1
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Links to Inflammation: A Re-evaluation and New Medical Perspectives. Int J Mol Sci 2021; 22:ijms22094909. [PMID: 34066339 PMCID: PMC8125380 DOI: 10.3390/ijms22094909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
2
|
The cytoprotective protein clusterin is overexpressed in hypergastrinemic rodent models of oxyntic preneoplasia and promotes gastric cancer cell survival. PLoS One 2017; 12:e0184514. [PMID: 28902909 PMCID: PMC5597207 DOI: 10.1371/journal.pone.0184514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/27/2017] [Indexed: 02/07/2023] Open
Abstract
The cytoprotective protein clusterin is often dysregulated during tumorigenesis, and in the stomach, upregulation of clusterin marks emergence of the oxyntic atrophy (loss of acid-producing parietal cells)-associated spasmolytic polypeptide-expressing metaplasia (SPEM). The hormone gastrin is important for normal function and maturation of the gastric oxyntic mucosa and hypergastrinemia might be involved in gastric carcinogenesis. Gastrin induces expression of clusterin in adenocarcinoma cells. In the present study, we examined the expression patterns and gastrin-mediated regulation of clusterin in gastric tissue from: humans; rats treated with proton pump (H+/K+-ATPase) inhibitors and/or a gastrin receptor (CCK2R) antagonist; H+/K+-ATPase β-subunit knockout (H/K-β KO) mice; and Mongolian gerbils infected with Helicobacter pylori and given a CCK2R antagonist. Biological function of secretory clusterin was studied in human gastric cancer cells. Clusterin was highly expressed in neuroendocrine cells in normal oxyntic mucosa of humans and rodents. In response to hypergastrinemia, expression of clusterin increased significantly and its localization shifted to basal groups of proliferative cells in the mucous neck cell-chief cell lineage in all animal models. That shift was partially inhibited by antagonizing the CCK2R in rats and gerbils. The oxyntic mucosa of H/K-β KO mice contained areas with clusterin-positive mucous cells resembling SPEM. In gastric adenocarcinomas, clusterin mRNA expression was higher in diffuse tumors containing signet ring cells compared with diffuse tumors without signet ring cells, and clusterin seemed to be secreted by tumor cells. In gastric cancer cell lines, gastrin increased secretion of clusterin, and both gastrin and secretory clusterin promoted survival after starvation- and chemotherapy-induced stress. Overall, our results indicate that clusterin is overexpressed in hypergastrinemic rodent models of oxyntic preneoplasia and stimulates gastric cancer cell survival.
Collapse
|
3
|
Abstract
The existence of the hormone gastrin in the distal stomach (antrum) has been known for almost 110 years, and the physiological function of this amidated peptide in regulating gastric acid secretion via the CCK2 receptor is now well established. In this brief review we consider important additional roles of gastrin, including regulation of genes encoding proteins such as plasminogen activator inhibitors and matrix metalloproteinases that have important actions on extracellular matrix remodelling. These actions are, at least in part, effected by paracrine signalling pathways and make important contributions to maintaining functional integrity of the gastric epithelium. Recent studies also provide support for the idea that gastrin, in concert with other hormones, could potentially contribute a post-prandial incretin effect. We also review recent developments in the biology of other gastrin gene products, including the precursor progastrin, which causes proliferation of the colonic epithelium and in certain circumstances may induce cancer formation. Glycine-extended biosynthetic processing intermediates also have proliferative effects in colonic mucosa and in some oesophageal cancer cell lines. Whether these additional gene products exert their effects through the CCK2 receptor or a separate entity is currently a matter of debate.
Collapse
Affiliation(s)
- Rod Dimaline
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Andrea Varro
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| |
Collapse
|
4
|
Abstract
INTRODUCTION STAT3 is a key transcription factor for many regulatory factors that modulate gene transcription. Particularly important are cytokines and growth factors that maintain homeostasis by regulating immunocytes, stromal and epithelial cells. Dysregulation of STAT3 by constitutive activation plays an important role in the initiation of inflammation and cellular transformation in numerous cancers, especially of epithelial origin. This review focuses on STAT3 drive in gastric cancer initiation and progression, with emphasis on its activation by cytokines, and how targeting the primary drivers or gastric STAT3 therapeutically may prevent or slow stomach cancer development. AREAS COVERED This review will discuss the mechanics of STAT3 signalling, how constitutive STAT3 activation promotes gastric tumourigenesis in both human adenocarcinomas and mouse models, the nature of the upstream regulators of STAT3, and their association with chronic Helicobacter pylori infection, STAT3-activated genes that promote transformation and progression, and finally the development and use of STAT3 and upstream cytokine inhibitors as therapeutics. EXPERT OPINION Chronic STAT3 activation is a key event in gastric cancer induction and progression. Specific targeting of stomach epithelial STAT3 or blocking IL-11Rα/gp130 and/or EGFR signal transduction in chronic gastric inflammation and metaplasia may be therapeutically effective in preventing gastric carcinogenesis.
