1
|
Colvin VC, Bramer LM, Rivera BN, Pennington JM, Waters KM, Tilton SC. Modeling PAH Mixture Interactions in a Human In Vitro Organotypic Respiratory Model. Int J Mol Sci 2024; 25:4326. [PMID: 38673911 PMCID: PMC11050152 DOI: 10.3390/ijms25084326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
One of the most significant challenges in human health risk assessment is to evaluate hazards from exposure to environmental chemical mixtures. Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous contaminants typically found as mixtures in gaseous and particulate phases in ambient air pollution associated with petrochemicals from Superfund sites and the burning of fossil fuels. However, little is understood about how PAHs in mixtures contribute to toxicity in lung cells. To investigate mixture interactions and component additivity from environmentally relevant PAHs, two synthetic mixtures were created from PAHs identified in passive air samplers at a legacy creosote site impacted by wildfires. The primary human bronchial epithelial cells differentiated at the air-liquid interface were treated with PAH mixtures at environmentally relevant proportions and evaluated for the differential expression of transcriptional biomarkers related to xenobiotic metabolism, oxidative stress response, barrier integrity, and DNA damage response. Component additivity was evaluated across all endpoints using two independent action (IA) models with and without the scaling of components by toxic equivalence factors. Both IA models exhibited trends that were unlike the observed mixture response and generally underestimated the toxicity across dose suggesting the potential for non-additive interactions of components. Overall, this study provides an example of the usefulness of mixture toxicity assessment with the currently available methods while demonstrating the need for more complex yet interpretable mixture response evaluation methods for environmental samples.
Collapse
Affiliation(s)
- Victoria C. Colvin
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
| | - Lisa M. Bramer
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Brianna N. Rivera
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
| | - Jamie M. Pennington
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Katrina M. Waters
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Susan C. Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
2
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
3
|
Safhi FA, Al-Hazani TMI, Jalal AS, Alduwish MA, Alshaya DS, Almufareh NA, Domiaty DM, Alshehri E, Al-Shamrani SM, Abboosh TS, Alotaibi MA, Alwaili MA, Al-Qahtani WS. FGFR3 and FGFR4 overexpression in juvenile nasopharyngeal angiofibroma: impact of smoking history and implications for personalized management. J Appl Genet 2023; 64:749-758. [PMID: 37656292 DOI: 10.1007/s13353-023-00780-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Lifestyle factors, including smoking, have been linked to neoplastic diseases, and reports suggest an association between smoking and overexpression of FGFR (fibroblast growth factor receptor) in certain neoplasms. This study aims to assess the expression of FGFR3 and FGFR4 genes in patients with and without a history of smoking.A total of 118 participants were recruited, including 83 Juvenile Nasopharyngeal Angiofibroma (JNA) patients and 35 healthy participants, the JNA patients were further stratified as smokers and nonsmokers. Total RNA was extracted from the blood & saliva sample by using TRIzol reagent, and quantified using a Nanodrop, and then subjected to gene expression analysis of FGFR3/4 using RT-PCR. Immunohistochemistry analysis was employed using fresh biopsies of JNA to validate the findings. All experiments were performed in triplicates and analysed using the Chi-Square test (P < 0.05). Smokers exhibited significantly lower total RNA concentrations across all sample types (P < 0.001). The study revealed significant upregulation of both FGFR3/4 genes in JNA patients (P < 0.05). Moreover, FGFR3 expression was significantly higher among smokers 66% (95% CI: 53-79%) compared to non-smokers 22% (95% CI: 18-26%). Immunohistochemistry analysis demonstrated moderate to strong staining intensity for FGFR3 among smokers. The study highlights the overexpression of FGFR3/4 genes in JNA patients, with a stronger association observed among smokers. Furthermore, medical reports indicated higher rates of recurrence and bleeding intensity among smokers. These findings emphasize the potential role of FGFR3 as a key molecular factor in JNA, particularly in the context of smoking.
Collapse
Affiliation(s)
- Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Tahani Mohamed Ibrahim Al-Hazani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, 11940, Al-Kharj, Saudi Arabia
| | - Areej Saud Jalal
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Manal Abdullah Alduwish
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, 11940, Al-Kharj, Saudi Arabia
| | - Dalal S Alshaya
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Nawaf Abdulrahman Almufareh
- Department of Pediatric Dentistry and Preventive Dental Sciences, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Dalia Mostafa Domiaty
- College of Science, Department of Biology, University of Jeddah, P.O. Box 13151, 21493, Jeddah, Saudi Arabia
| | - Eman Alshehri
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salha M Al-Shamrani
- College of Science, Department of Biology, University of Jeddah, P.O. Box 13151, 21493, Jeddah, Saudi Arabia
| | - Tahani Saeed Abboosh
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Public Security, Forensic Evidence Laboratories, Criminal Examinations, Ministry of Interior, Riyadh, Saudi Arabia
| | | | - Maha Abdulla Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Wedad Saeed Al-Qahtani
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, P.O. Box 6830, 11452, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
5
|
Koloko Ngassie ML, De Vries M, Borghuis T, Timens W, Sin DD, Nickle D, Joubert P, Horvatovich P, Marko-Varga G, Teske JJ, Vonk JM, Gosens R, Prakash YS, Burgess JK, Brandsma CA. Age-associated differences in the human lung extracellular matrix. Am J Physiol Lung Cell Mol Physiol 2023; 324:L799-L814. [PMID: 37039368 PMCID: PMC10202478 DOI: 10.1152/ajplung.00334.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/15/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023] Open
Abstract
Extracellular matrix (ECM) remodeling has been associated with chronic lung diseases. However, information about specific age-associated differences in lung ECM is currently limited. In this study, we aimed to identify and localize age-associated ECM differences in human lungs using comprehensive transcriptomic, proteomic, and immunohistochemical analyses. Our previously identified age-associated gene expression signature of the lung was re-analyzed limiting it to an aging signature based on 270 control patients (37-80 years) and focused on the Matrisome core geneset using geneset enrichment analysis. To validate the age-associated transcriptomic differences on protein level, we compared the age-associated ECM genes (false discovery rate, FDR < 0.05) with a profile of age-associated proteins identified from a lung tissue proteomics dataset from nine control patients (49-76 years) (FDR < 0.05). Extensive immunohistochemical analysis was used to localize and semi-quantify the age-associated ECM differences in lung tissues from 62 control patients (18-82 years). Comparative analysis of transcriptomic and proteomic data identified seven ECM proteins with higher expression with age at both gene and protein levels: COL1A1, COL6A1, COL6A2, COL14A1, FBLN2, LTBP4, and LUM. With immunohistochemistry, we demonstrated higher protein levels with age for COL6A2 in whole tissue, parenchyma, airway wall, and blood vessel, for COL14A1 and LUM in bronchial epithelium, and COL1A1 in lung parenchyma. Our study revealed that higher age is associated with lung ECM remodeling, with specific differences occurring in defined regions within the lung. These differences may affect lung structure and physiology with aging and as such may increase susceptibility to developing chronic lung diseases.NEW & NOTEWORTHY We identified seven age-associated extracellular matrix (ECM) proteins, i.e., COL1A1, COL6A1, COL6A2 COL14A1, FBLN2, LTBP4, and LUM with higher transcript and protein levels in human lung tissue with age. Extensive immunohistochemical analysis revealed significant age-associated differences for COL6A2 in whole tissue, parenchyma, airway wall, and vessel, for COL14A1 and LUM in bronchial epithelium, and COL1A1 in parenchyma. Our findings lay a new foundation for the investigation of ECM differences in age-associated chronic lung diseases.
Collapse
Affiliation(s)
- Maunick Lefin Koloko Ngassie
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maaike De Vries
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Theo Borghuis
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Don D Sin
- Centre for Heart Lung Innovation at St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Nickle
- Monoceros Bio, San Diego, California, United States
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - György Marko-Varga
- Center of Excellence in Biological and Medical Mass Spectrometry, Biomedical Center, Lund University, Lund, Sweden
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Reinoud Gosens
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Expression of Mucin Family Proteins in Non-Small-Cell Lung Cancer and its Role in Evaluation of Prognosis. JOURNAL OF ONCOLOGY 2022; 2022:4181658. [PMID: 36059804 PMCID: PMC9439898 DOI: 10.1155/2022/4181658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Lung cancer is still the major contributor to cancer-related mortality. Over 85% of patients suffer from non-small-cell lung cancer (NSCLC). Mucins (MUCs) are large glycoproteins secreted or membrane-bound produced by epithelial cells in normal and malignant tissues. They are the major components of the mucous gel that covers the surface of the respiratory epithelium. Certain MUCs have been used or proposed to act as biomarkers for lung cancer. Nevertheless, the expression, messenger ribonucleic acid (mRNA) levels, and the prognostic value of MUCs in NSCLC are yet to be investigated systematically. In this research, the biological information of MUC proteins in patients with NSCLC was examined using a series of databases. The results based on gene expression profiling interactive analysis (GEPIA) illustrated that the expression of MUC3A, MUC4, MUC5B, MUC13, MUC16, and MUC21 mRNAs was remarkably upmodulated in lung adenocarcinoma (LUAD) patients, whereas the MUC1 expression was downregulated in lung squamous cell carcinoma (LUSC) patients. Kaplan–Meier plotter (KM Plotter) analysis revealed that elevated mRNA expression levels of MUC3A and MUC16 were linked to unfavourable overall survival (OS) in NSCLC, while increased mRNA expression of MUC1 and MUC15 was linked to good OS, especially in LUAD patients. In addition, differential expression of MUC1, MUC3A/3B, MUC8, MUC12, MUC15, and MUC16 mRNA was linked to the prognoses of NSCLC patients with varied clinical-pathological subtypes. Genetic alterations of MUCs in NSCLC primarily involved mutations, fusion, amplification, deep deletion, and multiple alterations according to cancer genomics (cBioPortal). Therefore, we propose that combinations of MUC proteins can act as prognostic biomarkers and demonstrate the therapeutic potential for NSCLC-related therapy.
Collapse
|
7
|
Ahmed KM, Veeramachaneni R, Deng D, Putluri N, Putluri V, Cardenas MF, Wheeler DA, Decker WK, Frederick AI, Kazi S, Sikora AG, Sandulache VC, Frederick MJ. Glutathione peroxidase 2 is a metabolic driver of the tumor immune microenvironment and immune checkpoint inhibitor response. J Immunother Cancer 2022; 10:jitc-2022-004752. [PMID: 36002187 PMCID: PMC9413193 DOI: 10.1136/jitc-2022-004752] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The existence of immunologically 'cold tumors' frequently found across a wide spectrum of tumor types represents a significant challenge for cancer immunotherapy. Cold tumors have poor baseline pan-leukocyte infiltration, including a low prevalence of cytotoxic lymphocytes, and not surprisingly respond unfavorably to immune checkpoint (IC) inhibitors. We hypothesized that cold tumors harbor a mechanism of immune escape upstream and independent of ICs that may be driven by tumor biology rather than differences in mutational neoantigen burden. METHODS Using a bioinformatic approach to analyze TCGA (The Cancer Genome Atlas) RNA sequencing data we identified genes upregulated in cold versus hot tumors across four different smoking-related cancers, including squamous carcinomas from the oral cavity (OCSCC) and lung (LUSC), and adenocarcinomas of the bladder (BLCA) and lung (LUAD). Biological significance of the gene most robustly associated with a cold tumor phenotype across all four tumor types, glutathione peroxidase 2 (GPX2), was further evaluated using a combination of in silico analyses and functional genomic experiments performed both in vitro and in in vivo with preclinical models of oral cancer. RESULTS Elevated RNA expression of five metabolic enzymes including GPX2, aldo-keto reductase family 1 members AKR1C1, AKR1C3, and cytochrome monoxygenases (CP4F11 and CYP4F3) co-occurred in cold tumors across all four smoking-related cancers. These genes have all been linked to negative regulation of arachidonic acid metabolism-a well-established inflammatory pathway-and are also known downstream targets of the redox sensitive Nrf2 transcription factor pathway. In OCSCC, LUSC, and LUAD, GPX2 expression was highly correlated with Nrf2 activation signatures, also elevated in cold tumors. In BLCA, however, GPX2 correlated more strongly than Nrf2 signatures with decreased infiltration of multiple leukocyte subtypes. GPX2 inversely correlated with expression of multiple pro- inflammatory cytokines/chemokines and NF-kB activation in cell lines and knockdown of GPX2 led to increased secretion of prostaglandin E2 (PGE2) and interleukin-6. Conversely, GPX2 overexpression led to reduced PGE2 production in a murine OCSCC model (MOC1). GPX2 overexpressing MOC1 tumors had a more suppressive tumor immune microenvironment and responded less favorably to anti-cytotoxic T-lymphocytes-associated protein 4 IC therapy in mice. CONCLUSION GPX2 overexpression represents a novel potentially targetable effector of immune escape in cold tumors.
