1
|
Tuvali O, Tshori S, Derazne E, Hannuna RR, Afek A, Haberman D, Sella G, George J. The Incidence of Myocarditis and Pericarditis in Post COVID-19 Unvaccinated Patients-A Large Population-Based Study. J Clin Med 2022; 11:2219. [PMID: 35456309 PMCID: PMC9025013 DOI: 10.3390/jcm11082219] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
Myocarditis and pericarditis are potential post-acute cardiac sequelae of COVID-19 infection, arising from adaptive immune responses. We aimed to study the incidence of post-acute COVID-19 myocarditis and pericarditis. Retrospective cohort study of 196,992 adults after COVID-19 infection in Clalit Health Services members in Israel between March 2020 and January 2021. Inpatient myocarditis and pericarditis diagnoses were retrieved from day 10 after positive PCR. Follow-up was censored on 28 February 2021, with minimum observation of 18 days. The control cohort of 590,976 adults with at least one negative PCR and no positive PCR were age- and sex-matched. Since the Israeli vaccination program was initiated on 20 December 2020, the time-period matching of the control cohort was calculated backward from 15 December 2020. Nine post-COVID-19 patients developed myocarditis (0.0046%), and eleven patients were diagnosed with pericarditis (0.0056%). In the control cohort, 27 patients had myocarditis (0.0046%) and 52 had pericarditis (0.0088%). Age (adjusted hazard ratio [aHR] 0.96, 95% confidence interval [CI]; 0.93 to 1.00) and male sex (aHR 4.42; 95% CI, 1.64 to 11.96) were associated with myocarditis. Male sex (aHR 1.93; 95% CI 1.09 to 3.41) and peripheral vascular disease (aHR 4.20; 95% CI 1.50 to 11.72) were associated with pericarditis. Post COVID-19 infection was not associated with either myocarditis (aHR 1.08; 95% CI 0.45 to 2.56) or pericarditis (aHR 0.53; 95% CI 0.25 to 1.13). We did not observe an increased incidence of neither pericarditis nor myocarditis in adult patients recovering from COVID-19 infection.
Collapse
Affiliation(s)
- Ortal Tuvali
- Heart Center, Kaplan Medical Center, Rehovot, Hebrew University of Jerusalem, Jerusalem 91905, Israel; (O.T.); (D.H.); (G.S.)
| | - Sagi Tshori
- Research Authority, Rehovot, Hebrew University of Jerusalem, Jerusalem 91905, Israel; (S.T.); (R.R.H.)
| | - Estela Derazne
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (E.D.); (A.A.)
| | - Rebecca Regina Hannuna
- Research Authority, Rehovot, Hebrew University of Jerusalem, Jerusalem 91905, Israel; (S.T.); (R.R.H.)
| | - Arnon Afek
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (E.D.); (A.A.)
- General Management, The Chaim Sheba Medical Centre, Tel Hashomer, Ramat-Gan 52621, Israel
| | - Dan Haberman
- Heart Center, Kaplan Medical Center, Rehovot, Hebrew University of Jerusalem, Jerusalem 91905, Israel; (O.T.); (D.H.); (G.S.)
| | - Gal Sella
- Heart Center, Kaplan Medical Center, Rehovot, Hebrew University of Jerusalem, Jerusalem 91905, Israel; (O.T.); (D.H.); (G.S.)
| | - Jacob George
- Heart Center, Kaplan Medical Center, Rehovot, Hebrew University of Jerusalem, Jerusalem 91905, Israel; (O.T.); (D.H.); (G.S.)
| |
Collapse
|
2
|
Al-Suhaimi EA, Aljafary MA, Alkhulaifi FM, Aldossary HA, Alshammari T, AL-Qaaneh A, Aldahhan R, Alkhalifah Z, Gaymalov ZZ, Shehzad A, Homeida AM. Thymus Gland: A Double Edge Sword for Coronaviruses. Vaccines (Basel) 2021; 9:1119. [PMID: 34696231 PMCID: PMC8539924 DOI: 10.3390/vaccines9101119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
The thymus is the main lymphoid organ that regulates the immune and endocrine systems by controlling thymic cell proliferation and differentiation. The gland is a primary lymphoid organ responsible for generating mature T cells into CD4+ or CD8+ single-positive (SP) T cells, contributing to cellular immunity. Regarding humoral immunity, the thymic plasma cells almost exclusively secrete IgG1 and IgG3, the two main complement-fixing effector IgG subclasses. Deformity in the thymus can lead to inflammatory diseases. Hassall's corpuscles' epithelial lining produces thymic stromal lymphopoietin, which induces differentiation of CDs thymocytes into regulatory T cells within the thymus medulla. Thymic B lymphocytes produce immunoglobulins and immunoregulating hormones, including thymosin. Modulation in T cell and naive T cells decrement due to thymus deformity induce alteration in the secretion of various inflammatory factors, resulting in multiple diseases. Influenza virus activates thymic CD4+ CD8+ thymocytes and a large amount of IFNγ. IFNs limit virus spread, enhance macrophages' phagocytosis, and promote the natural killer cell restriction activity against infected cells. Th2 lymphocytes-produced cytokine IL-4 can bind to antiviral INFγ, decreasing the cell susceptibility and downregulating viral receptors. COVID-19 epitopes (S, M, and N proteins) with ≥90% identity to the SARS-CoV sequence have been predicted. These epitopes trigger immunity for antibodies production. Boosting the immune system by improving thymus function can be a therapeutic strategy for preventing virus-related diseases. This review aims to summarize the endocrine-immunoregulatory functions of the thymus and the underlying mechanisms in the prevention of COVID-19.
Collapse
Affiliation(s)
- Ebtesam A. Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Meneerah A. Aljafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Fadwa M. Alkhulaifi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| | - Hanan A. Aldossary
- Epidemic Diseases Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; or
| | - Thamer Alshammari
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
| | - Ayman AL-Qaaneh
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
- Clinical Pharmacy Services Division, Pharmacy Services Department, Johns Hopkins Aramco Healthcare (JHAH), Dhahran 31311, Saudi Arabia
| | - Razan Aldahhan
- Stem Cell Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Zahra Alkhalifah
- Genetic Research Department, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (T.A.); (A.A.-Q.); (Z.A.)
| | - Zagit Z. Gaymalov
- Earlystage OÜ, Lasnamäe Linnaosa, Sepapaja tn 6, Harju Maakond, 15551 Tallinn, Estonia;
| | - Adeeb Shehzad
- Clinical Pharmacy Research Department, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Abdelgadir M. Homeida
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.); (F.M.A.); (A.M.H.)
| |
Collapse
|
3
|
Zhou SY, Zhang C, Shu WJ, Chong LY, He J, Xu Z, Pan HF. Emerging Roles of Coronavirus in Autoimmune Diseases. Arch Med Res 2021; 52:665-672. [PMID: 33875273 PMCID: PMC8031002 DOI: 10.1016/j.arcmed.2021.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022]
Abstract
Virus infection can alter immune regulatory activity, and thus may be involved in the occurrence of autoimmune diseases. Recently, the pandemic of COVID-19 has posed a huge threat to public health and emerging evidence suggests that coronavirus may be implicated in the development and pathogenesis of autoimmune diseases. However, how coronavirus infection impacts the risk of autoimmune disease remains largely unknown. In this review, we focused on the association between coronavirus and autoimmunity, and elucidated the molecular mechanisms linking coronavirus exposure to autoimmunity. Additionally, we briefly introduced the role that coronavirus plays in several autoimmune diseases including multiple sclerosis (MS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and idiopathicthrombocytopenic purpura (ITP).
Collapse
Affiliation(s)
- Si-Yu Zhou
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Chi Zhang
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Wen-Jing Shu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Li-Ye Chong
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jun He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Zhiwei Xu
- Key Laboratory for Medical and Health of the 13th Five-Year Plan, Hefei, Anhui, China
| | - Hai-Feng Pan
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China,Address reprint requests to: Hai-Feng Pan Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230016, Anhui, China, Phone: +86 551 62965716; FAX: +86 551 62965716
| |
Collapse
|
4
|
Abstract
The pandemic of Coronavirus disease 2019 (COVID-19), caused by a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spotlighted the link between viral infection and autoimmunity. In this review, we focus on coronavirus-induced autoimmunity based on evidence from experimental animal models, SARS-CoV infection with in vitro studies of molecular mimicry and COVID-19 with several clinical reports of autoimmune manifestations of this disease. Further studies will be needed to better characterize the role of SARS-CoV-2 in the development of autoimmunity.
