated with cognitive, psychiatric, and neurological conditions. Children with congenital or early-life HCMV are at risk for microcephaly, cerebral palsy, and sensorineural hearing loss, although in many cases sensorineural loss may resolve. In addition, HCMV can be associated with neurodevelopmental impairment, which may improve with time. In young, middle-aged, and older adults, HCMV has been adversely associated with cognitive function in some but not in all studies. Research has linked HCMV to Alzheimer's and vascular dementia, but again not all findings consistently support these associations. In addition, HCMV has been associated with depressive disorder, bipolar disorder, anxiety, and autism-spectrum disorder, although the available findings are likewise inconsistent. Given associations between HCMV and a variety of neurocognitive and neuropsychiatric disorders, additional research investigating reasons for the considerable inconsistencies in the currently available findings is needed. Additional meta-analyses and more longitudinal studies are needed as well. Research into the effects of antiviral medication on cognitive and neurological outcomes and continued efforts in vaccine development have potential to lower the neurocognitive, neuropsychiatric, and neurological burden of HCMV infection.
Collapse
Affiliation(s)
- Shawn D. Gale
- The Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (S.M.); (D.W.H.)
- The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Thomas J. Farrer
- Idaho WWAMI Medical Education Program, University of Idaho, Moscow, ID 83844, USA;
| | - Reagan Erbstoesser
- The Department of Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Scott MacLean
- The Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (S.M.); (D.W.H.)
| | - Dawson W. Hedges
- The Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (S.M.); (D.W.H.)
- The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
10
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
11
|
Biagio P, Isabella DF, Federica C, Elena S, Ivan G. Alzheimer's disease and herpes viruses: Current events and perspectives. Rev Med Virol 2024; 34:e2550. [PMID: 38801246 DOI: 10.1002/rmv.2550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) is a real and current scientific and societal challenge. Alzheimer's disease is characterised by a neurodegenerative neuroinflammatory process, but the etiopathogenetic mechanisms are still unclear. The possible infectious aetiology and potential involvement of Herpes viruses as triggers for the formation of extracellular deposits of amyloid beta (Aβ) peptide (amyloid plaques) and intraneuronal aggregates of hyperphosphorylated and misfold could be a possible explanation. In fact, the possible genetic interference of Herpes viruses with the genome of the host neuronal cell or the stimulation of the infection to a continuous immune response with a consequent chronic inflammation could constitute those mechanisms underlying the development of AD, with possible implications in the understanding and management of the disease. Herpes viruses could be significantly involved in the pathogenesis of AD and in particular, their ability to reactivate in particular conditions such as immunocompromise and immunosenescence, could explain the neurological damage characteristic of AD. Our review aims to evaluate the state of the art of knowledge and perspectives regarding the potential relationship between Herpes viruses and AD, in order to be able to identify the possible etiopathogenetic mechanisms and the possible therapeutic implications.
Collapse
Affiliation(s)
- Pinchera Biagio
- Division of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Di Filippo Isabella
- Division of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Cuccurullo Federica
- Division of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Salvatore Elena
- Division of Neurology, Department of Neuroscience Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Gentile Ivan
- Division of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
12
|
Ślusarz MJ, Lipińska AD. An intrinsic network of polar interactions is responsible for binding of UL49.5 C-degron by the CRL2 KLHDC3 ubiquitin ligase. Proteins 2024; 92:610-622. [PMID: 38069558 DOI: 10.1002/prot.26651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 04/13/2024]
Abstract
Bovine herpesvirus type 1 (BoHV-1) is a pathogen of cattle responsible for infectious bovine rhinotracheitis. The BoHV-1 UL49.5 is a transmembrane protein that binds to the transporter associated with antigen processing (TAP) and downregulates cell surface expression of the antigenic peptide complexes with the major histocompatibility complex class I (MHC-I). KLHDC3 is a kelch domain-containing protein 3 and a substrate receptor of a cullin2-RING (CRL2) E3 ubiquitin ligase. Recently, it has been identified that CRL2KLHDC3 is responsible for UL49.5-triggered TAP degradation via a C-degron pathway and the presence of the degron sequence does not lead to the degradation of UL49.5 itself. The molecular modeling of KLHDC3 in complexes with four UL49.5 C-terminal decapeptides (one native protein and three mutants) revealed their activity to be closely correlated with the conformation which they adopt in KLHDC3 binding cleft. To analyze the interaction between UL49.5 and KLHDC3 in detail, in this work a total of 3.6 μs long molecular dynamics simulations have been performed. The complete UL49.5-KLHDC3 complexes were embedded into the fully hydrated all-atom lipid membrane model with explicit water molecules. The network of polar interactions has been proposed to be responsible for the recognition and binding of the degron in KLHDC3. The interaction network within the binding pocket appeared to be very similar between two CRL2 substrate receptors: KLHDC3 and KLHDC2.
Collapse
Affiliation(s)
| | - Andrea D Lipińska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
13
|
Sanami S, Shamsabadi S, Dayhimi A, Pirhayati M, Ahmad S, Pirhayati A, Ajami M, Hemati S, Shirvani M, Alagha A, Abbarin D, Alizadeh A, Pazoki-Toroudi H. Association between cytomegalovirus infection and neurological disorders: A systematic review. Rev Med Virol 2024; 34:e2532. [PMID: 38549138 DOI: 10.1002/rmv.2532] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Cytomegalovirus (CMV) belongs to the Herpesviridae family and is also known as human herpesvirus type 5. It is a common virus that usually doesn't cause any symptoms in healthy individuals. However, once infected, the virus remains in the host's body for life and can reactivate when the host's immune system weakens. This virus has been linked to several neurological disorders, including Alzheimer's disease, Parkinson's disease, Autism spectrum disorder, Huntington's disease (HD), ataxia, Bell's palsy (BP), and brain tumours, which can cause a wide range of symptoms and challenges for those affected. CMV may influence inflammation, contribute to brain tissue damage, and elevate the risk of moderate-to-severe dementia. Multiple studies suggest a potential association between CMV and ataxia in various conditions, including Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, acute cerebellitis, etc. On the other hand, the evidence regarding CMV involvement in BP is conflicting, and also early indications of a link between CMV and HD were challenged by subsequent research disproving CMV's presence. This systematic review aims to comprehensively investigate any link between the pathogenesis of CMV and its potential role in neurological disorders and follows the preferred reporting items for systematic review and meta-analysis checklist. Despite significant research into the potential links between CMV infection and various neurological disorders, the direct cause-effect relationship is not fully understood and several gaps in knowledge persist. Therefore, continued research is necessary to gain a better understanding of the role of CMV in neurological disorders and potential treatment avenues.
Collapse
Affiliation(s)
- Samira Sanami
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Shahnam Shamsabadi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Dayhimi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Pirhayati
- Psychiatric Department, Rasool Akram Hospital, Iran University of Medical Science, Tehran, Iran
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | | | - Marjan Ajami
- National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Hemati
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Masoud Shirvani
- Department of Neurosurgery, Salamat-Farda Hospital, Tehran, Iran
| | - Ahmad Alagha
- Department of Neurosurgery, Salamat-Farda Hospital, Tehran, Iran
| | - Davood Abbarin
- Department of Neurosurgery, Salamat-Farda Hospital, Tehran, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamidreza Pazoki-Toroudi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Rippee-Brooks MD, Wu W, Dong J, Pappolla M, Fang X, Bao X. Viral Infections, Are They a Trigger and Risk Factor of Alzheimer's Disease? Pathogens 2024; 13:240. [PMID: 38535583 PMCID: PMC10974111 DOI: 10.3390/pathogens13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Alzheimer's Disease (AD), a progressive and debilitating condition, is reported to be the most common type of dementia, with at least 55 million people believed to be currently affected. Many causation hypotheses of AD exist, yet the intriguing link between viral infection and its possible contribution to the known etiology of AD has become an attractive focal point of research for the field and a challenging study task. In this review, we will explore the historical perspective and milestones that led the field to investigate the viral connection to AD. Specifically, several viruses such as Herpes Simplex Virus 1 (HSV-1), Zika virus (ZIKV), and severe cute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with several others mentioned, include the various viruses presently considered within the field. We delve into the strong evidence implicating these viruses in the development of AD such as the lytic replication and axonal transport of HSV-1, the various mechanisms of ZIKV neurotropism through the human protein Musashi-1 (MSI1), and the spread of SARS-CoV-2 through the transfer of the virus through the BBB endothelial cells to glial cells and then to neurons via transsynaptic transfer. We will also explore beyond these mere associations by carefully analyzing the potential mechanisms by which these viruses may contribute to AD pathology. This includes but is not limited to direct neuronal infections, the dysregulation of immune responses, and the impact on protein processing (Aβ42 and hyperphosphorylated tau). Controversies and challenges of the virus-AD relationship emerge as we tease out these potential mechanisms. Looking forward, we emphasize future directions, such as distinct questions and proposed experimentations to explore, that the field should take to tackle the remaining unanswered questions and the glaring research gaps that persist. Overall, this review aims to provide a comprehensive survey of the past, present, and future of the potential link between viral infections and their association with AD development while encouraging further discussion.
