1
|
Yan K, Meng Q, He H, Zhu H, Wang Z, Han L, Huang Q, Zhang Z, Yawalkar N, Zhou H, Xu J. iTRAQ-based quantitative proteomics reveals biomarkers/pathways in psoriasis that can predict the efficacy of methotrexate. J Eur Acad Dermatol Venereol 2022; 36:1784-1795. [PMID: 35666151 DOI: 10.1111/jdv.18292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Methotrexate (MTX) is the first-line medicine to treat psoriasis. So far, there has been less research on protein biomarkers to predict its efficacy by the proteomic technique. OBJECTIVES To evaluate differentially expressed proteins in peripheral mononuclear cells (PBMCs) between good responders (GRs) and non-responders (NRs) after MTX treatment, compared with normal controls (NCs). METHODS We quantified protein expression of PBMCs with 4 GRs and 4 NRs to MTX and 4 NCs by isobaric tags for relative and absolute quantification (iTRAQ), analyzing and identifying proteins related to efficacy of MTX in 18 psoriatic patients. RESULTS A total of 3,177 proteins had quantitative information, and 403 differentially expressed proteins (fold change ≥ 1.2, p < .05) were identified. Compared to NCs, upregulated proteins (ANXA6, RPS27A, EZR, XRCC6), participating in the activation of NF-κB, the JAK-STAT pathway, and neutrophil degranulation were detected in GRs. The proteins (GPV, FN1, STOM), involving platelet activation, signaling and aggregation as well as neutrophil degranulation were significantly downregulated in GRs. These proteins returned to normal levels after MTX treatment. Furthermore, Western blotting identified the expression of ANXA6 and STAT1 in PBMCs, which were significantly downregulated in GRs, but not in NRs. CONCLUSIONS We identified seven differentially expressed and regulated proteins (ANXA6, GPV, FN1, XRCC6, STOM, RPS27A, and EZR) as biomarkers to predict MTX efficacy in NF-κB signaling, JAK-STAT pathways, neutrophil degranulation, platelet activation, signaling and aggregation.
Collapse
Affiliation(s)
- Kexiang Yan
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qian Meng
- CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Han He
- CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hongwen Zhu
- CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhicheng Wang
- Department of Clinical Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ling Han
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qiong Huang
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhenghua Zhang
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jinhua Xu
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
2
|
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci 2021; 78:4589-4613. [PMID: 33855626 PMCID: PMC11071882 DOI: 10.1007/s00018-021-03801-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku's role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku's structure, including the original Ku crystal structure and the more recent Ku-DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.
Collapse
Affiliation(s)
- Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gursimran Parmar
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rachel D Kelly
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
3
|
Haverfield JT, Stanton PG, Loveland KL, Zahid H, Nicholls PK, Olcorn JS, Makanji Y, Itman CM, Simpson ER, Meachem SJ. Suppression of Sertoli cell tumour development during the first wave of spermatogenesis in inhibin α-deficient mice. Reprod Fertil Dev 2018; 29:609-620. [PMID: 26488911 DOI: 10.1071/rd15239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022] Open
Abstract
A dynamic partnership between follicle-stimulating hormone (FSH) and activin is required for normal Sertoli cell development and fertility. Disruptions to this partnership trigger Sertoli cells to deviate from their normal developmental pathway, as observed in inhibin α-knockout (Inha-KO) mice, which feature Sertoli cell tumours in adulthood. Here, we identified the developmental windows by which adult Sertoli cell tumourigenesis is most FSH sensitive. FSH was suppressed for 7 days in Inha-KO mice and wild-type littermates during the 1st, 2nd or 4th week after birth and culled in the 5th week to assess the effect on adult Sertoli cell development. Tumour growth was profoundly reduced in adult Inha-KO mice in response to FSH suppression during Weeks 1 and 2, but not Week 4. Proliferative Sertoli cells were markedly reduced in adult Inha-KO mice following FSH suppression during Weeks 1, 2 or 4, resulting in levels similar to those in wild-type mice, with greatest effect observed at the 2 week time point. Apoptotic Sertoli cells increased in adult Inha-KO mice after FSH suppression during Week 4. In conclusion, acute FSH suppression during the 1st or 2nd week after birth in Inha-KO mice profoundly suppresses Sertoli cell tumour progression, probably by inhibiting proliferation in the adult, with early postnatal Sertoli cells being most sensitive to FSH action.
