1
|
Ding WY, Kuzmuk V, Hunter S, Lay A, Hayes B, Beesley M, Rollason R, Hurcombe JA, Barrington F, Masson C, Cathery W, May C, Tuffin J, Roberts T, Mollet G, Chu CJ, McIntosh J, Coward RJ, Antignac C, Nathwani A, Welsh GI, Saleem MA. Adeno-associated virus gene therapy prevents progression of kidney disease in genetic models of nephrotic syndrome. Sci Transl Med 2023; 15:eabc8226. [PMID: 37556557 DOI: 10.1126/scitranslmed.abc8226] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Gene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte. The most common cause of childhood genetic nephrotic syndrome is mutations in the podocyte gene NPHS2, encoding podocin. We used AAV-based gene therapy to rescue this genetic defect in human and mouse models of disease. In vitro transduction studies identified the AAV-LK03 serotype as a highly efficient transducer of human podocytes. AAV-LK03-mediated transduction of podocin in mutant human podocytes resulted in functional rescue in vitro, and AAV 2/9-mediated gene transfer in both the inducible podocin knockout and knock-in mouse models resulted in successful amelioration of kidney disease. A prophylactic approach of AAV 2/9 gene transfer before induction of disease in conditional knockout mice demonstrated improvements in albuminuria, plasma creatinine, plasma urea, plasma cholesterol, histological changes, and long-term survival. A therapeutic approach of AAV 2/9 gene transfer 2 weeks after disease induction in proteinuric conditional knock-in mice demonstrated improvement in urinary albuminuria at days 42 and 56 after disease induction, with corresponding improvements in plasma albumin. Therefore, we have demonstrated successful AAV-mediated gene rescue in a monogenic renal disease and established the podocyte as a tractable target for gene therapy approaches.
Collapse
Affiliation(s)
- Wen Y Ding
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Valeryia Kuzmuk
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
- Purespring Therapeutics, Rolling Stock Yard, 188 York Way, London N7 9AS, UK
| | - Sarah Hunter
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Abigail Lay
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Bryony Hayes
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Matthew Beesley
- Department of Histopathology, Cheltenham General Hospital, Cheltenham GL53 7AN, UK
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Jennifer A Hurcombe
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Fern Barrington
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Catrin Masson
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - William Cathery
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Jack Tuffin
- Purespring Therapeutics, Rolling Stock Yard, 188 York Way, London N7 9AS, UK
| | - Timothy Roberts
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Geraldine Mollet
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris 75015, France
| | - Colin J Chu
- Academic Unit of Ophthalmology, Bristol Medical School, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jenny McIntosh
- Research Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Richard J Coward
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Corinne Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris 75015, France
| | - Amit Nathwani
- Research Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| |
Collapse
|
2
|
Sallam M, Davies J. Connection of ES Cell-derived Collecting Ducts and Ureter-like Structures to Host Kidneys in Culture. Organogenesis 2021; 17:40-49. [PMID: 34569905 PMCID: PMC9208768 DOI: 10.1080/15476278.2021.1936785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Work toward renal generation generally aims either to introduce suspensions of stem cells into kidneys in the hope that they will rebuild damaged tissue, or to construct complete new kidneys from stem cells with the aim of transplanting the engineered organs. In principle, there might be a third approach; to engineer renal tissue 'modules' in vitro and to use them to replace sections of damaged host kidney. This approach would require the urine collecting system or ureter of the new tissues to connect to those of the host. In this report, we demonstrate a method that allows collecting duct trees or ureters, engineered from ES cells, to connect to the collecting duct system or ureter, respectively, of fetal kidneys in culture.
Collapse
Affiliation(s)
- May Sallam
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK.,Human Anatomy& Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Jamie Davies
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Akan E, Cetinkaya B, Kipmen-Korgun D, Ozmen A, Koksoy S, Mendilcioğlu İ, Sakinci M, Suleymanlar G, Korgun ET. Effects of amnion derived mesenchymal stem cells on fibrosis in a 5/6 nephrectomy model in rats. Biotech Histochem 2021; 96:594-607. [PMID: 33522283 DOI: 10.1080/10520295.2021.1875502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by disruption of the glomerulus, tubule and vascular structures by renal fibrosis. Mesenchymal stem cells (MSC) ameliorate CKD. We investigated the effects of human amnion derived MSC (hAMSC) on fibrosis using expression of transforming growth factor beta (TGF-β), collagen type I (COL-1) and bone morphogenetic protein (BMP-7). We also investigated levels of urinary creatinine and nitrogen in CKD. We used a 5/6 nephrectomy (5/6 Nx) induced CKD model. We used 36 rats in six groups of six animals: sham group, 5/6 Nx group, 15 days after 5/6 Nx (5/6 Nx + 15) group, 30 days after 5/6 Nx (5/6 Nx + 30) group, transfer of hAMSC 15 days after 5/6 Nx (5/6 Nx + hAMSC + 15) group and transfer of hAMSC 30 days after 5/6 Nx (5/6 Nx + hAMSC + 30) group. We isolated 106 hAMSC from the amnion and transplanted them via the rat tail vein into the 5/6 Nx + hAMSC + 15 and 5/6 Nx + hAMSC + 30 groups. We measured the expression of BMP-7, COL-1 and TGF-β using western blot and immunohistochemistry, and their gene expressions were analyzed by quantitative real time PCR. TGF-β and COL-1 protein, and gene expressions were increased in the 5/6 Nx +30 group compared to the 5/6 Nx + hAMSC + 30 group. Conversely, both protein and gene expression of BMP-7 was increased in 5/6 Nx + hAMSC + 30 group compared to the 5/6 Nx groups. Increased TGF-β together with decreased BMP-7 expression may cause fibrosis by epithelial-mesenchymal transition due to chronic renal injury. Increased COL-1 levels cause accumulation of extracellular matrix in CKD. Levels of urea, creatinine and nitrogen were increased significantly in 5/6 Nx + 15 and 5/6 Nx + 30 groups compared to the hAMSC groups. We found that hAMSC ameliorate CKD.