Collapse
Affiliation(s)
- Kazi Mokim Ahmed
- Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Ratna Veeramachaneni
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Defeng Deng
- Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Vasanta Putluri
- Advanced Technology Core, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Maria F Cardenas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - William K Decker
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Andy I Frederick
- Undergraduate School of Engineering, Cornell University, Ithaca, New York, USA
| | - Sawad Kazi
- The University of Texas at Austin School of Biological Sciences, Austin, Texas, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vlad C Sandulache
- Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
- ENT Section, Operative Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Mitchell J Frederick
- Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Identifying General Tumor and Specific Lung Cancer Biomarkers by Transcriptomic Analysis. BIOLOGY 2022; 11:biology11071082. [PMID: 36101460 PMCID: PMC9313083 DOI: 10.3390/biology11071082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
The bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
Collapse
|
9
|
The Effect of GPX2 on the Prognosis of Lung Adenocarcinoma Diagnosis and Proliferation, Migration, and Epithelial Mesenchymal Transition. JOURNAL OF ONCOLOGY 2022; 2022:7379157. [PMID: 35898928 PMCID: PMC9313920 DOI: 10.1155/2022/7379157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022]
Abstract
Objective To investigate the expression of glutathione peroxidase 2 (GPX2) in human lung adenocarcinoma tissues and its effect on the biological function of lung adenocarcinoma A549 cells. Methods The expression of GPX2 in lung adenocarcinoma and its effect on survival were analyzed by the TCGA database and the GEPIA 2 database. A total of 45 cases of primary lung adenocarcinoma tissue specimens and 45 cases of their paracancerous tissue specimens were collected, and the expression of GPX2 in the two types of tissues was detected by immunohistochemistry. Lung adenocarcinoma A549 cells were divided into the GPX2 overexpression group (GPX2), the GPX2 knockdown group (si-GPX2), the empty vector group (Vector), the siRNA negative control group (si-NC), and the WT group; the mRNA level and protein expression of GPX2 in each group of A549 cells were detected by real-time fluorescence quantitative PCR and Western blotting; the proliferation activity of each group of cells was detected by the CCK-8 assay; the effect of GPX2 on cell migration and invasion ability was detected by the scratch assay and the Transwell invasion assay; the apoptosis of each group of cells was detected by flow cytometry; Western blotting was performed to detect the expression levels of Bax, Bcl-2, E-cadherin, vimentin, and MMP2 and MMP9 proteins in each group of cells. Results Bioinformatics analysis showed that the expression of GPX2 was strongly correlated with the prognosis of lung adenocarcinoma patients (P < 0.01). The positive expression rates of GPX2 in lung adenocarcinoma and its paracancerous tissues were 66.0% and 15.7%, respectively (P < 0.05). The results of RT-qPCR and Western blotting showed that the expression level of GPX2 mRNA and protein in A549 cells in the GPX2 group increased, which was significantly higher than that in the WT group (P < 0.05); the expression levels of GPX2 mRNA and protein in A549 cells in the si-GPX2 group were the same, that is, significantly lower than the WT group (P < 0.05). GPX2 overexpression promoted the proliferation, migration, and invasion of A549 cells and inhibited their apoptosis; the results in the si-GPX2 group were opposite to those in the GPX2 group. Compared with the WT group, the expression of Bcl-2, vimentin, and MMP2 and MMP9 protein in the GPX2 group increased (P < 0.05), while the expression of Bax and E-cadherin protein decreased in the GPX2 group (P < 0.05); the results in the si-GPX2 group were opposite to those in the GPX2 group. Conclusion The expression of GPX2 in lung adenocarcinoma is related to the prognosis of patients. It is proved that GPX2 can promote the migration and invasion of lung adenocarcinoma cells and is related to the EMT/β-catenin pathway. Thus, GPX2 is expected to be an important target for the diagnosis and treatment of lung adenocarcinoma.
Collapse
|
10
|
Overview of human 20 alpha-hydroxysteroid dehydrogenase (AKR1C1): Functions, regulation, and structural insights of inhibitors. Chem Biol Interact 2021; 351:109746. [PMID: 34780792 DOI: 10.1016/j.cbi.2021.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Human aldo-keto reductase family 1C1 (AKR1C1) is an important enzyme involved in human hormone metabolism, which is mainly responsible for the metabolism of progesterone in the human body. AKR1C1 is highly expressed and has an important relationship with the occurrence and development of various diseases, especially some cancers related to hormone metabolism. Nowadays, many inhibitors against AKR1C1 have been discovered, including some synthetic compounds and natural products, which have certain inhibitory activity against AKR1C1 at the target level. Here we briefly reviewed the physiological and pathological functions of AKR1C1 and the relationship with the disease, and then summarized the development of AKR1C1 inhibitors, elucidated the interaction between inhibitors and AKR1C1 through molecular docking results and existing co-crystal structures. Finally, we discussed the design ideals of selective AKR1C1 inhibitors from the perspective of AKR1C1 structure, discussed the prospects of AKR1C1 in the treatment of human diseases in terms of biomarkers, pre-receptor regulation and single nucleotide polymorphisms, aiming to provide new ideas for drug research targeting AKR1C1.
Collapse
|
11
|
The expression and significance of AKR1B10 in laryngeal squamous cell carcinoma. Sci Rep 2021; 11:18228. [PMID: 34521883 PMCID: PMC8440551 DOI: 10.1038/s41598-021-97648-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Aldosterone reductase family 1 member B10 (AKR1B10) is a nicotinamide adenine dinucleotide phosphate (reduced coenzyme II)-dependent oxidoreductase, and its biological functions include carbonyl detoxification, hormone metabolism, osmotic adjustment, and lipid synthesis. Studies suggested that AKR1B10 is a new biomarker for cancer based on its overexpression in epithelial tumors, such as breast cancer, cervical cancer, and lung cancer. At present, studies on the expression of AKR1B10 in laryngeal cancer have not been reported. However, we found that AKR1B10 is upregulated in laryngeal carcinoma, and its expression was negatively correlated with the degree of differentiation. In addition, AKR1B10 expression was positively correlated with tumor size; lymph node metastasis; alcohol use; and Ki-67, mutant p53, and matrix metalloproteinase 2 expression. AKR1B10 was overexpressed in Hep-2 laryngeal carcinoma cells. Oleanolic acid inhibited AKR1B10 activity and expression in Hep-2 cells and suppressed Hep-2 cell proliferation, migration, and invasion. Therefore, AKR1B10 may be related to the development of laryngeal carcinoma, suggesting its use as a prognostic indicator for laryngeal cancer.
Collapse
|
12
|
Minato A, Noguchi H, Ohnishi R, Tomisaki I, Nakayama T, Fujimoto N. Reduced Expression Level of GPX2 in T1 Bladder Cancer and its Role in Early-phase Invasion of Bladder Cancer. In Vivo 2021; 35:753-759. [PMID: 33622868 DOI: 10.21873/invivo.12316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The role of glutathione peroxidase 2 (GPX2) expression in urothelial carcinoma (UC) is rarely reported. The aim of this study was to assess the expression status of GPX2 in UC of the bladder. MATERIALS AND METHODS We collected samples from 112 patients treated with radical cystectomy for immunohistochemical study. RESULTS Following immunohistochemical analysis of the specimens, 86 (76.8%) had weak GPX2 expression. In cases with consistent GPX2 expression within the same lesion, the levels of GPX2 showed significant decreases from pTa to pT1 (47.1%) compared to those from pT1 to pT2 (5.9%) (p=0.017). Specimens obtained with transurethral resection before cancer progressed to muscle invasive bladder cancer showed that pT1 had a lower expression for GPX2 than that of pTa (63.3% vs. 93.3%; p=0.009). CONCLUSION The decrease in GPX2 expression among those with UC of the bladder may be involved in the early step of cancer invasion.
Collapse
Affiliation(s)
- Akinori Minato
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan;
| | - Hirotsugu Noguchi
- Department of Pathology, Field of Oncology Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Rei Ohnishi
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ikko Tomisaki
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
13
|
Liu X, Zhou P, He K, Wen Z, Gao Y. Dioscorea Zingiberensis New Saponin Inhibits the Growth of Hepatocellular Carcinoma by Suppressing the Expression of Long Non-coding RNA TCONS-00026762. Front Pharmacol 2021; 12:678620. [PMID: 34012402 PMCID: PMC8126712 DOI: 10.3389/fphar.2021.678620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/01/2021] [Indexed: 01/11/2023] Open
Abstract
Background: The etiology and carcinogenesis of hepatocellular carcinoma (HCC) are associated with various risk factors. Saponins extracted from Dioscorea zingiberensis C. H. Wright exhibit antitumor activity against HCC. This study aimed to investigate the effect and the underlying mechanism of Dioscorea Zingiberensis new saponin (ZnS) on HCC. Methods: Human HCC cell lines, Huh7 and SMMC-7721, were treated with different concentrations of ZnS. Cell apoptosis was determined via flow cytometry assay. Differentially expressed lncRNAs (DElncRNAs) in ZnS-treated SMMC-7721 cells were determined through RNA-sequence. The role of lncRNA TCONS-00026762 in HCC was investigated gain of function analysis, along with cell proliferation, apoptosis, and invasion in HCC cells. A subcutaneous xenograft of SMMC-7721 cell lines was established to study the effects of TCONS-00026762 in vivo. The expression of apoptosis-related proteins was detected in vivo and in vitro via western blotting. Results: ZnS inhibited the proliferation of HCC cell in a dose-dependent manner. ZnS could induce apoptosis in HCC cells. Illumina sequencing results showed that 493 DElncRNAs were identified in ZnS-treated SMMC-7721 cells. TCONS-00026762 expression was down-regulated in the ZnS-treated SMMC-7721 cells. TCONS-00026762 inhibited the effect of ZnS on the proliferation, apoptosis, and invasion of HCC cells. ZnS inhibited the tumor growth, while, TCONS-00026762 promoted tumor growth in vivo. Furthermore, ZnS and TCONS-00026762 regulated cell apoptotic pathways. Conclusion: ZnS significantly inhibits the viability, apoptosis, invasion, and tumorigenicity of HCC cells by regulating the expression of TCONS-00026,762. Our findings provide novel insights into the potential role of lncRNA in HCC therapy.