Collapse
Affiliation(s)
- Meagan D. Rippee-Brooks
- Microbiology and Immunology Graduate Program, Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jianli Dong
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Miguel Pappolla
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Xiang Fang
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Xiaoyong Bao
- Microbiology and Immunology Graduate Program, Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77550, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77550, USA
- The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77550, USA
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77550, USA
| |
Collapse
|
15
|
Matos ADO, Dantas PHDS, Queiroz HAGDB, Silva-Sales M, Sales-Campos H. TREM-2: friend or foe in infectious diseases? Crit Rev Microbiol 2024; 50:1-19. [PMID: 36403150 DOI: 10.1080/1040841x.2022.2146481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
The triggering receptor expressed on myeloid cells-2 (TREM-2) is an immune receptor expressed on immune and non-immune cells, more frequently investigated in neurodegenerative disorders and considered a marker for microglia activation. In infectious diseases, the receptor was initially believed to be an anti-inflammatory molecule, opposing the inflammation triggered by TREM-1. Currently, TREM-2 is associated with different aspects in response to infectious stimuli, including the induction of bacterial phagocytosis and clearance, containment of exacerbated pro-inflammatory responses, induction of M2 differentiation and activation of Th1 lymphocytes, besides of neurological damage after viral infection. Here, we present and discuss results published in the last two decades regarding the expression, activation and functions of TREM-2 during the course of bacterial, viral, fungal and parasitic infections. A surprisingly plasticity was observed regarding the roles of the receptor in the aforementioned contexts, which largely varied according to the cell/organ and pathogen type, besides influencing disease outcome. Therefore, our review aimed to critically overview the role of TREM-2 in infectious diseases, highlighting its potential to be used as a clinical biomarker or therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Marcelle Silva-Sales
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | |
Collapse
|
16
|
Bruno F, Abondio P, Bruno R, Ceraudo L, Paparazzo E, Citrigno L, Luiselli D, Bruni AC, Passarino G, Colao R, Maletta R, Montesanto A. Alzheimer's disease as a viral disease: Revisiting the infectious hypothesis. Ageing Res Rev 2023; 91:102068. [PMID: 37704050 DOI: 10.1016/j.arr.2023.102068] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. Two major forms of the disease exist: sporadic - the causes of which have not yet been fully understood - and familial - inherited within families from generation to generation, with a clear autosomal dominant transmission of mutations in Presenilin 1 (PSEN1), 2 (PSEN2) or Amyloid Precursors Protein (APP) genes. The main hallmark of AD consists of extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein. An ever-growing body of research supports the viral infectious hypothesis of sporadic forms of AD. In particular, it has been shown that several herpes viruses (i.e., HHV-1, HHV-2, HHV-3 or varicella zoster virus, HHV-4 or Epstein Barr virus, HHV-5 or cytomegalovirus, HHV-6A and B, HHV-7), flaviviruses (i.e., Zika virus, Dengue fever virus, Japanese encephalitis virus) as well as Human Immunodeficiency Virus (HIV), hepatitis viruses (HAV, HBV, HCV, HDV, HEV), SARS-CoV2, Ljungan virus (LV), Influenza A virus and Borna disease virus, could increase the risk of AD. Here, we summarized and discussed these results. Based on these findings, significant issues for future studies are also put forward.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy.
| | - Rossella Bruno
- Sudent at the Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88050 Catanzaro, Italy
| | - Leognano Ceraudo
- Sudent at the Department of Medical and Surgical Sciences, University of Parma, 43121 Parma, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Luigi Citrigno
- National Research Council (CNR) - Institute for Biomedical Research and Innovation - (IRIB), 87050 Mangone, Cosenza, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy.
| |
Collapse
|
17
|
Elhalag RH, Motawea KR, Talat NE, Rouzan SS, Mahmoud N, Hammad EM, Reyad SM, Mohamed MS, Shah J. Herpes simplex virus infection and the risk of dementia: a systematic review and meta-analysis. Ann Med Surg (Lond) 2023; 85:5060-5074. [PMID: 37811098 PMCID: PMC10552998 DOI: 10.1097/ms9.0000000000000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/02/2023] [Indexed: 10/10/2023] Open
Abstract
Aim The authors aimed to perform a meta-analysis to evaluate the association between herpes simplex virus (HSV) infection and the risk of developing dementia. Methods The authors searched the following databases: PubMed, Scopus, Cochrane Library, and Web of Science. The authors included any randomized control trials and controlled observational studies that investigated the prevalence of dementia in HSV-infected patients and HSV-free control group. Also, if the studies measured the levels of HSV antibodies and incidence of these antibodies in patients with dementia compared with a healthy control group. Results After a comprehensive literature search, 19 studies were included in the meta-analysis with 342 535 patients included in the analysis. The pooled analysis showed a statistically significant association between Alzheimer's disease (AD), mild cognitive impairment (MCI), and increased levels of IgG titer group [mean difference (MD) = 0.99, 95% confidence interval (CI) = 0.36-1.63, P-value = 0.002], (MD = 0.80, 95% CI = 0.26-1.35, P-value = 0.004), respectively. Additionally, the generic inverse variance showed a statistically significant association between the HSV group and increased incidence of dementia compared with the no HSV control group [risk ratio (RR) = 2.23, 95% CI = 1.18-2.29, P-value <0.00001]. Moreover, this analysis showed no statistically significant difference between the AD group and the control group in anti-HSV IgM titer n (%) outcome (RR = 1.35, 95% CI = 0.91-2.01, P-value = 0.14), respectively. Conclusion This study revealed that AD and MCI patients have increased levels of IgG antibodies titer against HSV infection. The study showed a significant association between HSV infection and increased incidence of dementia. Thus, regular follow-up of HSV patients' IgG titer levels could be useful in the prevention of dementia in these patients.
Collapse
Affiliation(s)
| | | | | | - Samah S. Rouzan
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nada Mahmoud
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Sarraa M. Reyad
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mai S. Mohamed
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
18
|
Tang Y, Zhang D, Zheng J. Repurposing Antimicrobial Protegrin-1 as a Dual-Function Amyloid Inhibitor via Cross-seeding. ACS Chem Neurosci 2023; 14:3143-3155. [PMID: 37589476 DOI: 10.1021/acschemneuro.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Amyloids and antimicrobial peptides have traditionally been recognized as distinct families with separate biological functions and targets. However, certain amyloids and antimicrobial peptides share structural and functional characteristics that contribute to the development of neurodegenerative diseases. Specifically, the aggregation of amyloid-β (Aβ) and microbial infections are interconnected pathological factors in Alzheimer's disease (AD). In this study, we propose and demonstrate a novel repurposing strategy for an antimicrobial peptide of protegrin-1 (PG-1), which exhibits the ability to simultaneously prevent Aβ aggregation and microbial infection both in vitro and in vivo. Through a comprehensive analysis using protein, cell, and worm assays, we uncover multiple functions of PG-1 against Aβ, including the following: (i) complete inhibition of Aβ aggregation at a low molar ratio of PG-1/Aβ = 0.25:1, (ii) disassembly of the preformed Aβ fibrils into amorphous aggregates, (iii) reduction of Aβ-induced cytotoxicity in SH-SY5Y cells and transgenic GMC101 nematodes, and (iv) preservation of original antimicrobial activity against P.A., E.coli., S.A., and S.E. strains in the presence of Aβ. Mechanistically, the dual anti-amyloid and anti-bacterial functions of PG-1 primarily arise from its strong binding to distinct Aβ seeds (KD = 1.24-1.90 μM) through conformationally similar β-sheet associations. This work introduces a promising strategy to repurpose antimicrobial peptides as amyloid inhibitors, effectively targeting multiple pathological pathways in AD.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
19
|
Mody PH, Marvin KN, Hynds DL, Hanson LK. Cytomegalovirus infection induces Alzheimer's disease-associated alterations in tau. J Neurovirol 2023; 29:400-415. [PMID: 37436577 DOI: 10.1007/s13365-022-01109-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 07/13/2023]
Abstract
Alzheimer's disease (AD) manifests with loss of neurons correlated with intercellular deposition of amyloid (amyloid plaques) and intracellular neurofibrillary tangles of hyperphosphorylated tau. However, targeting AD hallmarks has not as yet led to development of an effective treatment despite numerous clinical trials. A better understanding of the early stages of neurodegeneration may lead to development of more effective treatments. One underexplored area is the clinical correlation between infection with herpesviruses and increased risk of AD. We hypothesized that similar to work performed with herpes simplex virus 1 (HSV1), infection with the cytomegalovirus (CMV) herpesvirus increases levels and phosphorylation of tau, similar to AD tauopathy. We used murine CMV (MCMV) to infect mouse fibroblasts and rat neuronal cells to test our hypothesis. MCMV infection increased steady-state levels of primarily high molecular weight forms of tau and altered the patterns of tau phosphorylation. Both changes required viral late gene products. Glycogen synthase kinase 3 beta (GSK3β) was upregulated in the HSVI model, but inhibition with lithium chloride suggested that this enzyme is unlikely to be involved in MCMV infection mediated tau phosphorylation. Thus, we confirm that MCMV, a beta herpes virus, like alpha herpes viruses (e.g., HSV1), can promote tau pathology. This suggests that CMV infection can be useful as another model system to study mechanisms leading to neurodegeneration. Since MCMV infects both mice and rats as permissive hosts, our findings from tissue culture can likely be applied to a variety of AD models to study development of abnormal tau pathology.