Collapse
Affiliation(s)
- Andrew S Giraud
- Murdoch Childrens Research Institute, Royal Childrens Hospital, Parkville, Australia.
| | | | | |
Collapse
|
5
|
Royce SG, Lim C, Muljadi RC, Tang MLK. Trefoil factor 2 regulates airway remodeling in animal models of asthma. J Asthma 2011; 48:653-9. [PMID: 21793772 DOI: 10.3109/02770903.2011.599906] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Epithelial denudation and metaplasia are important in the pathogenesis of airway remodeling and asthma. Trefoil factor 2 (TFF2) is a member of a family of peptides involved in protection and healing of the gastrointestinal epithelium but which are also secreted in the airway mucosa. METHODS We investigated the role of TFF2 in airway remodeling by histological and morphometric analysis of lung tissue from TFF2-deficient mice subjected to two relevant animal models of asthma: an ovalbumin model of allergic airways disease and an Aspergillus fumigatus antigen sensitization model. RESULTS In the ovalbumin model TFF2-deficient mice had increased goblet cell hyperplasia, but not epithelial thickening compared to wild-type (WT) counterparts. In the Aspergillus model TFF2-deficient mice also had increased goblet cell hyperplasia, and epithelial thickness was also increased in the Aspergillus-sensitized mice compared to WT controls. TFF2 deficiency was also associated with increased subepithelial collagen layer thickness. DISCUSSION The current study demonstrates a role of TFF2 in airway remodeling in mouse models of airway disease. Further studies into the mechanisms of action of TFF2 and its role in asthma are warranted.
Collapse
Affiliation(s)
- Simon G Royce
- Allergy and Immune Disorders, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | | | | | | |
Collapse
|
6
|
Ito K, Chuang LSH, Ito T, Chang TL, Fukamachi H, Salto-Tellez M, Ito Y. Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gastroenterology 2011; 140:1536-46.e8. [PMID: 21277301 DOI: 10.1053/j.gastro.2011.01.043] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 01/05/2011] [Accepted: 01/20/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS RUNX3 is a tumor suppressor originally identified in gastric cancer. The mutation R122C in RUNX3 promotes gastric carcinogenesis by unclear mechanisms. We investigated how Runx3-deficiency contributes to distinct changes in the gastric epithelium that precede neoplasia. METHODS Runx3-deficient (Runx3(-/-)) and wild-type BALB/c adult mice were subjected to histological analyses. Gastric cancer formation after administration of N-methyl-N-nitrosourea was evaluated. Runx3(+/+) and Runx3(-/-) gastric epithelial cell lines were used to investigate the molecular basis underlying Runx3 function. RESULTS The gastric epithelia in Runx3(-)/(-) adult mice was hyperplastic, with loss of chief cells and development of mucin 6- and trefoil factor-2-expressing metaplasia. The gastric epithelium of Runx3(-)/(-) mice had an intestinal phenotype that expressed Cdx2. After addition of N-methyl-N-nitrosourea, Runx3- mice, unlike wild-type mice, consistently developed adenocarcinomas, indicating that Runx3-deficiency leads to premalignant changes in the gastric epithelia. RUNX3, but not the RUNX3 mutant R122C, repressed Cdx2 expression by attenuation of oncogenic beta(symbol)-catenin and Tcfs. CONCLUSIONS Runx3-deficiency leads to a precancerous state in the gastric epithelia of mice, characterized by loss of chief cells but not parietal cells; inflammation did not appear to be involved.
Collapse
Affiliation(s)
- Kosei Ito
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Schubert ML, D. Kaunitz J. Gastric Secretion. SLEISENGER AND FORDTRAN'S GASTROINTESTINAL AND LIVER DISEASE 2010:817-832.e7. [DOI: 10.1016/b978-1-4160-6189-2.00049-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Royce SG, Tan L, Koek AA, Tang MLK. Effect of extracellular matrix composition on airway epithelial cell and fibroblast structure: implications for airway remodeling in asthma. Ann Allergy Asthma Immunol 2009; 102:238-46. [PMID: 19354071 DOI: 10.1016/s1081-1206(10)60087-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Airway remodeling in asthma is characterized by structural changes to the airways including extracellular matrix (ECM) deposition and epithelial metaplasia. Extracellular matrix deposition in the subepithelial region may play an important role in modulation of epithelial cell and fibroblast structure and function because it lies in immediate contact with these cell types and exists within the functional epithelial mesenchymal trophic unit. OBJECTIVE To investigate the effect of aberrant ECM components on airway epithelial cells and fibroblasts and the relationship among subepithelial ECM deposition, other remodeling changes, and airway hyperresponsiveness. METHODS BEAS-2B human airway epithelial cells and WI-38 human airway fibroblast cells were cultured on various ECM protein substrates (Matrigel, representing normal basement membrane matrix, or aberrant matrix proteins collagen I, collagen III, and fibronectin). Airway remodeling changes were determined using morphometry in sections from a murine model of chronic allergic airway disease. Airway reactivity to methacholine was determined, and these parameters correlated. RESULTS Abnormal ECM substrates induced epithelial and fibroblast proliferation and altered the cell morphology of both human airway epithelial cells and fibroblasts when compared with normal basement membrane ECM. Subepithelial matrix deposition in the mouse correlated with epithelial thickness, but only weak correlations were noted among the other parameters. CONCLUSIONS We have demonstrated that ECM may affect the growth of airway epithelial cells and fibroblasts in vitro and may influence epithelial thickness in the mouse. These findings may have implications for understanding the pathogenesis of asthma and future therapeutic targeting of airway remodeling.