Collapse
Affiliation(s)
- Xing Liu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Jinggangshan University, Ji'an, China
| | - Pingsheng Zhou
- International Education College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Keqing He
- Department of Hepatobiliary Diseases, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Liang X, Peng J, Chen D, Tang L, Liu A, Fu Z, Shi L, Wang K, Shao C. Identification of novel hub genes and lncRNAs related to the prognosis and progression of pancreatic cancer by microarray and integrated bioinformatics analysis. Gland Surg 2021; 10:1104-1117. [PMID: 33842254 PMCID: PMC8033078 DOI: 10.21037/gs-21-151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most invasive and metastatic neoplasms among the fatal malignancies of the digestive system. Abnormal expression of genes and long non-coding RNAs (lncRNAs) are reportedly linked to multiple cancers. However, the lncRNA-mRNA expression profiles and their molecular mechanisms in PC progression are poorly known. This study aimed to map the hub genes and lncRNAs which might play core roles in the development of PC. METHODS This study used microarray expression analysis to screen for both differentially expressed genes (DEGs) and differentially expressed lncRNAs (DElncRNAs) between PC and matched adjacent non-tumor (AN) tissues. In order to clarify the functional classification of DEGs, we conducted GO and KEGG pathway enrichment analyses via the Enrichr database. LncRNA-mRNA co-expressed networks were also constructed to explore the probable core regulating DEGs and DElncRNAs. Subsequently, the hub genes and lncRNAs were validated via the ONCOMINE and GEPIA databases and the co-expressed networks. RESULTS By analyzing an mRNA-lncRNA microarray, we identified 943 mRNAs and 1,138 lncRNAs differentially expressed in PC tumors compared with the matched AN tissues. GO analysis confirmed that both up-regulated and down-regulated DEGs were enriched in multiple terms. The KEGG pathways enrichment analyses revealed that DEGs were mostly enriched in the focal adhesion and glutathione metabolism pathways, amongst others. Co-expressed networks were established to reveal the differential interactions between DEGs and DElncRNAs, and to indicate the core regulatory factors located at the core nodes of the co-expressed networks. The expression levels of potential core-regulating DEGs were validated by the GEPIA and ONCOMINE databases, and the relationship between overall survival and tumor stage and the potential core-regulating DEGs was analyzed using the GEPIA database. As a result, five genes and sixteen lncRNAs were finally considered as the hub transcripts in PC. CONCLUSIONS This study identified DEGs and DElncRNAs between PC tumors and matched AN tissues, and these transcripts were connected with malignant phenotypes in PC through different BPs and signaling pathways. Furthermore, five hub genes and sixteen lncRNAs were identified, which are expected to represent candidate diagnostic biomarkers or potential therapeutic targets for PC.
Collapse
Affiliation(s)
- Xing Liang
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Junfeng Peng
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Danlei Chen
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liang Tang
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Anan Liu
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiping Fu
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ligang Shi
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Keqi Wang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chenghao Shao
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
15
|
Rousseaux S, Seyve E, Chuffart F, Bourova-Flin E, Benmerad M, Charles MA, Forhan A, Heude B, Siroux V, Slama R, Tost J, Vaiman D, Khochbin S, Lepeule J. Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Med 2020; 18:306. [PMID: 33023569 PMCID: PMC7542140 DOI: 10.1186/s12916-020-01736-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although exposure to cigarette smoking during pregnancy has been associated with alterations of DNA methylation in the cord blood or placental cells, whether such exposure before pregnancy could induce epigenetic alterations in the placenta of former smokers has never been investigated. METHODS Our approach combined the analysis of placenta epigenomic (ENCODE) data with newly generated DNA methylation data obtained from 568 pregnant women, the largest cohort to date, either actively smoking during their pregnancy or formerly exposed to tobacco smoking. RESULTS This strategy resulted in several major findings. First, among the 203 differentially methylated regions (DMRs) identified by the epigenome-wide association study, 152 showed "reversible" alterations of DNA methylation, only present in the placenta of current smokers, whereas 26 were also found altered in former smokers, whose placenta had not been exposed directly to cigarette smoking. Although the absolute methylation changes were smaller than those observed in other contexts, such as in some congenital diseases, the observed alterations were consistent within each DMR. This observation was further supported by a demethylation of LINE-1 sequences in the placentas of both current (beta-coefficient (β) (95% confidence interval (CI)), - 0.004 (- 0.008; 0.001)) and former smokers (β (95% CI), - 0.006 (- 0.011; - 0.001)) compared to nonsmokers. Second, the 203 DMRs were enriched in epigenetic marks corresponding to enhancer regions, including monomethylation of lysine 4 and acetylation of lysine 27 of histone H3 (respectively H3K4me1 and H3K27ac). Third, smoking-associated DMRs were also found near and/or overlapping 10 imprinted genes containing regions (corresponding to 16 genes), notably including the NNAT, SGCE/PEG10, and H19/MIR675 loci. CONCLUSIONS Our results pointing towards genomic regions containing the imprinted genes as well as enhancers as preferential targets suggest mechanisms by which tobacco could directly impact the fetus and future child. The persistence of significant DNA methylation changes in the placenta of former smokers supports the hypothesis of an "epigenetic memory" of exposure to cigarette smoking before pregnancy. This observation not only is conceptually revolutionary, but these results also bring crucial information in terms of public health concerning potential long-term detrimental effects of smoking in women.
Collapse
Affiliation(s)
- Sophie Rousseaux
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Emie Seyve
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Florent Chuffart
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | | | - Meriem Benmerad
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Marie-Aline Charles
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Anne Forhan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Valérie Siroux
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Remy Slama
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Evry, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm - UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Saadi Khochbin
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France.
| | | |
Collapse
|
16
|
Yang S, Liu T, Liang G. The benefits of smoking cessation on survival in cancer patients by integrative analysis of multi-omics data. Mol Oncol 2020; 14:2069-2080. [PMID: 32580248 PMCID: PMC7463331 DOI: 10.1002/1878-0261.12755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Few studies have examined the association between smoking status (including former smokers) at diagnosis and overall survival among cancer patients. We aimed to assess the benefits of quitting smoking on cancer prognosis in cohorts of cancer patient smokers obtained from the Cancer Genome Atlas (TCGA) database. Hazard ratios (HR) were calculated to evaluate smoking behavior at cancer diagnosis (reformed smokers vs. current smokers) in association with overall survival using multivariate‐adjusted Cox regressions analysis. According to our analyses, quitting smoking was the independent protective factor for overall survival in lung squamous cell carcinoma (LUSC) (HR = 0.67, 95% CI = 0.48–0.94). Comprehensive analysis of multicomponent data across reformed and current smokers identified a total of 85 differential expressed genes (DEGs) affected by different modes of genetic and epigenetic regulation, potentially representing cancer drivers in smokers. Moreover, we provided a smoking‐associated gene expression signature, which could evaluate the true effect on prognosis with high power (HR = 1.70, 95% CI = 1.19–2.43, AUC = 0.65, 0.67, and 0.70 for 2‐, 3‐, and 5‐year survival, respectively). This signature was also applicable in other smoking‐related cancers, including bladder urothelial carcinoma (HR = 1.70, 95% CI = 1.01–2.88), cervical carcinoma (HR = 5.69, 95% CI = 1.37–23.69), head and neck squamous cell carcinoma (HR = 1.97, 95% CI = 1.41–2.76), lung adenocarcinoma (HR = 1.73, 95% CI = 1.16–2.57), and pancreatic adenocarcinoma (HR = 4.28, 95% CI = 1.47–12.47). In conclusion, this study demonstrates that quitting smoking at diagnosis decreases risk of death in cancer patients. We also provide a smoking‐associated gene expression signature to evaluate the effect of smoking on survival. Lastly, we suggest that smoking cessation could comprise a part of cancer treatment to improve survival rates of cancer patients.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
17
|
Zhang ML, Wu HT, Chen WJ, Xu Y, Ye QQ, Shen JX, Liu J. Involvement of glutathione peroxidases in the occurrence and development of breast cancers. J Transl Med 2020; 18:247. [PMID: 32571353 PMCID: PMC7309991 DOI: 10.1186/s12967-020-02420-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glutathione peroxidases (GPxs) belong to a family of enzymes that is important in organisms; these enzymes promote hydrogen peroxide metabolism and protect cell membrane structure and function from oxidative damage. Based on the establishment and development of the theory of the pathological roles of free radicals, the role of GPxs has gradually attracted researchers' attention, and the involvement of GPxs in the occurrence and development of malignant tumors has been shown. On the other hand, the incidence of breast cancer in increasing, and breast cancer has become the leading cause of cancer-related death in females worldwide; breast cancer is thought to be related to the increased production of reactive oxygen species, indicating the involvement of GPxs in these processes. Therefore, this article focused on the molecular mechanism and function of GPxs in the occurrence and development of breast cancer to understand their role in breast cancer and to provide a new theoretical basis for the treatment of breast cancer.
Collapse
Affiliation(s)
- Man-Li Zhang
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wen-Jia Chen
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Ya Xu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Qian-Qian Ye
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Jia-Xin Shen
- Department of Hematology, the First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Jing Liu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China.
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
18
|
Elevated Glutathione Peroxidase 2 Expression Promotes Cisplatin Resistance in Lung Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7370157. [PMID: 32215178 PMCID: PMC7079220 DOI: 10.1155/2020/7370157] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
The aim of this study was to explore the roles of GPX2, a member of the glutathione peroxidase family (GPXs, GSH-Px), in cisplatin (DDP) resistance in lung adenocarcinoma (LUAD). GPX2 was found to be the most significantly upregulated gene in a DDP-resistant A549/DDP cell line compared with the parental A549 cell line by RNA sequencing. The knockdown of GPX2 expression in A549/DDP cells inhibited cell proliferation in vitro and in vivo, decreased the IC50 values of DDP, induced apoptosis, inhibited the activities of GSH-Px and superoxide dismutase (SOD), inhibited ATP production and glucose uptake, and increased malondialdehyde (MDA) and reactive oxygen species (ROS) production; while GPX2 overexpression in A549 cells resulted in the opposite effects. Using gene set enrichment analysis (GSEA), we found that GPX2 may be involved in DDP resistance through mediating drug metabolism, the cell cycle, DNA repair and energy metabolism, and the regulation of an ATP-binding cassette (ABC) transporters member ABCB6, which is one of the hallmark genes in glycolysis. Moreover, immunohistochemistry revealed that GPX2 was upregulated in 58.6% (89/152) of LUAD cases, and elevated GPX2 expression was correlated with high expression of ABCB6, high 18-fluorodeoxyglucose (18F-FDG) uptake, and adverse disease-free survival (DFS) in our cohort. The Cancer Genome Atlas (TCGA) data also indicated that GPX2 expression was higher in LUAD than it was in normal lung tissues, and the mRNA expression levels of GPX2 and ABCB6 were positively correlated. In conclusion, our study demonstrates that GPX2 acts as oncogene in LUAD and promotes DDP resistance by regulating oxidative stress and energy metabolism.