Collapse
Affiliation(s)
- Prapti H Mody
- Division of Biology, Texas Woman's University, 304 Administration Drive, Denton, TX, 76204, USA
- Current affiliation: University of Texas Southwestern Medical Center, Dallas, USA
| | - Kelsey N Marvin
- Division of Biology, Texas Woman's University, 304 Administration Drive, Denton, TX, 76204, USA
| | - DiAnna L Hynds
- Division of Biology, Texas Woman's University, 304 Administration Drive, Denton, TX, 76204, USA
| | - Laura K Hanson
- Division of Biology, Texas Woman's University, 304 Administration Drive, Denton, TX, 76204, USA.
| |
Collapse
|
20
|
Catumbela CSG, Giridharan VV, Barichello T, Morales R. Clinical evidence of human pathogens implicated in Alzheimer's disease pathology and the therapeutic efficacy of antimicrobials: an overview. Transl Neurodegener 2023; 12:37. [PMID: 37496074 PMCID: PMC10369764 DOI: 10.1186/s40035-023-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
A wealth of pre-clinical reports and data derived from human subjects and brain autopsies suggest that microbial infections are relevant to Alzheimer's disease (AD). This has inspired the hypothesis that microbial infections increase the risk or even trigger the onset of AD. Multiple models have been developed to explain the increase in pathogenic microbes in AD patients. Although this hypothesis is well accepted in the field, it is not yet clear whether microbial neuroinvasion is a cause of AD or a consequence of the pathological changes experienced by the demented brain. Along the same line, the gut microbiome has also been proposed as a modulator of AD. In this review, we focus on human-based evidence demonstrating the elevated abundance of microbes and microbe-derived molecules in AD hosts as well as their interactions with AD hallmarks. Further, the direct-purpose and potential off-target effects underpinning the efficacy of anti-microbial treatments in AD are also addressed.
Collapse
Affiliation(s)
- Celso S G Catumbela
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993, Santiago, Chile.
| |
Collapse
|
21
|
Kasimir F, Toomey D, Liu Z, Kaiping AC, Ariza ME, Prusty BK. Tissue specific signature of HHV-6 infection in ME/CFS. Front Mol Biosci 2022; 9:1044964. [PMID: 36589231 PMCID: PMC9795011 DOI: 10.3389/fmolb.2022.1044964] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
First exposure to various human herpesviruses (HHVs) including HHV-6, HCMV and EBV does not cause a life-threatening disease. In fact, most individuals are frequently unaware of their first exposure to such pathogens. These herpesviruses acquire lifelong latency in the human body where they show minimal genomic activity required for their survival. We hypothesized that it is not the latency itself but a timely, regionally restricted viral reactivation in a sub-set of host cells that plays a key role in disease development. HHV-6 (HHV-6A and HHV-6B) and HHV-7 are unique HHVs that acquire latency by integration of the viral genome into sub-telomeric region of human chromosomes. HHV-6 reactivation has been linked to Alzheimer's Disease, Chronic Fatigue Syndrome, and many other diseases. However, lack of viral activity in commonly tested biological materials including blood or serum strongly suggests tissue specific localization of active HHV-6 genome. Here in this paper, we attempted to analyze active HHV-6 transcripts in postmortem tissue biopsies from a small cohort of ME/CFS patients and matched controls by fluorescence in situ hybridization using a probe against HHV-6 microRNA (miRNA), miR-aU14. Our results show abundant viral miRNA in various regions of the human brain and associated neuronal tissues including the spinal cord that is only detected in ME/CFS patients and not in controls. Our findings provide evidence of tissue-specific active HHV-6 and EBV infection in ME/CFS, which along with recent work demonstrating a possible relationship between herpesvirus infection and ME/CFS, provide grounds for renewed discussion on the role of herpesviruses in ME/CFS.
Collapse
Affiliation(s)
- Francesca Kasimir
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Danny Toomey
- HHV-6 Foundation, Santa Barbara, CA, United States
| | - Zheng Liu
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Agnes C. Kaiping
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Maria Eugenia Ariza
- Department of Cancer Biology and Genetics (CBG), Institute for Behavioral Medicine Research (IBMR), The Ohio State University, Columbus, OH, United States
| | - Bhupesh K. Prusty
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Vojtechova I, Machacek T, Kristofikova Z, Stuchlik A, Petrasek T. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathog 2022; 18:e1010929. [PMCID: PMC9671327 DOI: 10.1371/journal.ppat.1010929] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The amyloid cascade hypothesis, focusing on pathological proteins aggregation, has so far failed to uncover the root cause of Alzheimer’s disease (AD), or to provide an effective therapy. This traditional paradigm essentially explains a mechanism involved in the development of sporadic AD rather than its cause. The failure of an overwhelming majority of clinical studies (99.6%) demonstrates that a breakthrough in therapy would be difficult if not impossible without understanding the etiology of AD. It becomes more and more apparent that the AD pathology might originate from brain infection. In this review, we discuss a potential role of bacteria, viruses, fungi, and eukaryotic parasites as triggers of AD pathology. We show evidence from the current literature that amyloid beta, traditionally viewed as pathological, actually acts as an antimicrobial peptide, protecting the brain against pathogens. However, in case of a prolonged or excessive activation of a senescent immune system, amyloid beta accumulation and aggregation becomes damaging and supports runaway neurodegenerative processes in AD. This is paralleled by the recent study by Alam and colleagues (2022) who showed that alpha-synuclein, the protein accumulating in synucleinopathies, also plays a critical physiological role in immune reactions and inflammation, showing an unforeseen link between the 2 unrelated classes of neurodegenerative disorders. The multiplication of the amyloid precursor protein gene, recently described by Lee and collegues (2018), and possible reactivation of human endogenous retroviruses by pathogens fits well into the same picture. We discuss these new findings from the viewpoint of the infection hypothesis of AD and offer suggestions for future research. More than a century after its discovery, Alzheimer’s disease (AD) remains incurable and mysterious. The dominant hypothesis of amyloid cascade has succeeded in explaining the key pathological mechanism, but not its trigger. Amyloid beta has been traditionally considered a pathological peptide, and its physiological functions remain poorly known. These knowledge gaps have contributed to repeated failures of clinical studies. The emerging infectious hypothesis of AD considers central nervous system (CNS) infection the primary trigger of sporadic AD. A closely connected hypothesis claims that amyloid beta is an antimicrobial peptide. In this review, we discuss the available evidence for the involvement of infections in AD, coming from epidemiological studies, post mortem analyses of brain tissue, and experiments in vitro and in vivo. We argue there is no unique “Alzheimer’s germ,” instead, AD is a general reaction of the CNS to chronic infections, in the milieu of an aged immune system. The pathology may become self-sustained even without continuous presence of microbes in the brain. Importantly, the infectious hypothesis leads to testable predictions. Targeting amyloid beta should be ineffective, unless the triggering pathogen and inflammatory response are addressed as well. Meticulous control of selected infections might be the best near-term strategy for AD prevention.
Collapse
Affiliation(s)
- Iveta Vojtechova
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| | - Tomas Machacek
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Ales Stuchlik
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Petrasek
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| |
Collapse
|
23
|
Nemergut M, Batkova T, Vigasova D, Bartos M, Hlozankova M, Schenkmayerova A, Liskova B, Sheardova K, Vyhnalek M, Hort J, Laczó J, Kovacova I, Sitina M, Matej R, Jancalek R, Marek M, Damborsky J. Increased occurrence of Treponema spp. and double-species infections in patients with Alzheimer's disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157114. [PMID: 35787909 DOI: 10.1016/j.scitotenv.2022.157114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Although the link between microbial infections and Alzheimer's disease (AD) has been demonstrated in multiple studies, the involvement of pathogens in the development of AD remains unclear. Here, we investigated the frequency of the 10 most commonly cited viral (HSV-1, EBV, HHV-6, HHV-7, and CMV) and bacterial (Chlamydia pneumoniae, Helicobacter pylori, Borrelia burgdorferi, Porphyromonas gingivalis, and Treponema spp.) pathogens in serum, cerebrospinal fluid (CSF) and brain tissues of AD patients. We have used an in-house multiplex PCR kit for simultaneous detection of five bacterial and five viral pathogens in serum and CSF samples from 50 AD patients and 53 healthy controls (CTRL). We observed a significantly higher frequency rate of AD patients who tested positive for Treponema spp. compared to controls (AD: 62.2 %; CTRL: 30.3 %; p-value = 0.007). Furthermore, we confirmed a significantly higher occurrence of cases with two or more simultaneous infections in AD patients compared to controls (AD: 24 %; CTRL 7.5 %; p-value = 0.029). The studied pathogens were detected with comparable frequency in serum and CSF. In contrast, Borrelia burgdorferi, human herpesvirus 7, and human cytomegalovirus were not detected in any of the studied samples. This study provides further evidence of the association between microbial infections and AD and shows that paralleled analysis of multiple sample specimens provides complementary information and is advisable for future studies.