Collapse
Affiliation(s)
- Ezgi Akan
- Department of Medical Biochemistry, Akdeniz University Medical School, Antalya, Turkey
| | - Busra Cetinkaya
- Department of Histology and Embryology, Akdeniz University, Medical School, Antalya, Turkey.,Department of Histology and Embryology, Medical Faculty, Bulent Ecevit University, Zonguldak, Turkey
| | - Dijle Kipmen-Korgun
- Department of Medical Biochemistry, Akdeniz University Medical School, Antalya, Turkey
| | - Aslı Ozmen
- Department of Histology and Embryology, Akdeniz University, Medical School, Antalya, Turkey
| | - Sadi Koksoy
- Department of Medical Microbiology and Immunology, Akdeniz University Medical School, Antalya, Turkey
| | - İnanc Mendilcioğlu
- Department of Obstetrics and Gynecology, Akdeniz University Medical School, Antalya, Turkey
| | - Mehmet Sakinci
- Department of Obstetrics and Gynecology, Akdeniz University Medical School, Antalya, Turkey
| | - Gultekin Suleymanlar
- Division of Nephrology, Department of Internal Medicine, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Akdeniz University, Medical School, Antalya, Turkey
| |
Collapse
|
4
|
Whittaker TE, Nagelkerke A, Nele V, Kauscher U, Stevens MM. Experimental artefacts can lead to misattribution of bioactivity from soluble mesenchymal stem cell paracrine factors to extracellular vesicles. J Extracell Vesicles 2020; 9:1807674. [PMID: 32944192 PMCID: PMC7480412 DOI: 10.1080/20013078.2020.1807674] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It has been demonstrated that some commonly used Extracellular Vesicle (EV) isolation techniques can lead to substantial contamination with non-EV factors. Whilst it has been established that this impacts the identification of biomarkers, the impact on apparent EV bioactivity has not been explored. Extracellular vesicles have been implicated as critical mediators of therapeutic human mesenchymal stem cell (hMSC) paracrine signalling. Isolated hMSC-EVs have been used to treat multiple in vitro and in vivo models of tissue damage. However, the relative contributions of EVs and non-EV factors have not been directly compared. The dependence of hMSC paracrine signalling on EVs was first established by ultrafiltration of hMSC-conditioned medium to deplete EVs, which led to a loss of signalling activity. Here, we show that this method also causes depletion of non-EV factors, and that when this is prevented proangiogenic signalling activity is fully restored in vitro. Subsequently, we used size-exclusion chromatography (SEC) to separate EVs and soluble proteins to directly and quantitatively compare their relative contributions to signalling. Non-EV factors were found to be necessary and sufficient for the stimulation of angiogenesis and wound healing in vitro. EVs in isolation were found to be capable of potentiating signalling only when isolated by a low-purity method, or when used at comparatively high concentrations. These results indicate a potential for contaminating soluble factors to artefactually increase the apparent bioactivity of EV isolates and could have implications for future studies on the biological roles of EVs.
Collapse
Affiliation(s)
- Thomas E Whittaker
- Department of Materials, Imperial College London, London, UK.,Department of Bioengineering, Imperial College London, London, UK.,Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Anika Nagelkerke
- Department of Materials, Imperial College London, London, UK.,Department of Bioengineering, Imperial College London, London, UK.,Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Valeria Nele
- Department of Materials, Imperial College London, London, UK.,Department of Bioengineering, Imperial College London, London, UK.,Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Ulrike Kauscher
- Department of Materials, Imperial College London, London, UK.,Department of Bioengineering, Imperial College London, London, UK.,Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, UK.,Department of Bioengineering, Imperial College London, London, UK.,Institute of Biomedical Engineering, Imperial College London, London, UK
| |
Collapse
|
5
|
Ahmadi A, Rad NK, Ezzatizadeh V, Moghadasali R. Kidney Regeneration: Stem Cells as a New Trend. Curr Stem Cell Res Ther 2020; 15:263-283. [DOI: 10.2174/1574888x15666191218094513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022]
Abstract
Renal disease is a major worldwide public health problem that affects one in ten people.
Renal failure is caused by the irreversible loss of the structural and functional units of kidney (nephrons)
due to acute and chronic injuries. In humans, new nephrons (nephrogenesis) are generated until
the 36th week of gestation and no new nephron develops after birth. However, in rodents, nephrogenesis
persists until the immediate postnatal period. The postnatal mammalian kidney can partly repair
their nephrons. The kidney uses intrarenal and extra-renal cell sources for maintenance and repair.
Currently, it is believed that dedifferentiation of surviving tubular epithelial cells and presence of resident
stem cells have important roles in kidney repair. Many studies have shown that stem cells obtained
from extra-renal sites such as the bone marrow, adipose and skeletal muscle tissues, in addition
to umbilical cord and amniotic fluid, have potential therapeutic benefits. This review discusses the
main mechanisms of renal regeneration by stem cells after a kidney injury.
Collapse
Affiliation(s)
- Amin Ahmadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar K. Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahid Ezzatizadeh
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Sun Z, Li X, Zheng X, Cao P, Yu B, Wang W. Stromal cell-derived factor-1/CXC chemokine receptor 4 axis in injury repair and renal transplantation. J Int Med Res 2019; 47:5426-5440. [PMID: 31581874 PMCID: PMC6862890 DOI: 10.1177/0300060519876138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stem cell therapy has shown promise in treating a variety of pathologies, such as myocardial infarction, ischaemic stroke and organ transplantation. The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) axis plays a key role in stem cell mobilization. This review describes the important role of SDF-1 in tissue injury and how it works in tissue revascularization and regeneration via CXCR4. Furthermore, factors influencing the SDF-1/CXCR4 axis and its clinical potential in ischaemia reperfusion injury, such as renal transplantation, are discussed. Exploring signalling pathways of the SDF-1/CXCR4 axis will contribute to the development of stem cell therapy so that more clinical problems can be solved. Controlling directional homing of stem cells through the SDF-1/CXCR4 axis is key to improving the efficacy of stem cell therapy for tissue injury. CXCR4 antagonists may also be effective in increasing circulating levels of adult stem cells, thereby exerting beneficial effects on damaged or inflamed tissues in diseases that are currently not treated by standard approaches.
Collapse
Affiliation(s)
- Zejia Sun
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Xin Li
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Xiang Zheng
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Peng Cao
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Baozhong Yu
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Wei Wang
- Institute of Urology, Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
7
|
Wragg NM, Burke L, Wilson SL. A critical review of current progress in 3D kidney biomanufacturing: advances, challenges, and recommendations. RENAL REPLACEMENT THERAPY 2019. [DOI: 10.1186/s41100-019-0218-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
8
|
Cetinkaya B, Unek G, Kipmen-Korgun D, Koksoy S, Korgun ET. Effects of Human Placental Amnion Derived Mesenchymal Stem Cells on Proliferation and Apoptosis Mechanisms in Chronic Kidney Disease in the Rat. Int J Stem Cells 2019; 12:151-161. [PMID: 30595007 PMCID: PMC6457703 DOI: 10.15283/ijsc18067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/21/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives The feature of chronic kidney failure (CKF) is loss of kidney functions due to erosion of healthy tissue and fibrosis. Recent studies showed that Mesenchymal stem cells (MSCs) differentiated into tubular epithelial cells thus renal function and structures renewed. Furthermore, MSCs protect renal function in CKF. Therefore, we aimed to investigate whether human amnion-derived mesenchymal stem cells (hAMSCs) can repair fibrosis and determine the effects on proliferation and apoptosis mechanisms in chronic kidney failure. Methods and Results In this study, rat model of CKF was constituted by applying Aristolochic acid (AA). hAMSCs were isolated from term placenta amnion membrane and transplanted into tail vein of rats. At the end of 30 days and 60 days of recovery period, we examined expressions of PCNA, p57 and Parp-1 by western blotting. Immunoreactivity of PCNA, Ki67, IL-6 and Collagen type I were detected by immunohistochemistry. Besides, apoptosis was detected by TUNEL. Serum creatinine and urea were measured. Expressions of PCNA and Ki67 increased in hAMSC groups compared with AA group. Furthermore, expressions of PARP-1 apoptosis marker and p57 cell cycle inhibitory protein increased in AA group significantly according to control, hAMSC groups and sham groups. IL-6 proinflammatory cytokine increased in AA group significantly according to control, hAMSCs groups and sham groups. Expressions of Collagen type I protein reduced in hAMSCs groups compared to AA group. After hAMSC treatment, serum creatinine and urea levels significantly decreased compared to AA group. After injection of hAMSC to rats, Masson’s Trichrome and Sirius Red staining showed fibrosis reduction in kidney. Conclusions According to our results hAMSCs can be ameliorate renal failure.