Collapse
Affiliation(s)
- Valéry Salle
- Department of Internal Medicine, Amiens University Hospital, 1 place Victor Pauchet, Amiens 80054, France.
| |
Collapse
|
5
|
Abstract
We have reviewed the available literature on thyroid diseases and coronavirus disease 2019 (COVID-19), and data from the previous coronavirus pandemic, the severe acute respiratory syndrome (SARS) epidemic. We learned that both SARS and COVID-19 patients had thyroid abnormalities. In the limited number of SARS cases, where it was examined, decreased serum T3, T4 and TSH levels were detected. In a study of survivors of SARS approximately 7% of the patients had hypothyroidism. In the previous evaluation evidence was found that pituitary function was also affected in SARS. Others suggested a hypothalamic-pituitary-adrenal axis dysfunction. One result published recently indicates that a primary injury to the thyroid gland itself may play a key role in the pathogenesis of thyroid disorders in COVID-19 patients, too. Subacute thyroiditis, autoimmune thyroiditis and an atypical form of thyroiditis are complications of COVID-19. Thyroid hormone dysfunction affects the outcome by increasing mortality in critical illnesses like acute respiratory distress syndrome, which is a leading complication in COVID-19. Angiotensin-converting enzyme 2 is a membrane-bound enzyme, which is also expressed in the thyroid gland and the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) uses it for docking, entering as well as replication. Based on the available results obtained in the SARS-CoV-2 pandemic, beside others, we suggest that it is necessary to monitor thyroid hormones in COVID-19.
Collapse
Affiliation(s)
- Gábor Speer
- Department of Endocrinology, Municipal Clinic Biatorbágy, H-2051, Biatorbágy, Hungary
| | - Péter Somogyi
- Department of Orthopaedics, Municipal Clinic Biatorbágy, H-2051, Biatorbágy, Hungary
| |
Collapse
|
6
|
Taherifard E, Taherifard E, Movahed H, Mousavi MR. Hematologic autoimmune disorders in the course of COVID-19: a systematic review of reported cases. ACTA ACUST UNITED AC 2021; 26:225-239. [PMID: 33594951 DOI: 10.1080/16078454.2021.1881225] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE As COVID-19 is a new emerging disease, the hematological/immunological changes that develop in the infected patients remain unknown. This study aims to systematically review the hematologic autoimmune complications in these patients. METHOD Data from three online databases including Medline (via PubMed), Scopus and Web of Science were searched on 19 December 2020, and after excluding duplicate, irrelevant and inappropriate records, eligible documents were identified. Afterwards, information such as patients' history, presentations, paraclinical data, treatment course and outcome were extracted from the records. RESULTS A total of 58 documents were considered to be eligible for data extraction which described 94 patients with COVID-19 who developed hematologic autoimmune disorder in their course of infection. Of these patients with COVID-19, the most common hematologic autoimmune disorder was immune thrombocytopenic purpura (55 cases) followed by autoimmune hemolytic anemia (22 cases). Other hematologic autoimmune disorders include antiphospholipid syndrome, thrombotic thrombocytopenic purpura, Evans syndrome and autoimmune neutropenia. CONCLUSION The current study would help us to always consider an autoimmune etiology for cases with abnormal hematologic finding which further lead to an appropriate treatment of the patients, especially when the symptoms present in about 1-2 weeks after the first manifestation of the infection symptoms. Maybe, at least in this pandemic, it should be recommended to evaluate patients with unexpected and unexplained decrease in their hemoglobulin or platelet count for COVID-19. Another challenging issue is the treatment options. Given the multiorgan involvement and multifaceted nature of the infection, an individualized approach should be taken for each patient.
Collapse
Affiliation(s)
- Erfan Taherifard
- Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran
| | - Ehsan Taherifard
- Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran
| | - Hamed Movahed
- Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran
| | | |
Collapse
|
7
|
Adivitiya, Kaushik MS, Chakraborty S, Veleri S, Kateriya S. Mucociliary Respiratory Epithelium Integrity in Molecular Defense and Susceptibility to Pulmonary Viral Infections. BIOLOGY 2021; 10:95. [PMID: 33572760 PMCID: PMC7911113 DOI: 10.3390/biology10020095] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/08/2023]
Abstract
Mucociliary defense, mediated by the ciliated and goblet cells, is fundamental to respiratory fitness. The concerted action of ciliary movement on the respiratory epithelial surface and the pathogen entrapment function of mucus help to maintain healthy airways. Consequently, genetic or acquired defects in lung defense elicit respiratory diseases and secondary microbial infections that inflict damage on pulmonary function and may even be fatal. Individuals living with chronic and acute respiratory diseases are more susceptible to develop severe coronavirus disease-19 (COVID-19) illness and hence should be proficiently managed. In light of the prevailing pandemic, we review the current understanding of the respiratory system and its molecular components with a major focus on the pathophysiology arising due to collapsed respiratory epithelium integrity such as abnormal ciliary movement, cilia loss and dysfunction, ciliated cell destruction, and changes in mucus rheology. The review includes protein interaction networks of coronavirus infection-manifested implications on the molecular machinery that regulates mucociliary clearance. We also provide an insight into the alteration of the transcriptional networks of genes in the nasopharynx associated with the mucociliary clearance apparatus in humans upon infection by severe acute respiratory syndrome coronavirus-2.
Collapse
Affiliation(s)
- Adivitiya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Manish Singh Kaushik
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Soura Chakraborty
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India;
| | - Suneel Kateriya
- Laboratory of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (A.); (M.S.K.); (S.C.)
| |
Collapse
|
8
|
Zhu L, Yan C, Duan G. Prediction of Virus-Receptor Interactions Based on Improving Similarities. J Comput Biol 2021; 28:650-659. [PMID: 33481654 DOI: 10.1089/cmb.2020.0544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Viral infectious diseases have been seriously threatening human health. The receptor binding is the first step of viral infection. Predicting virus-receptor interactions will be helpful for the interaction mechanism of viruses and receptors, and further find some effective ways of preventing and treating viral infectious diseases so as to reduce the morbidity and mortality caused by viruses. Some computation algorithms have been proposed for identifying potential virus-receptor interactions. However, a common problem in those methods is the presence of noise in the similarity network. A new computational model (Network Enhancement and the Regularized Least Squares [NERLS]) is proposed to predict virus-receptor interactions based on improving similarities by Network Enhancement (NE). NERLS integrates the virus sequence similarity, the receptor sequence similarity and known virus-receptor interactions. We compute the virus sequence similarity and known virus-receptor interactions to construct the virus similarity network. The receptor similarity network is constructed by the Gaussian interaction profile kernel similarity and the receptor sequence similarity. To obtain the final virus similarity network and the final receptor similarity network, NE is, respectively, applied for reducing the noise of the virus similarity network and the receptor similarity network. Finally, NERLS employs the regularized least squares to predict interactions of viruses and receptors. The experiment results show that NERLS achieves the area under curve value of 0.893 and 0.921 in 10-fold cross-validation and leave-one-out cross-validation, respectively, which is consistently superior to four related methods [which include Initial interaction scores method via the neighbors and the Laplacian regularized Least Square (IILLS), Bi-random walk on a heterogeneous network (BRWH), Laplacian regularized least squares classifier (LapRLS), and Collaborative matrix factorization (CMF)]. Furthermore, a case study also demonstrates that NERLS effectively predicts potential virus-receptor interactions.
