1
|
de Moraes ATL, Dos Santos ES, Pedroso CM, Gomes RT, Ferrarotto R, Santos-Silva AR. Human oncogenic viruses: a focus on head and neck carcinogenesis: a systematic review and meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol 2025; 139:328-343. [PMID: 39551637 DOI: 10.1016/j.oooo.2024.10.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVE This systematic review aimed at identifying oncoviruses associated with head and neck malignant neoplasms (HNC). STUDY DESIGN Five databases and grey literature sources were searched following PRISMA guidelines. The risk of bias in individual studies was analyzed using the Joanna Briggs Institute checklist, and the certainty of evidence was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation tool. RESULTS One hundred and 19 studies were included in the qualitative synthesis. Gathered results of 57 studies were combined in a meta-analysis revealing a significant link between oncoviruses and the development of head and neck cancer, with the most common viruses identified were human papillomavirus (HPV)-16, HPV-18, and Epstein-Barr virus. More studies are needed to clarify the association of human cytomegalovirus and Merkel Cell Polyomavirus with HNC. CONCLUSIONS Although the role of viruses in cancer onset has been studied for years, our results demonstrated using a meta-analysis that these viruses are associated with HNC.
Collapse
Affiliation(s)
- Antonia Taiane Lopes de Moraes
- Department of Oral Diagnosis, Semiology and Oral Pathology Areas, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Erison Santana Dos Santos
- Department of Oral Diagnosis, Semiology and Oral Pathology Areas, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Caíque Mariano Pedroso
- Department of Oral Diagnosis, Semiology and Oral Pathology Areas, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | | | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alan Roger Santos-Silva
- Department of Oral Diagnosis, Semiology and Oral Pathology Areas, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.
| |
Collapse
|
2
|
Xu S, Shi C, Zhou R, Han Y, Li N, Qu C, Xia R, Zhang C, Hu Y, Tian Z, Liu S, Wang L, Li J, Zhang Z. Mapping the landscape of HPV integration and characterising virus and host genome interactions in HPV-positive oropharyngeal squamous cell carcinoma. Clin Transl Med 2024; 14:e1556. [PMID: 38279874 PMCID: PMC10819103 DOI: 10.1002/ctm2.1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Human papillomavirus (HPV) integration into the host genome is an important factor in HPV(+)OPSCC carcinogenesis, in conjunction with HPV oncoproteins E6/E7. However, a well-studied investigation about virus-host interaction still needs to be completed. Our objective is to characterise HPV integration to investigate potential mechanisms of tumourigenesis independent of E6/E7 oncoproteins. MATERIALS AND METHODS High-throughput viral integration detection was performed on 109 HPV(+)OPSCC tumours with relevant clinicopathological information. Of these tumours, 38 tumours underwent targeted gene sequencing, 29 underwent whole exome sequencing and 26 underwent RNA sequencing. RESULTS HPV integration was detected in 94% of tumours (with a mean integration count of 337). Tumours occurring at the tonsil/oropharyngeal wall that exhibit higher PD-L1 expression demonstrated increased integration sites (p = .024). HPV exhibited a propensity for integration at genomic sites located within specific fragile sites (FRA19A) or genes associated with functional roles such as cell proliferation and differentiation (PTEN, AR), immune evasion (CD274) and glycoprotein biosynthesis process (FUT8). The viral oncogenes E2, E4, E6 and E7 tended to remain intact. HPV fragments displayed enrichment within host copy number variation (CNV) regions. However, insertions into genes related to altered homologous recombination repair were infrequent. Genes with integration had distinct expression levels. Fifty-nine genes whose expression level was affected by viral integration were identified, for example, EPHB1, which was reported to be involved in cellular protein metabolic process. CONCLUSIONS HPV can promote oncogenesis through recurrent integration into functional host genome regions, leading to subsequent genomic aberrations and gene expression disruption. This study characterises viral integrations and virus-host interactions, enhancing our understanding of HPV-related carcinogenesis mechanisms.
Collapse
Affiliation(s)
- Shengming Xu
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Chaoji Shi
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Rong Zhou
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Yong Han
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - NianNian Li
- Department of BioinfomaticsSequantaShanghaiChina
| | - Chuxiang Qu
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Ronghui Xia
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Chunye Zhang
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Yuhua Hu
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Zhen Tian
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Shuli Liu
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| | - Lizhen Wang
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Jiang Li
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
- Department of Oral PathologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine
ShanghaiChina
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial‐Head Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
- National Center for StomatologyShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghaiChina
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghaiChina
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiChina
| |
Collapse
|
3
|
DNA Damage Response Mechanisms in Head and Neck Cancer: Significant Implications for Therapy and Survival. Int J Mol Sci 2023; 24:ijms24032760. [PMID: 36769087 PMCID: PMC9917521 DOI: 10.3390/ijms24032760] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Head and neck cancer (HNC) is a term collectively used to describe a heterogeneous group of tumors that arise in the oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx, and represents the sixth most common type of malignancy worldwide. Despite advances in multimodality treatment, the disease has a recurrence rate of around 50%, and the prognosis of metastatic patients remains poor. HNCs are characterized by a high degree of genomic instability, which involves a vicious circle of accumulating DNA damage, defective DNA damage repair (DDR), and replication stress. Nonetheless, the damage that is induced on tumor cells by chemo and radiotherapy relies on defective DDR processes for a successful response to treatment, and may play an important role in the development of novel and more effective therapies. This review summarizes the current knowledge on the genes and proteins that appear to be deregulated in DDR pathways, their implication in HNC pathogenesis, and the rationale behind targeting these genes and pathways for the development of new therapies. We give particular emphasis on the therapeutic targets that have shown promising results at the pre-clinical stage and on those that have so far been associated with a therapeutic advantage in the clinical setting.
Collapse
|
4
|
Direct Comparison of HPV16 Viral Genomic Integration, Copy Loss, and Structural Variants in Oropharyngeal and Uterine Cervical Cancers Reveal Distinct Relationships to E2 Disruption and Somatic Alteration. Cancers (Basel) 2022; 14:cancers14184488. [PMID: 36139648 PMCID: PMC9496734 DOI: 10.3390/cancers14184488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Squamous cell carcinoma of the oropharynx caused by HPV type 16 (HPV16+ OPSCC) is the most common HPV-associated malignancy in the USA and has many molecular differences from uterine cervical squamous cell carcinoma (UCSCC). Our understanding of HPV oncogenesis relied on studies of UCSCC revealing a consensus model reliant on HPV integration with a loss of E2. Here, we compare patterns of HPV integration in UCSCC and OPSCC by analysis of affinity capture sequencing of the HPV16 genome in 104 OPSCC and 44 UCSCC tumors. These cohorts were contemporaneously sequenced using an identical strategy. Integration was identified using discordant read pair clustering and assembly-based approaches. Viral integration sites, structural variants, and copy losses were examined. While large-scale deep losses of HPV16 genes were common in UCSCC and were associated with E2 loss, deep copy losses of the HPV16 genome were infrequent in HPV16+ OPSCC. Similarly, structural variants within HPV16 favored E2 loss in UCSCC but not OPSCC. HPV16 integration sites were non-random, with recurrent integration hot-spots identified. OPSCC tumors had many more integration sites per tumor when compared to UCSCC and had more integration sites in genomic regions with high gene density. These data show that viral integration and E2 disruption are distinct in UCSCC and OPSCC. Our findings also add to growing literature suggesting that HPV tumorigenesis in OPSCC does not follow the model developed based on UCSCC.
Collapse
|
5
|
Liu T, Ma L, Song L, Yan B, Zhang S, Wang B, Zuo N, Sun X, Deng Y, Ren Q, Li Y, Zhou J, Liu Q, Wei L. CENPM upregulation by E5 oncoprotein of human papillomavirus promotes radiosensitivity in head and neck squamous cell carcinoma. Oral Oncol 2022; 129:105858. [DOI: 10.1016/j.oraloncology.2022.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/10/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
|
6
|
Wu SC, Münger K. Role and Clinical Utility of Cancer/Testis Antigens in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225690. [PMID: 34830845 PMCID: PMC8616139 DOI: 10.3390/cancers13225690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer/testis (CT) antigens exhibit selective expression predominantly in immunoprivileged tissues in non-pathological contexts but are aberrantly expressed in diverse cancers. Due to their expression pattern, they have historically been attractive targets for immunotherapies. A growing number of studies implicate CT antigens in almost all hallmarks of cancer, suggesting that they may act as cancer drivers. CT antigens are expressed in head and neck squamous cell carcinomas. However, their role in the pathogenesis of these cancers remains poorly studied. Given that CT antigens hold intriguing potential as therapeutic targets and as biomarkers for prognosis and that they can provide novel insights into oncogenic mechanisms, their further study in the context of head and squamous cell carcinoma is warranted.
Collapse
Affiliation(s)
- Sharon Changshan Wu
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Karl Münger
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Correspondence:
| |
Collapse
|
7
|
Mulder FJ, Pierssens DDCG, Baijens LWJ, Kremer B, Speel EM. Evidence for different molecular parameters in head and neck squamous cell carcinoma of nonsmokers and nondrinkers: Systematic review and meta-analysis on HPV, p16, and TP53. Head Neck 2021; 43:303-322. [PMID: 33098216 PMCID: PMC7756438 DOI: 10.1002/hed.26513] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The goal of this review was to present an overview of the currently identified molecular parameters in head and neck squamous cell carcinoma (HNSCC) of nonsmokers and nondrinkers (NSND). METHODS Following the PRISMA guidelines, a systematic search was performed using the electronic databases PubMed, Embase, and Google Scholar. RESULTS Of the 902 analyzed unique studies, 74 were included in a quantitative synthesis and 24 in a meta-analysis. Human papillomavirus (HPV) was reported as a molecular parameter in 38 studies, followed by p16 and TP53 (23 and 14 studies, respectively). The variety of other molecular parameters concerned sporadic findings in small numbers of NSND. CONCLUSIONS HNSCC in NSND is more often related to HPV and p16 overexpression compared to tumors of smokers-drinkers. In a third of virus-negative tumors, TP53 mutations were detected with a mutational profile associated with aging and ultraviolet light exposure rather than to tobacco consumption.