Collapse
Affiliation(s)
- Michal Nemergut
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Tereza Batkova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Masaryk University, St. Anne's University Hospital Brno, Brno, Czech Republic; BioVendor R&D, Brno, Czech Republic
| | - Dana Vigasova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | | | | | - Andrea Schenkmayerova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Barbora Liskova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Katerina Sheardova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Masaryk University, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Martin Vyhnalek
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Jan Laczó
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Ingrid Kovacova
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Michal Sitina
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne's University Hospital Brno, Brno, Czech Republic and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Marek
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
24
|
Implications of Microorganisms in Alzheimer's Disease. Curr Issues Mol Biol 2022; 44:4584-4615. [PMID: 36286029 PMCID: PMC9600878 DOI: 10.3390/cimb44100314] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a deadly brain degenerative disorder that leads to brain shrinkage and dementia. AD is manifested with hyperphosphorylated tau protein levels and amyloid beta (Aβ) peptide buildup in the hippocampus and cortex regions of the brain. The nervous tissue of AD patients also contains fungal proteins and DNA which are linked to bacterial infections, suggesting that polymicrobial infections also occur in the brains of those with AD. Both immunohistochemistry and next-generation sequencing (NGS) techniques were employed to assess fungal and bacterial infections in the brain tissue of AD patients and non-AD controls, with the most prevalent fungus genera detected in AD patients being Alternaria, Botrytis, Candida, and Malassezia. Interestingly, Fusarium was the most common genus detected in the control group. Both AD patients and controls were also detectable for Proteobacteria, followed by Firmicutes, Actinobacteria, and Bacteroides for bacterial infection. At the family level, Burkholderiaceae and Staphylococcaceae exhibited higher levels in the brains of those with AD than the brains of the control group. Accordingly, there is thought to be a viscous cycle of uncontrolled neuroinflammation and neurodegeneration in the brain, caused by agents such as the herpes simplex virus type 1 (HSV1), Chlamydophilapneumonia, and Spirochetes, and the presence of apolipoprotein E4 (APOE4), which is associated with an increased proinflammatory response in the immune system. Systemic proinflammatory cytokines are produced by microorganisms such as Cytomegalovirus, Helicobacter pylori, and those related to periodontal infections. These can then cross the blood–brain barrier (BBB) and lead to the onset of dementia. Here, we reviewed the relationship between the etiology of AD and microorganisms (such as bacterial pathogens, Herpesviridae viruses, and periodontal pathogens) according to the evidence available to understand the pathogenesis of AD. These findings might guide a targeted anti-inflammatory therapeutic approach to AD.
Collapse
|
25
|
Tran VTA, Lee LP, Cho H. Neuroinflammation in neurodegeneration via microbial infections. Front Immunol 2022; 13:907804. [PMID: 36052093 PMCID: PMC9425114 DOI: 10.3389/fimmu.2022.907804] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recent epidemiological studies show a noticeable correlation between chronic microbial infections and neurological disorders. However, the underlying mechanisms are still not clear due to the biological complexity of multicellular and multiorgan interactions upon microbial infections. In this review, we show the infection leading to neurodegeneration mediated by multiorgan interconnections and neuroinflammation. Firstly, we highlight three inter-organ communications as possible routes from infection sites to the brain: nose-brain axis, lung-brain axis, and gut-brain axis. Next, we described the biological crosstalk between microglia and astrocytes upon pathogenic infection. Finally, our study indicates how neuroinflammation is a critical player in pathogen-mediated neurodegeneration. Taken together, we envision that antibiotics targeting neuro-pathogens could be a potential therapeutic strategy for neurodegeneration.
Collapse
Affiliation(s)
- Van Thi Ai Tran
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Luke P. Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Harvard Institute of Medicine, Harvard University, Boston, MA, United States
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| | - Hansang Cho
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| |
Collapse
|
26
|
Zhao C, Jiang Z, Tian L, Tang L, Zhou A, Dong T. Bioinformatics-Based Approach for Exploring the Immune Cell Infiltration Patterns in Alzheimer's Disease and Determining the Intervention Mechanism of Liuwei Dihuang Pill. Dose Response 2022; 20:15593258221115563. [PMID: 35898725 PMCID: PMC9310246 DOI: 10.1177/15593258221115563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Traditional Chinese medicine (TCM) compounds have recently garnered attention for the regulation of immune cell infiltration and the prevention and treatment of Alzheimer's disease (AD). The Liuwei Dihuang Pill (LDP) has potential in this regard; however, its specific molecular mechanism currently remains unclear. Therefore, we adopted a bioinformatics approach to investigate the infiltration patterns of different types of immune cells in AD and explored the molecular mechanism of LDP intervention, with the aim of providing a new basis for improving the clinical immunotherapy of AD patients. We found that M1 macrophages showed significantly different degrees of infiltration between the hippocampal tissue samples of AD patients and healthy individuals. Four immune intersection targets of LDP in the treatment of AD were identified; they were enriched in 206 biological functions and 30 signaling pathways. Quercetin had the best docking effect with the core immune target PRKCB. Our findings suggest that infiltrated immune cells may influence the course of AD and that LDP can regulate immune cell infiltration through multi-component, multi-target, and multi-pathway approaches, providing a new research direction regarding AD immunotherapy.
Collapse
Affiliation(s)
- Chenling Zhao
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Zhangsheng Jiang
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Liwei Tian
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Lulu Tang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Ting Dong
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
27
|
van Olst L, Coenen L, Nieuwland JM, Rodriguez-Mogeda C, de Wit NM, Kamermans A, Middeldorp J, de Vries HE. Crossing borders in Alzheimer's disease: A T cell's perspective. Adv Drug Deliv Rev 2022; 188:114398. [PMID: 35780907 DOI: 10.1016/j.addr.2022.114398] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide. While different immunotherapies are imminent, currently only disease-modifying medications are available and a cure is lacking. Over the past decade, immunological interfaces of the central nervous system (CNS) and their role in neurodegenerative diseases received increasing attention. Specifically, emerging evidence shows that subsets of circulating CD8+ T cells cross the brain barriers and associate with AD pathology. To gain more insight into how the adaptive immune system is involved in disease pathogenesis, we here provide a comprehensive overview of the contribution of T cells to AD pathology, incorporating changes at the brain barriers. In addition, we review studies that provide translation of these findings by targeting T cells to combat AD pathology and cognitive decline. Importantly, these data show that immunological changes in AD are not confined to the CNS and that AD-associated systemic immune changes appear to affect brain homeostasis.
Collapse
Affiliation(s)
- L van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Coenen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J M Nieuwland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - C Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - N M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Association between human herpesvirus 6 (HHV-6) and cognitive function in the elderly population in Shenzhen, China. Aging Clin Exp Res 2022; 34:2407-2415. [PMID: 35767152 DOI: 10.1007/s40520-022-02170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 11/01/2022]
Abstract
AIM Human herpesvirus 6 (HHV-6) is neurophilic, and its relationship with Alzheimer's disease (AD) remains controversial. This study aimed to examine the relationships between HHV-6 and cognitive abilities in elderly people aged 60 years or above from communities in Shenzhen. METHODS We recruited participants from 10 community health service centers in Shenzhen. Participants were divided into case and control groups according to Mini-Mental State Examination (MMSE) scale standards and were included in this study with 1:1 matching based on sex and age (± 3 years). The HHV-6 gene was detected by real-time fluorescent quantitative PCR, and the HHV-6 copy number was quantified. RESULTS A total of 580 participants (cases, n = 290; controls, n = 290), matched for gender and age was included in this study. A positive HHV-6 test was not associated with a significant difference in global cognitive performance (ORadjusted = 1.651, 95% CI = 0.671-4.062). After adjusting for gender, age, education, Pittsburgh Sleep Quality Index (PSQI) score, homocysteine (Hcy) and glycosylated hemoglobin (HbA1c), the results of multiple linear regression showed that there was a statistically negative correlation between HHV-6 copy number and orientation (βadjusted = -0.974, p = 0.013), attention and calculation (βadjusted = -1.840, p < 0.001), and language (βadjusted = -2.267, p < 0.001). The restricted cubic spline (RCS) model results showed that there was a nonlinear dose-response relationship between HHV-6 log10-transformed copies and orientation (poverall = 0.003, pnonliner = 0.045), attention and calculation (poverall < 0.001, pnonliner < 0.001), and language (poverall < 0.001, pnonliner = 0.016). CONCLUSIONS HHV-6 infection significantly associated with orientation, attention and calculation, and language in elderly individuals.
Collapse
|
29
|
Olfactory Dysfunction in COVID-19: Pathology and Long-Term Implications for Brain Health. Trends Mol Med 2022; 28:781-794. [PMID: 35810128 PMCID: PMC9212891 DOI: 10.1016/j.molmed.2022.06.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
|
30
|
Romanescu C, Schreiner TG, Mukovozov I. The Role of Human Herpesvirus 6 Infection in Alzheimer’s Disease Pathogenicity—A Theoretical Mosaic. J Clin Med 2022; 11:jcm11113061. [PMID: 35683449 PMCID: PMC9181317 DOI: 10.3390/jcm11113061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD), a neurodegenerative disorder generally affecting older adults, is the most common form of dementia worldwide. The disease is marked by severe cognitive and psychiatric decline and has dramatic personal and social consequences. Considerable time and resources are dedicated to the pursuit of a better understanding of disease mechanisms; however, the ultimate goal of obtaining a viable treatment option remains elusive. Neurodegenerative disease as an outcome of gene–environment interaction is a notion widely accepted today; a clear understanding of how external factors are involved in disease pathogenesis is missing, however. In the case of AD, significant effort has been invested in the study of viral pathogens and their role in disease mechanisms. The current scoping review focuses on the purported role HHV-6 plays in AD pathogenesis. First, early studies demonstrating evidence of HHV-6 cantonment in either post-mortem AD brain specimens or in peripheral blood samples of living AD patients are reviewed. Next, selected examples of possible mechanisms whereby viral infection can directly or indirectly contribute to AD pathogenesis are presented, such as autophagy dysregulation, the interaction between miR155 and HHV-6, and amyloid-beta as an antimicrobial peptide. Finally, closely related topics such as HHV-6 penetration in the CNS, HHV-6 involvement in neuroinflammation, and a brief discussion on HHV-6 epigenetics are examined.