Collapse
Affiliation(s)
- Lingzhi Zhu
- School of Computer Science and Engineering, Central South University, Changsha, China.,School of Computer and Information Science, Hunan Institute of Technology, Hengyang, China
| | - Cheng Yan
- School of Computer Science and Engineering, Central South University, Changsha, China.,School of Computer and Information, Qiannan Normal University for Nationalities, Duyun, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
9
|
Badawi A, Vasileva D. Comparative profile for COVID-19 cases from China and North America: Clinical symptoms, comorbidities and disease biomarkers. World J Clin Cases 2021; 9:118-132. [PMID: 33511177 PMCID: PMC7809676 DOI: 10.12998/wjcc.v9.i1.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Large inter-individual and inter-population differences in the susceptibility to and outcome of severe acute respiratory syndrome coronavirus 2 or coronavirus disease 2019 (COVID-19) have been noted. Understanding these differences and how they influence vulnerability to infection and disease severity is critical to public health intervention. AIM To analyze and compare the profile of COVID-19 cases between China and North America as two regions that differ in many environmental, host and healthcare factors related to disease risk. METHODS We conducted a meta-analysis to examine and compare demographic information, clinical symptoms, comorbidities, disease severity and levels of disease biomarkers of COVID-19 cases from clinical studies and data from China (105 studies) and North America (19 studies). RESULTS COVID-19 patients from North America were older than their Chinese counterparts and with higher male: Female ratio. Fever, cough, fatigue and dyspnea were the most common clinical symptoms in both study regions (present in about 30% to 75% of the cases in both regions). Meta-analysis for the prevalence of comorbidities (such as obesity, hypertension, diabetes, cardiovascular diseases, chronic obstructive pulmonary disease, cancer, and chronic kidney diseases) in COVID-19 patients were all significantly more prevalent in North America compared to China. Comorbidities were positively correlated with age but at a significantly younger age range in China compared to North American. The most prevalent infection outcome was acute respiratory distress syndrome which was 2-fold more frequent in North America than in China. Levels of C-reactive protein were 4.5-fold higher in the North American cases than in cases from China. CONCLUSION The differences in the profile of COVID-19 cases from China and North America may relate to differences in environmental-, host- and healthcare-related factors between the two regions. Such inter-population differences-together with intra-population variability-underline the need to characterize the effect of health inequities and inequalities on public health response to COVID-19 and can assist in preparing for the re-emergence of the epidemic.
Collapse
Affiliation(s)
- Alaa Badawi
- Public Health Risk Sciences Division, Public Health Agency of Canada, Toronto M5V3L7, ON, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto M5S1A8, ON, Canada
| | - Denitsa Vasileva
- Center for Heart Lung Innovation, University of British Columbia, Vancouver V6Z1Y6, BC, Canada
| |
Collapse
|
10
|
Sofra X. Vaccines’ Safety and Effectiveness in the Midst of Covid-19 Mutations. Health (London) 2021. [DOI: 10.4236/health.2021.133023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Albulescu R, Dima SO, Florea IR, Lixandru D, Serban AM, Aspritoiu VM, Tanase C, Popescu I, Ferber S. COVID-19 and diabetes mellitus: Unraveling the hypotheses that worsen the prognosis (Review). Exp Ther Med 2020; 20:194. [PMID: 33101484 PMCID: PMC7579812 DOI: 10.3892/etm.2020.9324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the caused disease - coronavirus disease 2019 (COVID-19), has affected so far >6,000,000 people worldwide, with variable grades of severity, and has already inflicted >350,000 deaths. SARS-CoV-2 infection seems severely affected by background diseases such as diabetes mellitus and its related complications, that seem to be favoring the most severe manifestations of SARS-CoV-2 and, therefore, require special attention in clinical care units. The present literature review focus on addressing several hypotheses explaining why diabetic patients could develop multi-organ failure in severe acute respiratory syndrome coronavirus (SARS-CoV) infections. Undoubtedly, as diabetes related complications are present it is expected to emphasize the severity of the COVID-19. Dermatological complications can occur and worsen in diabetic patients, and diseases such as acanthosis nigricans and psoriasis are prone to more severe manifestations of COVID-19. Approaches to treat SARS-CoV-2 infected patients, based on different solutions i.e. plasma therapy, use of antiviral compounds, development of vaccines or new therapeutic agents are ongoing.
Collapse
Affiliation(s)
- Radu Albulescu
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- National Institute for Chemical-Pharmaceutical R&D, 031299 Bucharest, Romania
| | - Simona Olimpia Dima
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Raluca Florea
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Daniela Lixandru
- Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Biochemistry, ‘Carol Davila’ University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Andreea Madalina Serban
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Veronica Madalina Aspritoiu
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Cristiana Tanase
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Department of Biochemistry-Proteomics,‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence to: Professor Cristiana Tanase, ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 185 Vacaresti Road, 004051 Bucharest, Romania
| | - Irinel Popescu
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Sarah Ferber
- ‘Nicolae Cajal’ Institute, ‘Titu Maiorescu’ University, 004051 Bucharest, Romania
- Center for Stem Cells and Regenerative Medicine, Sheba Medical Center, 5262000 Hashomer, Israel
- Orgenesis Ltd., 6997801 Aviv, Israel
- Department of Human Genetics, Aviv University, Sackler School of Medicine, 6997801 Aviv, Israel
| |
Collapse
|
12
|
Ahmed-Hassan H, Sisson B, Shukla RK, Wijewantha Y, Funderburg NT, Li Z, Hayes D, Demberg T, Liyanage NPM. Innate Immune Responses to Highly Pathogenic Coronaviruses and Other Significant Respiratory Viral Infections. Front Immunol 2020; 11:1979. [PMID: 32973803 PMCID: PMC7468245 DOI: 10.3389/fimmu.2020.01979] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
The new pandemic virus SARS-CoV-2 emerged in China and spread around the world in <3 months, infecting millions of people, and causing countries to shut down public life and businesses. Nearly all nations were unprepared for this pandemic with healthcare systems stretched to their limits due to the lack of an effective vaccine and treatment. Infection with SARS-CoV-2 can lead to Coronavirus disease 2019 (COVID-19). COVID-19 is respiratory disease that can result in a cytokine storm with stark differences in morbidity and mortality between younger and older patient populations. Details regarding mechanisms of viral entry via the respiratory system and immune system correlates of protection or pathogenesis have not been fully elucidated. Here, we provide an overview of the innate immune responses in the lung to the coronaviruses MERS-CoV, SARS-CoV, and SARS-CoV-2. This review provides insight into key innate immune mechanisms that will aid in the development of therapeutics and preventive vaccines for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Brianna Sisson
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Rajni Kant Shukla
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Yasasvi Wijewantha
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Zihai Li
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Don Hayes
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | | - Namal P M Liyanage
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
13
|
Complete post-mortem data in a fatal case of COVID-19: clinical, radiological and pathological correlations. Int J Legal Med 2020; 134:2209-2214. [PMID: 32767018 PMCID: PMC7410356 DOI: 10.1007/s00414-020-02390-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023]
Abstract
A 75-year-old man presented to a French hospital with a 4-day fever after returning from a coronavirus disease-19 (COVID-19) cluster region. A reverse-transcription polymerase chain reaction test was positive for severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) using a nasopharyngeal swab sample. After he returned home and a telephone follow-up, he was found deceased 9 days after first showing symptoms. Whole-body, non-enhanced, post-mortem computed tomography (PMCT) and a forensic autopsy were performed approximately 48 h after death, with sanitary precautions. The PMCT showed bilateral and diffuse crazy-paving lung opacities, with bilateral pleural effusions. Post-mortem virology studies detected the presence of SARS-CoV-2 (B.1 lineage) in the nasopharynx, plasma, lung biopsies, pleural effusion and faeces confirming the persistence of viral ribonucleic acid 48 h after death. Microscopic examination showed that severe lung damage was responsible for his death. The main abnormality was diffuse alveolar damage, associated with different stages of inflammation and fibrosis. This case is one of the first to describe complete post-mortem data for a COVID-19 death and highlights the ability of PMCT to detect severe involvement of the lungs before autopsy in an apparently natural death. The present pathology results are concordant with previously reported findings and reinforce the disease pathogenesis hypothesis of combined viral replication with an inappropriate immune response.
Collapse
|
14
|
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. An unbalanced immune response, characterized by a weak production of type I interferons (IFN-Is) and an exacerbated release of proinflammatory cytokines, contributes to the severe forms of the disease. SARS-CoV-2 is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2003 and 2013, respectively. Although IFN treatment gave some encouraging results against SARS-CoV and MERS-CoV in animal models, its potential as a therapeutic against COVID-19 awaits validation. Here, we describe our current knowledge of the complex interplay between SARS-CoV-2 infection and the IFN system, highlighting some of the gaps that need to be filled for a better understanding of the underlying molecular mechanisms. In addition to the conserved IFN evasion strategies that are likely shared with SARS-CoV and MERS-CoV, novel counteraction mechanisms are being discovered in SARS-CoV-2-infected cells. Since the last coronavirus epidemic, we have made considerable progress in understanding the IFN-I response, including its spatiotemporal regulation and the prominent role of plasmacytoid dendritic cells (pDCs), which are the main IFN-I-producing cells. While awaiting the results of the many clinical trials that are evaluating the efficacy of IFN-I alone or in combination with antiviral molecules, we discuss the potential benefits of a well-timed IFN-I treatment and propose strategies to boost pDC-mediated IFN responses during the early stages of viral infection.