Collapse
|
19
|
Jing C, Wang T, Ma R, Cao H, Wang Z, Liu S, Chen D, Zhang J, Wu Y, Zhang Y, Wu J, Feng J. New genetic variations discovered in KRAS wild-type cetuximab resistant chinese colorectal cancer patients. Mol Carcinog 2020; 59:478-491. [PMID: 32141150 DOI: 10.1002/mc.23172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/30/2022]
Abstract
To perform a comprehensive genomic analysis of colorectal cancer (CRC) tumor to detect genetic variants and identify novel resistant mutations associated with cetuximab-resistance in CRC patients. A retrospective study was performed using whole exome sequencing (WES) to identify common genetic factors from 22 cetuximab-sensitive and 10 cetuximab-resistant patients. In all 10 cetuximab-resistant patients, we discovered there are 37 significantly mutated genes (SMGs). CYP4A11 was the most frequently mutated gene in cetuximab-resistant patients. BCAS1 and GOLGA6L1 were found to be among the second group of frequently mutated genes with a frequency of 60%. After cosine similarity analysis, three mutational signatures (signature a, b, and c) were found in all CRC tumors, similar to signature 1, 5, and 6 in COSMIC, respectively. Gene ontology analysis was performed on SMGs and found 12 enriched GO terms. Four genes are enriched in six specific Kyoto Encyclopedia of Genes and Genomes pathway groups, including the metabolism of xenobiotics by cytochrome P450, steroid hormone biosynthesis, retinol metabolism, and drug metabolism. Our data supports a network composed of SMGs and cellular signaling pathways that have been positively linked to the mechanisms of cetuximab resistance. These involve DNA damage repair, angiogenesis, invasion, drug metabolism, and the CRC tumor microenvironment. There is a SMG, OR9G1 correlated with survival rates of KRAS wild-type colon adenocarcinoma patients. These findings support further investigation using WES in a prospective clinical study of cetuximab resistance CRC, to further identify, confirm, and extend the clinical significance of these and other potentially important new candidate predictive biomarkers of cetuximab response.
Collapse
Affiliation(s)
- Changwen Jing
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Cell Biology, Nanjing Medical University, Nanjing, China
| | - Rong Ma
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Haixia Cao
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuo Wang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Siwen Liu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Chen
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Junying Zhang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Zhang
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Wu
- Clinical Cancer Research Center, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Chemotherapy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
21
|
Thorlacius-Ussing J, Kehlet SN, Rønnow SR, Karsdal MA, Willumsen N. Non-invasive profiling of protease-specific elastin turnover in lung cancer: biomarker potential. J Cancer Res Clin Oncol 2019; 145:383-392. [PMID: 30467633 DOI: 10.1007/s00432-018-2799-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Elastin is a signature protein of lungs. Increased elastin turnover driven by altered proteolytic activity is an important part of lung tumorigenesis. Elastin-derived fragments have been shown to be pro-tumorigenic, however, little is known regarding the biomarker potential of such elastin fragments. Here, we present an elastin turnover profile by non-invasively quantifying five specific elastin degradation fragments generated by different proteases. METHODS Elastin fragments were assessed in serum from patients with stage I-IV non-small cell lung cancer (NSCLC) (n = 40) and healthy controls (n = 30) using competitive ELISAs targeting different protease-generated fragments of elastin: ELM12 (generated by matrix metalloproteinase MMP-9 and -12), ELM7 (MMP-7), EL-NE (neutrophil elastase), EL-CG (cathepsin G) and ELP-3 (proteinase 3). RESULTS ELM12, ELM7, EL-NE and EL-CG were all significantly elevated in NSCLC patients (n = 40) when compared to healthy controls (n = 30) (ELM12, p = 0.0191; ELM7, p < 0.0001; EL-NE, p < 0.0001; EL-CG, p < 0.0001). ELP-3 showed no significant difference between patients and controls (p = 0.8735). All fragments correlated positively (Spearman, r: 0.69-0.81) when compared pairwise, except ELM12 (Spearman, r: 0.042-0.097). In general, all fragments were detectable across all stages of the disease. CONCLUSIONS Elastin fragments generated by different proteases are elevated in lung cancer patients compared to healthy controls but differ in their presence. This demonstrates non-invasive biomarker potential of elastin fragments in serum from lung cancer patients and suggests that different pathological mechanisms may be responsible for the elastin turnover, warranting further validation in clinical trials.
Collapse
Affiliation(s)
- Jeppe Thorlacius-Ussing
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Stephanie Nina Kehlet
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Sarah Rank Rønnow
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Morten Asser Karsdal
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Nicholas Willumsen
- Biomarkers & Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark.
| |
Collapse
|
22
|
Murray JR, Mesaros CA, Arlt VM, Seidel A, Blair IA, Penning TM. Role of Human Aldo-Keto Reductases in the Metabolic Activation of the Carcinogenic Air Pollutant 3-Nitrobenzanthrone. Chem Res Toxicol 2018; 31:1277-1288. [PMID: 30406992 DOI: 10.1021/acs.chemrestox.8b00250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen detected in diesel exhaust particulate and ambient air pollution. It requires metabolic activation via nitroreduction to promote DNA adduct formation and tumorigenesis. NAD(P)H:quinone oxidoreductase 1 (NQO1) has been previously implicated as the major nitroreductase responsible for 3-NBA activation, but it has recently been reported that human aldo-keto reductase 1C3 (AKR1C3) displays nitroreductase activity toward the chemotherapeutic agent PR-104A. We sought to determine whether AKR1C isoforms could display nitroreductase activity toward other nitrated compounds and bioactivate 3-NBA. Using discontinuous enzymatic assays monitored by UV-HPLC, we determined that AKR1C1-1C3 catalyze three successive two-electron nitroreductions toward 3-NBA to form the reduced product 3-aminobenzanthrone (3-ABA). Evidence of the nitroso- and hydroxylamino- intermediates were obtained by UPLC-HRMS. Km, kcat, and kcat/ Km values were determined for recombinant AKR1C and NQO1 and compared. We found that AKR1C1, AKR1C3, and NQO1 have very similar apparent catalytic efficiencies (8 vs 7 min-1 mM-1) despite the higher kcat of NQO1 (0.058 vs 0.012 min-1). AKR1C1-1C3 possess a Km much lower than that of NQO1, which suggests that they may be more important than NQO1 at the low concentrations of 3-NBA to which humans are exposed. Given that inhalation represents the primary source of 3-NBA exposure, we chose to evaluate the relative importance of AKR1C1-1C3 and NQO1 in human lung epithelial cell lines. Our data suggest that the combined activities of AKR1C1-1C3 and NQO1 contribute equally to the reduction of 3-NBA in A549 and HBEC3-KT cell lines and together represent approximately 50% of the intracellular nitroreductase activity toward 3-NBA. These findings have significant implications for the metabolism of nitrated polycyclic aromatic hydrocarbons and suggest that the hitherto unrecognized nitroreductase activity of AKR1C enzymes should be further investigated.
Collapse
Affiliation(s)
| | | | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health , King's College London , SE1 9NH , United Kingdom.,NIHR Health Protection Research Unit in Health Impact of Environmental Hazards , King's College London in partnership with Public Health England and Imperial College London , London SE1 9NH , United Kingdom
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer-Foundation , Grosshansdorf 22927 , Germany
| | | | | |
Collapse
|
23
|
He W, Ju D, Jie Z, Zhang A, Xing X, Yang Q. Aberrant CpG-methylation affects genes expression predicting survival in lung adenocarcinoma. Cancer Med 2018; 7:5716-5726. [PMID: 30353687 PMCID: PMC6246931 DOI: 10.1002/cam4.1834] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/09/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a common diagnosed disease with high-mortality rate, and its prognostic implications are under discovered. DNA methylation aberrations are not only an important event for dysregulation of gene expression during tumorigenesis but also a revolution in epigenetics by identifying key prognostic biomarkers for multiple cancers. In this study, we analyzed methylation status of 485 578 CpG sites and RNA-seq transcriptomes of 20 532 genes for 1095 LUAD samples in TCGA database. The association between DNA methylation and the prognostic value of the corresponding gene expression was identified as well. In total, ten aberrantly methylated and dysregulated genes (AURKA, BLK, CNTN2, HMGA1, PTTG1, TNS4, DAPK2, MFSD2A, THSD1, and WNT7A) were highlighted which were significantly correlated with overall survival of 492 LUAD patients, which were all reported as tumor-associated genes in other various cancers and worthy of further investigated and might be used as therapeutic targets for LUAD. Together, methylation aberrances regulate gene expression level during tumorigenesis and influence prognosis of LUAD patients. Integrating knowledge of epigenetics and expression of genes can be useful for an in-depth understanding of cancer mechanism and for the eventual purpose of precisely prognostic and therapeutic target verification.
Collapse
Affiliation(s)
- Wei He
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Dandan Ju
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ai Zhang
- The People's Hospital of Shanghai Pudong District, Shanghai, China
| | - Xin Xing
- Department of Obstetrics and Gynecology, Fengxian Hospital, Shanghai, China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Tsai PC, Glastonbury CA, Eliot MN, Bollepalli S, Yet I, Castillo-Fernandez JE, Carnero-Montoro E, Hardiman T, Martin TC, Vickers A, Mangino M, Ward K, Pietiläinen KH, Deloukas P, Spector TD, Viñuela A, Loucks EB, Ollikainen M, Kelsey KT, Small KS, Bell JT. Smoking induces coordinated DNA methylation and gene expression changes in adipose tissue with consequences for metabolic health. Clin Epigenetics 2018; 10:126. [PMID: 30342560 PMCID: PMC6196025 DOI: 10.1186/s13148-018-0558-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Background Tobacco smoking is a risk factor for multiple diseases, including cardiovascular disease and diabetes. Many smoking-associated signals have been detected in the blood methylome, but the extent to which these changes are widespread to metabolically relevant tissues, and impact gene expression or metabolic health, remains unclear. Methods We investigated smoking-associated DNA methylation and gene expression variation in adipose tissue biopsies from 542 healthy female twins. Replication, tissue specificity, and longitudinal stability of the smoking-associated effects were explored in additional adipose, blood, skin, and lung samples. We characterized the impact of adipose tissue smoking methylation and expression signals on metabolic disease risk phenotypes, including visceral fat. Results We identified 42 smoking-methylation and 42 smoking-expression signals, where five genes (AHRR, CYP1A1, CYP1B1, CYTL1, F2RL3) were both hypo-methylated and upregulated in current smokers. CYP1A1 gene expression achieved 95% prediction performance of current smoking status. We validated and replicated a proportion of the signals in additional primary tissue samples, identifying tissue-shared effects. Smoking leaves systemic imprints on DNA methylation after smoking cessation, with stronger but shorter-lived effects on gene expression. Metabolic disease risk traits such as visceral fat and android-to-gynoid ratio showed association with methylation at smoking markers with functional impacts on expression, such as CYP1A1, and at tissue-shared smoking signals, such as NOTCH1. At smoking-signals, BHLHE40 and AHRR DNA methylation and gene expression levels in current smokers were predictive of future gain in visceral fat upon smoking cessation. Conclusions Our results provide the first comprehensive characterization of coordinated DNA methylation and gene expression markers of smoking in adipose tissue. The findings relate to human metabolic health and give insights into understanding the widespread health consequence of smoking outside of the lung. Electronic supplementary material The online version of this article (10.1186/s13148-018-0558-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK. .,Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan. .,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Craig A Glastonbury
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK.,Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7LF, UK
| | - Melissa N Eliot
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02912, USA
| | - Sailalitha Bollepalli
- Institute for Molecular Medicine Finland (FIMM) and Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Idil Yet
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK.,Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, 06100, Ankara, Turkey
| | | | - Elena Carnero-Montoro
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK.,Pfizer - University of Granada - Andalusian Government Center for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Thomas Hardiman
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK.,Division of Cancer Studies, King's College London, London, SE1 9RT, UK
| | - Tiphaine C Martin
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, USA
| | - Alice Vickers
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK.,Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK.,NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, SE1 9RT, UK
| | - Kirsten Ward
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Kirsi H Pietiläinen
- Research Programs Unit, Diabetes and Obesity, Obesity Research Unit, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Ana Viñuela
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK.,Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland.,Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland.,Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Eric B Loucks
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02912, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM) and Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Karl T Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02912, USA.,Department of Laboratory Medicine & Pathology, Brown University, Providence, RI, 02912, USA
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK.