Collapse
Affiliation(s)
- Constantin Romanescu
- Clinical Section IV, “St. Parascheva” Infectious Disease Hospital, 700116 Iași, Romania
- Correspondence: (C.R.); (T.G.S.)
| | - Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Gr. T. Popa”, 700115 Iasi, Romania
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21–23 Professor Dimitrie Mangeron Blvd.,700050 Iasi, Romania
- Correspondence: (C.R.); (T.G.S.)
| | - Ilya Mukovozov
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
31
|
Teles F, Collman RG, Mominkhan D, Wang Y. Viruses, periodontitis, and comorbidities. Periodontol 2000 2022; 89:190-206. [PMID: 35244970 DOI: 10.1111/prd.12435] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seminal studies published in the 1990s and 2000s explored connections between periodontal diseases and systemic conditions, revealing potential contributions of periodontal diseases in the initiation or worsening of systemic conditions. The resulting field of periodontal medicine led to the publication of studies indicating that periodontal diseases can influence the risk of systemic conditions, including adverse pregnancy outcomes, cardiovascular and respiratory diseases, as well as Alzheimer disease and cancers. In general, these studies hypothesized that the periodontal bacterial insult and/or the associated proinflammatory cascade could contribute to the pathogenesis of these systemic diseases. While investigations of the biological basis of the connections between periodontal diseases and systemic conditions generally emphasized the bacteriome, it is also biologically plausible, under an analogous hypothesis, that other types of organisms may have a similar role. Human viruses would be logical "suspects" in this role, given their ubiquity in the oral cavity, association with periodontal diseases, and ability to elicit strong inflammatory response, compromise immune responses, and synergize with bacteria in favor of a more pathogenic microbial consortium. In this review, the current knowledge of the role of viruses in connecting periodontal diseases and systemic conditions is examined. We will also delve into the mechanistic basis for such connections and highlight the importance of those relationships in the management and treatment of patients.
Collapse
Affiliation(s)
- Flavia Teles
- Department of Basic and Translational Sciences, School of Dental Medicine, Center for Innovation & Precision Dentistry, School of Dental Medicine & School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G Collman
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dana Mominkhan
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Bigley TM, Xiong M, Ali M, Chen Y, Wang C, Serrano JR, Eteleeb A, Harari O, Yang L, Patel SJ, Cruchaga C, Yokoyama WM, Holtzman DM. Murine roseolovirus does not accelerate amyloid-β pathology and human roseoloviruses are not over-represented in Alzheimer disease brains. Mol Neurodegener 2022; 17:10. [PMID: 35033173 PMCID: PMC8760754 DOI: 10.1186/s13024-021-00514-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The role of viral infection in Alzheimer Disease (AD) pathogenesis is an area of great interest in recent years. Several studies have suggested an association between the human roseoloviruses, HHV-6 and HHV-7, and AD. Amyloid-β (Aβ) plaques are a hallmark neuropathological finding of AD and were recently proposed to have an antimicrobial function in response to infection. Identifying a causative and mechanistic role of human roseoloviruses in AD has been confounded by limitations in performing in vivo studies. Recent -omics based approaches have demonstrated conflicting associations between human roseoloviruses and AD. Murine roseolovirus (MRV) is a natural murine pathogen that is highly-related to the human roseoloviruses, providing an opportunity to perform well-controlled studies of the impact of roseolovirus on Aβ deposition. METHODS We utilized the 5XFAD mouse model to test whether MRV induces Aβ deposition in vivo. We also evaluated viral load and neuropathogenesis of MRV infection. To evaluate Aβ interaction with MRV, we performed electron microscopy. RNA-sequencing of a cohort of AD brains compared to control was used to investigate the association between human roseolovirus and AD. RESULTS We found that 5XFAD mice were susceptible to MRV infection and developed neuroinflammation. Moreover, we demonstrated that Aβ interacts with viral particles in vitro and, subsequent to this interaction, can disrupt infection. Despite this, neither peripheral nor brain infection with MRV increased or accelerated Aβ plaque formation. Moreover, -omics based approaches have demonstrated conflicting associations between human roseoloviruses and AD. Our RNA-sequencing analysis of a cohort of AD brains compared to controls did not show an association between roseolovirus infection and AD. CONCLUSION Although MRV does infect the brain and cause transient neuroinflammation, our data do not support a role for murine or human roseoloviruses in the development of Aβ plaque formation and AD.
Collapse
Affiliation(s)
- Tarin M. Bigley
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Monica Xiong
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Division of Biology and Biomedical Sciences (DBBS), Washington University School of Medicine, St. Louis, MO 63110 USA
- Present address: Genentech, 1 DNA Way, South San Francisco, CA 94080 USA
| | - Muhammad Ali
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
| | - Yun Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Division of Biology and Biomedical Sciences (DBBS), Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Javier Remolina Serrano
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Abdallah Eteleeb
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - Oscar Harari
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Swapneel J. Patel
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Carlos Cruchaga
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department Psychiatry, Washington University School of Medicine (WUSM), 660 S. Euclid Ave. B8134, St. Louis, MO 63110 USA
- NeuroGenomics and Informatics, Washington University School of Medicine, St. Louis, MO USA
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
33
|
Mekli K, Lophatananon A, Cant R, Burns A, Dobson CB, Itzhaki RF, Muir KR. Investigation of the association between the antibody responses to neurotropic viruses and dementia outcomes in the UK Biobank. PLoS One 2022; 17:e0274872. [PMID: 36223333 PMCID: PMC9555633 DOI: 10.1371/journal.pone.0274872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/06/2022] [Indexed: 11/07/2022] Open
Abstract
The causes that trigger the onset of dementia are still unknown. Recently there has been an increasing interest in the possible role of infectious agents in the brain in the pathogenesis of this condition. Amongst the viruses, members of the Herpesviridae family, namely herpes simplex virus-1 (HSV1), cytomegalovirus (CMV), human herpesvirus-6 (HHV6), human herpesvirus-7 (HHV7) and varicella zoster virus (VZV) have been suggested as potential causes of the disease. However, the relative importance of these and other viruses in contributing to dementia remains unclear. We evaluated the association between seropositivity status of all viruses available in a large, population-based dataset (the UK Biobank) and dementia risk in an unbiased way. Of the 15 viruses investigated, our results showed a statistically significant increase of dementia risk associated only with HSV1 seropositivity (OR 2.14, 95% C.I. 1.21-3.81). However, by combining the data we found that seropositivity for 4 viruses (HSV1, HHV6, HHV7 and VZV) also significantly increases the risk of dementia (OR = 2.37, 95% C.I. 1.43-3.92). These four viruses have been described previously as neurotropic viruses. Our results provide support for a role for neurotropic viruses in the pathology of dementia.
Collapse
Affiliation(s)
- Krisztina Mekli
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Rachel Cant
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Alistair Burns
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Curtis B. Dobson
- Division of Pharmacy & Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ruth F. Itzhaki
- The Oxford Institute of Population Ageing, University of Oxford, Oxford, United Kingdom
| | - Kenneth R. Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Butler L, Walker KA. The Role of Chronic Infection in Alzheimer's Disease: Instigators, Co-conspirators, or Bystanders? CURRENT CLINICAL MICROBIOLOGY REPORTS 2021; 8:199-212. [PMID: 35186664 PMCID: PMC8849576 DOI: 10.1007/s40588-021-00168-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Herein, we provide a critical review of the clinical and translational research examining the relationship between viral and bacterial pathogens and Alzheimer's disease. In addition, we provide an overview of the biological pathways through which chronic infection may contribute to Alzheimer's disease. RECENT FINDINGS Dementia due to Alzheimer's disease is a leading cause of disability among older adults in developed countries, yet knowledge of the causative factors that promote Alzheimer's disease pathogenesis remains incomplete. Over the past several decades, numerous studies have demonstrated an association of chronic viral and bacterial infection with Alzheimer's disease. Implicated infectious agents include numerous herpesviruses (HSV-1, HHV-6, HHV-7) and various gastric, enteric, and oral bacterial species, as well as Chlamydia pneumonia and multiple spirochetes. SUMMARY Evidence supports the association between multiple pathogens and Alzheimer's disease risk. Whether these pathogens play a causal role in Alzheimer's pathophysiology remains an open question. We propose that the host immune response to active or latent infection in the periphery or in the brain triggers or accelerates the Alzheimer's disease processes, including the accumulation of amyloid-ß and pathogenic tau, and neuroinflammation. While recent research suggests that such theories are plausible, additional longitudinal studies linking microorganisms to Aß and phospho-tau development, neuroinflammation, and clinically defined Alzheimer's dementia are needed.