Collapse
Affiliation(s)
- Frans J. Mulder
- Department of Otorhinolaryngology and Head & Neck Surgery, GROW‐school for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtNetherlands
| | - Damiana D. C. G. Pierssens
- Department of Oral and Cranio‐Maxillofacial Surgery, GROW‐school for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtNetherlands
| | - Laura W. J. Baijens
- Department of Otorhinolaryngology and Head & Neck Surgery, GROW‐school for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtNetherlands
| | - Bernd Kremer
- Department of Otorhinolaryngology and Head & Neck Surgery, GROW‐school for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtNetherlands
| | - Ernst‐Jan M. Speel
- Department of Pathology, GROW‐school for Oncology and Developmental BiologyMaastricht University Medical CenterMaastrichtNetherlands
| |
Collapse
|
8
|
Abed A, Calapre L, Lo J, Correia S, Bowyer S, Chopra A, Watson M, Khattak MA, Millward M, Gray ES. Prognostic value of HLA-I homozygosity in patients with non-small cell lung cancer treated with single agent immunotherapy. J Immunother Cancer 2020; 8:e001620. [PMID: 33229510 PMCID: PMC7684824 DOI: 10.1136/jitc-2020-001620] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND We aimed to assess the impact of genomic human leukocyte antigen (HLA)-I/II homozygosity on the survival benefit of patients with unresectable locally advanced, metastatic non-small lung cancer treated by single-agent programmed cell death protein-1/programmed death ligand 1 (PD1/PDL1) inhibitors. METHODS We collected blood from 170 patients with advanced lung cancer treated with immunotherapy at two major oncology centers in Western Australia. Genomic DNA was extracted from white blood cells and used for HLA-I/II high-resolution typing. HLA-I/II homozygosity was tested for association with survival outcomes. Univariable and multivariable Cox regression models were constructed to determine whether HLA homozygosity was an independent prognostic factor affecting Overall Survival (OS) and Progression Free Survival (PFS). We also investigated the association between individual HLA-A and -B supertypes with OS. RESULTS Homozygosity at HLA-I loci, but not HLA-II, was significantly associated with shorter OS (HR=2.17, 95% CI 1.13 to 4.17, p=0.02) in both univariable and multivariable analysis. The effect of HLA-I homozygosity in OS was particularly relevant for patients with tumors expressing PDL1 ≥50% (HR=3.93, 95% CI 1.30 to 11.85, p<0.001). The adverse effect of HLA-I homozygosity on PFS was only apparent after controlling for interactions between PDL1 status and HLA-I genotype (HR=2.21, 95% CI 1.04 to 4.70, p=0.038). The presence of HLA-A02 supertype was the only HLA-I supertype to be associated with improved OS (HR=0.56, 95% CI 0.34 to 0.93, p=0.023). CONCLUSION Our results suggest that homozygosity at ≥1 HLA-I loci is associated with short OS and PFS in patients with advanced non-small cell lung cancer with PDL1 ≥50% treated with single-agent immunotherapy. Carriers of HLA-A02 supertype reported better survival outcomes in this cohort of patients.
Collapse
Affiliation(s)
- Afaf Abed
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Linear Clinical Research, Nedlands, Western Australia, Australia
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Johnny Lo
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Suzana Correia
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Samantha Bowyer
- Linear Clinical Research, Nedlands, Western Australia, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark Watson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Muhammad Adnan Khattak
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Michael Millward
- Linear Clinical Research, Nedlands, Western Australia, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Elin Solomonovna Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
9
|
Zapatka M, Borozan I, Brewer DS, Iskar M, Grundhoff A, Alawi M, Desai N, Sültmann H, Moch H, Cooper CS, Eils R, Ferretti V, Lichter P. The landscape of viral associations in human cancers. Nat Genet 2020; 52:320-330. [PMID: 32025001 PMCID: PMC8076016 DOI: 10.1038/s41588-019-0558-9] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 11/22/2019] [Indexed: 12/30/2022]
Abstract
Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, for which whole-genome and-for a subset-whole-transcriptome sequencing data from 2,658 cancers across 38 tumor types was aggregated, we systematically investigated potential viral pathogens using a consensus approach that integrated three independent pipelines. Viruses were detected in 382 genome and 68 transcriptome datasets. We found a high prevalence of known tumor-associated viruses such as Epstein-Barr virus (EBV), hepatitis B virus (HBV) and human papilloma virus (HPV; for example, HPV16 or HPV18). The study revealed significant exclusivity of HPV and driver mutations in head-and-neck cancer and the association of HPV with APOBEC mutational signatures, which suggests that impaired antiviral defense is a driving force in cervical, bladder and head-and-neck carcinoma. For HBV, HPV16, HPV18 and adeno-associated virus-2 (AAV2), viral integration was associated with local variations in genomic copy numbers. Integrations at the TERT promoter were associated with high telomerase expression evidently activating this tumor-driving process. High levels of endogenous retrovirus (ERV1) expression were linked to a worse survival outcome in patients with kidney cancer.
Collapse
Affiliation(s)
- Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivan Borozan
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Daniel S Brewer
- Norwich Medical School, University of East Anglia, Norwich, UK
- Earlham Institute, Norwich, UK
| | - Murat Iskar
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck-Riems, Hamburg, Germany
| | - Malik Alawi
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikita Desai
- Bioinformatics Group, Department of Computer Science, University College London, London, UK
- Biomedical Data Science Laboratory, Francis Crick Institute, London, UK
| | - Holger Sültmann
- National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zürich, Zurich, Switzerland
| | - Colin S Cooper
- Norwich Medical School, University of East Anglia, Norwich, UK
- Earlham Institute, Norwich, UK
- Institute of Cancer Research, London, UK
- University of East Anglia, Norwich, UK
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University and BioQuant Center, Heidelberg, Germany
- Center for Digital Health, Berlin Institute of Health and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Vincent Ferretti
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Québec, Canada
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
10
|
Papasavvas E, Kossenkov AV, Azzoni L, Zetola NM, Mackiewicz A, Ross BN, Fair M, Vadrevu S, Ramogola-Masire D, Sanne I, Firnhaber C, Montaner LJ. Gene expression profiling informs HPV cervical histopathology but not recurrence/relapse after LEEP in ART-suppressed HIV+HPV+ women. Carcinogenesis 2019; 40:225-233. [PMID: 30364933 DOI: 10.1093/carcin/bgy149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/28/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022] Open
Abstract
Identification of factors associated with human papillomavirus (HPV) cervical histopathology or recurrence/relapse following loop electrosurgical excision procedure (LEEP) would allow for better management of the disease. We investigated whether gene signatures could (i) associate with HPV cervical histopathology and (ii) identify women with post-LEEP disease recurrence/relapse. Gene array analysis was performed on paraffin-embedded cervical tissue-isolated RNA from two cross-sectional cohorts of antiretroviral therapy (ART)-suppressed HIV+HPV+ coinfected women: (i) 55 women in South Africa recruited into three groups: high risk (HR) (-) (n = 16) and HR (+) (n = 15) HPV without cervical histopathology and HR (+) HPV with cervical intraepithelial neoplasia (CIN) grade 1/2/3 (n = 24), (ii) 28 women in Botswana with CIN2/3 treated with LEEP 12-month prior to recruitment and presenting with (n = 13) and without (n = 15) lesion recurrence/relapse (tissue was analyzed at first LEEP). Three distinct gene expression signatures identified were able to segregate: (i) HR+ HPV and CIN1/2/3, (ii) HR HPV-free and cervical histopathology-free and (iii) HR+ HPV and cervical histopathology-free. Immune activation and neoplasia-associated genes (n = 272 genes; e.g. IL-1A, IL-8, TCAM1, POU4F1, MCM2, SMC1B, CXCL6, MMP12) were a feature of cancer precursor dysplasia within HR HPV infection. No difference in LEEP tissue gene expression was detected between women with or without recurrence/relapse. In conclusion, distinctive gene signatures were associated with presence of cervical histopathology in tissues from ART-suppressed HIV+/HPV+ coinfected women. Lack of detection of LEEP tissue gene signature able to segregate subsequent post-LEEP disease recurrence/relapse indicates additional factors independent of local gene expression as determinants of recurrence/relapse.
Collapse
Affiliation(s)
- Emmanouil Papasavvas
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Andrew V Kossenkov
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Livio Azzoni
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Nicola M Zetola
- The Botswana-UPenn Partnership, Department of Radiation Oncology, Gaborone, Botswana.,The University of Pennsylvania, Department of Radiation Oncology, Philadelphia, PA, USA
| | - Agnieszka Mackiewicz
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Brian N Ross
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Matthew Fair
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | - Surya Vadrevu
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | | | - Ian Sanne
- Clinical HIV Research Unit, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cynthia Firnhaber
- Clinical HIV Research Unit, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Right To Care, Johannesburg, South Africa
| | - Luis J Montaner
- The Wistar Institute, HIV-1 Immunopathogenesis Laboratory, Philadelphia, PA, USA
| |
Collapse
|
11
|
Tissue-Specific Gene Expression during Productive Human Papillomavirus 16 Infection of Cervical, Foreskin, and Tonsil Epithelium. J Virol 2019; 93:JVI.00915-19. [PMID: 31189705 DOI: 10.1128/jvi.00915-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Epidemiological data confirm a much higher incidence of high-risk human papillomavirus 16 (HPV16)-mediated carcinogenesis of the cervical epithelium than for other target sites. In order to elucidate tissue-specific responses to virus infection, we compared gene expression changes induced by productive HPV16 infection of cervical, foreskin, and tonsil organotypic rafts. These rafts closely mimic persistent HPV16 infection, long before carcinogenesis sets in. The total number of gene expression changes varied considerably across the tissue types, with only 32 genes being regulated in common. Among them, we confirmed the Kelch-like family protein KLHL35 and the laminin-5 complex to be upregulated and downregulated, respectively, in all the three tissues. HPV16 infection induces upregulation of genes involved in cell cycle control, cell division, mitosis, DNA replication, and DNA damage repair in all the three tissues, indicative of a hyperproliferative environment. In the cervical and tonsil epithelium, we observe significant downregulation of genes involved in epidermis development, keratinocyte differentiation, and extracellular matrix organization. On the other hand, in HPV16-positive foreskin (HPV16 foreskin) tissue, several genes involved in interferon-mediated innate immunity, cytokine signaling, and cellular defenses were downregulated. Furthermore, pathway analysis and experimental validations identified important cellular pathways like STAT1 and transforming growth factor β (TGF-β) to be differentially regulated among the three tissue types. The differential modulation of important cellular pathways like TGF-β1 and STAT1 can explain the sensitivity of tissues to HPV cancer progression.IMPORTANCE Although the high-risk human papillomavirus 16 infects anogenital and oropharyngeal sites, the cervical epithelium has a unique vulnerability to progression of cancer. Host responses during persistent infection and preneoplastic stages can shape the outcome of cancer progression in a tissue-dependent manner. Our study for the first time reports differential regulation of critical cellular functions and signaling pathways during productive HPV16 infection of cervical, foreskin, and tonsil tissues. While the virus induces hyperproliferation in infected cells, it downregulates epithelial differentiation, epidermal development, and innate immune responses, according to the tissue type. Modulation of these biological functions can determine virus fitness and pathogenesis and illuminate key cellular mechanisms that the virus employs to establish persistence and finally initiate disease progression.
Collapse
|
12
|
Mazurek AM, Rutkowski T, Śnietura M, Pigłowski W, Suwiński R, Składowski K. Detection of circulating HPV16 DNA as a biomarker in the blood of patients with human papillomavirus-positive oropharyngeal squamous cell carcinoma. Head Neck 2018; 41:632-641. [PMID: 30566259 DOI: 10.1002/hed.25368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/13/2018] [Accepted: 05/21/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Development of biomarker analysis using the circulating cell-free DNA (cfDNA) methodology is a challenge for noninvasive cancer diagnosis. In this study, a comparison between the plasma and tumor tissue HPV16 DNA viral loads (VLs) has been presented. METHODS Real-time polymerase chain reaction was performed for quantitating of HPV16 DNA in the plasma and tumor samples of patients with oropharyngeal cancer. RESULTS Among the tissues, HPV16-positive patients with oropharyngeal squamous cell carcinoma, nonsmoking patients, displayed significantly higher HPV16 DNA VLs in their tissue. No smoking and advanced N disease were the most important predictors for cHPV16 DNA (circulating HPV16 DNA) detection. The cHPV16-positive women displayed significantly higher VLs in their tumor tissues compared to the men, although without notable impact on the blood detection. CONCLUSIONS Many factors were responsible for human papillomavirus DNA circulation in blood. As a result of the small size of the analyzed group, some observed discrepancies need to be proven on a larger cohort.