| |
Collapse
|
25
|
Hung JJ, Yeh YC, Hsu WH. Prognostic significance of AKR1B10 in patients with resected lung adenocarcinoma. Thorac Cancer 2018; 9:1492-1499. [PMID: 30253058 PMCID: PMC6209774 DOI: 10.1111/1759-7714.12863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 01/13/2023] Open
Abstract
Background Aldo‐keto reductases (AKRs) modify carbonyl groups on aldehyde or ketones to form primary or secondary alcohols, which are then conjugated with sulfates or glucuronide for excretion. The AKR1B10 gene encodes a member of the AKR superfamily. Overexpression of AKR1B10 plays an important role in the tumorigenesis of lung cancer cells; however, the prognostic value of AKR1B10 expression in patients with lung adenocarcinoma has not been well demonstrated. Methods A total of 96 patients with resected lung adenocarcinoma were included in the study. AKR1B10 expression was determined by immunohistochemistry in tumor specimens. The prognostic value of AKR1B10 overexpression and its relationship with clinicopathological variables were investigated. Results AKR1B10 overexpression was identified in 22 (22.9%) of the 96 patients and tended to be significantly associated with N1 or N2 status (P = 0.055). AKR1B10 overexpression was not a significant prognostic factor for overall survival (P = 0.301) but was a significant prognostic factor for poor recurrence‐free survival (P = 0.015). T status (T3 or T4 vs. T1 or T2; P = 0.020), N1 or N2 (vs. N0; P = 0.019), predominant pattern group (lepidic/acinar/papillary vs. micropapillary/solid; P = 0.023), and AKR1B10 overexpression (P = 0.013) were significant prognostic factors for poor recurrence‐free survival in multivariate analysis. Conclusions AKR1B10 overexpression was a significant prognostic factor for poor recurrence‐free survival in patients with resected lung adenocarcinoma. This information is useful to stratify patients at high‐risk of recurrence after lung adenocarcinoma resection.
Collapse
Affiliation(s)
- Jung-Jyh Hung
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chen Yeh
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Hu Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
26
|
Jiang H, Wang H, De Ridder M. Targeting antioxidant enzymes as a radiosensitizing strategy. Cancer Lett 2018; 438:154-164. [PMID: 30223069 DOI: 10.1016/j.canlet.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 12/22/2022]
Abstract
Radiotherapy represents a major anti-cancer modality and effectively kills cancer cells through generation of reactive oxygen species (ROS). However, cancer cells are commonly characterized by increased activity of ROS-scavenging enzymes in adaptation to intrinsic oxidative stress, leading to radioresistance. Abrogation of this defense network by pharmacological ROS insults therefore is shown to improve radioresponse in preclinical models; some of them are then tested in clinical trials. In this review, we address (1) the importance of ROS in radioresponse, (2) the main systems regulating redox homeostasis with a special focus on their prognostic effect and predictive role in radiotherapy, and (3) the potential radiosensitizers acting through inhibition of antioxidant enzymes.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
27
|
Liu K, Jin M, Xiao L, Liu H, Wei S. Distinct prognostic values of mRNA expression of glutathione peroxidases in non-small cell lung cancer. Cancer Manag Res 2018; 10:2997-3005. [PMID: 30214294 PMCID: PMC6118261 DOI: 10.2147/cmar.s163432] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Glutathione peroxidases (GPxs) constitutes an enzyme family which has the ability to reduce free hydrogen peroxide to water and lipid hydroperoxides to their corresponding alcohols, and its main biological roles are to protect organisms from oxidative stress-induced damage. GPxs include eight members in different tissues of the body, and they play essential roles in carcinogenesis. However, the prognostic value of individual GPx in non-small cell lung cancer (NSCLC) remains elusive. Materials and methods In the current study, we investigated the prognostic value of GPxs in NSCLC patients through the “Kaplan–Meier plotter” database, wherein updated gene expression data and survival information from a total of 1,926 NSCLC patients are included. Results High expression of GPx1 mRNA was correlated with worse overall survival (OS) in adenocarcinoma patients. High expression of GPx2 mRNA was correlated with worse OS for all NSCLC patients. In contrast, high expression of GPx3 mRNA was associated with better OS for all NSCLC patients. High expression of GPx4 mRNA was significantly correlated with worsening adenocarcinoma in these patients. GPx5 mRNA high expression correlated with worsening OS for all NSCLC patients. Discussion The current findings of prognostic values of individual mRNA expression of GPxs in NSCLC patients indicate some GPxs may have prognostic value in NSCLC patients, and this needs further study.
Collapse
Affiliation(s)
- Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Meng Jin
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Li Xiao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| |
Collapse
|
28
|
A catalogue of somatic NRF2 gain-of-function mutations in cancer. Sci Rep 2018; 8:12846. [PMID: 30150714 PMCID: PMC6110754 DOI: 10.1038/s41598-018-31281-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Identification and characterization of somatic mutations in cancer have important prognostication and treatment implications. Genes encoding the Nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor and its negative regulator, Kelch-like ECH-associated protein 1 (KEAP1), are frequently mutated in cancer. These mutations drive constitutive NRF2 activation and correlate with poor prognosis. Despite its apparent significance, a comprehensive catalogue of somatic NRF2 mutations across different tumor types is still lacking. Here, we catalogue NRF2 mutations in The Cancer Genome Atlas (TCGA) database. 226 unique NRF2-mutant tumors were identified from 10,364 cases. NRF2 mutations were found in 21 out of the 33 tumor types. A total of 11 hotspots were identified. Of these, mutation to the R34 position was most frequent. Notably, R34 and D29 mutations were overrepresented in bladder, lung, and uterine cancers. Analyses of corresponding RNA sequencing data using a de novo derived gene expression classifier showed that the R34 mutations drive constitutive NRF2 activation with a selection pressure biased against the formation of R34L. Of all R34 mutants, R34L conferred the least degree of protein stabilization, suggesting a pro-tumor NRF2 half-life threshold. Our findings offer a comprehensive catalogue of NRF2 mutations in cancer that can help prognostication and NRF2 research.
Collapse
|
29
|
Billatos E, Faiz A, Gesthalter Y, LeClerc A, Alekseyev YO, Xiao X, Liu G, Ten Hacken NHT, Heijink IH, Timens W, Brandsma CA, Postma DS, van den Berge M, Spira A, Lenburg ME. Impact of acute exposure to cigarette smoke on airway gene expression. Physiol Genomics 2018; 50:705-713. [PMID: 29932825 DOI: 10.1152/physiolgenomics.00092.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Understanding effects of acute smoke exposure (ASE) on airway epithelial gene expression and their relationship with the effects of chronic smoke exposure may provide biological insights into the development of smoking-related respiratory diseases. METHODS Bronchial airway epithelial cell brushings were collected from 63 individuals without recent cigarette smoke exposure and before and 24 h after smoking three cigarettes. RNA from these samples was profiled on Affymetrix Human Gene 1.0 ST microarrays. RESULTS We identified 91 genes differentially expressed 24 h after ASE (false discovery rate < 0.25). ASE induced genes involved in xenobiotic metabolism, oxidative stress, and inflammation and repressed genes related to cilium morphogenesis and cell cycle. While many genes altered by ASE are altered similarly in chronic smokers, metallothionein genes are induced by ASE and suppressed in chronic smokers. Metallothioneins are also suppressed in current and former smokers with lung cancer relative to those without lung cancer. CONCLUSIONS Acute exposure to as little as three cigarettes and chronic smoking induce largely concordant changes in airway epithelial gene expression. Differences in short-term and long-term effects of smoking on metallothionein expression and their relationship to lung cancer requires further study given these enzymes' role in the oxidative stress response.
Collapse
Affiliation(s)
- E Billatos
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - A Faiz
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - Y Gesthalter
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - A LeClerc
- Microarray and Sequencing Resource Core Facility, Boston University School of Medicine , Boston, Massachusetts
| | - Y O Alekseyev
- Microarray and Sequencing Resource Core Facility, Boston University School of Medicine , Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - X Xiao
- Division of Computational Biomedicine, Boston University School of Medicine , Boston, Massachusetts
| | - G Liu
- Division of Computational Biomedicine, Boston University School of Medicine , Boston, Massachusetts
| | - N H T Ten Hacken
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - I H Heijink
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - W Timens
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - C A Brandsma
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - D S Postma
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - M van den Berge
- University of Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center of Groningen , Groningen , Netherlands
| | - A Spira
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - M E Lenburg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Boston University School of Medicine , Boston, Massachusetts.,Division of Computational Biomedicine, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
30
|
Liu C, He X, Wu X, Wang Z, Zuo W, Hu G. Clinicopathological and prognostic significance of GPx2 protein expression in nasopharyngeal carcinoma. Cancer Biomark 2018; 19:335-340. [PMID: 28453466 DOI: 10.3233/cbm-160542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study was designed to evaluate the relation between GPx2 (glutathione peroxidase 2) expressions and clinicopathological features as well as prognosis of patients with nasopharyngeal carcinoma (NPC). METHODS A total of 89 cases of NPC were investigated to examine the immunohistochemical expression of GPx2. Fourteen pairs of NPC and the control samples were analyzed respectively by qRT-PCR and Western blot. The correlations of GPx2 expressions with the clinicopathologic features and the prognosis of NPC patients were also analyzed. RESULTS The expression of GPx2 in NPC tissues was elevated immunohistochemically when compared with normal nasopharyngeal tissues (P< 0.05). The mRNA expression of GPx2 in carcinoma tissues was highly elevated compared with the control tissues (P< 0.05). GPx2 protein in carcinoma tissues was also over expressed than in control tissues (P< 0.05). Also GPx2 expression was significantly higher in the late clinical stage (P= 0.02). While there was no significant association between GPx2 expression and patient age, sex, T-stage, N-stage and the metastasis. CONCLUSIONS GPx2 may play an important role in the development of nasopharyngeal carcinoma. Furthermore, GPx2 may serve as a prognostic biomarker for NPC patient.
Collapse
|
31
|
Matrix metalloproteinase 12 promotes tumor propagation in the lung. J Thorac Cardiovasc Surg 2018; 155:2164-2175.e1. [PMID: 29429629 DOI: 10.1016/j.jtcvs.2017.11.110] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Past studies are inconsistent with regard to the role of matrix metalloproteinase 12 in lung tumorigenesis. This is due, in part, to differential tumorigenesis based on tumor-derived versus immune-derived matrix metalloproteinase 12 expression. Our study aims to thoroughly dissect the role of matrix metalloproteinase 12 in lung tumorigenesis. METHODS We tested matrix metalloproteinase 12 expression and the association with prognosis using a tissue array and a published non-small cell lung cancer gene expression database. In addition, we characterized the contribution of matrix metalloproteinase 12 to tumor propagation in the lung using a series of in vitro and in vivo studies. RESULTS Tumor cells of a diverse set of human lung cancers stained positive for matrix metalloproteinase 12, and high matrix metalloproteinase 12 mRNA levels in the tumor were associated with reduced survival. The lung microenvironment stimulated endogenous production of matrix metalloproteinase 12 in lung cancer cells (human 460 lung cancer cell line, Lewis lung carcinoma). In vitro, matrix metalloproteinase 12 knockout Lewis lung carcinoma and Lewis lung carcinoma cells had the same proliferation rate, but Lewis lung carcinoma showed increased invasiveness. In vivo, deficiency of matrix metalloproteinase 12 in Lewis lung carcinoma cells, but not in the host, reduced tumor growth and invasiveness. CONCLUSIONS We suggest that tumor cell-derived matrix metalloproteinase 12 promotes tumor propagation in the lung and that in the context of pulmonary malignancies matrix metalloproteinase 12 should further be tested as a potential novel therapeutic target.