Collapse
Affiliation(s)
- Lauren Butler
- National Institutes of Health, National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD, United States
| | - Keenan A Walker
- National Institutes of Health, National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD, United States
| |
Collapse
|
35
|
Valverde A, Seal A, Nares S, Shukla D, Naqvi AR. Human herpesvirus-encoded MicroRNA in host-pathogen interaction. Adv Biol Regul 2021; 82:100829. [PMID: 34560402 PMCID: PMC11646283 DOI: 10.1016/j.jbior.2021.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Human herpesviruses (HHV) are ubiquitous, linear dsDNA viruses that establish lifelong latency, disrupted by sporadic reactivation. HHV have evolved diverse ingenious mechanisms to evade robust host defenses. Incorporation of unique stem loop sequences that generate viral microRNAs (v-miRs) exemplifies one such evolutionary adaptation in HHV. These noncoding RNAs can control cellular and viral transcriptomes highlighting their ability in shaping host-HHV interactions. We summarize recent developments in functional characterization of HHV-encoded miRNAs in shaping the outcome of host-pathogen interaction. Non-immunogenic dissemination of v-miRs through exosomes confer added advantage to HHV in incessant modulation of host microenvironment. This review delineates the mechanistic role of v-miRs in facilitating viral persistence and tropism by targeting genes associated with cellular (apoptosis, angiogenesis, cell migration, etc.) and viral life cycle (latency, lytic and reactivation). Burgeoning evidences indicate plausible association of v-miRs in various immune-mediated diseases (nasopharyngeal carcinoma, neurological disorders, periodontal diseases, etc.) and herpesvirus-related malignancies indicating their broad-spectrum impact on host cellular pathways. We propose to exploit tisssue and systemic levels of v-miRs as diagnostic and prognostic markers for cancers and immune-mediated diseases. Therapeutic targeting of v-miRs will advance the promising outcomes of preclinical discoveries to bedside application.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Alexandra Seal
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States; Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, United States
| | - Afsar Raza Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States.
| |
Collapse
|
36
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. Beta Amyloid, Tau Protein, and Neuroinflammation: An Attempt to Integrate Different Hypotheses of Alzheimer’s Disease Pathogenesis. Mol Biol 2021. [DOI: 10.1134/s002689332104004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that inevitably results in dementia and death. Currently, there are no pathogenetically grounded methods for the prevention and treatment of AD, and all current treatment regimens are symptomatic and unable to significantly delay the development of dementia. The accumulation of β-amyloid peptide (Aβ), which is a spontaneous, aggregation-prone, and neurotoxic product of the processing of signaling protein APP (Amyloid Precursor Protein), in brain tissues, primarily in the hippocampus and the frontal cortex, was for a long time considered the main cause of neurodegenerative changes in AD. However, attempts to treat AD based on decreasing Aβ production and aggregation did not bring significant clinical results. More and more arguments are arising in favor of the fact that the overproduction of Aβ in most cases of AD is not the initial cause, but a concomitant event of pathological processes in the course of the development of sporadic AD. The concept of neuroinflammation has come to the fore, suggesting that inflammatory responses play the leading role in the initiation and development of AD, both in brain tissue and in the periphery. The hypothesis about the key role of neuroinflammation in the pathogenesis of AD opens up new opportunities in the search for ways to treat and prevent this socially significant disease.
Collapse
|
37
|
Heidari F, Ansstas G, Ajamian F. CD33 mRNA Has Elevated Expression Levels in the Leukocytes of Peripheral Blood in Patients with Late-Onset Alzheimer's Disease. Gerontology 2021; 68:421-430. [PMID: 34569532 DOI: 10.1159/000518820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 07/31/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS In despite of conflicting results among different ethnic groups, the rs3865444 of CD33 gene has previously been identified as a risk factor for late-onset Alzheimer's disease (LOAD).This study was aimed to evaluate the association between rs3865444 SNP with LOAD occurrence, and to investigate whether CD33 mRNA expression will change in the leukocytes of peripheral blood in LOAD patients. METHODS The rs3865444 polymorphism was genotyped in 233 LOAD and 238 control subjects using the Tetra-ARMS-PCR method. CD33 mRNAs expression in leukocytes were assessed and analyzed using the real-time qPCR method. We used in silico approach to analyze potential effects imparted by rs3865444 polymorphism in LOAD pathogenesis. RESULTS Our results show a significant increase in CD33 mRNA expression levels in white blood cells of LOAD patients, however, the association between CD33 rs3865444 polymorphism and LOAD was found to be not significant. We also noticed that LOAD patients with the C/A genotype had higher CD33 mRNA levels in their peripheral blood than those of the control group. CONCLUSIONS rs3865444, located upstream of the 5'CD33 coding region, might positively influence CD33 mRNAs expression in leukocytes of LOAD versus healthy people. This is likely to happen through interfering rs3865444 (C) with the functional activity of several other transcription factors given that rs3865444 is in linkage disequilibrium with other functional polymorphisms in this coding region according to an in silico study. We propose that CD33 mRNAs elevation in peripheral immune cells - as a potential biomarker in LOAD - is related to peripheral immune system impairment.
Collapse
Affiliation(s)
- Fatemeh Heidari
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - George Ansstas
- Division of Oncology, Washington University, School of Medicine, St. Louis, Missouri, USA
| | - Farzam Ajamian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
38
|
Shi M, Li C, Tian X, Chu F, Zhu J. Can Control Infections Slow Down the Progression of Alzheimer's Disease? Talking About the Role of Infections in Alzheimer's Disease. Front Aging Neurosci 2021; 13:685863. [PMID: 34366826 PMCID: PMC8339924 DOI: 10.3389/fnagi.2021.685863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease as the most common age-related dementia affects more than 40 million people in the world, representing a global public health priority. However, the pathogenesis of Alzheimer’s disease (AD) is complex, and it remains unclear. Over the past decades, all efforts made in the treatments of AD, with targeting the pathogenic amyloid β (Aβ), neurofibrillary tangles, and misfolded tau protein, were failed. Recently, many studies have hinted that infection, and chronic inflammation that caused by infection are crucial risk factors for AD development and progress. In the review, we analyzed the role of infections caused by bacteria, viruses, and other pathogens in the pathogenesis of AD and its animal models, and explored the therapeutic possibility with anti-infections for AD. However, based on the published data, it is still difficult to determine their causal relationship between infection and AD due to contradictory results. We think that the role of infection in the pathogenesis of AD should not be ignored, even though infection does not necessarily cause AD, it may act as an accelerator in AD at least. It is essential to conduct the longitudinal studies and randomized controlled trials in humans, which can determine the role of infection in AD and clarify the links between infection and the pathological features of AD. Finding targeting infection drugs and identifying the time window for applying antibacterial or antiviral intervention may be more promising for future clinical therapeutic strategies in AD.
Collapse
Affiliation(s)
- Mingchao Shi
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Chunrong Li
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Tian
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Fengna Chu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
39
|
Itzhaki RF. Overwhelming Evidence for a Major Role for Herpes Simplex Virus Type 1 (HSV1) in Alzheimer's Disease (AD); Underwhelming Evidence against. Vaccines (Basel) 2021; 9:679. [PMID: 34205498 PMCID: PMC8234998 DOI: 10.3390/vaccines9060679] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
This review describes investigations of specific topics that lie within the general subject of HSV1's role in AD/dementia, published in the last couple of years. They include studies on the following: relationship of HSV1 to AD using neural stem cells; the apparent protective effects of treatment of HSV1 infection or of VZV infection with antivirals prior to the onset of dementia; the putative involvement of VZV in AD/dementia; the possible role of human herpes virus 6 (HHV6) in AD; the seemingly reduced risk of dementia after vaccination with diverse types of vaccine, and the association shown in some vaccine studies with reduced frequency of HSV1 reactivation; anti-HSV serum antibodies supporting the linkage of HSV1 in brain with AD in APOE-ε4 carriers, and the association between APOE and cognition, and association of APOE and infection with AD/dementia. The conclusions are that there is now overwhelming evidence for HSV1's role-probably causal-in AD, when it is present in brain of APOE-ε4 carriers, and that further investigations should be made on possible prevention of the disease by vaccination, or by prolonged antiviral treatment of HSV1 infection in APOE-ε4 carriers, before disease onset.
Collapse
Affiliation(s)
- Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford, 66 Banbury Road, Oxford OX2 6PR, UK
| |
Collapse
|
40
|
Krynskiy SA, Malashenkova IK, Ogurtsov DP, Khailov NA, Chekulaeva EI, Shipulina OY, Ponomareva EV, Gavrilova SI, Didkovsky NA, Velichkovsky BM. [Herpesvirus infections and immunological disturbances in patients with different stages of Alzheimer's disease]. Vopr Virusol 2021; 66:129-139. [PMID: 33993683 DOI: 10.36233/0507-4088-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a multifactorial disease that leads to a progressive memory loss, visualspatial impairments, emotional and personality changes. As its earliest pre-dementia clinical stage, amnestic mild cognitive impairment syndrome (aMCI) is currently considered. Neuroinflammation plays a role in the development and progression of aMCI and the initial stage of AD, which can be supported by immunological disorders of a systemic character. Study of factors, including infections, influencing immune disorders and systemic inflammatory response in patients with aMCI, is of great importance.The aim of this study was to obtain new data on the possible role of herpesvirus infections in the development and progression of aMCI. MATERIAL AND METHODS 100 patients with aMCI diagnosis, 45 patients with AD, 40 people from the control group were enrolled into the study. The frequency of DNA detection of herpesviruses (Epstein-Barr virus (EBV), human herpesviruses (HHV) type 6 and 7, cytomegalovirus (CMV)), the levels of viral load and the serological markers of herpesvirus infections (IgG to HHV-1, IgG to CMV) were determined. Immunological studies included an assessment of the level of the main pro-inflammatory and anti-inflammatory cytokines, and indicators of humoral and cellular immunity. RESULTS The study found an increased detection rate of EBV in saliva and a higher level of EBV DNA in saliva in aMCI and AD than in the control group. A relationship between the presence of active EBV infection and changes in immunological parameters in patients with aMCI were found. It was also discovered that the level of IgG antibodies to CMV is associated with the stage of AD. DISCUSSION The results indicate a possible role of EBV- and CMV-induced infections in the development of immunological changes which are typical for mild cognitive impairment and in the progression of AD. CONCLUSION The obtained data can be important for prognostic methods addressing AD development, including its pre-dementia stage, and for new approaches to individualized treatment and prevention.