Collapse
Affiliation(s)
- Agnieszka M Mazurek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Tomasz Rutkowski
- I Radiotherapy and Chemotherapy Clinic, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Mirosław Śnietura
- Tumor Pathology Department, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Wojciech Pigłowski
- Tumor Pathology Department, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Rafał Suwiński
- II Radiotherapy and Chemotherapy Clinic, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Krzysztof Składowski
- I Radiotherapy and Chemotherapy Clinic, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
13
|
Predicting miRNA targets for head and neck squamous cell carcinoma using an ensemble method. Int J Biol Markers 2018; 33:87-93. [PMID: 28665450 DOI: 10.5301/ijbm.5000285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND This study aimed to uncover potential microRNA (miRNA) targets in head and neck squamous cell carcinoma (HNSCC) using an ensemble method which combined 3 different methods: Pearson's correlation coefficient (PCC), Lasso and a causal inference method (i.e., intervention calculus when the directed acyclic graph (DAG) is absent [IDA]), based on Borda count election. METHODS The Borda count election method was used to integrate the top 100 predicted targets of each miRNA generated by individual methods. Afterwards, to validate the performance ability of our method, we checked the TarBase v6.0, miRecords v2013, miRWalk v2.0 and miRTarBase v4.5 databases to validate predictions for miRNAs. Pathway enrichment analysis of target genes in the top 1,000 miRNA-messenger RNA (mRNA) interactions was conducted to focus on significant KEGG pathways. Finally, we extracted target genes based on occurrence frequency ≥3. RESULTS Based on an absolute value of PCC >0.7, we found 33 miRNAs and 288 mRNAs for further analysis. We extracted 10 target genes with predicted frequencies not less than 3. The target gene MYO5C possessed the highest frequency, which was predicted by 7 different miRNAs. Significantly, a total of 8 pathways were identified; the pathways of cytokine-cytokine receptor interaction and chemokine signaling pathway were the most significant. CONCLUSIONS We successfully predicted target genes and pathways for HNSCC relying on miRNA expression data, mRNA expression profile, an ensemble method and pathway information. Our results may offer new information for the diagnosis and estimation of the prognosis of HNSCC.
Collapse
|
14
|
Pérez-Valencia JA, Prosdocimi F, Cesari IM, da Costa IR, Furtado C, Agostini M, Rumjanek FD. Angiogenesis and evading immune destruction are the main related transcriptomic characteristics to the invasive process of oral tongue cancer. Sci Rep 2018; 8:2007. [PMID: 29386520 PMCID: PMC5792437 DOI: 10.1038/s41598-017-19010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/19/2017] [Indexed: 01/29/2023] Open
Abstract
Metastasis of head and neck tumors is responsible for a high mortality rate. Understanding its biochemistry may allow insights into tumorigenesis. To that end we carried out RNA-Seq analyses of 5 SCC9 derived oral cancer cell lines displaying increased invasive potential. Differentially expressed genes (DEGs) were annotated based on p-values and false discovery rate (q-values). All 292 KEGG pathways related to the human genome were compared in order to pinpoint the absolute and relative contributions to the invasive process considering the 8 hallmarks of cancer plus 2 new defined categories, as well as we made with our transcriptomic data. In terms of absolute contribution, the highest correlations were associated to the categories of evading immune destruction and energy metabolism and for relative contributions, angiogenesis and evading immune destruction. DEGs were distributed into each one of all possible modes of regulation, regarding up, down and continuum expression, along the 3 stages of metastatic progression. For p-values twenty-six genes were consistently present along the tumoral progression and 4 for q-values. Among the DEGs, we found 2 novel potentially informative metastatic markers: PIGG and SLC8B1. Furthermore, interactome analysis showed that MYH14, ANGPTL4, PPARD and ENPP1 are amenable to pharmacological interventions.
Collapse
Affiliation(s)
- Juan Alberto Pérez-Valencia
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Francisco Prosdocimi
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Italo M Cesari
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Igor Rodrigues da Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Michelle Agostini
- Departamento de Patologia e Diagnóstico Oral, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Franklin David Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
15
|
Tonella L, Giannoccaro M, Alfieri S, Canevari S, De Cecco L. Gene Expression Signatures for Head and Neck Cancer Patient Stratification: Are Results Ready for Clinical Application? Curr Treat Options Oncol 2017; 18:32. [PMID: 28474265 DOI: 10.1007/s11864-017-0472-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OPINION STATEMENT Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cancer by incidence worldwide and considering the recent EUROCARE-5 population-based study the 5-year survival rate of HNSCC patients in Europe ranges between 69% in localized cases and 34% in patients with regional involvement. The development of high-throughput gene expression assays in the last two decades has provided the invaluable opportunity to improve our knowledge on cancer biology and to identify predictive signatures in the most deeply analyzed malignancies, such as hematological and breast cancers. At variance, till 2010, the number of reliable reports referring gene expression data related to HSNCC biology and prediction was quite limited. A critical revision of the literature reporting gene expression data in HNSCC indicated that in the last 6 years, there were new important studies with a relevant increase in the sample size and a more accurate selection of cases, the publication of a growing number of studies applying a computational integration (meta-analysis) of different microarray datasets addressing similar clinical/biological questions, the increased use of molecular sub-classification of tumors according to their gene expression, and the release of the publicly available largest dataset in HNSCC by The Cancer Genome Atlas (TCGA) consortium. Overall, also for this disease, it become evident that the expression analysis of the entire transcriptome has been enabling to achieve the identification of promising molecular signatures for (i) disclosure of the biology behind carcinogenesis with special focus on the HPV-related one, (ii) prediction of tumor recurrence or metastasis development, (iii) identification of subgroups of tumors with different biology and associated prognosis, and (iv) prediction of outcome and/or response to therapy. The increasing awareness of the relevance of strict collaboration among clinicians and translational researchers would in a near future enable the application of a personalized HNSCCs patients' treatment in the clinical practice based also on gene expression signatures.
Collapse
Affiliation(s)
- Luca Tonella
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milan, Italy
| | - Marco Giannoccaro
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milan, Italy
| | - Salvatore Alfieri
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Venezian 1, 20133, Milan, Italy
| | - Silvana Canevari
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milan, Italy.
| | - Loris De Cecco
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
16
|
Feng Z, Bethmann D, Kappler M, Ballesteros-Merino C, Eckert A, Bell RB, Cheng A, Bui T, Leidner R, Urba WJ, Johnson K, Hoyt C, Bifulco CB, Bukur J, Wickenhauser C, Seliger B, Fox BA. Multiparametric immune profiling in HPV- oral squamous cell cancer. JCI Insight 2017; 2:93652. [PMID: 28724788 DOI: 10.1172/jci.insight.93652] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022] Open
Abstract
Evaluation of T lymphocyte frequency provides prognostic information for patients with oral squamous cell cancer (OSCC). However, the effect of simultaneously evaluating T cell frequency and assessing suppressive elements and defects in antigen-processing machinery (APM) has not been clarified. Simultaneous characterization of CD3+, CD8+, FoxP3+, CD163+, and PD-L1+ cells using multispectral imaging was performed on sections from 119 patients with HPV- OSCC. Expression of β2-microglobulin, MHC class I heavy chain, and large multifunctional peptidase 10 was quantified, and all data were correlated with patient outcome. We found that, consistent with previous reports, high numbers of CD8+ T cells at the invasive margin correlated significantly with prolonged overall survival (OS), while the number of FoxP3+ or PD-L1+ cells did not. Compiling the number of FoxP3+ or PD-L1+ cells within 30 μm of CD8+ T cells identified a significant association with a high number of suppressive elements close to CD8+ T cells and reduced OS. Integrating this information into a cumulative suppression index (CSI) increased correlation with OS. Incorporating tumor expression levels of APM components with CSI further improved prognostic power. This multiparametric immune profiling may be useful for stratifying patients with OSCC for clinical trials.
Collapse
Affiliation(s)
- Zipei Feng
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Portland, Oregon, USA.,Department of Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel Bethmann
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Portland, Oregon, USA.,Institute of Pathology and
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Alexander Eckert
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - R Bryan Bell
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Portland, Oregon, USA.,Providence Oral, Head and Neck Cancer Program and Clinic, Providence Cancer Center, Portland, Oregon, USA
| | - Allen Cheng
- Providence Oral, Head and Neck Cancer Program and Clinic, Providence Cancer Center, Portland, Oregon, USA
| | - Tuan Bui
- Providence Oral, Head and Neck Cancer Program and Clinic, Providence Cancer Center, Portland, Oregon, USA
| | - Rom Leidner
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Portland, Oregon, USA.,Providence Oral, Head and Neck Cancer Program and Clinic, Providence Cancer Center, Portland, Oregon, USA
| | - Walter J Urba
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Portland, Oregon, USA
| | | | | | - Carlo B Bifulco
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Portland, Oregon, USA.,Department of Pathology, Providence Cancer Center, Portland, Oregon, USA
| | - Juergen Bukur
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Bernard A Fox
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Portland, Oregon, USA.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
17
|
Abstract
Head and neck cancer is the sixth most common cancer worldwide. The large majority are squamous cell carcinomas (HNSCC) that develop in the mucosal linings of the upper aerodigestive tract. These tumors develop either by exogenous carcinogen exposure (smoking, alcohol drinking) or by human papillomavirus (HPV) infection, particularly those in the oropharynx (OPSCC). HPV-positive (HPV+ve) and HPV-negative (HPV-ve) OPSCC are considered different disease entities. HPV+ve tumors are different at the molecular level and likely as a consequence have a much more favorable prognosis than HPV-ve tumors, despite their generally advanced stage at presentation. In general, HNSCCs develop in precancerous mucosal changes, and the apparent lack of precancerous HPV+ve mucosal changes is therefore remarkable. In this Chapter, head and neck carcinogenesis is discussed and the molecular differences between HPV+ve and HPV-ve tumors are outlined.
Collapse
|
18
|
Azarnezhad A, Mehdipour P. Cancer Genetics at a Glance: The Comprehensive Insights. CANCER GENETICS AND PSYCHOTHERAPY 2017:79-389. [DOI: 10.1007/978-3-319-64550-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Chakravarthy A, Henderson S, Thirdborough SM, Ottensmeier CH, Su X, Lechner M, Feber A, Thomas GJ, Fenton TR. Human Papillomavirus Drives Tumor Development Throughout the Head and Neck: Improved Prognosis Is Associated With an Immune Response Largely Restricted to the Oropharynx. J Clin Oncol 2016; 34:4132-4141. [PMID: 27863190 PMCID: PMC5477823 DOI: 10.1200/jco.2016.68.2955] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose In squamous cell carcinomas of the head and neck (HNSCC), the increasing incidence of oropharyngeal squamous cell carcinomas (OPSCCs) is attributable to human papillomavirus (HPV) infection. Despite commonly presenting at late stage, HPV-driven OPSCCs are associated with improved prognosis compared with HPV-negative disease. HPV DNA is also detectable in nonoropharyngeal (non-OPSCC), but its pathogenic role and clinical significance are unclear. The objectives of this study were to determine whether HPV plays a causal role in non-OPSCC and to investigate whether HPV confers a survival benefit in these tumors. Methods Meta-analysis was used to build a cross-tissue gene-expression signature for HPV-driven cancer. Classifiers trained by machine-learning approaches were used to predict the HPV status of 520 HNSCCs profiled by The Cancer Genome Atlas project. DNA methylation data were similarly used to classify 464 HNSCCs and these analyses were integrated with genomic, histopathology, and survival data to permit a comprehensive comparison of HPV transcript-positive OPSCC and non-OPSCC. Results HPV-driven tumors accounted for 4.1% of non-OPSCCs. Regardless of anatomic site, HPV+ HNSCCs shared highly similar gene expression and DNA methylation profiles; nonkeratinizing, basaloid histopathological features; and lack of TP53 or CDKN2A alterations. Improved overall survival, however, was largely restricted to HPV-driven OPSCCs, which were associated with increased levels of tumor-infiltrating lymphocytes compared with HPV-driven non-OPSCCs. Conclusion Our analysis identified a causal role for HPV in transcript-positive non-OPSCCs throughout the head and neck. Notably, however, HPV-driven non-OPSCCs display a distinct immune microenvironment and clinical behavior compared with HPV-driven OPSCCs.