Collapse
Affiliation(s)
- Jenna T Haverfield
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Peter G Stanton
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Kate L Loveland
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Heba Zahid
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Peter K Nicholls
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Justine S Olcorn
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Yogeshwar Makanji
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Catherine M Itman
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences, Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Evan R Simpson
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Sarah J Meachem
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| |
Collapse
|
4
|
Cai J, Wei J, Schrott V, Zhao J, Bullock G, Zhao Y. Induction of deubiquitinating enzyme USP50 during erythropoiesis and its potential role in the regulation of Ku70 stability. J Investig Med 2017; 66:1-6. [PMID: 29101126 PMCID: PMC5836291 DOI: 10.1136/jim-2017-000622] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2017] [Indexed: 01/23/2023]
Abstract
Anemia is a very common blood disorder that affects the lives of billions of people worldwide. Anemia is caused by the loss of blood, increased destruction of red blood cells (RBCs), or reduced production of RBCs. Erythropoiesis is the complex process of RBC differentiation and maturation, in which protein degradation plays a crucial role. Protein ubiquitination regulates programmed protein degradation, which can be reversed by deubiquitinating enzymes (DUBs); however, the role of DUBs in erythropoiesis has not been well studied. We examined the expression of DUBs during erythropoiesis using an ex vivo human CD34+ hematopoietic progenitor cell culture system. Here we show that ubiquitin-specific protease 50 (USP50) levels are increased during erythropoiesis. USP50 mRNA levels are significantly increased on day 3 and protein levels are elevated on day 9 of erythroid differentiation. Coimmunoprecipitation and proteomics analyses reveal that Ku70, a DNA-binding protein, is associated with USP50. Overexpression of USP50 has no effect on Ku70 mRNA levels, while it reduces Ku70 protein levels by promoting Ku70 degradation, suggesting that USP50 may indirectly regulate Ku70 protein stability. USP50 protein is also not stable. USP50 protein degradation is independent of the proteasomal and the lysosomal degradation systems. This study suggests that DUBs like USP50 may regulate protein stability during erythropoiesis; however, more investigation is warranted.
Collapse
Affiliation(s)
- Junting Cai
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Medical School, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianxin Wei
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Valerie Schrott
- Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jing Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Grant Bullock
- Department of Pathology, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yutong Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Lu Y, Gao J, Lu Y. Down-expression pattern of Ku70 and p53 coexisted in colorectal cancer. Med Oncol 2015; 32:98. [PMID: 25731619 DOI: 10.1007/s12032-015-0519-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/13/2015] [Indexed: 11/24/2022]
Abstract
To address the relationship of altered expression of double-strand break repair proteins Ku70 and p53 in clinical colorectal cancer (CRC), we examined the expression pattern of Ku70 and p53 by using fluorescent immunohistochemistry and real-time PCR assays in CRC and pericancerous samples from 152 Chinese patients. The results showed that down-expression pattern of both Ku70 and p53 coexisted in the CRC samples with significant correlating rate (R (2) = 0.9103; P < 0.001), and the down-expression of Ku70 and p53 was significantly associated with the advanced tumor node metastasis stage (Ku70: HR 3.453 in recurrence and 4.182 in survival, P < 0.001; P53: HR 3.114 in recurrence and 4.113 in survival, P < 0.001). The down-regulated Ku70 and p53 were associated with poor disease-free survival. Loss of Ku70 and p53 expression might serve as a biomarker of poor prognosis in CRC patients.