Collapse
|
32
|
ZHU H, CHANG LL, YAN FJ, HU Y, ZENG CM, ZHOU TY, YUAN T, YING MD, CAO J, HE QJ, YANG B. AKR1C1 Activates STAT3 to Promote the Metastasis of Non-Small Cell Lung Cancer. Am J Cancer Res 2018; 8:676-692. [PMID: 29344298 PMCID: PMC5771085 DOI: 10.7150/thno.21463] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Metastasis is the leading cause of mortality for human non-small cell lung cancer (NSCLC). However, it is difficult to target tumor metastasis because the molecular mechanisms underlying NSCLC invasion and migration remain unclear. Methods: GEO data analyses and IHC analyses were performed to identify that the expression level of AKR1C1, a member of human aldo-keto reductase family, was highly elevated in patients with metastasis or metastatic foci of NSCLC patients. Functional analyses (in vitro and in vivo) and quantitative genomic analyses were preformed to confirm the pro-metastatic effects of AKR1C1 and the underlying mechanisms. The correlation of AKR1C1 with the prognosis of NSCLC patients was evaluated using Kaplan-Meier analyses. Results: in NSCLC patients, AKR1C1 expression was closely correlated with the metastatic potential of tumors. AKR1C1 overexpression in nonmetastatic cancer cells significantly promoted metastasis both in vitro and in vivo, whereas depletion of AKR1C1 in highly metastatic tumors potently alleviated these effects. Quantitative genomic and functional analyses revealed that AKR1C1 directly interacted with STAT3 and facilitated its phosphorylation-thus reinforcing the binding of STAT3 to the promoter regions of target genes-and then transactivated these genes, which ultimately promoted tumor metastasis. Further studies showed that AKR1C1 might facilitate the interaction of STAT3 with its upstream kinase JAK2. Intriguingly, AKR1C1 exerted these pro-metastatic effects in a catalytic-independent manner. In addition, a significant correlation between AKR1C1 and STAT3 pathway was observed in the metastatic foci of NSCLC patients, and the AKR1C1-STAT3 levels were highly correlated with a poor prognosis in NSCLC patients. Conclusions: taken together, we show that AKR1C1 is a potent inducer of NSCLC metastasis. Our study uncovers the active function of AKR1C1 as a key component of the STAT3 pathway, which promotes lung cancer metastasis, and highlights a candidate therapeutic target to potentially improve the survival of NSCLC patients with metastatic disease.
Collapse
|
33
|
Park H, Shimamura T, Imoto S, Miyano S. Adaptive NetworkProfiler for Identifying Cancer Characteristic-Specific Gene Regulatory Networks. J Comput Biol 2017; 25:130-145. [PMID: 29053381 DOI: 10.1089/cmb.2017.0120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is currently much discussion about sample (patient)-specific gene regulatory network identification, since the efficiently constructed sample-specific gene networks lead to effective personalized cancer therapy. Although statistical approaches have been proposed for inferring gene regulatory networks, the methods cannot reveal sample-specific characteristics because the existing methods, such as an L1-type regularization, provide averaged results for all samples. Thus, we cannot reveal sample-specific characteristics in transcriptional regulatory networks. To settle on this issue, the NetworkProfiler was proposed based on the kernel-based L1-type regularization. The NetworkProfiler imposes a weight on each sample based on the Gaussian kernal function for controlling effect of samples on modeling a target sample, where the amount of weight depends on similarity of cancer characteristics between samples. The method, however, cannot perform gene regulatory network identification well for a target sample in a sparse region (i.e., for a target sample, there are only a few samples having a similar characteristic of the target sample, where the characteristic is considered as a modulator in sample-specific gene network construction), since a constant bandwidth in the Gaussian kernel function cannot effectively group samples for modeling a target sample in sparse region. The cancer characteristics, such as an anti-cancer drug sensitivity, are usually nonuniformly distributed, and thus modeling for samples in a sparse region is also a crucial issue. We propose a novel kernel-based L1-type regularization method based on a modified k-nearest neighbor (KNN)-Gaussian kernel function, called an adaptive NetworkProfiler. By using the modified KNN-Gaussian kernel function, our method provides robust results against the distribution of modulators, and properly groups samples according to a cancer characteristic for sample-specific analysis. Furthermore, we propose a sample-specific generalized cross-validation for choosing the sample-specific tuning parameters in the kernel-based L1-type regularization method. Numerical studies demonstrate that the proposed adaptive NetworkProfiler effectively performs sample-specific gene network construction. We apply the proposed statistical strategy to the publicly available Sanger Genomic data analysis, and extract anti-cancer drug sensitivity-specific gene regulatory networks.
Collapse
Affiliation(s)
- Heewon Park
- 1 Faculty of Global and Science Studies, Yamaguchi University , Yamaguchi Prefecture, Japan
| | - Teppei Shimamura
- 2 Graduate School of Medicine, Nagoya University , Nagoya, Japan
| | - Seiya Imoto
- 3 Health Intelligence Center, Institute of Medical Science, University of Tokyo , Tokyo, Japan
| | - Satoru Miyano
- 4 Human Genome Center, Institute of Medical Science, University of Tokyo , Tokyo, Japan
| |
Collapse
|
34
|
Penning TM. Genotoxicity of ortho-quinones: reactive oxygen species versus covalent modification. Toxicol Res (Camb) 2017. [PMID: 29527287 DOI: 10.1039/c7tx00223h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
o-Quinones are formed metabolically from natural and synthetic estrogens as well as upon exposure to polycyclic aromatic hydrocarbons (PAH) and contribute to estrogen and PAH carcinogenesis by genotoxic mechanisms. These mechanisms include the production of reactive oxygen species to produce DNA strand breaks and oxidatively damaged nucleobases; and the formation of covalent depurinating and stable DNA adducts. Unrepaired DNA-lesions can lead to mutation in critical growth control genes and cellular transformation. The genotoxicity of the o-quinones is exacerbated by nuclear translocation of estrogen o-quinones by the estrogen receptor and by the nuclear translocation of PAH o-quinones by the aryl hydrocarbon receptor. The properties of o-quinones, their formation and detoxication mechanisms, quinone-mediated DNA lesions and their mutagenic properties support an important role in hormonal and chemical carcinogenesis.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology & Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
35
|
Abstract
Five out of eight human glutathione peroxidases (GPxes) are selenoproteins and thus their expression depends on the selenium (Se) supply. Most Se-dependent GPxes are downregulated in tumor cells, while only GPx2 is considerably upregulated. Whether expression profiles of GPxes predict tumor development and patient survival is controversially discussed. Also, results from in vitro and in vivo studies modulating the expression of GPx isoforms provide evidence for both anti- and procarcinogenic mechanisms. GPxes are able to reduce hydroperoxides, which otherwise would damage DNA, possibly resulting in DNA mutations, modulate redox-sensitive signaling pathways affecting proliferation, differentiation, and cellular metabolism or initiate cell death. Considering these different processes, the role and functions of individual Se-dependent GPx isoforms will be discussed herein in the context of tumorigenesis.
Collapse
Affiliation(s)
- Anna P Kipp
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
36
|
Jiao Y, Wang Y, Guo S, Wang G. Glutathione peroxidases as oncotargets. Oncotarget 2017; 8:80093-80102. [PMID: 29108391 PMCID: PMC5668124 DOI: 10.18632/oncotarget.20278] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a disturbance in the equilibrium among free radicals, reactive oxygen species, and endogenous antioxidant defense mechanisms. Oxidative stress is a result of imbalance between the production of reactive oxygen and the biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Mounting evidence has implicated oxidative stress in various physiological and pathological processes, including DNA damage, proliferation, cell adhesion, and survival of cancer cells. Glutathione peroxidases (GPxs) (EC 1.11.1.9) are an enzyme family with peroxidase activity whose main biological roles are to protect organisms from oxidative damage by reducing lipid hydroperoxides as well as free hydrogen peroxide. Currently, 8 sub-members of GPxs have been identified in humans, all capable of reducing H2O2 and soluble fatty acid hydroperoxides. A large number of publications has demonstrated that GPxs have significant roles in different stages of carcinogenesis. In this review, we will update recent progress in the study of the roles of GPxs in cancer. Better mechanistic understanding of GPxs will potentially contribute to the development and advancement of improved cancer treatment models.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, PLA Army General Hospital, Beijing, P.R. China
| | - Yirong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
37
|
Zhou D, Xie M, He B, Gao Y, Yu Q, He B, Chen Q. Microarray data re-annotation reveals specific lncRNAs and their potential functions in non-small cell lung cancer subtypes. Mol Med Rep 2017; 16:5129-5136. [PMID: 28849055 PMCID: PMC5647101 DOI: 10.3892/mmr.2017.7244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
Non‑small‑cell lung cancer (NSCLC) is a leading cause of cancer mortality worldwide. The most common subtypes of NSCLC are adenocarcinoma (AC) and squamous cell carcinoma (SCC). However, the pathophysiological mechanisms contributing to AC and SCC are still largely unknown, especially the roles of long non‑coding RNAs (lncRNAs). The present study identified differentially expressed lncRNAs between lung AC and SCC by re‑annotation of NSCLC microarray data analysis profiling. The potential functions of lncRNAs were predicted by using coding‑non‑coding gene co‑expressing network. Reverse transcription-quantitative polymerase chain reaction (RT‑qPCR) was used to investigate lncRNA expression levels in AC cell lines (A549 and L78), SCC cell lines (H226 and H520) and normal cells (NL‑20). Western blotting analysis was used to investigate the protein expression levels in these cell lines. A total of 65 lncRNAs were differentially expressed between AC and SCC including 28 lncRNAs that were downregulated in SCC subtypes compared with those in AC ones, and 37 upregulated lncRNAs in SCC subtypes compared with AC subtypes. Three lncRNAs, sex determining region Y‑box 2 overlapping transcript (SOX2‑OT), NCBP2 antisense RNA 2 (NCBP2‑AS2) and ubiquitin like with PHD and ring finger domains 1 (UHRF1), were predicted to be associated with lung cancer; RT‑qPCR confirmed that SOX2‑OT and NCBP2‑AS2 were associated with lung cancer. Finally, western blot assays demonstrated that there was no difference in β‑catenin and glycogen synthase kinase 3β (GSK‑3β) expression in cancer cells compared with NL‑20, but increased phosphorylated (p‑)β‑catenin and p‑GSK‑3β was detected in lung cancer cell lines compared with NL‑20, particularly in A549 cells. Although these results require further experimental verification, the analysis of lncRNA signatures between AC and SCC has provided insights into the regulatory mechanism of NSCLC development.