Collapse
Affiliation(s)
- Busra Cetinkaya
- Departments of Histology and Embryology.,Department of Histology and Embryology, Medical Faculty, Bulent Ecevit University, Zonguldak, Turkey
| | | | | | - Sadi Koksoy
- Medical Microbiology and Immunology, Medical Faculty, Akdeniz University, Antalya, Turkey
| | | |
Collapse
|
9
|
Sallustio F, Gesualdo L, Pisignano D. The Heterogeneity of Renal Stem Cells and Their Interaction with Bio- and Nano-materials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:195-216. [PMID: 31016602 DOI: 10.1007/978-3-030-11096-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For a long time, the kidney has been considered incapable of regeneration. Instead, in recent years, studies have supported the existence of heterogeneity of renal stem/progenitor cells with the ability to regenerate both glomerular and tubular epithelial cells. Indeed, several studies evidence that renal progenitor cells, releasing chemokines, growth factors, microvesicles, and transcription factors through paracrine mechanisms, can induce tissue regeneration and block pathological processes of the kidney. In this chapter the potentiality of the kidney regenerative processes is considered and reviewed, and the main classes of stem/progenitor cells that might contribute to the renal tissue renewal is analyzed. Moreover, we evaluate the role of biomaterials in the regulation of cellular functions, specifically addressing renal stem/progenitor cells. Materials can be synthesized and tailored in order to recreate a finely structured microenvironment (by nanostructures, nanofibers, bioactive compounds, etc.) with which the cells can interact actively. For instance, by patterning substrates in regions that alternately promote or prevent protein adsorption, cell adhesion and spreading processes can be controlled in space. We illustrate the potentiality of nanotechnologies and engineered biomaterials in affecting and enhancing the behavior of renal stem/progenitor cells. Although there are still many challenges for the translation of novel therapeutics, advances in biomaterials and nanomedicine have the potential to drastically change the clinical and therapeutic landscape, even in combination with stem cell biology.
Collapse
Affiliation(s)
- Fabio Sallustio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy.
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy.
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, University of Bari "Aldo Moro", Bari, Italy
| | - Dario Pisignano
- Dipartimento di Fisica 'E. Fermi', University of Pisa, Pisa, Italy
- NEST CNR-Istituto Nanoscienze Piazza S. Silvestro 12, Pisa, Italy
| |
Collapse
|
10
|
Marofi F, Vahedi G, hasanzadeh A, Salarinasab S, Arzhanga P, Khademi B, Farshdousti Hagh M. Mesenchymal stem cells as the game‐changing tools in the treatment of various organs disorders: Mirage or reality? J Cell Physiol 2018; 234:1268-1288. [DOI: 10.1002/jcp.27152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Faroogh Marofi
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Ghasem Vahedi
- Faculty of Veterinary Medicine, University of Tehran Tehran Iran
| | - Ali hasanzadeh
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Sadegh Salarinasab
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Pishva Arzhanga
- Department of Biochemistry and Diet Therapy Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Bahareh Khademi
- Department of Medical Genetic Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | | |
Collapse
|
11
|
Herrera GA, Teng J, Zeng C, Xu H, Liang M, Alexander JS, Liu B, Boyer C, Turbat-Herrera EA. Phenotypic plasticity of mesenchymal stem cells is crucial for mesangial repair in a model of immunoglobulin light chain-associated mesangial damage. Ultrastruct Pathol 2018; 42:262-288. [PMID: 29668344 DOI: 10.1080/01913123.2018.1449772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mesangiopathies produced by glomerulopathic monoclonal immunoglobulin light chains (GLCs) acting on the glomerular mesangium produce two characteristic lesions: AL-amyloidosis (AL-Am) and light chain deposition disease (LCDD). In both cases, the pathology is centered in the mesangium, where initial and progressive damage occurs. In AL-Am the mesangial matrix is destroyed and replaced by amyloid fibrils and in LCDD, the mesangial matrix is increased and remodeled. The collagen IV rich matrix is replaced by tenascin. In both conditions, mesangial cells (MCs) become apoptotic as a direct effect of the GLCs. MCs were incubated in-vitro with GLCs and animal kidneys were perfused ex-vivo via the renal artery with GLCs, producing expected lesions, and then mesenchymal stem cells (MSCs) were added to both platforms. Each of the two platforms provided unique information that when put together created a comprehensive evaluation of the processes involved. A "cocktail" with growth and differentiating factors was used to study its effect on mesangial repair. MSCs displayed remarkable phenotypic plasticity during the repair process. The first role of the MSCs after migrating to the affected areas was to dispose of the amyloid fibrils (in AL-Am), the altered mesangial matrix (in LCDD) and apoptotic MCs/debris. To accomplish this task, MSCs transformed into facultative macrophages acquiring an abundance of lysosomes and endocytotic capabilities required to engage in phagocytic functions. Once the mesangial cleaning was completed, MSCs transformed into functional MCs restoring the mesangium to normal. "Cocktail" made the repair process more efficient.