Collapse
Affiliation(s)
- Yuanfang Lu
- Department of Toxicology, School of Public Health, Guilin Medical University, North Huancheng 2nd Road, Guilin, 541004, Guangxi, China
| | | | | |
Collapse
|
6
|
Lu Y, Gao J, Lu Y. Downregulated Ku70 and ATM associated to poor prognosis in colorectal cancer among Chinese patients. Onco Targets Ther 2014; 7:1955-61. [PMID: 25368522 PMCID: PMC4216044 DOI: 10.2147/ott.s67814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Double-strand DNA breaks (DSBs) are a key factor in carcinogenesis. The necessary repair of DSBs is pivotal in maintaining normal cell division. To address the relationship between altered expression of DSB repair of proteins Ku70 and ataxia-telangiectasia mutated (ATM) in colorectal cancer (CRC), we examined the expression levels and patterns of Ku70 and ATM in CRC samples. Methods Expression and coexpression of Ku70 and ATM were investigated by using real-time quantitative polymerase chain reaction assays and confirmed further with fluorescent immunohistochemistry in CRC and pericancerous samples from 112 Chinese patients. Results Downexpression patterns for both Ku70 and ATM were found in the CRC samples and were significantly associated with advanced tumor node metastasis stage and decreased 5-year overall survival rate. Conclusion Downregulated Ku70 and ATM were associated with poor disease-free survival. Loss of Ku70 and ATM expression might act as a biomarker to predict poor prognosis in patients with CRC.
Collapse
Affiliation(s)
- Yuanfang Lu
- Department of Toxicology, School of Public Health, Guilin Medical University, Guangxi, People's Republic of China ; Department of Clinical Research Center, Affiliated 2nd Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jingyan Gao
- Department of Toxicology, School of Public Health, Guilin Medical University, Guangxi, People's Republic of China ; Department of Human Anatomy and Histo-Embryology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yuanming Lu
- Department of Toxicology, School of Public Health, Guilin Medical University, Guangxi, People's Republic of China
| |
Collapse
|
7
|
Zu G, Dou Y, Tian Q, Wang H, Zhao W, Li F. Role and mechanism of radiological protection cream in treating radiation dermatitis in rats. J TRADIT CHIN MED 2014; 34:329-37. [PMID: 24992761 DOI: 10.1016/s0254-6272(14)60098-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To explore the role and mechanism of a radiation protection cream (Rp) in the treatment of radiation dermatitis, and to accumulate necessary technical information for a new drug report on Rp. METHODS High-performance liquid chromatography was used to establish the method of measuring the main effective ingredients of sovereign and adjuvant herbs of Rp drugs, and to formulate the draft quality standards of Rp. A total of 48 Sprague-Dawley male rats were randomly divided into the Model, Trolamine cream (Tc), Rp and Blank groups according to a random number table method. The skin of each rat's buttocks was irradiated using an electron linear accelerator to establish an acute radiation dermatitis model. The histological changes were observed under light microscopy and electron microscopy during wound healing and the effect of Rp on rat fibroblast Ku70/80 gene expression was detected at the transcriptional level. RESULTS Pathological examination revealed that Rp protected the cellular and subcellular structures of skin after irradiation, promoting the proliferation and restoration of collagen fibers. Ku70/80 mRNA expression levels in the Rp and Tc groups were higher than that in the model group (P < 0.05). Moreover, The majority of grade radiation dermatitis relative to the Model, Rp and Tc groups for reducing grade III and IV dermatitis efficiency were 85.7% and 69.2% (P < 0.05), respectively. The efficacy of Rp group in treating radiation dermatitis was better than the Trolamine cream group by 16.5% (P < 0.05). CONCLUSION Compared with Tc, Rp had certain advantages in the efficacy and performance to price ratio. Thus, Rp is considered an effective alternative formulation for the prevention and treatment of radiation dermatitis.