Collapse
Affiliation(s)
- Simon G Royce
- Department of Allergy and Immunology, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
9
|
Howlett M, Giraud AS, Lescesen H, Jackson CB, Kalantzis A, Van Driel IR, Robb L, Van der Hoek M, Ernst M, Minamoto T, Boussioutas A, Oshima H, Oshima M, Judd LM. The interleukin-6 family cytokine interleukin-11 regulates homeostatic epithelial cell turnover and promotes gastric tumor development. Gastroenterology 2009; 136:967-77. [PMID: 19121317 DOI: 10.1053/j.gastro.2008.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 10/24/2008] [Accepted: 12/01/2008] [Indexed: 01/13/2023]
Abstract
BACKGROUND & AIMS Gastric cancer is the second most common cause of cancer-related mortality worldwide, mainly as a result of late-stage detection. Interleukin (IL)-11 is a multifunctional cytokine reported to be up-regulated in human gastric cancer. METHODS We investigated the importance of IL-11 in gastric cancer progression by examining its role in a variety of mouse gastric tumor models, as well as in nonneoplastic and tumor tissues taken from gastric cancer patients. We then determined the transcriptional and translational outcomes of IL-11 overexpression in normal gastric mucosa and identified a novel gene signature important early in the progression toward gastric tumorigenesis. RESULTS IL-11 was up-regulated significantly in 4 diverse mouse models of gastric pathology as well as in human biopsy specimens adjacent to and within gastric cancer. Removal of IL-11 co-receptor alpha significantly reduced HKbeta-/- mouse fundic hyperplasia and ablated gp130(757F/F) mouse tumorigenesis. Exogenous IL-11 but not IL-6 activated oncogenic signal transducer and activator of transcription-3, and altered expression of novel proliferative and cytoprotective genes RegIII-beta, RegIII-gamma, gremlin-1, clusterin, and growth arrest specific-1 in wild-type gastric mucosa, a gene signature common in gp130(757F/F) and HKbeta-/- tumors as well as nonneoplastic mucosa of gastric cancer patients. One week of chronic IL-11 administration in wild-type mice sustained the gene signature, causing pretumorigenic changes in both antrum and fundus. CONCLUSIONS Increased gastric IL-11 alters expression of proliferative and cytoprotective genes and promotes pretumorigenic cellular changes.
Collapse
Affiliation(s)
- Meegan Howlett
- Gastrointestinal Research in Inflammation and Pathology (GRIP) Laboratory, Murdoch Children's Research Institute, Parkville, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tóth B, Leonhard-Marek S, Hedrich HJ, Breves G. Characterisation of electrogenic nutrient absorption in the Cftr TgH(neoim)Hgu mouse model. J Comp Physiol B 2008; 178:705-12. [DOI: 10.1007/s00360-008-0259-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 03/13/2008] [Accepted: 03/18/2008] [Indexed: 12/24/2022]
|
11
|
Jackson CB, Judd LM, Menheniott TR, Kronborg I, Dow C, Yeomans ND, Boussioutas A, Robb L, Giraud AS. Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression. J Pathol 2007; 213:140-51. [PMID: 17724739 DOI: 10.1002/path.2218] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
H. pylori infection accounts for most cases of gastric cancer, but the initiating events remain unclear. The principal H. pylori pathogenicity-associated CagA protein disrupts intracellular SHP-2 signalling pathways including those used by the IL-6 family cytokines, IL-6 and IL-11. Imbalanced IL-6 family cytokine signalling in the gp130(757FF) mouse model of gastric cancer arising from hyperactivation of oncogenic STAT3 after altered SHP-2 : ERK1/2 signalling produces dysplastic antral tumours preceded by gastritis and metaplasia. In a cohort of patient gastric biopsies with known H. pylori and CagA status, we investigated whether (i) STAT3 and ERK1/2 activation is altered in H. pylori-dependent gastritis; (ii) these profiles are more pronounced in CagA+ H. pylori infection; and (iii) the expression of pro-inflammatory cytokines that activate STAT3 and ERK 1/2 pathways is associated with progression to gastric cancer. IL-6, IL-11, and activated STAT3 and ERK1/2 were quantified in antral biopsies from gastritic stomach, metaplastic tissue, and resected gastric cancer tissues. We observed significantly increased STAT3 and ERK1/2 activation (p = 0.001) in H. pylori-dependent gastritis, which was further enhanced in the presence of CagA+ H. pylori strains. Of known gastric ligands that drive STAT3 activation, IL-6 expression was increased after H. pylori infection and both IL-6 and IL-11 were strongly up-regulated in the gastric cancer biopsies. This suggests a mechanism by which IL-11 drives STAT3 activation and proliferation during gastric cancer progression. We addressed this using an in vitro approach, demonstrating that recombinant human IL-11 activates STAT3 and concomitantly increases proliferation of MKN28 gastric epithelial cells. In summary, we show increased STAT3 and ERK1/2 activation in H. pylori-dependent gastritis that is likely driven in an IL-6-dependent fashion. IL-11 expression is associated with adenocarcinoma development, but not gastritic lesions, and we identify a novel mechanism for IL-11 as a potent inducer of proliferation in the human gastric cancer setting.