Collapse
Affiliation(s)
- Guillermo A Herrera
- a Departments of Pathology and Translational Pathobiology and Cell Biology and Anatomy , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Jiamin Teng
- b Department of Pathology and Translational Pathobiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Chun Zeng
- b Department of Pathology and Translational Pathobiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Hongzhi Xu
- b Department of Pathology and Translational Pathobiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Man Liang
- b Department of Pathology and Translational Pathobiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - J Steven Alexander
- c Department of Molecular and Cellular Physiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Bing Liu
- b Department of Pathology and Translational Pathobiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Chris Boyer
- c Department of Molecular and Cellular Physiology , Louisiana State Health Sciences Center , Shreveport , LA , USA
| | - Elba A Turbat-Herrera
- d Departments of Pathology and Translational Pathobiology , Medicine, and Cell Biology and Anatomy, Louisiana State Health Sciences Center , Shreveport , LA , USA
| |
Collapse
|
12
|
López-Guisa JM, Howsmon R, Munro A, Blair KM, Fisher E, Hermes H, Zager R, Stevens AM. Chimeric maternal cells in offspring do not respond to renal injury, inflammatory or repair signals. CHIMERISM 2017; 2:42-9. [PMID: 21912718 DOI: 10.4161/chim.2.2.16446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/10/2011] [Accepted: 06/14/2011] [Indexed: 11/19/2022]
Abstract
Maternal microchimerism (MMc) can persist for years in a child, and has been implicated in the pathogenesis of chronic inflammatory autoimmune diseases. Chimeric cells may either contribute to disease by acting as immune targets or expand in response to signals of injury, inflammation or repair. We investigated the role of maternal cells in tissue injury in the absence of autoimmunity by quantifying MMc by quantitative PCR in acute and chronic models of renal injury: (1) reversible acute renal injury, inflammation and regeneration induced by rhabdomyolysis and (2) chronic injury leading to fibrosis after unilateral ureteral obstruction. We found that MMc is common in the mouse kidney. In mice congenic with their mothers neither acute nor chronic renal injury with fibrosis influenced the levels or prevalence of MMc. Maternal cells expressing MHC antigens not shared by offspring (H2(b/d)) were detected at lower levels in all groups of homozygous H2(b/b) or H2(d/d) offspring, with or without renal injury, suggesting that partial tolerance to low levels of alloantigens may regulate the homeostatic levels of maternal cells within tissues. Maternal cells homozygous for H2(b) were lost in H2(b/d) offspring only after acute renal failure, suggesting that an inflammatory stimulus led to loss of tolerance to homozygous maternal cells. The study suggests that elevated MMc previously found in association with human autoimmune diseases may not be a response to non-specific injury or inflammatory signals, but rather a primary event integral to the pathogenesis of autoimmunity.
Collapse
|
13
|
MacGregor-Ramiasa M, Hopp I, Bachhuka A, Murray P, Vasilev K. Surface nanotopography guides kidney-derived stem cell differentiation into podocytes. Acta Biomater 2017; 56:171-180. [PMID: 28232254 DOI: 10.1016/j.actbio.2017.02.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023]
Abstract
Stem cells have enormous potential for developing novel therapies for kidney disease but our current inability to direct their differentiation to specialised renal cells presents a barrier to their use in renal bioengineering and drug development programmes. Here, a plasma-based technology was used to produce a range of biocompatible substrates comprising controlled surface nanotopography and tailored outermost chemical functionalities. These novel substrata were used to investigate the response of mouse kidney-derived stem cells to changes in both substrate nanotopography and surface chemistry. The stem cells proliferated to a similar extent on all substrates, but specific combinations of nanotopography and surface chemistry promoted differentiation into either podocyte or proximal tubule-like cells. The data reveal that high density of surface nanodefects in association with amine rich chemistry primarily lead to differentiation into podocytes while surfaces with low amine content constituted better substrates for differentiation into proximal tubule cells regardless of the surface nanotopographic profile. Thus plasma coated nanorough substrate may provide useful platform for guiding the fate kidney stem cell in vitro. STATEMENT OF SIGNIFICANCE Adult kidney-derived stem cells have been identified as a promising way to regenerate damaged nephrons. Artificial growth platforms capable to guide the stem cells differentiation into useful cell lineages are needed to expand regenerative cell therapies for chronic kidney diseases. Chemically homogeneous growth substrates endowed with nanotopography gradients were generated via plasma assisted methods in order to investigate the effect of physical cues on the proliferation and differentiation of kidney-derived stem cells. For the first time it is shown that the surface density of the nano-structures had a greater impact on fate of the stem cells than their size. Careful design of the growth substrate nanotopography may help directing the differentiation into either podocytes or proximal tubule cells.
Collapse
|
14
|
Geng XD, Zheng W, Wu CM, Wang SQ, Hong Q, Cai GY, Chen XM, Wu D. Embryonic Stem Cells-loaded Gelatin Microcryogels Slow Progression of Chronic Kidney Disease. Chin Med J (Engl) 2017; 129:392-8. [PMID: 26879011 PMCID: PMC4800838 DOI: 10.4103/0366-6999.176088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Chronic kidney disease (CKD) has become a public health problem. New interventions to slow or prevent disease progression are urgently needed. In this setting, cell therapies associated with regenerative effects are attracting increasing interest. We evaluated the effect of embryonic stem cells (ESCs) on the progression of CKD. Methods: Adult male Sprague–Dawley rats were subjected to 5/6 nephrectomy. We used pedicled greater omentum flaps packing ESC-loaded gelatin microcryogels (GMs) on the 5/6 nephrectomized kidney. The viability of ESCs within the GMs was detected using in vitro two-photon fluorescence confocal imaging. Rats were sacrificed after 12 weeks. Renal injury was evaluated using serum creatinine, urea nitrogen, 24 h protein, renal pathology, and tubular injury score results. Structural damage was evaluated by periodic acid-Schiff and Masson trichrome staining. Results: In vitro, ESCs could be automatically loaded into the GMs. Uniform cell distribution, good cell attachment, and viability were achieved from day 1 to 7 in vitro. After 12 weeks, in the pedicled greater omentum flaps packing ESC-loaded GMs on 5/6 nephrectomized rats group, the plasma urea nitrogen levels were 26% lower than in the right nephrectomy group, glomerulosclerosis index was 62% lower and tubular injury index was 40% lower than in the 5/6 nephrectomized rats group without GMs. Conclusions: In a rat model of established CKD, we demonstrated that the pedicled greater omentum flaps packing ESC-loaded GMs on the 5/6 nephrectomized kidney have a long-lasting therapeutic rescue function, as shown by the decreased progression of CKD and reduced glomerular injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Di Wu
- Department of Nephrology, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing 100853, China
| |
Collapse
|
15
|
Hu X, Okabayashi T, Cameron AM, Wang Y, Hisada M, Li J, Raccusen LC, Zheng Q, Montgomery RA, Williams GM, Sun Z. Chimeric Allografts Induced by Short-Term Treatment With Stem Cell-Mobilizing Agents Result in Long-Term Kidney Transplant Survival Without Immunosuppression: A Study in Rats. Am J Transplant 2016; 16:2055-65. [PMID: 26749344 PMCID: PMC4925175 DOI: 10.1111/ajt.13706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/21/2015] [Accepted: 12/27/2015] [Indexed: 01/25/2023]
Abstract
Transplant tolerance allowing the elimination of lifelong immunosuppression has been the goal of research for 60 years. The induction of mixed chimerism has shown promise and has been extended successfully to large animals and to the clinic; however, it remains cumbersome and requires heavy early immunosuppression. In this study, we reported that four injections of AMD3100, a CXCR4 antagonist, plus eight injections of low-dose FK506 (0.05 mg/kg per day) in the first week after kidney transplantation extended survival, but death from renal failure occurred at 30-90 days. Repeating the same course of AMD3100 and FK506 at 1, 2 and 3 mo after transplant resulted in 92% allograft acceptance (n = 12) at 7 mo, normal kidney function and histology with no further treatment. Transplant acceptance was associated with the influx of host stem cells, resulting in a hybrid kidney and a modulated host immune response. Confirmation of these results could initiate a paradigm shift in posttransplant therapy.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Takehiro Okabayashi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Surgery, Kochi Health Center, Kochi University, Kochi, Japan
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yongchun Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Masayuki Hisada
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Jack Li
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lorraine C Raccusen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert A Montgomery
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Sadek EM, Salama NM, Ismail DI, Elshafei AA. Histological study on the protective effect of endogenous stem-cell mobilization in Adriamycin-induced chronic nephropathy in rats. J Microsc Ultrastruct 2015; 4:133-142. [PMID: 30023219 PMCID: PMC6014195 DOI: 10.1016/j.jmau.2015.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/28/2015] [Accepted: 12/25/2015] [Indexed: 11/25/2022] Open
Abstract
Chronic kidney disease is a global health problem with increasing morbidity and mortality. Therefore, this study was planned to test the protective effect of hematopoietic-stem-cell mobilization by granulocyte colony-stimulating factor (G-CSF) on Adriamycin (ADR)-induced chronic renal disease in rats. Thirty albino rats were equally divided into three groups: control, ADR group [rats received a single intravenous injection of ADR (5 mg/kg)], and G-CSF group [rats received ADR by the same route and the same dose as the previous group, and then G-CSF (70 μg/kg/d) 2 hours after ADR injection then daily for five consecutive days]. At the time of sacrifice (after 6 weeks), blood samples were taken to estimate the blood urea nitrogen and serum creatinine. Kidney sections were stained with hematoxylin and eosin, toluidine blue, Masson's trichrome, periodic acid–Schiff stains, and immunohistochemical staining against CD34 and caspase-3. The G-CSF group exhibited protection against renal injury manifested by reducing blood urea nitrogen and serum-creatinine levels, improving histological architecture, and increasing the proliferative capacity of renal tubules.