Collapse
Affiliation(s)
| | - I K Malashenkova
- NRC «Kurchatov Institute»; FSBI «Federal Scientific and Clinical Center for Physico-Chemical Medicine of the Federal Medical and Biological Agency»
| | - D P Ogurtsov
- NRC «Kurchatov Institute»; FSBI «Federal Scientific and Clinical Center for Physico-Chemical Medicine of the Federal Medical and Biological Agency»
| | | | | | - O Y Shipulina
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | | | | | - N A Didkovsky
- FSBI «Federal Scientific and Clinical Center for Physico-Chemical Medicine of the Federal Medical and Biological Agency»
| | | |
Collapse
|
41
|
Chorlton SD. Reanalysis of Alzheimer's brain sequencing data reveals absence of purported HHV6A and HHV7. J Bioinform Comput Biol 2021; 18:2050012. [PMID: 32336252 DOI: 10.1142/s0219720020500122] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Readhead et al. recently reported in Neuron the detection and association of human herpesviruses 6A (HHV6A) and 7 (HHV7) with Alzheimer's disease by shotgun sequencing. I was skeptical of the specificity of their modified Viromescan bioinformatics method and subsequent analysis for numerous reasons. Using their supplementary data, the prevalence of variola virus, the etiological agent of the eradicated disease smallpox, can be calculated at 97.5% of their Mount Sinai Brain Bank dataset. Reanalysis of Readhead et al.'s data using highly sensitive and specific alternative methods finds no HHV7 reads in their samples; HHV6A reads were found in only 2 out of their top 15 samples sorted by reported HHV6A abundance. Finally, recreation of Readhead et al.'s modified Viromescan method identifies reasons for its low specificity.
Collapse
Affiliation(s)
- Samuel D Chorlton
- Department of Pathology and Laboratory Medicine, University of British Columbia, Canada
| |
Collapse
|
42
|
Ou YN, Zhu JX, Hou XH, Shen XN, Xu W, Dong Q, Tan L, Yu JT. Associations of Infectious Agents with Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2021; 75:299-309. [PMID: 32280095 DOI: 10.3233/jad-191337] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The role of infectious agents in the development of Alzheimer's disease (AD) has long been debated, however, uncertainties still persist. OBJECTIVE We aimed to illuminate the associations between infectious agents and risk of AD comprehensively. METHODS Studies examining the associations between AD and infectious agents were identified through a systematic search of PubMed, Embase, and Cochrane library. A random-effects meta-analysis was conducted. Publication bias was explored using funnel plot. RESULTS Fifty-one studies were included in the systematic review, of which forty-seven studies with 108,723 participants and 4,039 AD cases were eligible for meta-analysis. Evidence based on case control studies demonstrated that Chlamydia pneumoniae [odds ratio (OR): 4.39, 95% CI = 1.81-10.67; I2 = 68%)], Human herpes virus-6 (OR: 3.97, 95% CI = 2.04-7.75; I2 = 0%, Epstein-Barr virus (OR:1.45, 95% CI = 1.00-2.08; I2 = 0%), Herpes simplex virus-1 (OR:1.34, 95% CI = 1.02-1.75; I2 = 0%), and the Herpesviridae family (OR:1.41, 95% CI = 1.15-1.74; I2 = 12%) infection were associated with a higher risk of AD. No significant evidence of publication bias was found. CONCLUSION These findings strengthened the evidence that infection may play an important role in AD. Additional research is required to determine whether treatment strategies targeting infectious diseases to prevent AD are viable in the future.
Collapse
Affiliation(s)
- Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jun-Xia Zhu
- Department of Prevention and Health Protection, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Prevention and Health Protection, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Itzhaki RF. Hypothesis: Does the Apparent Protective Action of Green Valley's Drug GV971 Against Cognitive Decline Result from Antiviral Action Against Herpes Simplex Virus Type 1 in Brain? J Alzheimers Dis 2021; 76:85-87. [PMID: 32444548 DOI: 10.3233/jad-200210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There has been much interest in the clinical trial of GV972 for treatment of Alzheimer's disease in that the data have indicated that the compound is protective against cognitive decline. This effect has been attributed to a remodelling of the gut microbiota. I suggest that the effect might be caused by an antiviral action of GV971 against herpes simplex virus type 1 in brain, which many studies have strongly implicated as having a major role in Alzheimer's disease. The antiviral action of GV971 is proposed on the basis that it is an acidic polysaccharide consisting of linear sodium oligomannurarate molecules of a range of sizes, derived from brown algae. Marine-derived polysaccharides are well known for possessing various bioactivities, including antiviral and antibacterial properties.
Collapse
Affiliation(s)
- Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Ekundayo TC, Olasehinde TA, Okaiyeto K, Okoh AI. Microbial Pathogenesis and Pathophysiology of Alzheimer's Disease: A Systematic Assessment of Microorganisms' Implications in the Neurodegenerative Disease. Front Neurosci 2021; 15:648484. [PMID: 33994926 PMCID: PMC8113417 DOI: 10.3389/fnins.2021.648484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial infections have been linked to the pathogenesis and pathophysiology of Alzheimer's disease (AD) and other neurodegenerative diseases. The present study aimed to synthesise and assess global evidence of microbial pathogenesis and pathophysiology in AD (MPP-AD) and associated neurodegenerative conditions using integrated science mapping and content analytics to explore the associated research landscape. Relevant MPP-AD documents were retrieved from Web of Science and Scopus according to PRISMA principles and analysed for productivity/trend linked to authors/countries, thematic conceptual framework, and international collaborative networks. A total of 258 documents published from 136 sources to 39.42 average citations/document were obtained on MPP-AD. The co-authors per document were 7.6, and the collaboration index was 5.71. The annual research outputs increased tremendously in the last 6 years from 2014 to 2019, accounting for 66% compared with records in the early years from 1982 to 1990 (16%). The USA (n = 71, freq. = 30.34%), United Kingdom (n = 32, freq. = 13.68%) and China (n = 27, 11.54%) ranked in first three positions in term of country's productivity. Four major international collaboration clusters were found in MPP-AD research. The country collaboration network in MPP-AD was characteristic of sparse interaction and acquaintanceship (density = 0.11, diameter = 4). Overall, international collaboration is globally inadequate [centralisation statistics: degree (40.5%), closeness (4%), betweenness (23%), and eigenvector (76.7%)] against the robust authors' collaboration index of 5.71 in MPP-AD research. Furthermore, four conceptual thematic frameworks (CTF) namely, CTF#1, roles of microbial/microbiome infection and dysbiosis in cognitive dysfunctions; CTF#2, bacterial infection specific roles in dementia; CTF#3, the use of yeast as a model system for studying MPP-AD and remediation therapy; and CFT#4, flow cytometry elucidation of amyloid-beta and aggregation in Saccharomyces cerevisiae model. Finally, aetiology-based mechanisms of MPP-AD, namely, gut microbiota, bacterial infection, and viral infection, were comprehensively discussed. This study provides an overview of MPP-AD and serves as a stepping stone for future preparedness in MPP-AD-related research.
Collapse
Affiliation(s)
- Temitope Cyrus Ekundayo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Biological Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Tosin Abiola Olasehinde
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Kunle Okaiyeto
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.,Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,Department of Environmental Health Sciences, College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
45
|
Sait A, Angeli C, Doig AJ, Day PJR. Viral Involvement in Alzheimer's Disease. ACS Chem Neurosci 2021; 12:1049-1060. [PMID: 33687205 PMCID: PMC8033564 DOI: 10.1021/acschemneuro.0c00719] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of β-amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) in the brain. The prevalence of the disease is increasing and is expected to reach 141 million cases by 2050. Despite the risk factors associated with the disease, there is no known causative agent for AD. Clinical trials with many drugs have failed over the years, and no therapeutic has been approved for AD. There is increasing evidence that pathogens are found in the brains of AD patients and controls, such as human herpes simplex virus-1 (HSV-1). Given the lack of a human model, the route for pathogen entry into the brain remains open for scrutiny and may include entry via a disturbed blood-brain barrier or the olfactory nasal route. Many factors can contribute to the pathogenicity of HSV-1, such as the ability of HSV-1 to remain latent, tau protein phosphorylation, increased accumulation of Aβ invivo and in vitro, and repeated cycle of reactivation if immunocompromised. Intriguingly, valacyclovir, a widely used drug for the treatment of HSV-1 and HSV-2 infection, has shown patient improvement in cognition compared to controls in AD clinical studies. We discuss the potential role of HSV-1 in AD pathogenesis and argue for further studies to investigate this relationship.