Collapse
Affiliation(s)
- Margarida Sa Ribero
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | | | - Marlène Dreux
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Sébastien Nisole
- IRIM, CNRS UMR9004, Université de Montpellier, Montpellier, France
| |
Collapse
|
15
|
Carotti M, Salaffi F, Sarzi-Puttini P, Agostini A, Borgheresi A, Minorati D, Galli M, Marotto D, Giovagnoni A. Chest CT features of coronavirus disease 2019 (COVID-19) pneumonia: key points for radiologists. LA RADIOLOGIA MEDICA 2020; 125:636-646. [PMID: 32500509 PMCID: PMC7270744 DOI: 10.1007/s11547-020-01237-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 is an emerging infection caused by a novel coronavirus that is moving so rapidly that on 30 January 2020 the World Health Organization declared the outbreak a Public Health Emergency of International Concern and on 11 March 2020 as a pandemic. An early diagnosis of COVID-19 is crucial for disease treatment and control of the disease spread. Real-time reverse-transcription polymerase chain reaction (RT-PCR) demonstrated a low sensibility; therefore chest computed tomography (CT) plays a pivotal role not only in the early detection and diagnosis, especially for false negative RT-PCR tests, but also in monitoring the clinical course and in evaluating the disease severity. This paper reports the CT findings with some hints on the temporal changes over the course of the disease: the CT hallmarks of COVID-19 are bilateral distribution of ground glass opacities with or without consolidation in the posterior and peripheral lung, but the predominant findings in later phases include consolidations, linear opacities, "crazy-paving" pattern, "reversed halo" sign and vascular enlargement. The CT findings of COVID-19 overlap with the CT findings of other diseases, in particular the viral pneumonia including influenza viruses, parainfluenza virus, adenovirus, respiratory syncytial virus, rhinovirus, human metapneumovirus, etc. There are differences as well as similarities in the CT features of COVID-19 compared with those of the severe acute respiratory syndrome. The aim of this article is to review the typical and atypical CT findings in COVID-19 patients in order to help radiologists and clinicians to become more familiar with the disease.
Collapse
Affiliation(s)
- Marina Carotti
- Dipartimento di Scienze Radiologiche S. O. D. Radiologia Pediatrica e Specialistica, Azienda Ospedaliera Universitaria, Ospedali Riuniti “Umberto I–G.M. Lancisi–G. Salesi”, Via Conca 71, 60030 Ancona, AN Italy
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, University Politecnica delle Marche, Ancona, AN Italy
| | - Fausto Salaffi
- Clinica Reumatologica, Ospedale “Carlo Urbani”, Jesi, AN Italy
- Dipartimento di Scienze Cliniche e Molecolari, University Politecnica delle Marche, Ancona, AN Italy
| | - Piercarlo Sarzi-Puttini
- Divisione di Reumatologia, Dipartimento di Medicina Interna, ASST Fatebenefratelli-Sacco, Milan University School of Medicine, Milan, Italy
| | - Andrea Agostini
- Dipartimento di Scienze Radiologiche S. O. D. Radiologia Pediatrica e Specialistica, Azienda Ospedaliera Universitaria, Ospedali Riuniti “Umberto I–G.M. Lancisi–G. Salesi”, Via Conca 71, 60030 Ancona, AN Italy
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, University Politecnica delle Marche, Ancona, AN Italy
| | - Alessandra Borgheresi
- Dipartimento di Scienze Radiologiche S. O. D. Radiologia Pediatrica e Specialistica, Azienda Ospedaliera Universitaria, Ospedali Riuniti “Umberto I–G.M. Lancisi–G. Salesi”, Via Conca 71, 60030 Ancona, AN Italy
| | - Davide Minorati
- Dipartimento di Radiologia. ASST Fatebenefratelli-Sacco, Milan University School of Medicine, Milan, Italy
| | - Massimo Galli
- Divisione di Malattie Infettive, Department di Scienze Cliniche e Biomolecolari, ASST Fatebenefratelli-Sacco, Milan University School of Medicine, Milan, Italy
| | - Daniela Marotto
- Divisione di Reumatologia, Dipartimento di Medicina Interna, ASST Fatebenefratelli-Sacco, Milan University School of Medicine, Milan, Italy
| | - Andrea Giovagnoni
- Dipartimento di Scienze Radiologiche S. O. D. Radiologia Pediatrica e Specialistica, Azienda Ospedaliera Universitaria, Ospedali Riuniti “Umberto I–G.M. Lancisi–G. Salesi”, Via Conca 71, 60030 Ancona, AN Italy
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, University Politecnica delle Marche, Ancona, AN Italy
| |
Collapse
|
16
|
Badawi A. Hypercytokinemia and Pathogen-Host Interaction in COVID-19. J Inflamm Res 2020; 13:255-261. [PMID: 32606886 PMCID: PMC7320995 DOI: 10.2147/jir.s259096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) coronavirus (CoV)-2 (SARS-CoV-2) is a novel coronavirus identified as the cause of coronavirus disease-2019 (COVID-19) that began in Wuhan, China in late 2019 and spread now in 210 countries and territories around the world. Many people are asymptomatic or with mild symptoms. However, in some cases (usually the elderly and those with comorbidities) the disease may progress to pneumonia, acute respiratory distress syndrome and multi-organ dysfunction that can lead to death. Such wide interindividual differences in response to SARS-CoV-2 infection may relate to several pathogen- and host-related factors. These include the different levels of the ubiquitously present human angiotensin I converting enzyme 2 (ACE2) receptors gene expression and its variant alleles, the different binding affinities of ACE2 to the virus spike (S) protein given its L- and S-subtypes and the subsequent extent of innate immunity-related hypercytokinemia. The extensive synthesis of cytokines and chemokines in coronavirus diseases was suggested as a major factor in exacerbating lung damage and other fatal complications. The polymorphisms in genes coding for pro-inflammatory cytokines and chemokines have been associated with mediating the response and susceptibility to a wide range of infections and their severe outcomes. Understanding the nature of pathogen-host interaction in COVID-19 symptomatology together with the role of hypercytokinemia in disease severity may permit developing new avenues of approach for prevention and treatment and can delineate public health measures to control the spread of the disease.
Collapse
Affiliation(s)
- Alaa Badawi
- Public Health Risk Sciences Division, Public Health Agency of Canada, Toronto, ON, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Ehrenreich H, Weissenborn K, Begemann M, Busch M, Vieta E, Miskowiak KW. Erythropoietin as candidate for supportive treatment of severe COVID-19. Mol Med 2020; 26:58. [PMID: 32546125 PMCID: PMC7297268 DOI: 10.1186/s10020-020-00186-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
In light of the present therapeutic situation in COVID-19, any measure to improve course and outcome of seriously affected individuals is of utmost importance. We recap here evidence that supports the use of human recombinant erythropoietin (EPO) for ameliorating course and outcome of seriously ill COVID-19 patients. This brief expert review grounds on available subject-relevant literature searched until May 14, 2020, including Medline, Google Scholar, and preprint servers. We delineate in brief sections, each introduced by a summary of respective COVID-19 references, how EPO may target a number of the gravest sequelae of these patients. EPO is expected to: (1) improve respiration at several levels including lung, brainstem, spinal cord and respiratory muscles; (2) counteract overshooting inflammation caused by cytokine storm/ inflammasome; (3) act neuroprotective and neuroregenerative in brain and peripheral nervous system. Based on this accumulating experimental and clinical evidence, we finally provide the research design for a double-blind placebo-controlled randomized clinical trial including severely affected patients, which is planned to start shortly.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | | | - Martin Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Department of Psychiatry & Psychotherapy, University Medical Center, Göttingen, Germany
| | - Markus Busch
- Center of Internal Medicine, Hannover Medical School, Hannover, Germany
| | - Eduard Vieta
- Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Kamilla W Miskowiak
- Psychiatric Centre Copenhagen, University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
18
|
Sarzi-Puttini P, Giorgi V, Sirotti S, Marotto D, Ardizzone S, Rizzardini G, Antinori S, Galli M. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol 2020; 19:102574. [PMID: 32376399 PMCID: PMC7200131 DOI: 10.1016/j.autrev.2020.102574] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
A correct patient risk stratification is of paramount importance for the proper management of economic and human resources. Clinical trials are crucial to assessing immunosuppressant prophylaxis and treatment to avoid overuse and treatment shortage. Controlled studies may highlight a potential preventive role of immunosuppressant in the development of Covid-19 severe forms Despite the risk of infection in rheumatic and gastroenterological diseases a conclusive link with COV-19 remains questionable
Collapse
Affiliation(s)
- Piercarlo Sarzi-Puttini
- Rheumatology Unit, ASST-Fatebenefratelli L. Sacco University Hospital, University of Milan, Italy.