Collapse
Affiliation(s)
- Eman Mostafa Sadek
- Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | |
Collapse
|
17
|
Huang Z, He L, Huang D, Lei S, Gao J. Icariin protects rats against 5/6 nephrectomy-induced chronic kidney failure by increasing the number of renal stem cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:378. [PMID: 26490949 PMCID: PMC4617909 DOI: 10.1186/s12906-015-0909-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/11/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Chronic kidney disease poses a serious health problem worldwide with increasing prevalence and lack of effective treatment. This study aimed to investigate the mechanism of icariin in alleviating chronic renal failure induced by 5/6 nephrectomy in rats. METHODS The chronic renal failure model was established by a two-phased 5/6 nephrectomy procedure. The model rats were given daily doses of water or icariin for 8 weeks. The kidney morphology was checked by HE staining. The levels of blood urea nitrogen, serum creatinine, and serum uric acid were measured by colometric methods. The expression of specified genes was analyzed by quantitative real-time PCR and immunohistochemical staining. The number of renal stem/progenitor cells was analyzed by CD133 and CD24 immunohistochemical staining. RESULTS Icariin protected against CDK-caused damages to kidney histology and improved renal function, significantly reduced levels of BUN, creatinine, and uric acid. Icariin inhibited the expression level of TGF-β1 whereas upregulated HGF, BMP-7, WT-1, and Pax2 expression. Moreover, ccariin significantly increased the expression of CD24, CD133, Osr1, and Nanog in remnant kidney and the numbers of CD133(+)/CD24(+) renal stem/progenitor cells. CONCLUSIONS These data demonstrated that icariin effectively alleviated 5/6 nephrectomy induced chronic renal failure through increasing renal stem/progenitor cells.
Collapse
Affiliation(s)
- Zhongdi Huang
- Department of Hematology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 185 Pu'an Road, Shanghai, 200021, China
| | - Liqun He
- Department of nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 ZhangHeng Road, Shanghai, 201203, China
- Traditional Chinese Medicine Institute of Kidney Diseases, Shanghai University of Traditional Chinese Medicine, 528 ZhangHeng Road, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528 ZhangHeng Road, Shanghai, 201203, China
| | - Di Huang
- Department of nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 ZhangHeng Road, Shanghai, 201203, China
- Traditional Chinese Medicine Institute of Kidney Diseases, Shanghai University of Traditional Chinese Medicine, 528 ZhangHeng Road, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528 ZhangHeng Road, Shanghai, 201203, China
| | - Shi Lei
- Collage of Biology and pharmacy, China Three Gorges University, 8 Daxue Road, Yichang, Hubei, 443002, China.
| | - Jiandong Gao
- Department of nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 ZhangHeng Road, Shanghai, 201203, China.
- Traditional Chinese Medicine Institute of Kidney Diseases, Shanghai University of Traditional Chinese Medicine, 528 ZhangHeng Road, Shanghai, 201203, China.
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528 ZhangHeng Road, Shanghai, 201203, China.
| |
Collapse
|
18
|
D'souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM, Dominici M. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 2015; 13:186. [PMID: 26265166 PMCID: PMC4534031 DOI: 10.1186/s12916-015-0426-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Regenerative medicine relying on cell and gene therapies is one of the most promising approaches to repair tissues. Multipotent mesenchymal stem/stromal cells (MSC), a population of progenitors committing into mesoderm lineages, are progressively demonstrating therapeutic capabilities far beyond their differentiation capacities. The mechanisms by which MSC exert these actions include the release of biomolecules with anti-inflammatory, immunomodulating, anti-fibrogenic, and trophic functions. While we expect the spectra of these molecules with a therapeutic profile to progressively expand, several human pathological conditions have begun to benefit from these biomolecule-delivering properties. In addition, MSC have also been proposed to vehicle genes capable of further empowering these functions. This review deals with the therapeutic properties of MSC, focusing on their ability to secrete naturally produced or gene-induced factors that can be used in the treatment of kidney, lung, heart, liver, pancreas, nervous system, and skeletal diseases. We specifically focus on the different modalities by which MSC can exert these functions. We aim to provide an updated understanding of these paracrine mechanisms as a prerequisite to broadening the therapeutic potential and clinical impact of MSC.