Collapse
Affiliation(s)
- C B Jackson
- Gastrointestinal Cancer Lab, Department of Medicine, The University of Melbourne at Western Hospital, Footscray, 3011, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Giraud AS, Jackson C, Menheniott TR, Judd LM. Differentiation of the Gastric Mucosa IV. Role of trefoil peptides and IL-6 cytokine family signaling in gastric homeostasis. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1-5. [PMID: 16935852 DOI: 10.1152/ajpgi.00382.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric trefoil peptides mediate mucosal repair by stimulating cell migration, inhibiting apoptosis and inflammation, and likely augmenting the barrier function of mucus. One of these, tff1, is a gastric-specific tumor suppressor gene, which when repressed is associated with gastric cancer progression. IL-6 family cytokines play an important role in maintaining gastric homeostasis by regulating tff1 and other mediators of mucosal proliferation, inflammation, angiogenesis, and apoptosis. In this review the signaling cascades downstream of the common IL-6 cytokine family coreceptor gp130 that contribute to control of this homeostasis are described, as are the pathological outcomes of imbalancing these pathways.
Collapse
Affiliation(s)
- A S Giraud
- Department of Medicine, University of Melbourne at Western Hospital, Footscray, Australia.
| | | | | | | |
Collapse
|
13
|
Judd LM, Bredin K, Kalantzis A, Jenkins BJ, Ernst M, Giraud AS. STAT3 activation regulates growth, inflammation, and vascularization in a mouse model of gastric tumorigenesis. Gastroenterology 2006; 131:1073-85. [PMID: 17030178 DOI: 10.1053/j.gastro.2006.07.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 06/28/2006] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The gp130(757F/F) mouse is a well-characterized and robust model of distal gastric tumorigenesis displaying many of the characteristics of human intestinal type gastric cancer. Key to the development of tumors in this model, and in many examples of human tumor development, is hyperactivation of the transcription factor STAT3. This study addressed the requirement for STAT3 activation in tumor initiation and characterized some of the genes downstream of STAT3 required for tumor development. Furthermore, the interaction among STAT3, the microbial environment, and tumorigenesis was evaluated. METHODS The role of STAT3 in gastric tumor development was assessed in detail in gp130(757F/Y757F):STAT3(+/-) mice displaying reduced STAT3 activity. Tumor size was quantified morphologically, and the effects on endocrine cell populations, neovascularization, and inflammatory cell infiltration as well as the outcome of STAT3 activation on transcription of a number of genes relevant in growth and inflammation were quantified. RESULTS Loss of one STAT3 allele in gp130(757F/F) mice reduced the frequency and rate of tumor development because of inhibition of proliferation-induced glandular hyperplasia. There was also a concomitant reduction in the degree of inflammatory infiltration and cytokine and chemokine expression, angiogenesis, and expression of metalloproteinases and growth factors. Antimicrobial treatment of gp130(757F/F) mice slowed tumor growth coincident with reduced macrophage and neutrophil infiltration. CONCLUSIONS Activation of STAT3 and the microbial environment are pivotal for gastric tumor initiation and development in the gp130(757F/F) mouse, thus supporting the notion that STAT3 activation may play a role in human gastric cancer development.
Collapse
Affiliation(s)
- Louise M Judd
- Department of Medicine, University of Melbourne at Western Hospital, Footscray 3001, Australia
| | | | | | | | | | | |
Collapse
|