| | - Valeria Giorgi
- Rheumatology Unit, ASST-Fatebenefratelli L. Sacco University Hospital, University of Milan, Italy
| | - Silvia Sirotti
- Rheumatology Unit, ASST-Fatebenefratelli L. Sacco University Hospital, University of Milan, Italy
| | - Daniela Marotto
- Rheumatology Unit, ATS Sardegna, P. Dettori Hospital, Tempio Pausania, Italy
| | - Sandro Ardizzone
- Gastrointestinal Unit, ASST-Fatebenefratelli Sacco. L. Sacco Department of Biochemical and Clinical Sciences, University of Milan, Italy
| | - Giuliano Rizzardini
- Department of Infectious Diseases, I Division of Infectious Diseases ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Spinello Antinori
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, and III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, and III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| |
Collapse
|
19
|
Wu Y. Compensation of ACE2 Function for Possible Clinical Management of 2019-nCoV-Induced Acute Lung Injury. Virol Sin 2020; 35:256-258. [PMID: 32034638 PMCID: PMC7091449 DOI: 10.1007/s12250-020-00205-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/20/2023] Open
Affiliation(s)
- Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
20
|
Yan C, Duan G, Wu FX, Wang J. IILLS: predicting virus-receptor interactions based on similarity and semi-supervised learning. BMC Bioinformatics 2019; 20:651. [PMID: 31881820 PMCID: PMC6933616 DOI: 10.1186/s12859-019-3278-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Viral infectious diseases are the serious threat for human health. The receptor-binding is the first step for the viral infection of hosts. To more effectively treat human viral infectious diseases, the hidden virus-receptor interactions must be discovered. However, current computational methods for predicting virus-receptor interactions are limited. Result In this study, we propose a new computational method (IILLS) to predict virus-receptor interactions based on Initial Interaction scores method via the neighbors and the Laplacian regularized Least Square algorithm. IILLS integrates the known virus-receptor interactions and amino acid sequences of receptors. The similarity of viruses is calculated by the Gaussian Interaction Profile (GIP) kernel. On the other hand, we also compute the receptor GIP similarity and the receptor sequence similarity. Then the sequence similarity is used as the final similarity of receptors according to the prediction results. The 10-fold cross validation (10CV) and leave one out cross validation (LOOCV) are used to assess the prediction performance of our method. We also compare our method with other three competing methods (BRWH, LapRLS, CMF). Conlusion The experiment results show that IILLS achieves the AUC values of 0.8675 and 0.9061 with the 10-fold cross validation and leave-one-out cross validation (LOOCV), respectively, which illustrates that IILLS is superior to the competing methods. In addition, the case studies also further indicate that the IILLS method is effective for the virus-receptor interaction prediction.
Collapse
Affiliation(s)
- Cheng Yan
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.,School of Computer and Information,Qiannan Normal University for Nationalities, Longshan Road, DuYun, 558000, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.
| | - Fang-Xiang Wu
- Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9, Canada
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China
| |
Collapse
|
21
|
Nelemans T, Kikkert M. Viral Innate Immune Evasion and the Pathogenesis of Emerging RNA Virus Infections. Viruses 2019; 11:v11100961. [PMID: 31635238 PMCID: PMC6832425 DOI: 10.3390/v11100961] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Positive-sense single-stranded RNA (+ssRNA) viruses comprise many (re-)emerging human pathogens that pose a public health problem. Our innate immune system and, in particular, the interferon response form the important first line of defence against these viruses. Given their genetic flexibility, these viruses have therefore developed multiple strategies to evade the innate immune response in order to optimize their replication capacity. Already many molecular mechanisms of innate immune evasion by +ssRNA viruses have been identified. However, research addressing the effect of host innate immune evasion on the pathology caused by viral infections is less prevalent in the literature, though very relevant and interesting. Since interferons have been implicated in inflammatory diseases and immunopathology in addition to their protective role in infection, antagonizing the immune response may have an ambiguous effect on the clinical outcome of the viral disease. Therefore, this review discusses what is currently known about the role of interferons and host immune evasion in the pathogenesis of emerging coronaviruses, alphaviruses and flaviviruses.
Collapse
Affiliation(s)
- Tessa Nelemans
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands.
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands.
| |
Collapse
|
22
|
Palaniyappan A, Das D, Kammila S, Suresh MR, Sunwoo HH. Diagnostics of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid antigen using chicken immunoglobulin Y. Poult Sci 2012; 91:636-42. [PMID: 22334738 PMCID: PMC7195055 DOI: 10.3382/ps.2011-01916] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The goal of this study was to develop a quantitative detection system for severe acute respiratory syndrome-associated coronavirus (SARS-CoV), targeting the nucleocapsid protein (NP), to determine the presence and degree of infection in suspected individuals. Because the NP is the viral protein shed during infection and its template mRNA is the most abundant subgenomic RNA, it is a suitable candidate for developing antibodies for diagnostic applications. In this study, we have prepared full-length SARS-CoV NP expressed in Escherichia coli and purified. Full-length NP was used for the preparation of mouse monoclonal antibody and chicken polyclonal IgY antibodies for the development of heterosandwich ELISA for early diagnostics of SARS-suspected individuals. The sensitivity of the developed heterosandwich ELISA can detect the viral antigen at 18.5 pg/mL of recombinant NP. This study describes ultrasensitive ELISA using 19B6 monoclonal antibody as the capture antibody and IgY as the detecting antibody against the most abundant SARS-CoV NP antigens. One of the most important findings was the use of inexpensive polyclonal IgY antibody to increase the sensitivity of the detection system for SARS-CoV at the picogram level. Furthermore, the immunoassay of SARS-CoV NP antigen developed could be an effective and sensitive method of diagnosing SARS-suspected individuals during a future SARS-CoV outbreak.
Collapse
Affiliation(s)
- A Palaniyappan
- Faculty of Pharmacy and Pharmaceutical Sciences, 11304-89 Ave., University of Alberta, Edmonton, AB, Canada T6G 2N8
| | | | | | | | | |
Collapse
|
23
|
Spengler U, Fischer HP, Caselmann WH. Liver Disease Associated with Viral Infections. ZAKIM AND BOYER'S HEPATOLOGY 2012. [PMCID: PMC7152320 DOI: 10.1016/b978-1-4377-0881-3.00034-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
Liao HH, Wang YC, Chen MCM, Tsai HY, Lin J, Chen ST, Tsay GJ, Cheng SL. Down-regulation of granulocyte-macrophage colony-stimulating factor by 3C-like proteinase in transfected A549 human lung carcinoma cells. BMC Immunol 2011; 12:16. [PMID: 21324206 PMCID: PMC3048559 DOI: 10.1186/1471-2172-12-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/17/2011] [Indexed: 11/12/2022] Open
Abstract
Background Severe Acute Respiratory Syndrome (SARS) is a severe respiratory illness caused by a novel virus, the SARS coronavirus (SARS-CoV). 3C-like protease (3CLpro) of SARS-CoV plays a role in processing viral polypeptide precursors and is responsible of viral maturation. However, the function of 3CLpro in host cells remains unknown. This study investigated how the 3CLpro affected the secretion of cytokines in the gene-transfected cells. Results From immunofluorescence microscopy, the localization of c-myc tagged 3CLpro was detected both in the cytoplasm and nucleus of transfected A549 cells. Expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly decreased in 3CLpro-transfected cells by both RT-PCR and ELISA, but without changes in other cytokines, i.e., IL-1β, IL-6, IL-8, IL12p40, TNF-α, and TGF-β. Furthermore, the protein levels of NF-kB decreased in 3CLpro-transfected A549 cells when compared to EGFP transfected cells. Conclusions Our results suggest that the 3CLpro may suppress expression of GM-CSF in transfected A549 cells through down-regulation of NF-kB production.