Collapse
Affiliation(s)
- Naomi D'souza
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Filippo Rossignoli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Golinelli
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Carlotta Spano
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Olivia Candini
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Satoru Osturu
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Fabio Catani
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Paolo Paolucci
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Edwin M Horwitz
- The Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
19
|
|
20
|
Atlas of Cellular Dynamics during Zebrafish Adult Kidney Regeneration. Stem Cells Int 2015; 2015:547636. [PMID: 26089919 PMCID: PMC4451991 DOI: 10.1155/2015/547636] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022] Open
Abstract
The zebrafish is a useful animal model to study the signaling pathways that orchestrate kidney regeneration, as its renal nephrons are simple, yet they maintain the biological complexity inherent to that of higher vertebrate organisms including mammals. Recent studies have suggested that administration of the aminoglycoside antibiotic gentamicin in zebrafish mimics human acute kidney injury (AKI) through the induction of nephron damage, but the timing and details of critical phenotypic events associated with the regeneration process, particularly in existing nephrons, have not been characterized. Here, we mapped the temporal progression of cellular and molecular changes that occur during renal epithelial regeneration of the proximal tubule in the adult zebrafish using a platform of histological and expression analysis techniques. This work establishes the timing of renal cell death after gentamicin injury, identifies proliferative compartments within the kidney, and documents gene expression changes associated with the regenerative response of proliferating cells. These data provide an important descriptive atlas that documents the series of events that ensue after damage in the zebrafish kidney, thus availing a valuable resource for the scientific community that can facilitate the implementation of zebrafish research to delineate the mechanisms that control renal regeneration.
Collapse
|
21
|
Franchi F, Peterson KM, Xu R, Miller B, Psaltis PJ, Harris PC, Lerman LO, Rodriguez-Porcel M. Mesenchymal Stromal Cells Improve Renovascular Function in Polycystic Kidney Disease. Cell Transplant 2014; 24:1687-98. [PMID: 25290249 DOI: 10.3727/096368914x684619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Polycystic kidney disease (PKD) is a common cause of end-stage renal failure, for which there is no accepted treatment. Progenitor and stem cells have been shown to restore renal function in a model of renovascular disease, a disease that shares many features with PKD. The objective of this study was to examine the potential of adult stem cells to restore renal structure and function in PKD. Bone marrow-derived mesenchymal stromal cells (MSCs, 2.5 × 10(5)) were intrarenally infused in 6-week-old PCK rats. At 10 weeks of age, PCK rats had an increase in systolic blood pressure (SBP) versus controls (126.22 ± 2.74 vs. 116.45 ± 3.53 mmHg, p < 0.05) and decreased creatinine clearance (3.76 ± 0.31 vs. 6.10 ± 0.48 µl/min/g, p < 0.01), which were improved in PKD animals that received MSCs (SBP: 114.67 ± 1.34 mmHg, and creatinine clearance: 4.82 ± 0.24 µl/min/g, p = 0.001 and p = 0.003 vs. PKD, respectively). MSCs preserved vascular density and glomeruli diameter, measured using microcomputed tomography. PCK animals had increased urine osmolality (843.9 ± 54.95 vs. 605.6 ± 45.34 mOsm, p < 0.01 vs. control), which was improved after MSC infusion and not different from control (723.75 ± 56.6 mOsm, p = 0.13 vs. control). Furthermore, MSCs reduced fibrosis and preserved the expression of proangiogenic molecules, while cyst size and number were unaltered by MSCs. Delivery of exogenous MSCs improved vascular density and renal function in PCK animals, and the benefit was observed up to 4 weeks after a single infusion. Cell-based therapy constitutes a novel approach in PKD.
Collapse
Affiliation(s)
- Federico Franchi
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Morales EE, Wingert RA. Renal stem cell reprogramming: Prospects in regenerative medicine. World J Stem Cells 2014; 6:458-466. [PMID: 25258667 PMCID: PMC4172674 DOI: 10.4252/wjsc.v6.i4.458] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
Stem cell therapy is a promising future enterprise for renal replacement in patients with acute and chronic kidney disease, conditions which affect millions worldwide and currently require patients to undergo lifelong medical treatments through dialysis and/or organ transplant. Reprogramming differentiated renal cells harvested from the patient back into a pluripotent state would decrease the risk of tissue rejection and provide a virtually unlimited supply of cells for regenerative medicine treatments, making it an exciting area of current research in nephrology. Among the major hurdles that need to be overcome before stem cell therapy for the kidney can be applied in a clinical setting are ensuring the fidelity and relative safety of the reprogrammed cells, as well as achieving feasible efficiency in the reprogramming processes that are utilized. Further, improved knowledge about the genetic control of renal lineage development is vital to identifying predictable and efficient reprogramming approaches, such as the expression of key modulators or the regulation of gene activity through small molecule mimetics. Here, we discuss several recent advances in induced pluripotent stem cell technologies. We also explore strategies that have been successful in renal progenitor generation, and explore what these methods might mean for the development of cell-based regenerative therapies for kidney disease.
Collapse
|
23
|
Liu P, Feng Y, Wang Y, Zhou Y. Therapeutic action of bone marrow-derived stem cells against acute kidney injury. Life Sci 2014; 115:1-7. [PMID: 25219881 DOI: 10.1016/j.lfs.2014.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 09/02/2014] [Accepted: 08/20/2014] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) is a frequent clinical disease with a high morbidity rate and mortality rate, while the treatment options for this intractable disease are limited currently. In recent years, bone marrow-derived mesenchymal stem cells (BMSCs) have been demonstrated to hold an effect therapeutic action against AKI by scientists gradually, and the cells are capable to localize to renal compartments and contribute to kidney regeneration though differentiation or paracrine action. Especially, the advantages of BMSCs, such as low toxicity and side effect as well as autologous transplantation, endue the cell with a promising potential in clinical therapy against AKI. In this review, we mainly provide a concise overview of the application of BMSCs in the treatment of AKI, and summarize a series of published data regarding the mechanisms and optimizations of the BMSC-based therapy in renal repair after AKI. Even though some critical points about the BMSC-based therapy model still need clarification, we hope to develop more reliable pharmacological or biotechnical strategies utilizing the stem cell for the eventual treatment of humans with AKI, based on these studies and the understanding of mechanism of renal protection by BMSCs.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Yetong Feng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yi Wang
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China.
| | - Yulai Zhou
- Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun, P.R. China.
| |
Collapse
|
24
|
Progenitor/stem cells in renal regeneration and mass lesions. Int Urol Nephrol 2014; 46:2227-36. [DOI: 10.1007/s11255-014-0821-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/12/2014] [Indexed: 12/22/2022]
|
25
|
Halabian R, Roudkenar MH, Jahanian-Najafabadi A, Hosseini KM, Tehrani HA. Co-culture of bone marrow-derived mesenchymal stem cells overexpressing lipocalin 2 with HK-2 and HEK293 cells protects the kidney cells against cisplatin-induced injury. Cell Biol Int 2014; 39:152-63. [PMID: 25049146 DOI: 10.1002/cbin.10344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 06/25/2014] [Indexed: 12/16/2022]
Abstract
Conditioned medium of mesenchymal stem cells (MSCs) is now being used for its cytoprotective effects, especially when the cells are equipped with cytoprotective factors to strengthen them against unfavorable microenvironments. Overexpression of Lcn2 in MSCs mimics in vivo kidney injury. Hence, unraveling how Lcn2-engineered MSCs affect kidney cells has been investigated. Cisplatin treated HK-2 or HEK293 kidney cells were co-cultivated with Lcn2 overexpressing MSCs in upper and lower chambers of transwell plates. Proliferation, apoptosis, and expression of growth factors and cytokines were assessed in the kidney cells. Co-cultivation with the MSCs-Lcn2 not only inhibited cisplatin-induced cytotoxicity in the HK-2 and HEK293 cells, but increased proliferation rate, prevented cisplatin-induced apoptosis, and increased expression of growth factors and the amount of antioxidants in the kidney cells. Thus Lcn2-engineered MSCs can ameliorate and repair injured kidney cells in vitro, which strongly suggests there are beneficial effects of the MSCs-Lcn2 in cell therapy of kidney injury.