Collapse
Affiliation(s)
- Ankur Chakravarthy
- Ankur Chakravarthy, Stephen Henderson, Matt Lechner, Andrew Feber, and Tim R. Fenton, UCL Cancer Institute, University College London, London; Stephen M. Thirdborough, Christian H. Ottensmeier, and Gareth J. Thomas, University of Southampton, Southampton, United Kingdom; Xiaoping Su, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephen Henderson
- Ankur Chakravarthy, Stephen Henderson, Matt Lechner, Andrew Feber, and Tim R. Fenton, UCL Cancer Institute, University College London, London; Stephen M. Thirdborough, Christian H. Ottensmeier, and Gareth J. Thomas, University of Southampton, Southampton, United Kingdom; Xiaoping Su, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephen M. Thirdborough
- Ankur Chakravarthy, Stephen Henderson, Matt Lechner, Andrew Feber, and Tim R. Fenton, UCL Cancer Institute, University College London, London; Stephen M. Thirdborough, Christian H. Ottensmeier, and Gareth J. Thomas, University of Southampton, Southampton, United Kingdom; Xiaoping Su, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Christian H. Ottensmeier
- Ankur Chakravarthy, Stephen Henderson, Matt Lechner, Andrew Feber, and Tim R. Fenton, UCL Cancer Institute, University College London, London; Stephen M. Thirdborough, Christian H. Ottensmeier, and Gareth J. Thomas, University of Southampton, Southampton, United Kingdom; Xiaoping Su, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xiaoping Su
- Ankur Chakravarthy, Stephen Henderson, Matt Lechner, Andrew Feber, and Tim R. Fenton, UCL Cancer Institute, University College London, London; Stephen M. Thirdborough, Christian H. Ottensmeier, and Gareth J. Thomas, University of Southampton, Southampton, United Kingdom; Xiaoping Su, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matt Lechner
- Ankur Chakravarthy, Stephen Henderson, Matt Lechner, Andrew Feber, and Tim R. Fenton, UCL Cancer Institute, University College London, London; Stephen M. Thirdborough, Christian H. Ottensmeier, and Gareth J. Thomas, University of Southampton, Southampton, United Kingdom; Xiaoping Su, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrew Feber
- Ankur Chakravarthy, Stephen Henderson, Matt Lechner, Andrew Feber, and Tim R. Fenton, UCL Cancer Institute, University College London, London; Stephen M. Thirdborough, Christian H. Ottensmeier, and Gareth J. Thomas, University of Southampton, Southampton, United Kingdom; Xiaoping Su, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gareth J. Thomas
- Ankur Chakravarthy, Stephen Henderson, Matt Lechner, Andrew Feber, and Tim R. Fenton, UCL Cancer Institute, University College London, London; Stephen M. Thirdborough, Christian H. Ottensmeier, and Gareth J. Thomas, University of Southampton, Southampton, United Kingdom; Xiaoping Su, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tim R. Fenton
- Ankur Chakravarthy, Stephen Henderson, Matt Lechner, Andrew Feber, and Tim R. Fenton, UCL Cancer Institute, University College London, London; Stephen M. Thirdborough, Christian H. Ottensmeier, and Gareth J. Thomas, University of Southampton, Southampton, United Kingdom; Xiaoping Su, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
20
|
Khialeeva E, Carpenter EM. Nonneuronal roles for the reelin signaling pathway. Dev Dyn 2016; 246:217-226. [PMID: 27739126 DOI: 10.1002/dvdy.24462] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
The reelin signaling pathway has been established as an important regulator of cell migration during development of the central nervous system, and disruptions in reelin signaling alter the positioning of many types of neurons. Reelin is a large extracellular matrix glycoprotein and governs cell migration through activation of multiple intracellular signaling events by means of the receptors ApoE receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR), and the intracellular adaptor protein Disabled-1 (Dab1). Earlier studies reported expression of reelin in nonneuronal tissues, but the functions of this signaling pathway outside of the nervous system have not been studied until recently. A large body of evidence now suggests that reelin functions during development and disease of multiple nonneuronal tissues. This review addresses recent advances in the field of nonneuronal reelin signaling. Developmental Dynamics 246:217-226, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elvira Khialeeva
- Molecular Biology Interdepartmental Program, University of California Los Angeles, Los Angeles, California
| | - Ellen M Carpenter
- Department of Psychiatry and Biobehavioral Science, University of California Los Angeles School of Medicine, Los Angeles, California
| |
Collapse
|
21
|
Correlation of TP53 and MDM2 genotypes and clinical outcome in platinum-treated head and neck cancer patients with more than 10 years' follow-up. Int J Biol Markers 2016; 31:e183-92. [PMID: 26916894 DOI: 10.5301/jbm.5000192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2015] [Indexed: 12/20/2022]
Abstract
PURPOSE Adequate biomarkers are still required to optimize therapy in patients with locally advanced head and neck squamous carcinomas (HNSCC) treated with chemoradiotherapy (CRT). METHODS We updated the follow-up of 66 HNSCC patients treated with CRT we described more than 10 years ago, focusing on SNP Arg/Pro (R/P) at codon 72 and somatic mutations in TP53 and on SNP309 in the MDM2 gene. RESULTS In wild-type TP53 cases, overall survival (OS) was longer in 72RR and less favorable in 72PP (p = 0.005); when TP53 was mutated, OS was longest in 72PP and less favorable in 72RR and 72RP (p = 0.058). Median OS was significantly shorter in patients with MDM2 SNP309 GG or GT genotypes compared with the TT genotype (p = 0.002). CONCLUSIONS TP53 SNP72 may be useful in selecting patients for CRT, but has to be related to somatic TP53 mutations. The MDM2 SNP309, easily determined in peripheral blood, might be more convenient as a predictive biomarker.
Collapse
|
22
|
Polanska H, Heger Z, Gumulec J, Raudenska M, Svobodova M, Balvan J, Fojtu M, Binkova H, Horakova Z, Kostrica R, Adam V, Kizek R, Masarik M. Effect of HPV on tumor expression levels of the most commonly used markers in HNSCC. Tumour Biol 2015; 37:7193-201. [PMID: 26666815 DOI: 10.1007/s13277-015-4569-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/01/2015] [Indexed: 01/08/2023] Open
Abstract
Approximately 90 % of head and neck cancers are squamous cell carcinomas (HNSCC), and the overall 5-year survival rate is not higher than 50 %. There is much evidence that human papillomavirus (HPV) infection may influence the expression of commonly studied HNSCC markers. Our study was focused on the possible HPV-specificity of molecular markers that could be key players in important steps of cancerogenesis (MKI67, EGF, EGFR, BCL-2, BAX, FOS, JUN, TP53, MT1A, MT2A, VEGFA, FLT1, MMP2, MMP9, and POU5F). qRT-PCR analysis of these selected genes was performed on 74 biopsy samples of tumors from patients with histologically verified HNSCC (22 HPV-, 52 HPV+). Kaplan-Meier analysis was done to determine the relevance of these selected markers for HNSCC prognosis. In conclusion, our study confirms the impact of HPV infection on commonly studied HNSCC markers MT2A, MMP9, FLT1, VEGFA, and POU5F that were more highly expressed in HPV-negative HNSCC patients and also shows the relevance of studied markers in HPV-positive and HPV-negative HNSCC patients.
Collapse
Affiliation(s)
- Hana Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Marketa Svobodova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michaela Fojtu
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Hana Binkova
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's Faculty Hospital, Pekarska 53, CZ-656 91, Brno, Czech Republic
| | - Zuzana Horakova
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's Faculty Hospital, Pekarska 53, CZ-656 91, Brno, Czech Republic
| | - Rom Kostrica
- Department of Otorhinolaryngology and Head and Neck Surgery, St. Anne's Faculty Hospital, Pekarska 53, CZ-656 91, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic.
| |
Collapse
|
23
|
Gillison ML, Restighini C. Anticipation of the Impact of Human Papillomavirus on Clinical Decision Making for the Head and Neck Cancer Patient. Hematol Oncol Clin North Am 2015; 29:1045-60. [DOI: 10.1016/j.hoc.2015.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Ben-Dayan MM, MacCarthy T, Schlecht NF, Belbin TJ, Childs G, Smith RV, Prystowsky MB, Bergman A. Cancer as the Disintegration of Robustness: Population-Level Variance in Gene Expression Identifies Key Differences Between Tobacco- and HPV-Associated Oropharyngeal Carcinogenesis. Arch Pathol Lab Med 2015; 139:1362-72. [PMID: 26132601 DOI: 10.5858/arpa.2014-0624-oa] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CONTEXT Oropharyngeal squamous cell carcinoma is associated both with tobacco use and with human papillomavirus (HPV) infection. It is argued that carcinogen-driven tumorigenesis is a distinct disease from its virally driven counterpart. We hypothesized that tumorigenesis is the result of a loss of genotypic robustness resulting in an increase in phenotypic variation in tumors compared with adjacent histologically normal tissues, and that carcinogen-driven tumorigenesis results in greater variation than its virally driven counterpart. OBJECTIVES To examine the loss of robustness in carcinogen-driven and virally driven oropharyngeal squamous cell carcinoma samples, and to identify potential pathways involved. DESIGN We used coefficients of variation for messenger RNA and microRNA expression to measure the loss of robustness in oropharyngeal squamous cell carcinoma samples. Tumors were compared with matched normal tissues, and were further categorized by HPV and patient smoking status. Weighted gene coexpression networks were constructed for genes with highly variable expression among the HPV⁻ tumors from smokers. RESULTS We observed more genes with variable messenger RNA expression in tumors compared with normal tissues, regardless of HPV and smoking status, and more microRNAs with variable expression in HPV⁻ and HPV⁺ tumors from smoking patients than from nonsmokers. For both the messenger RNA and microRNA data, we observed more variance among HPV⁻ tumors from smokers compared with HPV⁺ tumors from nonsmokers. The gene coexpression network construction highlighted pathways that have lost robustness in carcinogen-induced tumors but appear stable in virally induced tumors. CONCLUSIONS Using coefficients of variation and coexpression networks, we identified multiple altered pathways that may play a role in carcinogen-driven tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aviv Bergman
- From the Departments of Pathology (Ms Ben-Dayan and Drs Belbin, Childs, and Prystowsky), Epidemiology and Population Health (Dr Schlecht), and Computational and Systems Biology (Dr Bergman), Albert Einstein College of Medicine, Bronx, New York; the Department of Applied Mathematics and Statistics, SUNY Stony Brook, Stony Brook, New York (Dr MacCarthy); and the Department of Otorhinolaryngology, Montefiore Medical Center, Bronx, New York (Dr Smith)
| |
Collapse
|
25
|
Tomar S, Graves CA, Altomare D, Kowli S, Kassler S, Sutkowski N, Gillespie MB, Creek KE, Pirisi L. Human papillomavirus status and gene expression profiles of oropharyngeal and oral cancers from European American and African American patients. Head Neck 2015; 38 Suppl 1:E694-704. [PMID: 25899179 DOI: 10.1002/hed.24072] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/13/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Disparities in prevalence, human papillomavirus (HPV) status, and mortality rates for head and neck cancer have been described between African American and European American patients. METHODS We studied the HPV status and gene expression profiles in 56 oropharyngeal/oral cavity tumors and 9 normal tissue samples from European American and African American patients treated in South Carolina between 2010 and 2012. RESULTS Overall, 59% of tumors were HPV DNA-positive, but only 48% of those expressed E7 mRNA (HPV-active). The prevalence of HPV-active tumors was 10% in African American patients and 39% in European American patients. Tumors positive for HPV DNA but negative for HPV mRNA exhibited gene expression profiles distinct from those of both HPV-active and HPV-negative cancers, suggesting that HPV DNA-positive/RNA-negative tumors may constitute a unique group. CONCLUSION This study provides a direct assessment of differential expression patterns in HPV-related oropharyngeal cancer arising from African American and European American patients, for which there is a paucity of data. © 2015 Wiley Periodicals, Inc. Head Neck 00: 000-000, 2015.