Collapse
Affiliation(s)
- Hsien-Hua Liao
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40242, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- David S C Hui
- Division of Respiratory Medicine, Stanley Ho Center for Emerging Infectious Diseases, Prince of Wales Hospital, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China.
| | | |
Collapse
|
26
|
Frieman MB, Chen J, Morrison TE, Whitmore A, Funkhouser W, Ward JM, Lamirande EW, Roberts A, Heise M, Subbarao K, Baric RS. SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog 2010; 6:e1000849. [PMID: 20386712 PMCID: PMC2851658 DOI: 10.1371/journal.ppat.1000849] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 03/08/2010] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) infection often caused severe end stage lung disease and organizing phase diffuse alveolar damage, especially in the elderly. The virus-host interactions that governed development of these acute end stage lung diseases and death are unknown. To address this question, we evaluated the role of innate immune signaling in protection from human (Urbani) and a recombinant mouse adapted SARS-CoV, designated rMA15. In contrast to most models of viral pathogenesis, infection of type I, type II or type III interferon knockout mice (129 background) with either Urbani or MA15 viruses resulted in clinical disease outcomes, including transient weight loss, denuding bronchiolitis and alveolar inflammation and recovery, identical to that seen in infection of wildtype mice. This suggests that type I, II and III interferon signaling play minor roles in regulating SARS pathogenesis in mouse models. In contrast, infection of STAT1-/- mice resulted in severe disease, high virus titer, extensive pulmonary lesions and 100% mortality by day 9 and 30 post-infection with rMA15 or Urbani viruses, respectively. Non-lethal in BALB/c mice, Urbani SARS-CoV infection in STAT1-/- mice caused disseminated infection involving the liver, spleen and other tissues after day 9. These findings demonstrated that SARS-CoV pathogenesis is regulated by a STAT1 dependent but type I, II and III interferon receptor independent, mechanism. In contrast to a well documented role in innate immunity, we propose that STAT1 also protects mice via its role as an antagonist of unrestrained cell proliferation.
Collapse
Affiliation(s)
- Matthew B. Frieman
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jun Chen
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Thomas E. Morrison
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alan Whitmore
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William Funkhouser
- Department of Anatomic Pathology and Surgical Pathology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jerrold M. Ward
- Comparative Medicine Branch, NIAID, NIH, Bethesda, Maryland, United States of America
- Laboratory of Immunopathology, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Elaine W. Lamirande
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Anjeanette Roberts
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Mark Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
27
|
Abstract
Although initially considered relatively harmless pathogens, human coronaviruses (HCoVs) are nowadays known to be associated with more severe clinical complications. Still, their precise pathogenic potential is largely unknown, particularly regarding the most recently identified species HCoV-NL63 and HCoV-HKU1. HCoVs need host cell proteins to successively establish infections. Proteases of the renin–angiotensin system serve as receptors needed for entry into target cells; this article describes the current knowledge on the involvement of this system in HCoV pathogenesis.
Collapse
Affiliation(s)
- Brigitte A Wevers
- Center for Experimental & Molecular Medicine, Center for Infection & Immunity Amsterdam, Academic Medical Center, University of Amsterdam, PO Box 226600, 1100 DD Amsterdam, The Netherlands.
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam, Academic Medical Center, University of Amsterdam, PO Box 226600, 1100 DD Amsterdam, The Netherlands. Tel.: +31 205 667 510; ;
| |
Collapse
|
28
|
Annexin A2 on lung epithelial cell surface is recognized by severe acute respiratory syndrome-associated coronavirus spike domain 2 antibodies. Mol Immunol 2009; 47:1000-9. [PMID: 20015551 PMCID: PMC7112629 DOI: 10.1016/j.molimm.2009.11.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/07/2009] [Accepted: 11/13/2009] [Indexed: 12/31/2022]
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection causes lung failure characterized by atypical pneumonia. We previously showed that antibodies against SARS-CoV spike domain 2 (S2) in the patient sera can cross-react with human lung epithelial cells; however, the autoantigen is not yet identified. In this study, we performed proteomic studies and identified several candidate autoantigens recognized by SARS patient sera in human lung type II epithelial cell A549. Among the candidate proteins, annexin A2, which was identified by mass spectrometry analysis and had the highest score by Mascot data search, was further characterized and investigated for its role as an autoantigen. By confocal microscopic observation, SARS patient sera and anti-S2 antibodies were co-localized on A549 cells and both of them were co-localized with anti-annexin A2 antibodies. Anti-annexin A2 antibodies bound to purified S2 proteins, and anti-S2 bound to immunoprecipitated annexin A2 from A549 cell lysate in a dose-dependent manner. Furthermore, an increased surface expression and raft-structure distribution of annexin A2 was present in A549 cells after stimulation with SARS-induced cytokines interleukin-6 and interferon-gamma. Cytokine stimulation increased the binding capability of anti-S2 antibodies to human lung epithelial cells. Together, the upregulated expression of annexin A2 by SARS-associated cytokines and the cross-reactivity of anti-SARS-CoV S2 antibodies to annexin A2 may have implications in SARS disease pathogenesis.
Collapse
|
29
|
Yoshikawa T, Hill T, Li K, Peters CJ, Tseng CTK. Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. J Virol 2009; 83:3039-48. [PMID: 19004938 PMCID: PMC2655569 DOI: 10.1128/jvi.01792-08] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/05/2008] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome (SARS), which is caused by a novel coronavirus (CoV), is a highly communicable disease with the lungs as the major pathological target. Although SARS likely stems from overexuberant host inflammatory responses, the exact mechanism leading to the detrimental outcome in patients remains unknown. Pulmonary macrophages (Mphi), airway epithelium, and dendritic cells (DC) are key cellular elements of the host innate defenses against respiratory infections. While pulmonary Mphi are situated at the luminal epithelial surface, DC reside abundantly underneath the epithelium. Such strategic locations of these cells within the airways make it relevant to investigate their likely impact on SARS pathogenesis subsequent to their interaction with infected lung epithelial cells. To study this, we established highly polarized human lung epithelial Calu-3 cells by using the Transwell culture system. Here we report that supernatants harvested from the apical and basolateral domains of infected Calu-3 cells are potent in modulating the intrinsic functions of Mphi and DC, respectively. They prompted the production of cytokines by both Mphi and DC and selectively induced CD40 and CD86 expression only on DC. However, they compromised the abilities of the DC and Mphi in priming naïve T cells and phagocytosis, respectively. We also identified interleukin-6 (IL-6) and IL-8 as key SARS-CoV-induced epithelial cytokines capable of inhibiting the T-cell-priming ability of DC. Taken together, our results provide insights into the molecular and cellular bases of the host antiviral innate immunity within the lungs that eventually lead to an exacerbated inflammatory cascades and severe tissue damage in SARS patients.
Collapse
Affiliation(s)
- Tomoki Yoshikawa
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Kammila S, Das D, Bhatnagar PK, Sunwoo HH, Zayas-Zamora G, King M, Suresh MR. A rapid point of care immunoswab assay for SARS-CoV detection. J Virol Methods 2008; 152:77-84. [PMID: 18620761 PMCID: PMC2678951 DOI: 10.1016/j.jviromet.2008.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/18/2008] [Accepted: 05/08/2008] [Indexed: 01/09/2023]
Abstract
The emergence of severe acute respiratory syndrome (SARS) resulted in several outbreaks worldwide. Early tests for diagnosis were not always conclusive in identifying a SARS suspected patient. Nucleocapsid protein (NP) is the most predominant virus derived structural protein which is shed in high amounts in serum and nasopharyngeal aspirate during the first week of infection. As part of such efforts, a simple, easy to use immunoswab method was developed by generating a panel of monoclonal antibodies (MAbs), Bispecific MAbs and chicken polyclonal IgY antibody against the SARS-CoV nucleocapsid protein (NP). Employing the MAb-based immunoswab, an NP concentration of 200 pg/mL in saline and pig nasopharyngeal aspirate, and 500 pg/mL in rabbit serum were detected. BsMAb-based immunoswabs detected an NP concentration of 20 pg/mL in saline, 500 pg/mL in rabbit serum and 20-200 pg/mL in pig nasopharyngeal aspirate. Polyclonal IgY-based immunoswabs detected an NP concentration of 10 pg/mL in pig nasopharyngeal aspirate providing the most sensitive SARS point of care assay. Results show that the robust immunoswab method of detecting SARS-CoV NP antigen can be developed into an easy and effective way of identifying SARS suspected individuals during a future SARS epidemic, thereby reducing and containing the transmission. The key feature of this simple immunoswab diagnostic assay is its ability to detect the presence of the SARS-CoV antigen within 45-60 min with the availability of the body fluid samples.