Collapse
Affiliation(s)
- Dongbo Zhou
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Mingxuan Xie
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Baimei He
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Ying Gao
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Qiao Yu
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Bixiu He
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| | - Qiong Chen
- Department of Gerontology, Xiangya Hospital of Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
38
|
Liu T, Kan XF, Ma C, Chen LL, Cheng TT, Zou ZW, Li Y, Cao FJ, Zhang WJ, Yao J, Li PD. GPX2 overexpression indicates poor prognosis in patients with hepatocellular carcinoma. Tumour Biol 2017. [PMID: 28635398 DOI: 10.1177/1010428317700410] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glutathione peroxidase 2 has important role of tumor progression in lots of carcinomas, yet little is known about the prognosis of glutathione peroxidase 2 in hepatocellular carcinoma. Glutathione peroxidase 2 expression was assessed by immunohistochemistry in hepatocellular carcinoma tissues. The association between glutathione peroxidase 2 expression with clinicopathological/prognostic value was examined. Glutathione peroxidase 2 overexpression was correlated with alpha-fetoprotein level, larger tumor, BCLC stage, and tumor recurrence. Kaplan-Meier analysis showed that glutathione peroxidase 2 was an independent predictor for overall survival and time to recurrence. glutathione peroxidase 2 overexpression was correlated with poor prognosis in patient subgroups stratified by tumor size, differentiation, tumor-node-metastasis, and BCLC stage. Moreover, stratified analysis showed that tumor-node-metastasis stage-I patients with high glutathione peroxidase 2 expression had poor prognosis than those with low glutathione peroxidase 2 expression. Additionally, combination of glutathione peroxidase 2 and serum alpha-fetoprotein was correlated with prognosis in hepatocellular carcinoma. In conclusion, glutathione peroxidase 2 overexpression contributes to poor prognosis of hepatocellular carcinoma patients and helps to identify the high-risk hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Ting Liu
- 1 Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Feng Kan
- 2 Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Charlie Ma
- 3 The Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Li-Li Chen
- 3 The Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Tian-Tian Cheng
- 4 Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhen-Wei Zou
- 5 Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Li
- 6 Cancer Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Feng-Jun Cao
- 6 Cancer Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Wen-Jie Zhang
- 7 Department of Pathology, Shihezi University School of Medicine, Shihezi, China
| | - Jing Yao
- 5 Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pin-Dong Li
- 5 Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Liu D, Sun L, Tong J, Chen X, Li H, Zhang Q. Prognostic significance of glutathione peroxidase 2 in gastric carcinoma. Tumour Biol 2017. [PMID: 28631563 DOI: 10.1177/1010428317701443] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence suggests that the glutathione peroxidase 2 may actually play important roles in tumorigenesis and progression in various human cancers such as colorectal carcinomas and lung adenocarcinomas. However, the role of glutathione peroxidase 2 in gastric carcinoma remains to be determined. In this study, the expression and prognostic significance of glutathione peroxidase 2 in gastric carcinoma were investigated and the well-known prognostic factor Ki-67 labeling index was also assessed as positive control. Glutathione peroxidase 2 expression levels in the tumor tissue specimens, the matched adjacent normal tissue specimens, and the lymph node metastases of 176 patients with gastric carcinoma were evaluated by quantitative polymerase chain reaction, western blotting, and immunohistochemical staining. The associations between glutathione peroxidase 2 expression levels, as determined by immunohistochemical staining, and multiple clinicopathological characteristics were determined by Pearson's chi-square test and Spearman's correlation analysis. The relationships between glutathione peroxidase 2 expression and other clinicopathological variables and patient prognoses were analyzed further by the Kaplan-Meier method, the log-rank test, and Cox multivariate regression. The quantitative polymerase chain reaction, western blotting, and immunohistochemical staining results showed that glutathione peroxidase 2 expression levels were upregulated in both the primary tumor foci and the lymph node metastases of patients with gastric carcinoma (all p values < 0.05). Furthermore, Pearson's chi-square tests, as well as Spearman's correlation analysis, revealed that glutathione peroxidase 2 expression levels were strongly correlated with the Ki-67 labeling index, differentiation, histological patterns, Lauren classifications, lymph node metastasis, vascular invasion, tumor-node-metastasis stages, Helicobacter pylori infection, and overall survival (all p values < 0.05). Kaplan-Meier analysis, as well as the log-rank test and multivariate Cox regression analysis, showed that multiple clinicopathological risk factors and glutathione peroxidase 2 expression were novel independent prognostic factors for gastric carcinoma (all p values < 0.05). Glutathione peroxidase 2 expression is a novel independent prognostic biomarker for gastric carcinoma that may be used to devise personalized therapeutic regimens and precision treatments for this disease.
Collapse
Affiliation(s)
- Dongzhe Liu
- 1 Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liang Sun
- 2 Harbin Medical University, Harbin, China
| | - Jinxue Tong
- 3 The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Xiuhui Chen
- 4 The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Li
- 2 Harbin Medical University, Harbin, China
| | - Qifan Zhang
- 1 Department of Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Merchant N, Nagaraju GP, Rajitha B, Lammata S, Jella KK, Buchwald ZS, Lakka SS, Ali AN. Matrix metalloproteinases: their functional role in lung cancer. Carcinogenesis 2017. [DOI: 10.1093/carcin/bgx063] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
41
|
Banerjee A, Haswell LE, Baxter A, Parmar A, Azzopardi D, Corke S, Thorne D, Adamson J, Mushonganono J, Gaca MD, Minet E. Differential Gene Expression Using RNA Sequencing Profiling in a Reconstituted Airway Epithelium Exposed to Conventional Cigarette Smoke or Electronic Cigarette Aerosols. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2016.0024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anisha Banerjee
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | | | - Andrew Baxter
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - Aleesha Parmar
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - David Azzopardi
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - Sarah Corke
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - David Thorne
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - Jason Adamson
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | | | - Marianna D. Gaca
- British American Tobacco R&D Centre, Southampton, United Kingdom
| | - Emmanuel Minet
- British American Tobacco R&D Centre, Southampton, United Kingdom
| |
Collapse
|
42
|
Penning TM. Aldo-Keto Reductase Regulation by the Nrf2 System: Implications for Stress Response, Chemotherapy Drug Resistance, and Carcinogenesis. Chem Res Toxicol 2017; 30:162-176. [PMID: 27806574 PMCID: PMC5241174 DOI: 10.1021/acs.chemrestox.6b00319] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human aldo-keto reductases (AKRs) are NAD(P)H-dependent oxidoreductases that convert aldehydes and ketones to primary and secondary alcohols for subsequent conjugation reactions and can be referred to as "phase 1" enzymes. Among all the human genes regulated by the Keap1/Nrf2 pathway, they are consistently the most overexpressed in response to Nrf2 activators. Although these enzymes play clear cytoprotective roles and deal effectively with carbonyl stress, their upregulation by the Keap1/Nrf2 pathway also has a potential dark-side, which can lead to chemotherapeutic drug resistance and the metabolic activation of lung carcinogens (e.g., polycyclic aromatic hydrocarbons). They also play determinant roles in 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone metabolism to R- and S-4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanol. The overexpression of AKR genes as components of the "smoking gene" battery raises the issue as to whether this is part of a smoking stress response or acquired susceptibility to lung cancer. Human AKR genes also regulate retinoid, prostaglandin, and steroid hormone metabolism and can regulate the local concentrations of ligands available for nuclear receptors (NRs). The prospect exists that signaling through the Keap1/Nrf2 system can also effect NR signaling, but this has remained largely unexplored. We present the case that chemoprevention through the Keap1/Nrf2 system may be context dependent and that the Nrf2 "dose-response curve" for electrophilic and redox balance may not be monotonic.
Collapse
Affiliation(s)
- Trevor M. Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
43
|
MacLeod AK, Acosta-Jimenez L, Coates PJ, McMahon M, Carey FA, Honda T, Henderson CJ, Wolf CR. Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer. Br J Cancer 2016; 115:1530-1539. [PMID: 27824809 PMCID: PMC5155360 DOI: 10.1038/bjc.2016.363] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Although the nuclear factor-erythroid 2-related factor 2 (NRF2) pathway is one of the most frequently dysregulated in cancer, it is not clear whether mutational status is a good predictor of NRF2 activity. Here we utilise four members of the aldo-keto reductase (AKR) superfamily as biomarkers to address this question. METHODS Twenty-three cell lines of diverse origin and NRF2-pathway mutational status were used to determine the relationship between AKR expression and NRF2 activity. AKR expression was evaluated in lung cancer biopsies and Cancer Genome Atlas (TCGA) and Oncomine data sets. RESULTS AKRs were expressed at a high basal level in cell lines carrying mutations in the NRF2 pathway. In non-mutant cell lines, co-ordinate induction of AKRs was consistently observed following activation of NRF2. Immunohistochemical analysis of lung tumour biopsies and interrogation of TCGA data revealed that AKRs are enriched in both squamous cell carcinomas (SCCs) and adenocarcinomas that contain somatic alterations in the NRF2 pathway but, in the case of SCC, AKRs were also enriched in most other tumours. CONCLUSIONS An AKR biomarker panel can be used to determine NRF2 status in tumours. Hyperactivation of the NRF2 pathway is far more prevalent in lung SCC than previously predicted by genomic analyses.
Collapse
Affiliation(s)
- A Kenneth MacLeod
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Lourdes Acosta-Jimenez
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Philip J Coates
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Michael McMahon
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - Frank A Carey
- Department of Pathology and Neuroscience, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Colin J Henderson
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| | - C Roland Wolf
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, UK
| |
Collapse
|
44
|
Global analysis of chromosome 1 genes among patients with lung adenocarcinoma, squamous carcinoma, large-cell carcinoma, small-cell carcinoma, or non-cancer. Cancer Metastasis Rev 2016; 34:249-64. [PMID: 25937073 DOI: 10.1007/s10555-015-9558-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study aimed at investigating genetic variations, specific signal pathways, or biological processes of chromosome 1 genes between subtypes and stages of lung cancer and prediction of selected targeting genes for patient survival rate. About 537 patients with lung adenocarcinoma (ADC), 140 with lung squamous carcinoma (SCC), 9 with lung large-cell carcinoma (LCC), 56 with small-cell lung cancer (SCLC), and 590 without caner were integrated from 16 databases and analyzed in the present study. Three (ASPM, CDC20, KIAA1799) or 28 genes significantly up- or down-expressed in four subtypes of lung cancer. The activated cell division and down-regulated immune responses were identified in patients with lung cancer. Keratinocyte development associated genes S100 and SPRR families dominantly up-expressed in SCC and AKT3 and NRAS in SCLC. Subtype-specific genes of ADC, SCC, LCC, or SCLC were also identified. C1orf106, CAPN8, CDC20, COL11A1, CRABP2, and NBPF9 up-expressed at four stages of ADC. Fifty six related with keratinocytes or potassium channels up-expressed in three stages of SCC. CDC20, IL10, ECM1, GABPB2, CRABP2, and COL11A1 significantly predicted the poor overall survival of ADC patients and S100A2 and TIMM17A in SCC patients. Our data indicate that a number of altered chromosome 1 genes have the subtype and stage specificities of lung cancer and can be considered as diagnostic and prognosis biomarkers.