Collapse
Affiliation(s)
- Swati Tomar
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Christian A Graves
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Sangeeta Kowli
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Susannah Kassler
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Natalie Sutkowski
- Department of Microbiology and Immunology, Medical University of South Carolina, Columbia, South Carolina
| | - M Boyd Gillespie
- Department of Otolaryngology and Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Kim E Creek
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Lucia Pirisi
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
26
|
Anayannis NVJ, Schlecht NF, Belbin TJ. Epigenetic Mechanisms of Human Papillomavirus-Associated Head and Neck Cancer. Arch Pathol Lab Med 2015; 139:1373-8. [PMID: 25978766 DOI: 10.5858/arpa.2014-0554-ra] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Growing evidence suggests that as many as half of all oropharyngeal squamous cell carcinomas (OPSCCs) harbor human papillomavirus (HPV) infections. Despite being more advanced at diagnosis, HPV-positive OPSCCs are associated with a better response to therapy and longer patient survival than HPV-negative OPSCCs. Human papillomavirus-positive OPSCC has also been shown to have distinct host gene expression profiles compared with HPV-negative OPSCC. Recently, this distinction has been shown to include the epigenome. It is well supported that cancers are epigenetically deregulated. This review highlights epigenetic differences between HPV-positive and HPV-negative OPSCCs. The epigenetic mechanisms highlighted include methylation changes to host and viral DNA, and host chromatin modification. We also review the current evidence regarding host DNA methylation changes associated with smoking, and deregulation of microRNA expression in HPV-positive OPSCC. OBJECTIVE To provide an overview of epigenetic mechanisms reported in HPV-positive OPSCC, with analogies to cervical cancer, and discussion of the challenges involved in studying epigenetic changes in HPV-associated OPSCC in combination with changes associated with smoking. DATA SOURCES Sources were a literature review of peer-reviewed articles in PubMed on HPV and either OPSCC or head and neck squamous cell carcinoma, and related epigenetic mechanisms. CONCLUSIONS Epigenetic changes are reported to be a contributing factor to maintaining a malignant phenotype in HPV-positive OPSCC. The epigenetic mechanisms highlighted in this review can be studied for potential as biomarkers or as drug targets. Furthermore, continued research on the deregulation of epigenetic mechanisms in HPV-positive OPSCC (compared with HPV-negative OPSCC) may contribute to our understanding of the clinical and biologic differences between HPV-positive and HPV-negative OPSCC.
Collapse
Affiliation(s)
| | | | - Thomas J Belbin
- From the Departments of Pathology (Ms Anayannis and Dr Belbin), Epidemiology & Population Health (Dr Schlecht), and Medicine (Oncology) (Dr Schlecht), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
27
|
Sepiashvili L, Bruce JP, Huang SH, O'Sullivan B, Liu FF, Kislinger T. Novel Insights into Head and Neck Cancer using Next-Generation “Omic” Technologies. Cancer Res 2015; 75:480-6. [DOI: 10.1158/0008-5472.can-14-3124] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
|
29
|
Dhanda J, Triantafyllou A, Liloglou T, Kalirai H, Lloyd B, Hanlon R, Shaw RJ, Sibson DR, Risk JM. SERPINE1 and SMA expression at the invasive front predict extracapsular spread and survival in oral squamous cell carcinoma. Br J Cancer 2014; 111:2114-21. [PMID: 25268377 PMCID: PMC4260028 DOI: 10.1038/bjc.2014.500] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Extracapsular spread (ECS) in cervical lymph nodes is the single-most prognostic clinical variable in oral squamous cell carcinoma (OSCC), but diagnosis is possible only after histopathological examination. A promising biomarker in the primary tumour, alpha smooth muscle actin (SMA) has been shown to be highly prognostic, however, validated biomarkers to predict ECS prior to primary treatment are not yet available. METHODS In 102 OSCC cases, conventional imaging was compared with pTNM staging. SERPINE1, identified from expression microarray of primary tumours as a potential biomarker for ECS, was validated through mRNA expression, and by immunohistochemistry (IHC) on a tissue microarray from the same cohort. Similarly, expression of SMA was also compared with its association with ECS and survival. Expression was analysed separately in the tumour centre and advancing front; and prognostic capability determined using Kaplan-Meier survival analysis. RESULTS Immunohistochemistry indicated that both SERPINE1 and SMA expression at the tumour-advancing front were significantly associated with ECS (P<0.001). ECS was associated with expression of either or both proteins in all cases. SMA+/SERPINE1+ expression in combination was highly significantly associated with poor survival (P<0.001). MRI showed poor sensitivity for detection of nodal metastasis (56%) and ECS (7%). Both separately, and in combination, SERPINE1 and SMA were superior to MRI for the detection of ECS (sensitivity: SERPINE1: 95%; SMA: 82%; combination: 81%). CONCLUSION A combination of SMA and SERPINE1 IHC offer potential as prognostic biomarkers in OSCC. Our findings suggest that biomarkers at the invasive front are likely to be necessary in prediction of ECS or in therapeutic stratification.
Collapse
Affiliation(s)
- J Dhanda
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - A Triantafyllou
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- Regional Oral and Maxillofacial Unit, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK
| | - T Liloglou
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - H Kalirai
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - B Lloyd
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - R Hanlon
- Regional Oral and Maxillofacial Unit, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK
| | - R J Shaw
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- Regional Oral and Maxillofacial Unit, Aintree University Hospitals NHS Foundation Trust, Liverpool, UK
| | - D R Sibson
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - J M Risk
- Department of Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
30
|
Koffler J, Sharma S, Hess J. Predictive value of epigenetic alterations in head and neck squamous cell carcinoma. Mol Cell Oncol 2014; 1:e954827. [PMID: 27308324 PMCID: PMC4905189 DOI: 10.1080/23723548.2014.954827] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/31/2022]
Abstract
Head and neck cancer collectively describes malignant tumors originating from the mucosal surface of the upper aerodigestive tract. These tumors pose a great threat to public health because of their high incidence and mortality. Traditional risk factors are tobacco and alcohol abuse. More recently, infection by high-risk types of human papilloma virus (HPV) has been identified as an additional risk factor, especially for oropharyngeal squamous cell carcinoma (OPSCC). Moreover, HPV-positive OPSCC is considered a distinct tumor entity with an improved clinical outcome compared to HPV-negative OPSCC. Epigenetic alterations act as key events in the pathogenesis of cancer and are of special interest for basic and translational oncology because of their reversible nature. This review provides a comprehensive summary of alterations of the epigenome in head and neck squamous cell carcinoma (HNSCC) with a focus on the methylome (hypomethylation and hypermethylation) and its predictive value in the evaluation of pathologic states and clinical outcome, or monitoring response rates to certain therapies.
Collapse
Affiliation(s)
- Jennifer Koffler
- Section Experimental and Translational Head and Neck Oncology; Department of Otolaryngology; Head and Neck Surgery; University Hospital Heidelberg ; Heidelberg, Germany
| | - Sarika Sharma
- Section Experimental and Translational Head and Neck Oncology; Department of Otolaryngology; Head and Neck Surgery; University Hospital Heidelberg ; Heidelberg, Germany
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology; Department of Otolaryngology; Head and Neck Surgery; University Hospital Heidelberg; Heidelberg, Germany; Research Group Molecular Mechanisms of Head and Neck Tumors; German Cancer Research Center (DKFZ); Heidelberg, Germany
| |
Collapse
|
31
|
Saba NF, Wilson M, Doho G, DaSilva J, Benjamin Isett R, Newman S, Chen ZG, Magliocca K, Rossi MR. Mutation and Transcriptional Profiling of Formalin-Fixed Paraffin Embedded Specimens as Companion Methods to Immunohistochemistry for Determining Therapeutic Targets in Oropharyngeal Squamous Cell Carcinoma (OPSCC): A Pilot of Proof of Principle. Head Neck Pathol 2014; 9:223-35. [PMID: 25236499 PMCID: PMC4424213 DOI: 10.1007/s12105-014-0566-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/17/2014] [Indexed: 11/24/2022]
Abstract
The role of molecular methods in the diagnosis of head and neck cancer is rapidly evolving and holds great potential for improving outcomes for all patients who suffer from this diverse group of malignancies . However, there is considerable debate as to the best clinical approaches, particularly for Next Generation Sequencing (NGS). The choices of NGS methods such as whole exome, whole genome, whole transcriptomes (RNA-Seq) or multiple gene resequencing panels, each have strengths and weakness based on data quality, the size of the data, the turnaround time for data analysis, and clinical actionability. There have also been a variety of gene expression signatures established from microarray studies that correlate with relapse and response to treatment, but none of these methods have been implemented as standard of care for oropharyngeal squamous cell carcinoma (OPSCC). Because many genomic methodologies are still far from the capabilities of most clinical laboratories, we chose to explore the use of a combination of off the shelf targeted mutation analysis and gene expression analysis methods to complement standard anatomical pathology methods. Specifically, we have used the Ion Torrent AmpliSeq cancer panel in combination with the NanoString nCounter Human Cancer Reference Kit on 8 formalin-fixed paraffin embedded (FFPE) OPSCC tumor specimens, (4) HPV-positive and (4) HPV-negative. Differential expression analysis between HPV-positive and negative groups showed that expression of several genes was highly likely to correlate with HPV status. For example, WNT1, PDGFA and OGG1 were all over-expressed in the positive group. Our results show the utility of these methods with routine FFPE clinical specimens to identify potential therapeutic targets which could be readily applied in a clinical trial setting for clinical laboratories lacking the instrumentation or bioinformatics infrastructure to support comprehensive genomics workflows. To the best of our knowledge, these preliminary experiments are among the earliest to combine both mutational and gene expression profiles using Ion Torrent and NanoString technologies. This reports serves as a proof of principle methodology in OPSCC.
Collapse
Affiliation(s)
- Nabil F. Saba
- />Department of Otolaryngology and Head and Neck Oncology Program, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA USA , />Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA USA
| | - Malania Wilson
- />Emory Integrated Genomics Core, Emory University School of Medicine, Atlanta, GA USA
| | - Gregory Doho
- />Emory Integrated Genomics Core, Emory University School of Medicine, Atlanta, GA USA
| | - Juliana DaSilva
- />Emory Integrated Genomics Core, Emory University School of Medicine, Atlanta, GA USA
| | - R. Benjamin Isett
- />Emory Integrated Genomics Core, Emory University School of Medicine, Atlanta, GA USA
| | - Scott Newman
- />Biostatistics and Bioinformatics, Emory University School of Medicine, Atlanta, GA USA
| | - Zhuo Georgia Chen
- />Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA USA
| | - Kelly Magliocca
- />Department of Otolaryngology and Head and Neck Oncology Program, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA USA , />Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA USA
| | - Michael R. Rossi
- />Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA USA , />Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA USA
| |
Collapse
|
32
|
Bioinformatics in otolaryngology research. Part one: concepts in DNA sequencing and gene expression analysis. The Journal of Laryngology & Otology 2014; 128:848-58. [PMID: 25225743 DOI: 10.1017/s002221511400200x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Advances in high-throughput molecular biology, genomics and epigenetics, coupled with exponential increases in computing power and data storage, have led to a new era in biological research and information. Bioinformatics, the discipline devoted to storing, analysing and interpreting large volumes of biological data, has become a crucial component of modern biomedical research. Research in otolaryngology has evolved along with these advances. OBJECTIVES This review highlights several modern high-throughput research methods, and focuses on the bioinformatics principles necessary to carry out such studies. Several examples from recent literature pertinent to otolaryngology are provided. The review is divided into two parts; this first part discusses the bioinformatics approaches applied in nucleotide sequencing and gene expression analysis. CONCLUSION This paper demonstrates how high-throughput nucleotide sequencing and transcriptomics are changing biology and medicine, and describes how these changes are affecting otorhinolaryngology. Sound bioinformatics approaches are required to obtain useful information from the vast new sources of data.