Collapse
Affiliation(s)
- Sriram Kammila
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11304-89 Avenue, Edmonton, Alberta, Canada T6G 2N8
| | - Dipankar Das
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11304-89 Avenue, Edmonton, Alberta, Canada T6G 2N8
| | - Pravin K. Bhatnagar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11304-89 Avenue, Edmonton, Alberta, Canada T6G 2N8
| | - Hoon H. Sunwoo
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11304-89 Avenue, Edmonton, Alberta, Canada T6G 2N8
| | - Gustavo Zayas-Zamora
- Mucophysiology Laboratory, 173 Heritage Medical Research Centre, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Alberta, Canada T6G 2S2
| | - Malcolm King
- Mucophysiology Laboratory, 173 Heritage Medical Research Centre, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Alberta, Canada T6G 2S2
| | - Mavanur R. Suresh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11304-89 Avenue, Edmonton, Alberta, Canada T6G 2N8
| |
Collapse
|
32
|
Clinical features, pathogenesis and immunobiology of severe acute respiratory syndrome. Curr Opin Pulm Med 2008; 14:241-7. [PMID: 18427248 DOI: 10.1097/mcp.0b013e3282fb81b2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Severe acute respiratory syndrome coronavirus is a novel virus responsible for the major pandemic in 2003, and it re-emerged in China in late 2003 and 2004 following resumption of wild animal trading activities. Over the past few years, research work has looked into factors that may lead to super-spreading events, clinical/laboratory parameters that may differentiate severe acute respiratory syndrome from other causes of community-acquired pneumonia, the origin of severe acute respiratory syndrome, reservoir host distribution and transmission routes. A better understanding of these issues may help prevent and control future outbreaks of severe acute respiratory syndrome. RECENT FINDINGS Bats are natural reservoirs of severe acute respiratory syndrome like coronaviruses. The human and civet isolates of severe acute respiratory syndrome coronavirus nestle phylogenetically within the spectrum of severe acute respiratory syndrome like coronaviruses. Severe acute respiratory syndrome has the potential of being converted from droplet to airborne transmission. When evaluating epidemiologically high-risk patients with community-acquired pneumonia and no immediate alternative diagnosis, a low absolute neutrophil count on presentation, along with poor responses after 72 h of antibiotic treatment, may raise the index of suspicion for severe acute respiratory syndrome. SUMMARY The presence of severe acute respiratory syndrome like coronaviruses in horseshoe bats raises the possible role of bats in previous and potentially future severe acute respiratory syndrome outbreaks in human. Healthcare workers should take adequate respiratory protection in addition to strict contact and droplet precautions when managing patients with severe acute respiratory syndrome.
Collapse
|
33
|
Detrick B, Lee MT, Chin MS, Hooper LC, Chan CC, Hooks JJ. Experimental coronavirus retinopathy (ECOR): retinal degeneration susceptible mice have an augmented interferon and chemokine (CXCL9, CXCL10) response early after virus infection. J Neuroimmunol 2008; 193:28-37. [PMID: 18037505 PMCID: PMC2562577 DOI: 10.1016/j.jneuroim.2007.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 09/05/2007] [Accepted: 09/21/2007] [Indexed: 11/19/2022]
Abstract
Mouse hepatitis virus induces a biphasic disease in BALB/c mice that consists of an acute retinitis followed by progression to a chronic retinal degeneration with autoimmune reactivity. Retinal degeneration resistant CD-1 mice do not develop the late phase. What host factors contribute to the distinct responses to the virus are unknown. Herein, we show that IFN-alpha, IFN-beta and IFN-gamma act in concert as part of the innate immune response to the retinal infection. At day 2, high serum levels of IFN-gamma, CXCL9 and CXCL10, were detected in BALB/c mice. Moreover, elevated levels of CXCL9 and CXCL10 gene expression were detected in retinal tissue. Although IFN-gamma and the chemokines were detected in CD-1 mice, they were at significantly lower levels compared to BALB/c mice. These augmented innate responses observed correlated with the development of autoimmune reactivity and retinal degeneration and thus may contribute to the pathogenic processes.
Collapse
Affiliation(s)
- Barbara Detrick
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287-7065, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Recher M, Lang KS, Navarini A, Hunziker L, Lang PA, Fink K, Freigang S, Georgiev P, Hangartner L, Zellweger R, Bergthaler A, Hegazy AN, Eschli B, Theocharides A, Jeker LT, Merkler D, Odermatt B, Hersberger M, Hengartner H, Zinkernagel RM. Extralymphatic virus sanctuaries as a consequence of potent T-cell activation. Nat Med 2007; 13:1316-23. [PMID: 17982463 PMCID: PMC7096094 DOI: 10.1038/nm1670] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 09/25/2007] [Indexed: 02/02/2023]
Abstract
T helper cells can support the functions of CD8(+) T cells against persistently infecting viruses such as murine lymphocytic choriomeningitis virus (LCMV), cytomegalovirus, hepatitis C virus and HIV. These viruses often resist complete elimination and remain detectable at sanctuary sites, such as the kidneys and other extralymphatic organs. The mechanisms underlying this persistence are not well understood. Here we show that mice with potent virus-specific T-cell responses have reduced levels and delayed formation of neutralizing antibodies, and these mice fail to clear LCMV from extralymphatic epithelia. Transfer of virus-specific B cells but not virus-specific T cells augmented virus clearance from persistent sites. Virus elimination from the kidneys was associated with the formation of IgG deposits in the interstitial space, presumably from kidney-infiltrating B cells. CD8(+) T cells in the kidneys of mice that did not clear virus from this site were activated but showed evidence of exhaustion. Thus, we conclude that in this model of infection, site-specific virus persistence develops as a consequence of potent immune activation coupled with reductions in virus-specific neutralizing antibodies. Our results suggest that sanctuary-site formation depends both on organ anatomy and on the induction of different adaptive immune effector mechanisms. Boosting T-cell responses alone may not reduce virus persistence.
Collapse
Affiliation(s)
- Mike Recher
- Institute for Experimental Immunology, University Hospital Zürich, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cameron MJ, Ran L, Xu L, Danesh A, Bermejo-Martin JF, Cameron CM, Muller MP, Gold WL, Richardson SE, Poutanen SM, Willey BM, DeVries ME, Fang Y, Seneviratne C, Bosinger SE, Persad D, Wilkinson P, Greller LD, Somogyi R, Humar A, Keshavjee S, Louie M, Loeb MB, Brunton J, McGeer AJ, Kelvin DJ. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J Virol 2007; 81:8692-706. [PMID: 17537853 PMCID: PMC1951379 DOI: 10.1128/jvi.00527-07] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is not understood how immune inflammation influences the pathogenesis of severe acute respiratory syndrome (SARS). One area of strong controversy is the role of interferon (IFN) responses in the natural history of SARS. The fact that the majority of SARS patients recover after relatively moderate illness suggests that the prevailing notion of deficient type I IFN-mediated immunity, with hypercytokinemia driving a poor clinical course, is oversimplified. We used proteomic and genomic technology to systematically analyze host innate and adaptive immune responses of 40 clinically well-described patients with SARS during discrete phases of illness from the onset of symptoms to discharge or a fatal outcome. A novel signature of high IFN-alpha, IFN-gamma, and IFN-stimulated chemokine levels, plus robust antiviral IFN-stimulated gene (ISG) expression, accompanied early SARS sequelae. As acute illness progressed, SARS patients entered a crisis phase linked to oxygen saturation profiles. The majority of SARS patients resolved IFN responses at crisis and expressed adaptive immune genes. In contrast, patients with poor outcomes showed deviated ISG and immunoglobulin gene expression levels, persistent chemokine levels, and deficient anti-SARS spike antibody production. We contend that unregulated IFN responses during acute-phase SARS may culminate in a malfunction of the switch from innate immunity to adaptive immunity. The potential for the use of the gene signatures we describe in this study to better assess the immunopathology and clinical management of severe viral infections, such as SARS and avian influenza (H5N1), is therefore worth careful examination.