Collapse
|
45
|
Kim B, Yu D, Won JH. Comparative study of computational algorithms for the Lasso with high-dimensional, highly correlated data. APPL INTELL 2016. [DOI: 10.1007/s10489-016-0850-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Weng DY, Chen J, Taslim C, Hsu PC, Marian C, David SP, Loffredo CA, Shields PG. Persistent alterations of gene expression profiling of human peripheral blood mononuclear cells from smokers. Mol Carcinog 2016; 55:1424-37. [PMID: 26294040 PMCID: PMC4860148 DOI: 10.1002/mc.22385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/04/2015] [Accepted: 08/03/2015] [Indexed: 01/12/2023]
Abstract
The number of validated biomarkers of tobacco smoke exposure is limited, and none exist for tobacco-related cancer. Additional biomarkers for smoke, effects on cellular systems in vivo are needed to improve early detection of lung cancer, and to assist the Food and Drug Administration in regulating exposures to tobacco products. We assessed the effects of smoking on the gene expression using human cell cultures and blood from a cross-sectional study. We profiled global transcriptional changes in cultured smokers' peripheral blood mononuclear cells (PBMCs) treated with cigarette smoke condensate (CSC) in vitro (n = 7) and from well-characterized smokers' blood (n = 36). ANOVA with adjustment for covariates and Pearson correlation were used for statistical analysis in this study. CSC in vitro altered the expression of 1 178 genes (177 genes with > 1.5-fold-change) at P < 0.05. In vivo, PBMCs of heavy and light smokers differed for 614 genes (29 with > 1.5-fold-change) at P < 0.05 (309 remaining significant after adjustment for age, race, and gender). Forty-one genes were persistently altered both in vitro and in vivo, 22 having the same expression pattern reported for non-small cell lung cancer. Our data provides evidence that persistent alterations of gene expression in vitro and in vivo may relate to carcinogenic effects of cigarette smoke, and the identified genes may serve as potential biomarkers for cancer. The use of an in vitro model to corroborate results from human studies provides a novel way to understand human exposure and effect. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jinguo Chen
- Center for Human Immunology, National Institute of Health, Bethesda, Maryland
| | - Cenny Taslim
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Ping-Ching Hsu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Catalin Marian
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- University of Medicine and Pharmacy, Timisoara, Romania
| | - Sean P David
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Christopher A Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
47
|
Duppel U, Woenckhaus M, Schulz C, Merk J, Dietmaier W. Quantitative detection of TUSC3 promoter methylation -a potential biomarker for prognosis in lung cancer. Oncol Lett 2016; 12:3004-3012. [PMID: 27698890 PMCID: PMC5038372 DOI: 10.3892/ol.2016.4927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/17/2016] [Indexed: 11/06/2022] Open
Abstract
Aberrant promoter methylation of tumor relevant genes frequently occurs in early steps of carcinogenesis and during tumor progression. Epigenetic alterations could be used as potential biomarkers for early detection and for prediction of prognosis and therapy response in lung cancer. The present study quantitatively analyzed the methylation status of known and potential gatekeeper and tumor suppressor genes [O-6-methylguanine-DNA methyltransferase (MGMT), Ras association domain family member 1A (RASSF1A), Ras protein activator like 1 (RASAL1), programmed cell death 4 (PDCD4), metastasis suppressor 1 (MTSS1) and tumor suppressor candidate 3 (TUSC3)] in 42 lung cancers and in corresponding non-malignant bronchus and lung tissue using bisulfite-conversion independent methylation-quantification of endonuclease-resistant DNA (MethyQESD). Methylation status was associated with clinical and pathological parameters. No methylation was found in the promoter regions of PDCD4 and MTSS1 of either compartment. MGMT, RASSF1A and RASAL1 showed sporadic (up to 26.2%) promoter methylation. The promoter of TUSC3, however, was frequently methylated in the tumor (59.5%), benign bronchus (67.9%) and alveolar lung (31.0%) tissues from each tumor patient. The methylation status of TUSC3 was significantly associated with smaller tumor size (P=0.008) and a longer overall survival (P=0.013). Pooled blood DNA of healthy individuals did not show any methylation of either gene. Therefore, methylation of TUSC3 shows prognostic and pathobiological relevance in lung cancer. Furthermore, quantitative detection of TUSC3 promoter methylation appears to be a promising tool for early detection and prediction of prognosis in lung cancer. However, additional studies are required to confirm this finding.
Collapse
Affiliation(s)
- Uta Duppel
- Institute of Pathology, University of Regensburg, D-93053 Regensburg, Bavaria, Germany
| | | | - Christian Schulz
- Department of Internal Medicine II, University Hospital Regensburg, D-93053 Regensburg, Bavaria, Germany
| | - Johannes Merk
- Department of Thoracic Surgery, University Hospital Regensburg, D-93053 Regensburg, Bavaria, Germany
| | - Wolfgang Dietmaier
- Institute of Pathology, University of Regensburg, D-93053 Regensburg, Bavaria, Germany
| |
Collapse
|
48
|
Lei Z, Tian D, Zhang C, Zhao S, Su M. Clinicopathological and prognostic significance of GPX2 protein expression in esophageal squamous cell carcinoma. BMC Cancer 2016; 16:410. [PMID: 27388201 PMCID: PMC4936229 DOI: 10.1186/s12885-016-2462-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/27/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chaoshan region, a littoral area of Guangdong province in southern China, has a high incidence of esophageal squamous cell carcinoma (ESCC). At present, the prognosis of ESCC is still very poor, therefore, there is urgent need to seek valuable molecular biomarker for prognostic evaluation to guide clinical treatment. GPX2, a selenoprotein, was exclusively expressed in gastrointestinal tract and has an anti-oxidative damage and anti-tumour effect in the progress of tumourigenesis. METHODS We collected 161 ESCC patients samples, among which 83 patients were followed up. We employed immunochemistry analysis, western blotting and quantitative real-time PCR for measuring the expression of GPX2 within ESCC samples. We analysed the relationship between the expression of GPX2 and clinicopathological parameters of 161 patients with ESCC by Chi-square or Fisher's exact test. The survival analysis of GPX2 expression within ESCC tissues was evaluated by the Kaplan-Meier method and Cox-regression. RESULTS A significant higher expression level of GPX2 was detected in tumour tissues compared to that in non-tumour tissues (P < 0.001). Moreover, GPX2 expression has statistically significant difference in the tumour histological grade of ESCC (P < 0.001), while there was no statistically significant difference in age, sex, tumour size, tumour location, gross morphology and clinical TNM stages (P > 0.05). Meanwhile, the expression of GPX2 protein was obviously down-regulated within poorly differentiated ESCC. Last, survival analysis revealed that tumour histological grade and clinical TNM stages, both of the clinical pathological parameters of ESCC, were associated with the prognosis of patients with ESCC (respectively, P = 0.009, HR (95 % CI) = 1.885 (1.212 ~ 2.932); P = 0.007, HR (95 % CI) = 2.046 (1.318 ~ 3.177)). More importantly, loss expression of GPX2 protein predicted poor prognosis in patients with ESCC (P < 0.001, HR (95 % CI) = 5.700 (2.337 ~ 13.907)). CONCLUSIONS Collectively, these results suggested that the expression of GPX2 was significantly up-regulated within ESCC tumour tissues. GPX2 might be an important predictor for the prognosis of ESCC and a potential target for intervention and treatment of ESCC.
Collapse
Affiliation(s)
- Zhijin Lei
- />Department of Pathology and Institute of Clinical Pathology, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
| | - Dongping Tian
- />Department of Pathology and Institute of Clinical Pathology, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
- />Forensic Identification Center of Shantou University, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
| | - Chong Zhang
- />Department of Pathology and Institute of Clinical Pathology, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
| | - Shukun Zhao
- />Department of Pathology and Institute of Clinical Pathology, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
| | - Min Su
- />Department of Pathology and Institute of Clinical Pathology, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
- />Forensic Identification Center of Shantou University, Shantou University Medical College, Shantou, Guangdong People’s Republic of China
| |
Collapse
|
49
|
Jin J, Liao W, Yao W, Zhu R, Li Y, He S. Aldo-keto Reductase Family 1 Member B 10 Mediates Liver Cancer Cell Proliferation through Sphingosine-1-Phosphate. Sci Rep 2016; 6:22746. [PMID: 26948042 PMCID: PMC4780005 DOI: 10.1038/srep22746] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
AKR1B10 is involved in hepatocarcinogenesis via modulation of fatty acid and lipid synthesis. AKR1B10 inhibition results in apoptosis of tumor cells whose lipids, especially phospholipids, were decreased by over 50%, suggesting involvement of phospholipids like sphingosine-1-phosphate (S1P) in AKR1B10's oncogenic function. Using a co-culture system, we found that co-culture of QSG-7701 (human hepatocyte) with HepG2 (hepatoma cell line) increases QSG-7701's proliferation, in which AKR1B10-S1P signaling plays a pivotal role. Consistent with previous findings, AKR1B10 mRNA and protein levels were higher in primary hepatocellular carcinoma (PHC) tissues than in peri-tumor tissues. Interestingly, the level of S1P was also higher in PHC tissues than in peri-tumor tissues. After analyzing the correlation between AKR1B10 mRNA expression in PHC tissues and the clinical data, we found that AKR1B10 mRNA expression was associated with serum alpha-fetoprotein (AFP), tumor-node-metastasis (TNM) stage, and lymph node metastasis, but not with other clinicopathologic variables. A higher AKR1B10 mRNA expression level is related to a shorter DFS (disease free survival) and OS (overall survival), serving as an independent predictor of DFS and OS in PHC patients with surgical resection.
Collapse
Affiliation(s)
- Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.,China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Wenmin Yao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Rongping Zhu
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Yulan Li
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.,China-USA Lipids in Health and Disease Research Center, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Songqing He
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| |
Collapse
|
50
|
Mullapudi N, Ye B, Suzuki M, Fazzari M, Han W, Shi MK, Marquardt G, Lin J, Wang T, Keller S, Zhu C, Locker JD, Spivack SD. Genome Wide Methylome Alterations in Lung Cancer. PLoS One 2015; 10:e0143826. [PMID: 26683690 PMCID: PMC4684329 DOI: 10.1371/journal.pone.0143826] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/10/2015] [Indexed: 01/03/2023] Open
Abstract
Aberrant cytosine 5-methylation underlies many deregulated elements of cancer. Among paired non-small cell lung cancers (NSCLC), we sought to profile DNA 5-methyl-cytosine features which may underlie genome-wide deregulation. In one of the more dense interrogations of the methylome, we sampled 1.2 million CpG sites from twenty-four NSCLC tumor (T)-non-tumor (NT) pairs using a methylation-sensitive restriction enzyme- based HELP-microarray assay. We found 225,350 differentially methylated (DM) sites in adenocarcinomas versus adjacent non-tumor tissue that vary in frequency across genomic compartment, particularly notable in gene bodies (GB; p<2.2E-16). Further, when DM was coupled to differential transcriptome (DE) in the same samples, 37,056 differential loci in adenocarcinoma emerged. Approximately 90% of the DM-DE relationships were non-canonical; for example, promoter DM associated with DE in the same direction. Of the canonical changes noted, promoter (PR) DM loci with reciprocal changes in expression in adenocarcinomas included HBEGF, AGER, PTPRM, DPT, CST1, MELK; DM GB loci with concordant changes in expression included FOXM1, FERMT1, SLC7A5, and FAP genes. IPA analyses showed adenocarcinoma-specific promoter DMxDE overlay identified familiar lung cancer nodes [tP53, Akt] as well as less familiar nodes [HBEGF, NQO1, GRK5, VWF, HPGD, CDH5, CTNNAL1, PTPN13, DACH1, SMAD6, LAMA3, AR]. The unique findings from this study include the discovery of numerous candidate The unique findings from this study include the discovery of numerous candidate methylation sites in both PR and GB regions not previously identified in NSCLC, and many non-canonical relationships to gene expression. These DNA methylation features could potentially be developed as risk or diagnostic biomarkers, or as candidate targets for newer methylation locus-targeted preventive or therapeutic agents.
Collapse
Affiliation(s)
- Nandita Mullapudi
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bin Ye
- Department of Bioinformatics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Melissa Fazzari
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Weiguo Han
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Miao K. Shi
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gaby Marquardt
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juan Lin
- Department of Epidemiology & Population Health, Division of Biostatistics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tao Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven Keller
- Department of Cardiovascular &Thoracic Surgery, Montefiore Medical Center, Bronx, New York, United States of America
| | - Changcheng Zhu
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America
| | - Joseph D. Locker
- Department of Pathology, Montefiore Medical Center, Bronx, New York, United States of America
| | - Simon D. Spivack
- Department of Medicine/Pulmonary, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|