Collapse
|
33
|
Adams AK, Wise-Draper TM, Wells SI. Human papillomavirus induced transformation in cervical and head and neck cancers. Cancers (Basel) 2014; 6:1793-820. [PMID: 25226287 PMCID: PMC4190568 DOI: 10.3390/cancers6031793] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/13/2014] [Accepted: 08/25/2014] [Indexed: 12/18/2022] Open
Abstract
Human papillomavirus (HPV) is one of the most widely publicized and researched pathogenic DNA viruses. For decades, HPV research has focused on transforming viral activities in cervical cancer. During the past 15 years, however, HPV has also emerged as a major etiological agent in cancers of the head and neck, in particular squamous cell carcinoma. Even with significant strides achieved towards the screening and treatment of cervical cancer, and preventive vaccines, cervical cancer remains the leading cause of cancer-associated deaths for women in developing countries. Furthermore, routine screens are not available for those at risk of head and neck cancer. The current expectation is that HPV vaccination will prevent not only cervical, but also head and neck cancers. In order to determine if previous cervical cancer models for HPV infection and transformation are directly applicable to head and neck cancer, clinical and molecular disease aspects must be carefully compared. In this review, we briefly discuss the cervical and head and neck cancer literature to highlight clinical and genomic commonalities. Differences in prognosis, staging and treatment, as well as comparisons of mutational profiles, viral integration patterns, and alterations in gene expression will be addressed.
Collapse
Affiliation(s)
- Allie K Adams
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Trisha M Wise-Draper
- Division of Hematology/Oncology, University of Cincinnati Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
| | - Susanne I Wells
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
34
|
Marques AEM, Barra GB, de Resende Oyama CN, Guerra ENS. Low rate of oropharyngeal human papillomavirus infection of women with cervical lesions and their partners: new data from Brazilian population. J Oral Pathol Med 2014; 44:453-8. [PMID: 25212900 DOI: 10.1111/jop.12252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Although the natural history of cervical and oral infection by human papillomavirus (HPV) has been intensely investigated, the ability of this virus to infect oral and genital mucosae in the same individual and its potential of communicability are still unclear. OBJECTIVES This study aimed at assessing the presence of oropharyngeal HPV infection in women with cervical lesions and in their current sexual partners in a Brazilian population. METHODS It included a total of 65 patients, 43 women and 22 male partners. Medical history and the sociobehavioral profile were assessed through interviews that included the association of oropharyngeal HPV and the sexual behavior of patients, and also extra and intra-oral examinations were performed. Brushing was used to collect cells from the oropharyngeal mucosa. HPV DNA was checked through nested PCR with primers PGMY09/11 and GP5+/6+, and Pappilocheck to genotyping. RESULTS Oropharyngeal HPV infection was detected in four of 65 (6.15%) cases, with one of 43 (2.3%) women, and three of 22 (13.6%) male partners. Clinically no patient showed HPV-related oral lesions. Pappilocheck assay showed the absence of HPV genotype commonly found in cervical mucosa. Moreover, there was no correlation between the presence of oropharyngeal HPV and sexual behavior risk factors. CONCLUSIONS The results suggest that the presence of cervical lesions does not lead to HPV oropharyngeal infection. It also highlights the low rate of HPV infection in the oropharyngeal mucosa of women with cervical lesions and their partners in a researched sample.
Collapse
Affiliation(s)
| | - Gustavo Barcelos Barra
- Sabin Laboratory and Institute, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Ceres Nunes de Resende Oyama
- Gynecology and Obstetrics Center, University Hospital of Brasilia, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Eliete Neves Silva Guerra
- Oral Histopathology Laboratory, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
35
|
Mirghani H, Ugolin N, Ory C, Lefèvre M, Baulande S, Hofman P, St Guily JL, Chevillard S, Lacave R. A predictive transcriptomic signature of oropharyngeal cancer according to HPV16 status exclusively. Oral Oncol 2014; 50:1025-34. [PMID: 25156715 DOI: 10.1016/j.oraloncology.2014.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/22/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Human-papillomaviruses (HPV) type 16 is a causative agent in an increasing subset of oropharyngeal squamous cell carcinomas (OPSCCs). These tumors have distinct oncogenic mechanisms and a more favorable prognosis than tobacco-induced OPSCCs. Although these differences emphasize the need for a specific therapeutic approach, HPV status is still not used to guide treatment. A better characterization of the molecular profile related to HPV16-induced OPSCC might help to develop personalized treatments. PATIENTS AND METHODS Using a human whole-genome DNA-microarray, we have examined the gene expression profiles in 15 HPV-negative and 15 transcriptionally-active HPV-positive OPSCCs. The study was conducted in two steps. Firstly, a learning/training-set consisting of 8 HPV16-positive and 8 HPV16-negative OPSCCs was analyzed to identify a specific signature. Potentially confounding factors (stage, sex and tobacco) were equally distributed in both groups. Subsequently the robustness of this signature was confirmed by blind case-by-case classification of a validation-set composed of the 14 remaining tumors. RESULTS We have identified a signature composed of 224 genes, which discriminates HPV16-induced OPSCC from their HPV-negative counterparts. After the blind classification of the 14 tumours, the viral status was revealed: 13 out of 14 tumors were correctly classified according to tumor etiology, 1/14 was not determined and none were misclassified. Several of the differentially expressed genes were involved in cell-cycle regulation, DNA replication and repair, transcription regulation, immune response and apoptosis. CONCLUSION Our study contributes to a better understanding of pathogenic mechanisms involved in the development of HPV-positive OPSCCs and in the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Haitham Mirghani
- ER2 unit and GRC10, Université Pierre et Marie Curie, Paris, France; Department of Head and Neck Surgery, Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | - Nicolas Ugolin
- CEA, DSV, iRCM, Laboratory of Experimental Cancerology, BP64, 92265 Fontenay-aux-Roses Cedex, France
| | - Catherine Ory
- CEA, DSV, iRCM, Laboratory of Experimental Cancerology, BP64, 92265 Fontenay-aux-Roses Cedex, France
| | - Marine Lefèvre
- Department of Pathology, GHUEP, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, France
| | | | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology and Biobank of CHUN, Pasteur Hospital, Nice F-06001, France
| | - Jean Lacau St Guily
- ER2 unit and GRC10, Université Pierre et Marie Curie, Paris, France; Department of Otolaryngology-Head and Neck Surgery, GHUEP, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, France
| | - Sylvie Chevillard
- CEA, DSV, iRCM, Laboratory of Experimental Cancerology, BP64, 92265 Fontenay-aux-Roses Cedex, France
| | - Roger Lacave
- ER2 unit and GRC10, Université Pierre et Marie Curie, Paris, France; Tumours Genomic Unit, GHUEP, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, France
| |
Collapse
|
36
|
Psyrri A, Rampias T, Vermorken JB. The current and future impact of human papillomavirus on treatment of squamous cell carcinoma of the head and neck. Ann Oncol 2014; 25:2101-2115. [PMID: 25057165 DOI: 10.1093/annonc/mdu265] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma of the head and neck (SCCHN) was traditionally associated with smoking and alcohol use; however, human papillomavirus (HPV) infection has recently been implicated as a novel risk factor for oropharyngeal tumors. Furthermore, HPV-associated oropharyngeal carcinoma (OPC) appears to be a distinct entity with different epidemiology, biology, and clinical outcomes. METHODS Here, we comprehensively review the existing data regarding HPV status and prognostic or predictive outcomes in both the locoregionally advanced (LA) and recurrent/metastatic (RM) disease setting and discuss ongoing trials that may eventually impact the treatment of patients with HPV-positive (HPV+) SCCHN. RESULTS A body of retrospective and prospective data established an association between HPV+ OPC and better survival, particularly for LA disease. Current data on RM disease are limited, but they also suggest prognostic significance for HPV. CONCLUSIONS Better outcomes in HPV+ LA disease may allow for less aggressive treatment in the future, and several trials are evaluating deintensified regimens in patients with HPV+, LA OPC; it should be emphasized that deintensification strategies are appropriate only in a clinical research setting and only for selected subgroups of HPV+ patients. In addition, HPV-targeted strategies, such as vaccines, are currently undergoing clinical evaluation. On the other hand, the prognostic impact of HPV in RM disease requires further validation before any modifications in treatment can be made. Likewise, the predictive significance of HPV status in both disease settings remains to be defined. CLINICAL TRIAL NUMBERS NCT00226239, NCT00301028, NCT00387127, NCT00410826, NCT00503997, NCT00514943, NCT00544414, NCT00768664, NCT00939627, NCT01084083, NCT01302834, NCT01687413, NCT01706939.
Collapse
Affiliation(s)
- A Psyrri
- Department of Medicine, Section of Medical Oncology, Attikon University Hospital, Athens, Greece.
| | - T Rampias
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, USA
| | - J B Vermorken
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
37
|
Woods RSR, O’Regan EM, Kennedy S, Martin C, O’Leary JJ, Timon C. Role of human papillomavirus in oropharyngeal squamous cell carcinoma: A review. World J Clin Cases 2014; 2:172-193. [PMID: 24945004 PMCID: PMC4061306 DOI: 10.12998/wjcc.v2.i6.172] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/21/2014] [Accepted: 05/19/2014] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) has been implicated in the pathogenesis of a subset of oropharyngeal squamous cell carcinoma. As a result, traditional paradigms in relation to the management of head and neck squamous cell carcinoma have been changing. Research into HPV-related oropharyngeal squamous cell carcinoma is rapidly expanding, however many molecular pathological and clinical aspects of the role of HPV remain uncertain and are the subject of ongoing investigation. A detailed search of the literature pertaining to HPV-related oropharyngeal squamous cell carcinoma was performed and information on the topic was gathered. In this article, we present an extensive review of the current literature on the role of HPV in oropharyngeal squamous cell carcinoma, particularly in relation to epidemiology, risk factors, carcinogenesis, biomarkers and clinical implications. HPV has been established as a causative agent in oropharyngeal squamous cell carcinoma and biologically active HPV can act as a prognosticator with better overall survival than HPV-negative tumours. A distinct group of younger patients with limited tobacco and alcohol exposure have emerged as characteristic of this HPV-related subset of squamous cell carcinoma of the head and neck. However, the exact molecular mechanisms of carcinogenesis are not completely understood and further studies are needed to assist development of optimal prevention and treatment modalities.