Collapse
Affiliation(s)
- Mark J Cameron
- Division of Experimental Therapeutics, University Health Network, MaRS Centre, 3-916 TMDT, 101 College Street, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
SHAO HONGWEI, LAN DONGMING, DUAN ZHAOHUI, LIU ZEHUAN, MIN JUN, ZHANG LICHUN, HUANG JIAN, SU JING, CHEN SHANGWU, XU ANLONG. Upregulation of mitochondrial gene expression in PBMC from convalescent SARS patients. J Clin Immunol 2006; 26:546-554. [PMID: 17024565 PMCID: PMC7086694 DOI: 10.1007/s10875-006-9046-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 09/08/2006] [Indexed: 01/22/2023]
Abstract
The observations that Lymphopenia is common in severe acute respiratory syndrome (SARS) patients and that peripheral blood mononuclear cell (PBMC) could be infected by SARS-CoV indicate that PBMC could be useful in identifying the gene expression profile in convalescent patients and tracing the host response to SARS-CoV infection. In this study, the altered genes expressions in the PBMC of convalescent SARS patients were investigated with suppression subtractive hybridization (SSH). We found that genes encoded by mitochondrial DNA (mtDNA) were obviously upregulated, while mitochondria were now found to be closely connected with antiviral immunity. The identification of a viral gene, M, in SSH cDNA library shows the long-term existence of SARS-CoV in vivo. In addition, some oxidative stress sensitive genes, heat shock proteins, transcription factors, and cytokines showed remarkable elevation. Thin-section electron microscope shows increased lysosome-like granule and mitochondria in PBMC of patients. These results provide important intracellular clue for tracing host response to SARS-CoV infection and suggest a role of mitochondria in that process.
Collapse
Affiliation(s)
- HONGWEI SHAO
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, 510275 Guangzhou, P. R. China
| | - DONGMING LAN
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, 510275 Guangzhou, P. R. China
| | - ZHAOHUI DUAN
- The Second Affiliated Hospital, Sun Yat-sen (Zhongshan) University, 510120 Guangzhou, P. R. China
| | - ZEHUAN LIU
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, 510275 Guangzhou, P. R. China
| | - JUN MIN
- The Second Affiliated Hospital, Sun Yat-sen (Zhongshan) University, 510120 Guangzhou, P. R. China
| | - LICHUN ZHANG
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, 510275 Guangzhou, P. R. China
| | - JIAN HUANG
- The Second Affiliated Hospital, Sun Yat-sen (Zhongshan) University, 510120 Guangzhou, P. R. China
| | - JING SU
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, 510275 Guangzhou, P. R. China
| | - SHANGWU CHEN
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, 510275 Guangzhou, P. R. China
| | - ANLONG XU
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, 510275 Guangzhou, P. R. China
| |
Collapse
|
37
|
Wei L, Sun S, Xu CH, Zhang J, Xu Y, Zhu H, Peh SC, Korteweg C, McNutt MA, Gu J. Pathology of the thyroid in severe acute respiratory syndrome. Hum Pathol 2006; 38:95-102. [PMID: 16996569 PMCID: PMC7112059 DOI: 10.1016/j.humpath.2006.06.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 06/12/2006] [Accepted: 06/14/2006] [Indexed: 01/21/2023]
Abstract
The severe acute respiratory syndrome (SARS) epidemic started in November 2002 and spread worldwide. The pathological changes in several human organs of patients with SARS have been extensively described. However, to date, little has been reported about the effects of this infection on the thyroid gland. Femoral head necrosis and low serum triiodothyronine and thyroxine levels, commonly found in patients with SARS, raise the possibility of thyroid dysfunction. We have undertaken this study to evaluate for any potential injury to the thyroid gland caused by SARS on tissue samples obtained from 5 SARS autopsies. The terminal deoxynucleotidyl transferase-mediated dUPT nick end–labeling assay was performed to identify apoptotic cells. The follicular epithelium was found to be damaged with large numbers of cells exfoliated into the follicle. The terminal deoxynucleotidyl transferase-mediated dUPT nick end–labeling assay demonstrated many cells undergoing apoptosis. Follicular architecture was altered and showed distortion, dilatation, and collapse. No distinct calcitonin-positive cells were detectable in the SARS thyroids. In conclusion, both parafollicular and follicular cells were injured. This may provide an explanation both for low serum triiodothyronine and thyroxine levels and the osteonecrosis of the femoral head associated with patients with SARS. Apoptosis may play a role in the pathogenesis of SARS associated coronavirus infection in the thyroid gland.
Collapse
Affiliation(s)
- Lan Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking (Beijing) University, 100083 Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tan YJ, Lim SG, Hong W. Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Antiviral Res 2006; 72:78-88. [PMID: 16820226 PMCID: PMC7114237 DOI: 10.1016/j.antiviral.2006.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 04/29/2006] [Accepted: 05/15/2006] [Indexed: 12/14/2022]
Abstract
A novel coronavirus, termed the severe acute respiratory syndrome coronavirus (SARS-CoV), infected humans in Guangdong, China, in November 2002 and the subsequent efficient human-to-human transmissions of this virus caused profound disturbances in over 30 countries worldwide in 2003. Eventually, this epidemic was controlled by isolation and there has been no human infection reported since January 2004. However, research on different aspects of the SARS-CoV is not waning, as it is not known if this virus will re-emerge, especially since its origins and potential reservoir(s) are unresolved. The SARS-CoV genome is nearly 30 kb in length and contains 14 potential open reading frames (ORFs). Some of these ORFs encode for genes that are homologous to proteins found in all known coronaviruses, namely the replicase genes (ORFs 1a and 1b) and the four structural proteins: nucleocapsid, spike, membrane and envelope, and these proteins are expected to be essential for the replication of the virus. The remaining eight ORFs encodes for accessory proteins, varying in length from 39 to 274 amino acids, which are unique to SARS-CoV. This review will summarize the expeditious research on these accessory viral proteins in three major areas: (i) the detection of antibodies against accessory proteins in the serum of infected patients, (ii) the expression, processing and cellular localization of the accessory proteins, and (iii) the effects of the accessory proteins on cellular functions. These in-depth molecular and biochemical characterizations of the SARS-CoV accessory proteins, which have no homologues in other coronaviruses, may offer clues as to why the SARS-CoV causes such a severe and rapid attack in humans, while other coronaviruses that infect humans seem to be more forgiving.
Collapse
Affiliation(s)
- Yee-Joo Tan
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | | | | |
Collapse
|
39
|
Abstract
Much can be learnt about the mechanisms by which micro‐organisms cause disease from the ways that they interact with cells and tissues. This issue of The Journal of Pathology contains articles that address the roles that cell and tissue biology and pathology are playing in the elucidation of these mechanisms. A review of variant Creutzfeldt–Jakob disease is followed by a discussion of severe acute respiratory syndrome (SARS). Two articles on human papillomavirus (HPV) infection address the association between viral infection and neoplasia, as do reviews on viruses and lymphoma/leukaemia, and Kaposi's sarcoma‐associated herpesvirus (human herpesvirus 8, HHV8). The section on viral disease concludes with an article on morbilliviruses. The intracellular effects of bacteria are addressed in a review of Listeria infection and a further review outlines recent advances in our knowledge of syphilis. Reviews on Helicobacter and gastric neoplasia, innate defences against methicillin‐resistant Staphylococcus aureus (MRSA) infection, and the function of granulomas in tuberculosis also address aspects of tissue responses to bacterial infection. Following a review of the function of immunoglobulin A in defence against infection, a group of articles considers vaccination and gene therapy approaches, the latter involving consideration of both viral and bacterial strategies. The reviews assembled here bridge several gaps: between microbiology and cellular pathology; between host and infecting organism; and between disease and therapy. It is clear that cell and tissue pathology approaches are of value in all of these spheres, providing cell and tissue relevance to microbiological and immunological observations. Copyright © 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
|