Collapse
Affiliation(s)
- Raheleh Halabian
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
26
|
Kang M, Han YM. Differentiation of human pluripotent stem cells into nephron progenitor cells in a serum and feeder free system. PLoS One 2014; 9:e94888. [PMID: 24728509 PMCID: PMC3984279 DOI: 10.1371/journal.pone.0094888] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022] Open
Abstract
Objectives Kidney disease is emerging as a critical medical problem worldwide. Because of limited treatment options for the damaged kidney, stem cell treatment is becoming an alternative therapeutic approach. Of many possible human stem cell sources, pluripotent stem cells are most attractive due to their self-renewal and pluripotent capacity. However, little is known about the derivation of renal lineage cells from human pluripotent stem cells (hPSCs). In this study, we developed a novel protocol for differentiation of nephron progenitor cells (NPCs) from hPSCs in a serum- and feeder-free system. Materials and Methods We designed step-wise protocols for differentiation of human pluripotent stem cells toward primitive streak, intermediate mesoderm and NPCs by recapitulating normal nephrogenesis. Expression of key marker genes was examined by RT-PCR, real time RT-PCR and immunocytochemistry. Each experiment was independently performed three times to confirm its reproducibility. Results After modification of culture period and concentration of exogenous factors, hPSCs can differentiate into NPCs that markedly express specific marker genes such as SIX2, GDNF, HOXD11, WT1 and CITED1 in addition to OSR1, PAX2, SALL1 and EYA1. Moreover, NPCs possess the potential of bidirectional differentiation into both renal tubular epithelial cells and glomerular podocytes in defined culture conditions. In particular, approximately 70% of SYN-positive cells were obtained from hPSC-derived NPCs after podocytes induction. NPCs can also form in vitro tubule-like structures in three dimensional culture systems. Conclusions Our novel protocol for hPSCs differentiation into NPCs can be useful for producing alternative sources of cell replacement therapy and disease modeling for human kidney diseases.
Collapse
Affiliation(s)
- Minyong Kang
- Graduate Schools of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Yong-Mahn Han
- Graduate Schools of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
27
|
Cirio MC, de Groh ED, de Caestecker MP, Davidson AJ, Hukriede NA. Kidney regeneration: common themes from the embryo to the adult. Pediatr Nephrol 2014; 29:553-64. [PMID: 24005792 PMCID: PMC3944192 DOI: 10.1007/s00467-013-2597-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023]
Abstract
The vertebrate kidney has an inherent ability to regenerate following acute damage. Successful regeneration of the injured kidney requires the rapid replacement of damaged tubular epithelial cells and reconstitution of normal tubular function. Identifying the cells that participate in the regeneration process as well as the molecular mechanisms involved may reveal therapeutic targets for the treatment of kidney disease. Renal regeneration is associated with the expression of genetic pathways that are necessary for kidney organogenesis, suggesting that the regenerating tubular epithelium may be "reprogrammed" to a less-differentiated, progenitor state. This review will highlight data from various vertebrate models supporting the hypothesis that nephrogenic genes are reactivated as part of the process of kidney regeneration following acute kidney injury (AKI). Emphasis will be placed on the reactivation of developmental pathways and how our understanding of the resulting regeneration process may be enhanced by lessons learned in the embryonic kidney.
Collapse
Affiliation(s)
- M. Cecilia Cirio
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eric D. de Groh
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mark P. de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
28
|
Effect of stem cells on renal recovery in rat model of partial unilateral upper ureteric obstruction. Pediatr Surg Int 2014; 30:233-8. [PMID: 24370792 DOI: 10.1007/s00383-013-3456-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Untreated obstructive uropathy produces irreversible renal damage and is an important cause of pediatric renal insufficiency. This study was designed to evaluate the effects of stem cell injection on morphological and pathological changes in the rat kidneys with partial unilateral upper ureteric obstruction (PUUUO). METHODS Wistar rats (n = 30) were operated upon to create a PUUUO by the psoas hitch method and were randomized into Group I (control, n = 15) and Group II (stem cell, n = 15); at day 5, 10 and 15, a subgroup of rats (n = 5) from each group was killed and the kidneys harvested. Pathological and morphological changes in the harvested kidneys were studied and compared between the two groups. RESULTS Morphologically, at day 15, Group II had significantly (p = 0.04) greater cortical thickness (0.48 ± 0.17 vs. 0.38 ± 0.09 mm). Histologically, at day 5, Group II had significantly (p = 0.032) lower peri-pelvic fibrosis. Group II group showed greater peri-pelvic inflammation as compared to Group I (p = 0.05). At day 10, lower grades of peri-pelvic fibrosis (p = 0.08), interstitial fibrosis (p = 0.037) and tubular atrophy (p = 0.05) were seen in the Group II. At day 15, Group II demonstrated significantly lower parenchymal loss (p = 0.037), glomerulosclerosis (p = 0.08), interstitial fibrosis (p = 0.08), tubular atrophy (p = 0.08) and peri-pelvic fibrosis (p = 0.08). CONCLUSIONS In a rat model of PUUUO, stem cell injection prevented detrimental changes in renal pathology and preserved renal parenchymal mass.
Collapse
|
29
|
Stem cells and kidney regeneration. J Formos Med Assoc 2014; 113:201-9. [PMID: 24434243 DOI: 10.1016/j.jfma.2013.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/13/2013] [Accepted: 12/09/2013] [Indexed: 12/24/2022] Open
Abstract
Kidney disease is an escalating burden all over the world. In addition to preventing kidney injury, regenerating damaged renal tissue is as important as to retard the progression of chronic kidney disease to end stage renal disease. Although the kidney is a delicate organ and has only limited regenerative capacity compared to the other organs, an increasing understanding of renal development and renal reprogramming has kindled the prospects of regenerative options for kidney disease. Here, we will review the advances in the kidney regeneration including the manipulation of renal tubular cells, fibroblasts, endothelial cells, and macrophages in renal disease. Several types of stem cells, such as bone marrow-derived cells, adipocyte-derived mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells are also applied for renal regeneration. Endogenous or lineage reprogrammed renal progenitor cells represent an attractive possibility for differentiation into multiple renal cell types. Angiogenesis can ameliorate hypoxia and renal fibrosis. Based on these studies and knowledge, we hope to innovate more reliable pharmacological or biotechnical methods for kidney regeneration medicine.