Collapse
|
38
|
Molecular mechanisms of HPV induced carcinogenesis in head and neck. Oral Oncol 2014; 50:356-63. [DOI: 10.1016/j.oraloncology.2013.07.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/30/2013] [Accepted: 07/22/2013] [Indexed: 02/03/2023]
|
39
|
Sewell A, Brown B, Biktasova A, Mills GB, Lu Y, Tyson DR, Issaeva N, Yarbrough WG. Reverse-phase protein array profiling of oropharyngeal cancer and significance of PIK3CA mutations in HPV-associated head and neck cancer. Clin Cancer Res 2014; 20:2300-11. [PMID: 24599934 DOI: 10.1158/1078-0432.ccr-13-2585] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human papilloma virus (HPV)-associated (HPV+) oropharyngeal squamous cell carcinomas (OPSCC) have different molecular and biologic characteristics and clinical behavior compared with HPV-negative (HPV-) OPSCC. PIK3CA mutations are more common in HPV(+) OPSCC. To define molecular differences and tumor subsets, protein expression and phosphorylation were compared between HPV(+) and HPV(-) OPSCC and between tumors with and without PIK3CA mutations. EXPERIMENTAL DESIGN Expression of 137 total and phosphorylated proteins was evaluated by reverse-phase protein array in 29 HPV(+) and 13 HPV(-) prospectively collected OPSCCs. Forty-seven OPSCCs were tested for hotspot-activating mutations in PIK3CA and AKT. Activation of PIK3CA downstream targets and sensitivity to pathway inhibitors were determined in HPV(+) head and neck cancer cells overexpressing wild-type or mutant PIK3CA. RESULTS Analyses revealed 41 differentially expressed proteins between HPV(+) and HPV(-) OPSCC categorized into functional groups: DNA repair, cell cycle, apoptosis, phosphoinositide 3-kinase (PI3K)/AKT/mTOR, and receptor kinase pathways. All queried DNA repair proteins were significantly upregulated in HPV(+) samples. A total of 8 of 33 HPV(+) and 0 of 14 HPV(-) tumors contained activating PIK3CA mutations. Despite all activating PIK3CA mutations occurring in HPV(+) samples, HPV(+) tumors had lower mean levels of activated AKT and downstream AKT target phosphorylation. Ectopic expression of mutant PIK3CA in HPV(+) cells increased mTOR, but not AKT activity. HPV E6/E7 overexpression inhibited AKT phosphorylation in HPV-negative cells. Mutant PIK3CA overexpressing cells were more sensitive to a dual PI3K/mTOR inhibitor compared with an AKT inhibitor. CONCLUSIONS Protein expression analyses suggest that HPV(+) and HPV(-) OPSCC differentially activate DNA repair, cell cycle, apoptosis, PI3K/AKT/mTOR, and receptor kinase pathways. PIK3CA mutations are more common in HPV(+) OPSCC and are associated with activation of mTOR, but not AKT. These data suggest that inhibitors for mTOR may have activity against HPV(+) PIK3CA mutant oropharyngeal cancers.
Collapse
Affiliation(s)
- Andrew Sewell
- Authors' Affiliations: Departments of Surgery Division of Otolaryngology and Pathology; Yale Cancer Center, Yale University, New Haven, Connecticut; Departments of Otolaryngology and Cancer Biology, Vanderbilt University, Nashville, Tennessee; and Systems Biology Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Improved clearance during treatment of HPV-positive head and neck cancer through mTOR inhibition. Neoplasia 2014; 15:620-30. [PMID: 23730210 DOI: 10.1593/neo.13432] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 11/18/2022]
Abstract
Human papillomavirus (HPV)-related head and neck squamous cell carcinoma (HNSCC) incidence is increasing at a near epidemic rate. We investigated whether the mammalian (or mechanistic) target of rapamycin (mTOR) inhibitor, rapamycin, can be used as a concurrent agent to standard-of-care cisplatin/radiation therapy (CRT) to attenuate tumor lactate production, thus enhancing CRT-induced immune-mediated clearance of this antigenic tumor type. A C57Bl/6-derived mouse oropharyngeal epithelial cell line retrovirally transduced with HPV type 16 E6/E7 and human squamous cell carcinoma cell lines were evaluated for their response to rapamycin in vitro with proliferation assays, Western blots, and lactate assays. Clonogenic assays and a preclinical mouse model were used to assess rapamycin as a concurrent agent to CRT. The potential of rapamycin to enhance immune response through lactate attenuation was assessed using quantitative tumor lactate bioluminescence and assessment of cell-mediated immunity using E6/E7-vaccinated mouse splenocytes. Rapamycin alone inhibited mTOR signaling of all cancer cell lines tested in vitro and in vivo. Furthermore, rapamycin administered alone significantly prolonged survival in vivo but did not result in any long-term cures. Given concurrently, CRT/rapamycin significantly enhanced direct cell killing in clonogenic assays and prolonged survival in immunocompromised mice. However, in immunocompetent mice, concurrent CRT/rapamycin increased long-term cures by 21%. Preliminary findings suggest that improved survival involves increased cell killing and enhanced immune-mediated clearance in part due to decreased lactate production. The results may provide rationale for the clinical evaluation of mTOR inhibitors concurrent with standard-of-care CRT for treatment of HPV-positive HNSCC.
Collapse
|
41
|
van Kempen PMW, Noorlag R, Braunius WW, Stegeman I, Willems SM, Grolman W. Differences in methylation profiles between HPV-positive and HPV-negative oropharynx squamous cell carcinoma: a systematic review. Epigenetics 2013; 9:194-203. [PMID: 24169583 DOI: 10.4161/epi.26881] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oropharyngeal squamous cell carcinoma (OPSCC) is associated with human papillomavirus (HPV). HPV-positive OPSCC is considered a distinct molecular entity with a better prognosis than HPV-negative cases of OPSCC. However, the exact pathogenic mechanisms underlying the differences in clinical and molecular behavior between HPV-positive and HPV-negative OPSCC remain poorly understood. Epigenetic events play an important role in the development of cancer. Hypermethylation of DNA in promoter regions and global hypomethylation are 2 epigenetic changes that have been frequently observed in human cancers. It is suggested that heterogeneous epigenetic changes play a role in the clinical and biological differences between HPV-positive and HPV-negative tumors. Unraveling the differences in methylation profiles of HPV-associated OPSCC may provide for promising clinical applications and may pave the road for personalized cancer treatment. This systematic review aims to assess the current state of knowledge regarding differences in promoter hypermethylation and global methylation between HPV-positive and HPV-negative OPSCC.
Collapse
Affiliation(s)
- Pauline M W van Kempen
- Department of Otorhinolaryngology-Head and Neck Surgery; University Medical Center Utrecht; Utrecht; the Netherlands
| | - Rob Noorlag
- Department of Oral and Maxillofacial Surgery; University Medical Center Utrecht; Utrecht, the Netherlands
| | - Weibel W Braunius
- Department of Otorhinolaryngology-Head and Neck Surgery; University Medical Center Utrecht; Utrecht; the Netherlands
| | - Inge Stegeman
- Department of Otorhinolaryngology-Head and Neck Surgery; University Medical Center Utrecht; Utrecht; the Netherlands; Brain Center Rudolf Magnus; University Medical Center Utrecht; the Netherlands
| | - Stefan M Willems
- Department of Pathology; University Medical Center Utrecht; Utrecht, the Netherlands; Department of Molecular Carcinogenesis; Netherlands Cancer Institute; Amsterdam, the Netherlands
| | - Wilko Grolman
- Department of Otorhinolaryngology-Head and Neck Surgery; University Medical Center Utrecht; Utrecht; the Netherlands; Brain Center Rudolf Magnus; University Medical Center Utrecht; the Netherlands
| |
Collapse
|
42
|
Mirghani H, Amen F, Moreau F, Guigay J, Ferchiou M, Melkane AE, Hartl DM, Lacau St Guily J. Human papilloma virus testing in oropharyngeal squamous cell carcinoma: what the clinician should know. Oral Oncol 2013; 50:1-9. [PMID: 24169585 DOI: 10.1016/j.oraloncology.2013.10.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
High risk Human Papilloma virus (HR-HPV) associated oropharyngeal cancers are on the increase. Although, the scientific community is aware of the importance of Human Papilloma Virus (HPV) testing, there is no consensus on the assays that are required to reliably identify HR-HPV related tumors. A wide range of methods have been developed. The most widely used techniques include viral DNA detection, with polymerase chain reaction (PCR) or In Situ Hybridization, and p16 detected by immunohistochemistry. However, these tests provide different information and have their own specific limitations. In this review, we summarize these different techniques, in light of the recent literature. p16 Overexpression, which is an indirect marker of HPV infection, is considered by many head and neck oncologists to be the most important marker for patient stratification. We describe the frequent lack of concordance of this marker with other assays and the possible reasons for this. The latest developments in HPV testing are also reported, such as the RNAscope™ HPV test, and how they fit into the existing framework of techniques. HPV testing must not be considered in isolation, as there are important interactions with other parameters, such as tobacco exposure. This is an important and rapidly evolving field and is likely to become pivotal to staging and choice of treatment of oropharyngeal carcinoma in the future.
Collapse
Affiliation(s)
- Haïtham Mirghani
- Department of Head and Neck Surgery, Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | - Furrat Amen
- Department of Head and Neck Surgery, Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | - Frederique Moreau
- Department of Virology, Faculty of Medicine, University Pierre et Marie Curie Paris VI and Hospital Tenon Assistance Publique Hôpitaux de Paris, France.
| | - Joel Guigay
- Department of Medical Oncology, Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | - Malek Ferchiou
- Department of Pathology, Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | - Antoine E Melkane
- Department of Head and Neck Surgery, Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | - Dana M Hartl
- Department of Head and Neck Surgery, Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | - Jean Lacau St Guily
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, University Pierre et Marie Curie Paris VI and Hospital Tenon Assistance Publique Hôpitaux de Paris, France.
| |
Collapse
|
43
|
Gillison ML, Alemany L, Snijders PJF, Chaturvedi A, Steinberg BM, Schwartz S, Castellsagué X. Human papillomavirus and diseases of the upper airway: head and neck cancer and respiratory papillomatosis. Vaccine 2013. [PMID: 23199965 DOI: 10.1016/j.vaccine.2012.05.070] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human papillomavirus (HPV) infection is causally associated with benign and malignant diseases of the upper airway, including respiratory papillomatosis and oropharyngeal cancer. Low-risk HPV types 6 and 11 are the predominant cause of papillomatosis, whereas only HPV16 definitively satisfies both molecular and epidemiological causal criteria as a carcinogenic or high-risk type in the upper airway. HPV16 E6/E7 mRNA expression and integration are observed predominantly among oropharyngeal cancers, and experimental models have shown E6/E7 expression to be necessary for the initiation and maintenance of the malignant phenotype of these cancers. From an epidemiological perspective, a strong and consistent association between markers of HPV16 exposure and oropharyngeal cancer has been demonstrated in numerous case-control studies. HPV-positive oropharyngeal cancers have also been shown to be distinct from HPV-negative head and neck squamous cell cancers with regard to risk-factor profiles, molecular genetic alterations, population-level incidence trends over time, and prognosis. Tumor HPV status (as determined by certain HPV16 in situ hybridization assays or certain p16 immunohistochemistry assays) is the strongest determinant of survival for patients with local-regionally advanced oropharyngeal cancer: patients with HPV-positive cancer have at least a 50% improvement in overall survival at 5 years, which is equivalent to an approximate 30% difference in absolute survival. Thus, HPV status determination is now part of the routine diagnostic evaluation for prognostication. Preliminary evidence indicates that a small proportion of head and neck cancers may be caused by additional HPV types (e.g., 18, 31, 33, 35) and that HPV-caused cancers may rarely arise from non-oropharyngeal sites (e.g., the oral cavity, nasopharynx, and larynx). Whether or not HPV vaccination has the potential to prevent oral HPV infections that lead to cancer or papillomatosis in the upper airway is currently unknown, as is the potential for secondary prevention with HPV detection. This article forms part of a special supplement entitled "Comprehensive Control of HPV Infections and Related Diseases" Vaccine Volume 30, Supplement 5, 2012.