Collapse
Affiliation(s)
- Ahmad Sait
- Division
of Evolution and Genomic Sciences, Faculty of Biology, Medicine and
Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M1 7DN, United Kingdom
- Faculty
of Applied Medical Science, Medical Laboratory Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Cristian Angeli
- Division
of Evolution and Genomic Sciences, Faculty of Biology, Medicine and
Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M1 7DN, United Kingdom
| | - Andrew J. Doig
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United
Kingdom
| | - Philip J. R. Day
- Division
of Evolution and Genomic Sciences, Faculty of Biology, Medicine and
Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester
Institute of Biotechnology, The University
of Manchester, Manchester M1 7DN, United Kingdom
- Department
of Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
46
|
Leblhuber F, Steiner K, Geisler S, Fuchs D, Gostner JM. On the Possible Relevance of Bottom-up Pathways in the Pathogenesis of Alzheimer's Disease. Curr Top Med Chem 2021; 20:1415-1421. [PMID: 32407280 DOI: 10.2174/1568026620666200514090359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
Abstract
Dementia is an increasing health problem in older aged populations worldwide. Age-related changes in the brain can be observed decades before the first symptoms of cognitive decline appear. Cognitive impairment has chronic inflammatory components, which can be enhanced by systemic immune activation. There exist mutual interferences between inflammation and cognitive deficits. Signs of an activated immune system i.e. increases in the serum concentrations of soluble biomarkers such as neopterin or accelerated tryptophan breakdown along the kynurenine axis develop in a significant proportion of patients with dementia and correlate with the course of the disease, and they also have a predictive value. Changes in biomarker concentrations are reported to be associated with systemic infections by pathogens such as cytomegalovirus (CMV) and bacterial content in saliva. More recently, the possible influence of microbiome composition on Alzheimer's disease (AD) pathogenesis has been observed. These observations suggest that brain pathology is not the sole factor determining the pathogenesis of AD. Interestingly, patients with AD display drastic changes in markers of immune activation in the circulation and in the cerebrospinal fluid. Other data have suggested the involvement of factors extrinsic to the brain in the pathogenesis of AD. However, currently, neither the roles of these factors nor their importance has been clearly defined.
Collapse
Affiliation(s)
- Friedrich Leblhuber
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz, Austria
| | - Kostja Steiner
- Department of Gerontology, Neuromed Campus, Kepler University Clinic, Linz, Austria
| | - Simon Geisler
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna M Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
47
|
Vigasova D, Nemergut M, Liskova B, Damborsky J. Multi-pathogen infections and Alzheimer's disease. Microb Cell Fact 2021; 20:25. [PMID: 33509204 PMCID: PMC7844946 DOI: 10.1186/s12934-021-01520-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease associated with the overproduction and accumulation of amyloid-β peptide and hyperphosphorylation of tau proteins in the brain. Despite extensive research on the amyloid-based mechanism of AD pathogenesis, the underlying cause of AD is not fully understood. No disease-modifying therapies currently exist, and numerous clinical trials have failed to demonstrate any benefits. The recent discovery that the amyloid-β peptide has antimicrobial activities supports the possibility of an infectious aetiology of AD and suggests that amyloid-β plaque formation might be induced by infection. AD patients have a weakened blood-brain barrier and immune system and are thus at elevated risk of microbial infections. Such infections can cause chronic neuroinflammation, production of the antimicrobial amyloid-β peptide, and neurodegeneration. Various pathogens, including viruses, bacteria, fungi, and parasites have been associated with AD. Most research in this area has focused on individual pathogens, with herpesviruses and periodontal bacteria being most frequently implicated. The purpose of this review is to highlight the potential role of multi-pathogen infections in AD. Recognition of the potential coexistence of multiple pathogens and biofilms in AD's aetiology may stimulate the development of novel approaches to its diagnosis and treatment. Multiple diagnostic tests could be applied simultaneously to detect major pathogens, followed by anti-microbial treatment using antiviral, antibacterial, antifungal, and anti-biofilm agents.
Collapse
Affiliation(s)
- Dana Vigasova
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Nemergut
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Barbora Liskova
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
48
|
Wouk J, Rechenchoski DZ, Rodrigues BCD, Ribelato EV, Faccin-Galhardi LC. Viral infections and their relationship to neurological disorders. Arch Virol 2021; 166:733-753. [PMID: 33502593 PMCID: PMC7838016 DOI: 10.1007/s00705-021-04959-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 01/26/2023]
Abstract
The chronic dysfunction of neuronal cells, both central and peripheral, a characteristic of neurological disorders, may be caused by irreversible damage and cell death. In 2016, more than 276 million cases of neurological disorders were reported worldwide. Moreover, neurological disorders are the second leading cause of death. Generally, the etiology of neurological diseases is not fully understood. Recent studies have related the onset of neurological disorders to viral infections, which may cause neurological symptoms or lead to immune responses that trigger these pathological signs. Currently, this relationship is mostly based on epidemiological data on infections and seroprevalence of patients who present with neurological disorders. The number of studies aiming to elucidate the mechanism of action by which viral infections may directly or indirectly contribute to the development of neurological disorders has been increasing over the years but these studies are still scarce. Comprehending the pathogenesis of these diseases and exploring novel theories may favor the development of new strategies for diagnosis and therapy in the future. Therefore, the objective of the present study was to review the main pieces of evidence for the relationship between viral infection and neurological disorders such as Alzheimer's disease, Parkinson's disease, Guillain-Barré syndrome, multiple sclerosis, and epilepsy. Viruses belonging to the families Herpesviridae, Orthomyxoviridae, Flaviviridae, and Retroviridae have been reported to be involved in one or more of these conditions. Also, neurological symptoms and the future impact of infection with SARS-CoV-2, a member of the family Coronaviridae that is responsible for the COVID-19 pandemic that started in late 2019, are reported and discussed.
Collapse
Affiliation(s)
- Jéssica Wouk
- Post-Graduation Program of Pharmaceutical Science, Midwest State University, CEDETEG Campus, Guarapuava, Paraná Brazil
| | | | | | - Elisa Vicente Ribelato
- Department of Microbiology, Biological Science Center, Londrina State University, Londrina, Paraná Brazil
| | | |
Collapse
|
49
|
Patino J, Karagas NE, Chandra S, Thakur N, Stimming EF. Olfactory Dysfunction in Huntington's Disease. J Huntingtons Dis 2021; 10:413-422. [PMID: 34719504 PMCID: PMC8673514 DOI: 10.3233/jhd-210497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Olfactory dysfunction is a common symptom in patients with neurodegenerative disorders, including Huntington's disease (HD). Understanding its pathophysiology is important in establishing a preventive and therapeutic plan. In this literature review, we cover the physiology of olfaction, its role in neurodegeneration, and its characteristics in patients with HD. In the general population, olfactory dysfunction is present in 3.8-5.8%and the prevalence increases significantly in those older than 80 years. For HD, data regarding prevalence rates are lacking and the scales used have been inconsistent or have been restructured due to concerns about cross-cultural understanding. Pathogenic huntingtin deposits have been found in the olfactory bulb of individuals with HD, although no studies have correlated this with the grade of olfactory impairment. Olfactory dysfunction is present in both premanifest and manifest patients with HD, showing a progressive decline over time with more severe deficits at advanced stages. No specific treatment for olfactory impairment in HD has been proposed; identifying and avoiding potential medications that cause olfactory dysfunction, as well as general safety recommendations remain the basis of the therapeutic strategy.
Collapse
Affiliation(s)
- Jorge Patino
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- HDSA Center of Excellence, The University of Texas Health Science Center at Houston,, Houston, TX, USA
| | - Nicholas E. Karagas
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shivika Chandra
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- HDSA Center of Excellence, The University of Texas Health Science Center at Houston,, Houston, TX, USA
| | - Nivedita Thakur
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- HDSA Center of Excellence, The University of Texas Health Science Center at Houston,, Houston, TX, USA
| | - Erin Furr Stimming
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- HDSA Center of Excellence, The University of Texas Health Science Center at Houston,, Houston, TX, USA
| |
Collapse
|
50
|
Komaroff AL, Pellett PE, Jacobson S. Human Herpesviruses 6A and 6B in Brain Diseases: Association versus Causation. Clin Microbiol Rev 2020; 34:e00143-20. [PMID: 33177186 PMCID: PMC7667666 DOI: 10.1128/cmr.00143-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and human herpesvirus 6B (HHV-6B), collectively termed HHV-6A/B, are neurotropic viruses that permanently infect most humans from an early age. Although most people infected with these viruses appear to suffer no ill effects, the viruses are a well-established cause of encephalitis in immunocompromised patients. In this review, we summarize the evidence that the viruses may also be one trigger for febrile seizures (including febrile status epilepticus) in immunocompetent infants and children, mesial temporal lobe epilepsy, multiple sclerosis (MS), and, possibly, Alzheimer's disease. We propose criteria for linking ubiquitous infectious agents capable of producing lifelong infection to any neurologic disease, and then we examine to what extent these criteria have been met for these viruses and these diseases.
Collapse
Affiliation(s)
- Anthony L Komaroff
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip E Pellett
- Department of Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Steven Jacobson
- Virology/Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|