Collapse
|
8
|
Shawi M, Chu TW, Martinez-Marignac V, Yu Y, Gryaznov SM, Johnston JB, Lees-Miller SP, Assouline SE, Autexier C, Aloyz R. Telomerase contributes to fludarabine resistance in primary human leukemic lymphocytes. PLoS One 2013; 8:e70428. [PMID: 23922990 PMCID: PMC3726637 DOI: 10.1371/journal.pone.0070428] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/17/2013] [Indexed: 12/17/2022] Open
Abstract
We report that Imetelstat, a telomerase inhibitor that binds to the RNA component of telomerase (hTR), can sensitize primary CLL lymphocytes to fludarabine in vitro. This effect was observed in lymphocytes from clinically resistant cases and with cytogenetic abnormalities associated with bad prognosis. Imetelstat mediated-sensitization to fludarabine was not associated with telomerase activity, but with the basal expression of Ku80. Since both Imetelstat and Ku80 bind hTR, we assessed 1) if Ku80 and Imetelstat alter each other's binding to hTR in vitro and 2) the effect of an oligonucleotide complementary to the Ku binding site in hTR (Ku oligo) on the survival of primary CLL lymphocytes exposed to fludarabine. We show that Imetelstat interferes with the binding of Ku70/80 (Ku) to hTR and that the Ku oligo can sensitize CLL lymphocytes to FLU. Our results suggest that Ku binding to hTR may contribute to fludarabine resistance in CLL lmphocytes. This is the first report highlighting the potentially broad effectiveness of Imetelstat in CLL, and the potential biological and clinical implications of a functional interaction between Ku and hTR in primary human cancer cells.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Catalytic Domain/drug effects
- Chromosome Deletion
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 17
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Drug Resistance, Neoplasm/genetics
- Enzyme Activation
- Gene Expression Regulation, Leukemic/drug effects
- Histones/metabolism
- Humans
- Indoles/pharmacology
- Ku Autoantigen
- Leukemia, Lymphoid/drug therapy
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/metabolism
- Middle Aged
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Oligonucleotides
- Phosphorylation
- Protein Binding/drug effects
- Telomerase/chemistry
- Telomerase/genetics
- Telomerase/metabolism
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
- Vidarabine/therapeutic use
Collapse
Affiliation(s)
- May Shawi
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Bloomfield Centre for Research in Ageing, Jewish General Hospital, Montreal, Quebec, Canada
| | - Tsz Wai Chu
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Bloomfield Centre for Research in Ageing, Jewish General Hospital, Montreal, Quebec, Canada
| | - Veronica Martinez-Marignac
- Lady Davis Institute for Medical Research & Cancer Segal Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Y. Yu
- University of Calgary, Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
| | | | - James B. Johnston
- Manitoba Institute of Cell Biology, Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | - Susan P. Lees-Miller
- University of Calgary, Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, Calgary, Alberta, Canada
| | - Sarit E. Assouline
- Oncology Department, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research & Cancer Segal Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Chantal Autexier
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Bloomfield Centre for Research in Ageing, Jewish General Hospital, Montreal, Quebec, Canada
| | - Raquel Aloyz
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Oncology Department, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research & Cancer Segal Center, Jewish General Hospital, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
9
|
Hayrabedyan S, Todorova K, Pashova S, Mollova M, Fernández N. Sertoli Cell Quiescence - New Insights. Am J Reprod Immunol 2012; 68:451-5. [DOI: 10.1111/j.1600-0897.2012.01137.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 12/26/2022] Open
Affiliation(s)
- Soren Hayrabedyan
- Institute of Biology and Immunology of Reproduction; BAS; Sofia; Bulgaria
| | | | - Shina Pashova
- Institute of Biology and Immunology of Reproduction; BAS; Sofia; Bulgaria
| | - Margarita Mollova
- Institute of Biology and Immunology of Reproduction; BAS; Sofia; Bulgaria
| | - Nelson Fernández
- School of Biological Sciences; University of Essex; Colchester; UK
| |
Collapse
|
10
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 2009; 73:241-78. [DOI: 10.1002/jemt.20783] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Ahmed EA, Rijbroek ADBV, Kal HB, Sadri-Ardekani H, Mizrak SC, Pelt AMV, Rooij DGD. Proliferative Activity In Vitro and DNA Repair Indicate that Adult Mouse and Human Sertoli Cells Are Not Terminally Differentiated, Quiescent Cells1. Biol Reprod 2009; 80:1084-91. [DOI: 10.1095/biolreprod.108.071662] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
12
|
Kasten-Pisula U, Vronskaja S, Overgaard J, Dikomey E. In normal human fibroblasts variation in DSB repair capacity cannot be ascribed to radiation-induced changes in the localisation, expression or activity of major NHEJ proteins. Radiother Oncol 2008; 86:321-8. [PMID: 18158193 DOI: 10.1016/j.radonc.2007.11.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
|
13
|
Mazzarelli P, Parrella P, Seripa D, Signori E, Perrone G, Rabitti C, Borzomati D, Gabbrielli A, Matera MG, Gravina C, Caricato M, Poeta ML, Rinaldi M, Valeri S, Coppola R, Fazio VM. DNA end binding activity and Ku70/80 heterodimer expression in human colorectal tumor. World J Gastroenterol 2005; 11:6694-700. [PMID: 16425368 PMCID: PMC4355768 DOI: 10.3748/wjg.v11.i42.6694] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the DNA binding activity and protein levels of the Ku70/80 heterodimer, the functional mediator of the NHEJ activity, in human colorectal carcinogenesis.