Collapse
Affiliation(s)
- Maura L Gillison
- Viral Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
HPV Prevalence and Prognostic Value in a Prospective Cohort of 255 Patients with Locally Advanced HNSCC: A Single-Centre Experience. Int J Otolaryngol 2013; 2013:437815. [PMID: 23710185 PMCID: PMC3655559 DOI: 10.1155/2013/437815] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 01/24/2023] Open
Abstract
Background. HPV is a positive prognostic factor in HNSCC. We studied the prevalence and prognostic impact of HPV on survival parameters and treatment toxicity in patients with locally advanced HNSCC treated with concomitant chemoradiation therapy. Methods. Data on efficacy and toxicity were available for 560 patients. HPV was detected by PCR. Analysis was performed using Kaplan-Meier survival curves, Fisher's test for categorical data, and log-rank statistics for failure times. Results. Median follow-up was 4.7 years. DNA extraction was successful in 255 cases. HPV prevalence was 68.6%, and 53.3% for HPV 16. For HPV+ and HPV−, median LRC was 8.9 and 2.2 years (P = 0.0002), median DFS was 8.9 and 2.1 years (P = 0.0014), and median OS was 8.9 and 3.1 years (P = 0.0002). Survival was different based on HPV genotype, stage, treatment period, and chemotherapy regimen. COX adjusted analysis for T, N, age, and treatment remained significant (P = 0.004). Conclusions. Oropharyngeal cancer is increasingly linked to HPV. This study confirms that HPV status is associated with improved prognosis among H&N cancer patients receiving CRT and should be a stratification factor for clinical trials including H&N cases. Toxicity of CRT is not modified for the HPV population.
Collapse
|
45
|
Abstract
An increasing subset of patients with head and neck squamous cell carcinoma (HNSCCA) is positive for high-risk human papillomavirus (HR-HPV). Patients tend to be younger, have a minimal or absent tobacco and ethanol abuse history, increased number of lifetime sexual partners (particularly oral-genital sex), and squamous cell carcinomas (SCCAs) arising in the oropharynx. The most common HR-HPV associated with HNSCCA is HPV-16. HR-HPV positivity is associated with decreased expression of the p53 and Rb genes, overexpression of p16, decreased expression of EGFR, and a different genetic expression pattern compared with patients with HR-HPV-negative SCCAs, leading to the conclusion that this is a distinct clinical entity. Patients who have HR-HPV-positive HNSCCAs have an improved prognosis, particularly those with oropharyngeal SCCAs, leading some to speculate that the intensity of treatment might be decreased. At present, whether this can be done safely remains unclear.
Collapse
|
46
|
Spiotto MT, Pytynia M, Liu GFF, Ranck MC, Widau R. Animal models to study the mutational landscape for oral cavity and oropharyngeal cancers. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2013; 4:e1. [PMID: 24422024 PMCID: PMC3886108 DOI: 10.5037/jomr.2013.4101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/23/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Cancer is likely caused by alterations in gene structure or expression. Recently, next generation sequencing has documented mutations in 106 head and neck squamous cell cancer genomes, suggesting several new candidate genes. However, it remains difficult to determine which mutations directly contributed to cancer. Here, summarize the animal models which have already validated and may test cancer causing mutations identified by next generation sequencing approaches. MATERIAL AND METHODS We reviewed the existing literature on genetically engineered mouse models and next generation sequencing (NGS), as it relates to animal models of squamous cell cancers of the head and neck (HNSCC) in PubMed. RESULTS NSG has identified an average of 19 to 130 distinct mutations per HNSCC specimen. While many mutations likely had biological significance, it remains unclear which mutations were essential to, or "drive," carcinogenesis. In contrast, "passenger" mutations also exist that provide no selection advantage. The genes identified by NGS included p53, RAS, Human Papillomavirus oncogenes, as well as novel genes such as NOTCH1, DICER and SYNE1,2. Animal models of HNSCC have already validated some of these common gene mutations identified by NGS. CONCLUSIONS The advent of next generation sequencing will provide new leads to the genetic changes occurring in squamous cell cancers of the head and neck. Animal models will enable us to validate these new leads in order to better elucidate the biology of squamous cell cancers of the head and neck.
Collapse
Affiliation(s)
- Michael T Spiotto
- Department of Radiation and Cellular Oncology, The University of Chicago Chicago, Illinois USA
| | - Matthew Pytynia
- Department of Radiation and Cellular Oncology, The University of Chicago Chicago, Illinois USA
| | - Gene-Fu F Liu
- Department of Radiation and Cellular Oncology, The University of Chicago Chicago, Illinois USA
| | - Mark C Ranck
- Department of Radiation and Cellular Oncology, The University of Chicago Chicago, Illinois USA
| | - Ryan Widau
- Department of Radiation and Cellular Oncology, The University of Chicago Chicago, Illinois USA
| |
Collapse
|
47
|
Role of HPV-16 in Pathogenesis of Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma and Correlation of p16INK4A Expression in HPV-16 Positive Cases: An Immunohistochemical Study. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/807095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of current study is to evaluate the role of HPV-16 in the pathogenesis of oral epithelial dysplasias (OED) and oral squamous cell carcinoma (OSCC) by immunohistochemistry (IHC) and to know whether HPV-16 participates in disruption of the regulation of p16 INK4A suppressor protein in OED and OSCC by IHC. Histopathologically diagnosed 20 cases of OED and 20 cases of OSCC were selected from amongst the patients attending the OPD of Vasantdada Patil Dental College and Hospital, Sangli. Biopsy tissue section were then tested for HPV-16 by IHC. HPV-16 positive tissue sections were then again tested by p16 by IHC. Overall 22.5% of cases in our study were found to be positive for HPV 16 which includes 10% of cases of OED and 35% cases of OSCC. Amongst the HPV 16 positive cases, more than 60% of cells were positive for p16INK4A IHC in OED (50%) and OSCC (85.71%). Thus, HPV 16 participates in disruption of the regulation of p16INK4A suppressor protein and can be used as surrogate biomarker for detection of HPV infection in OED and OSCC.
Collapse
|
48
|
Identification and functional validation of HPV-mediated hypermethylation in head and neck squamous cell carcinoma. Genome Med 2013; 5:15. [PMID: 23419152 PMCID: PMC3706778 DOI: 10.1186/gm419] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/18/2013] [Accepted: 02/05/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human papillomavirus-positive (HPV+) head and neck squamous cell carcinoma (HNSCC) represents a distinct clinical and epidemiological condition compared with HPV-negative (HPV-) HNSCC. To test the possible involvement of epigenetic modulation by HPV in HNSCC, we conducted a genome-wide DNA-methylation analysis. METHODS Using laser-capture microdissection of 42 formalin-fixed paraffin wax-embedded (FFPE) HNSCCs, we generated DNA-methylation profiles of 18 HPV+ and 14 HPV- samples, using Infinium 450 k BeadArray technology. Methylation data were validated in two sets of independent HPV+/HPV- HNSCC samples (fresh-frozen samples and cell lines) using two independent methods (Infinium 450 k and whole-genome methylated DNA immunoprecipitation sequencing (MeDIP-seq)). For the functional analysis, an HPV- HNSCC cell line was transduced with lentiviral constructs containing the two HPV oncogenes (E6 and E7), and effects on methylation were assayed using the Infinium 450 k technology. RESULTS AND DISCUSSION Unsupervised clustering over the methylation variable positions (MVPs) with greatest variation showed that samples segregated in accordance with HPV status, but also that HPV+ tumors are heterogeneous. MVPs were significantly enriched at transcriptional start sites, leading to the identification of a candidate CpG island methylator phenotype in a sub-group of the HPV+ tumors. Supervised analysis identified a strong preponderance (87%) of MVPs towards hypermethylation in HPV+ HNSCC. Meta-analysis of our HNSCC and publicly available methylation data in cervical and lung cancers confirmed the observed DNA-methylation signature to be HPV-specific and tissue-independent. Grouping of MVPs into functionally more significant differentially methylated regions identified 43 hypermethylated promoter DMRs, including for three cadherins of the Polycomb group target genes. Integration with independent expression data showed strong negative correlation, especially for the cadherin gene-family members. Combinatorial ectopic expression of the two HPV oncogenes (E6 and E7) in an HPV- HNSCC cell line partially phenocopied the hypermethylation signature seen in HPV+ HNSCC tumors, and established E6 as the main viral effector gene. CONCLUSIONS Our data establish that archival FFPE tissue is very suitable for this type of methylome analysis, and suggest that HPV modulates the HNSCC epigenome through hypermethylation of Polycomb repressive complex 2 target genes such as cadherins, which are implicated in tumor progression and metastasis.
Collapse
|
49
|
Oral human papillomavirus detection in older adults who have human immunodeficiency virus infection. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 115:505-14. [PMID: 23375488 DOI: 10.1016/j.oooo.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/03/2012] [Accepted: 11/08/2012] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To evaluate reproducibility of oral rinse self-collection for human papillomavirus (HPV) detection and investigate associations between oral HPV, oral lesions, immune and sociodemographic factors, we performed a cross-sectional study of older adults with human immunodeficiency virus (HIV) infection. STUDY DESIGN We collected oral rinse samples from 52 subjects at 2 different times of day, followed by an oral examination and interview. We identified HPV with the use of polymerase chain reaction platforms optimized for detection of mucosal and cutaneous types. RESULTS Eighty-seven percent of individuals had oral HPV, of which 23% had oncogenic alpha, 40% had nononcogenic alpha, and 46% had beta or gamma HPV. Paired oral specimens were concordant in all parameters tested. Significant associations observed for oral HPV with increased HIV viral load, hepatitis C seropositivity, history of sexually transmitted diseases, and lifetime number of sexual partners. CONCLUSIONS Oral cavity may be a reservoir of subclinical HPV in older adults who have HIV infection. Understanding natural history, transmission, and potential implications of oral HPV warrants further investigations.
Collapse
|
50
|
Romick-Rosendale LE, Lui VWY, Grandis JR, Wells SI. The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res 2013; 743-744:78-88. [PMID: 23333482 DOI: 10.1016/j.mrfmmm.2013.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare inherited recessive disease caused by mutations in one of fifteen genes known to encode FA pathway components. In response to DNA damage, nuclear FA proteins associate into high molecular weight complexes through a cascade of post-translational modifications and physical interactions, followed by the repair of damaged DNA. Hematopoietic cells are particularly sensitive to the loss of these interactions, and bone marrow failure occurs almost universally in FA patients. FA as a disease is further characterized by cancer susceptibility, which highlights the importance of the FA pathway in tumor suppression, and will be the focus of this review. Acute myeloid leukemia is the most common cancer type, often subsequent to bone marrow failure. However, FA patients are also at an extreme risk of squamous cell carcinoma (SCC) of the head and neck and gynecological tract, with an even greater incidence in those individuals who have received a bone marrow transplant and recovered from hematopoietic disease. FA tumor suppression in hematopoietic versus epithelial compartments could be mechanistically similar or distinct. Definition of compartment specific FA activities is now critical to assess the effects of today's bone marrow failure treatments on tomorrow's solid tumor development. It is our hope that current therapies can then be optimized to decrease the risk of malignant transformation in both hematopoietic and epithelial cells. Here we review our current understanding of the mechanisms of action of the Fanconi anemia pathway as it contributes to stress responses, DNA repair and squamous cell carcinoma susceptibility.
Collapse
Affiliation(s)
- Lindsey E Romick-Rosendale
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Vivian W Y Lui
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Susanne I Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|