METHODS: The Ku70/80 DNA-binding activity was determined by electrophoretic mobility shift assays in 20 colon adenoma and 15 colorectal cancer samples as well as matched normal colonic tissues. Nuclear and cytoplasmic protein expression was determined by immunohistochemistry and Western blot analysis.
RESULTS: A statistically significant difference was found in both adenomas and carcinomas as compared to matched normal colonic mucosa (P<0.00). However, changes in binding activity were not homogenous with approximately 50% of the tumors showing a clear increase in the binding activity, 30% displaying a modest increase and 15% showing a decrease of the activity. Tumors, with increased DNA-binding activity, also showed a statistically significant increase in Ku70 and Ku86 nuclear expression, as determined by Western blot and immunohistochemical analyses (P<0.001). Cytoplasmic protein expression was found in pathological samples, but not in normal tissues either from tumor patients or from healthy subjects.
CONCLUSION: Overall, our DNA-binding activity and protein level are consistent with a substantial activation of the NHEJ pathway in colorectal tumors. Since the NHEJ is an error prone mechanism, its abnormal activation can result in chromosomal instability and ultimately lead to tumorigenesis.
Collapse
Affiliation(s)
- Paola Mazzarelli
- Laboratory of Molecular Medicine and Biotechnology, Università Campus Bio-Medico, Via Longoni, 83, Rome 00155, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee YJ, Sheu TJ, Keng PC. Enhancement of radiosensitivity in H1299 cancer cells by actin-associated protein cofilin. Biochem Biophys Res Commun 2005; 335:286-91. [PMID: 16061204 DOI: 10.1016/j.bbrc.2005.07.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Accepted: 07/18/2005] [Indexed: 11/30/2022]
Abstract
Cofilin is an actin-associated protein that belongs to the actin depolymerization factor/cofilin family and is important for regulation of actin dynamics. Cofilin can import actin monomers into the nucleus under certain stress conditions, however the biological effects of nuclear transport are unclear. In this study, we found that over-expression of cofilin led to increased radiation sensitivity in human non-small lung cancer H1299 cells. Cell survival as determined by colony forming assay showed that cells over-expressing cofilin were more sensitive to ionizing radiation (IR) than normal cells. To determine whether the DNA repair capacity was altered in cofilin over-expressing cells, comet assays were performed on irradiated cells. Repair of DNA damage caused by ionizing radiation was detected in cofilin over-expressing cells after 24 h of recovery. Consistent with this observation, the key components for repair of DNA double-strand breaks, including Rad51, Rad52, and Ku70/Ku80, were down-regulated in cofilin over-expressing cells after IR exposure. These findings suggest that cofilin can influence radiosensitivity by altering DNA repair capacity.
Collapse
Affiliation(s)
- Yi-Jang Lee
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
15
|
Bredberg A, Henriksson G, Larsson A, Manthorpe R, Sallmyr A. Sjogren's syndrome and the danger model. Rheumatology (Oxford) 2005; 44:965-70. [PMID: 15840601 DOI: 10.1093/rheumatology/keh647] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A Bredberg
- Department of Medical Microbiology, University Hospital, S-20502 Malmo, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Sallmyr A, Miller A, Gabdoulkhakova A, Safronova V, Henriksson G, Bredberg A. Expression of DNA-dependent protein kinase in human granulocytes. Cell Res 2005; 14:331-40. [PMID: 15353130 DOI: 10.1038/sj.cr.7290233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNA-PK in PMN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration. In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.
Collapse
Affiliation(s)
- Annahita Sallmyr
- Department of Medical Microbiology, Lund University, Malmo University Hospital, S-205 02 Malmo, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Herrup K, Neve R, Ackerman SL, Copani A. Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 2004; 24:9232-9. [PMID: 15496657 PMCID: PMC6730083 DOI: 10.1523/jneurosci.3347-04.2004] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 09/07/2004] [Accepted: 09/07/2004] [Indexed: 11/21/2022] Open
Affiliation(s)
- Karl Herrup
- Department of Neurosciences, Case School of Medicine, University Hospitals of Cleveland, Cleveland, Ohio 44120, USA
| | | | | | | |
Collapse
|
18
|
Kruman II, Wersto RP, Cardozo-Pelaez F, Smilenov L, Chan SL, Chrest FJ, Emokpae R, Gorospe M, Mattson MP. Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 2004; 41:549-61. [PMID: 14980204 DOI: 10.1016/s0896-6273(04)00017-0] [Citation(s) in RCA: 282] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Revised: 09/08/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
Increasing evidence indicates that neurodegeneration involves the activation of the cell cycle machinery in postmitotic neurons. However, the purpose of these cell cycle-associated events in neuronal apoptosis remains unknown. Here we tested the hypothesis that cell cycle activation is a critical component of the DNA damage response in postmitotic neurons. Different genotoxic compounds (etoposide, methotrexate, and homocysteine) induced apoptosis accompanied by cell cycle reentry of terminally differentiated cortical neurons. In contrast, apoptosis initiated by stimuli that do not target DNA (staurosporine and colchicine) did not initiate cell cycle activation. Suppression of the function of ataxia telangiectasia mutated (ATM), a proximal component of DNA damage-induced cell cycle checkpoint pathways, attenuated both apoptosis and cell cycle reentry triggered by DNA damage but did not change the fate of neurons exposed to staurosporine and colchicine. Our data suggest that cell cycle activation is a critical element of the DNA damage response of postmitotic neurons leading to apoptosis.
Collapse
Affiliation(s)
- Inna I Kruman
- Research Resources Branch, Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Korabiowska M, Bauer H, Quentin T, Stachura J, Cordon-Cardo C, Brinck U. Application of new in situ hybridization probes for Ku70 and Ku80 in tissue microarrays of paraffin-embedded malignant melanomas: correlation with immunohistochemical analysis. Hum Pathol 2004; 35:210-6. [PMID: 14991539 DOI: 10.1016/j.humpath.2003.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ku70 and Ku80 proteins are responsible for the repair of DNA double-strand breaks and function as a regulatory subunit of the DNA-dependent protein kinase. In this study we analyzed expression of both genes in malignant melanoma tissue arrays applying in situ hybridization probes produced by our research group and using immunohistochemical analysis. Expression of both genes was down-regulated as melanoma progressed. In situ hybridization demonstrated more Ku70- and Ku80-positive cells than immunohistochemical methods, but the correlation between the two methods was highly significant (P <0.01). We conclude that the in situ hybridization assay for the detection of Ku70 and Ku80 expression used in this study is also suitable for tissue microarray analysis of paraffin-embedded melanoma samples. The laboratory procedure is much more complicated than the immunohistochemical method, however.
Collapse
Affiliation(s)
- Monika Korabiowska
- Department of Cytopathology, Georg-August-University, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|