Collapse
|
30
|
Halabian R, Tehrani HA, Jahanian-Najafabadi A, Habibi Roudkenar M. Lipocalin-2-mediated upregulation of various antioxidants and growth factors protects bone marrow-derived mesenchymal stem cells against unfavorable microenvironments. Cell Stress Chaperones 2013; 18:785-800. [PMID: 23620204 PMCID: PMC3789877 DOI: 10.1007/s12192-013-0430-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 12/11/2022] Open
Abstract
Despite many advantages of mesenchymal stem cells (MSCs) that make them suitable for cell therapy purposes, their therapeutic application has been limited due to their susceptibility to several stresses (e.g., nutrient-poor environment, oxidative stress, and hypoxic and masses of cytotoxic factors) to which they are exposed during their preparation and following transplantation. Hence, reinforcing MSCs against these stresses is a challenge for both basic and clinician scientists. Recently, much attention has been directed toward equipping MSCs with cytoprotective factors to strengthen them against unfavorable microenvironments. Here, we engineered MSCs with lipocalin 2 (Lcn2), a cytoprotective factor that is naturally induced following exposure of cells to stresses imposed by the microenvironment. Lcn2 overexpression not only did not interfere with the multidifferentiation capacity of the MSCs but also granted many protective properties to them. Lcn2 potentiated MSCs to withstand oxidative, hypoxia, and serum deprivation (SD) conditions via antagonizing their induced cytotoxicity and apoptosis. Adhesion rate of MSCs to coated culture plates was also enhanced by Lcn2 overexpression. In addition, Lcn2 induced antioxidants and upregulated some growth factors in MSCs. Our findings suggested a new strategy for prevention of graft cell death in MSC-based cell therapy.
Collapse
Affiliation(s)
- Raheleh Halabian
- />Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- />Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, P.O. Box 14665-1157, Tehran, Iran
| |
Collapse
|
31
|
Omer D, Harari-Steinberg O, Buzhor E, Metsuyanim S, Pleniceanu O, Zundelevich A, Gal-Yam EN, Dekel B. Chromatin-modifying agents reactivate embryonic renal stem/progenitor genes in human adult kidney epithelial cells but abrogate dedifferentiation and stemness. Cell Reprogram 2013; 15:281-92. [PMID: 23841748 DOI: 10.1089/cell.2012.0087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent studies have suggested that epigenetic modulation with chromatin-modifying agents can induce stemness and dedifferentiation and increase developmental plasticity. For instance, valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has been shown to promote self-renewal/expansion of hematopoietic stem cells and facilitate the generation of induced pluripotent stem cells (iPSCs). Previously, we observed that downregulation of embryonic renal stem/progenitor genes in the adult kidney was associated, at least in part, with epigenetic silencing. Therefore, we hypothesized that VPA may alter the expression of these genes and reprogram mature human adult kidney epithelial cells (hKEpCs) to a stem/progenitor-like state. Here, using quantitative RT-PCR and flow cytometry [fluorescence-activated cell sorting (FACS)] analysis, we show in VPA-treated primary cultures of human adult and fetal kidney significant reinduction of the renal stem/progenitor markers SIX2, OSR1, SALL1, NCAM, and PSA-NCAM. Robust SIX2 mRNA re-expression was confirmed at the protein level by western blot and was associated with epigenetic changes of the histones at multiple sites of the SIX2 promoter leading to gene activation, significantly increased acetylation of histones H4, and methylation of lysine 4 on H3. Furthermore, we could demonstrate synergistic effects of VPA and Wnt antagonists on SIX2 and also OSR1 reinduction. Nevertheless, VPA resulted in upregulation of E-CADHERIN and reduction in VIMENTIN, preventing the skewing of hKEpCs towards a more replicative mesenchymal state required for clonogenic expansion and acquisition of stem cell characters, altogether inducing cell senescence at early passages. These results demonstrating that chromatin-modifying agents prevent dedifferentiation of hKEpCs have important clinical implications as they may limit ex-vivo self-renewal/expansion and possibly the in vivo renal regenerative capacity initiated by dedifferentiation.
Collapse
Affiliation(s)
- Dorit Omer
- The Pediatric Stem Cell Research Institute, Edmond & Lily Safra Children's Hospital, Sheba Center for Regenerative Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sun D, Bu L, Liu C, Yin Z, Zhou X, Li X, Xiao A. Therapeutic effects of human amniotic fluid-derived stem cells on renal interstitial fibrosis in a murine model of unilateral ureteral obstruction. PLoS One 2013; 8:e65042. [PMID: 23724119 PMCID: PMC3665750 DOI: 10.1371/journal.pone.0065042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 04/25/2013] [Indexed: 11/18/2022] Open
Abstract
Interstitial fibrosis is regarded as the main pathway for the progression of chronic kidney disease (CKD) and is often associated with severe renal dysfunction. Stem cell-based therapies may provide alternative approaches for the treatment of CKD. Human amniotic fluid-derived stem cells (hAFSCs) are a novel stem cell population, which exhibit both embryonic and mesenchymal stem cell characteristics. Herein, the present study investigated whether the transplantation of hAFSCs into renal tissues could improve renal interstitial fibrosis in a murine model of unilateral ureteral obstruction (UUO). We showed that hAFSCs provided a protective effect and alleviated interstitial fibrosis as reflected by an increase in microvascular density; additionally, hAFSCs treatment beneficially modulated protein levels of vascular endothelial growth factor (VEGF), hypoxia inducible factor-1α (HIF-1α) and transforming growth factor-β1 (TGF-β1). Therefore, we hypothesize that hAFSCs could represent an alternative, readily available source of stem cells that can be applied for the treatment of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, PR China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The subject of organ regeneration has attracted substantial investigative attention and has been extensively reviewed. Therefore, I shall focus on several only recently emerged issues and on those aspects of stem cell-mediated regeneration which, although are important in my opinion, have nevertheless evaded the radar of scientific pursuit. Specifically, I shall describe the recent work on the prominence of local lineage-restricted stem cells, as opposed to the bone marrow-derived or circulating ones, in regeneration. This will be followed by an attempt to re-interpret a bulk of published data on the beneficial effects of cell therapy with the focus on the secretome of stem cells. Multiple factors that conspire to cause insufficient or failed regeneration in adult mammals will be screened with emphasis placed on the mechanical forces, senescence and exhaustion, each leading to phenotypical switch and/or stem cell incompetence. Finally, I shall enumerate several potential pathways to induce or restore stem cell competence. Although a significant amount of work has been performed in the non-renal field, I would hope that some of the mechanisms and concepts discussed herein will eventually trickle into kidney regeneration.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
34
|
Verine J, Varna M, Ratajczak P, El-Bouchtaoui M, Leboeuf C, Plassa LF, Soliman H, Sandid W, Abboud I, Bousquet G, Verneuil L, Peraldi MN, Mongiat-Artus P, Janin A. Human de novo papillary renal-cell carcinomas in a kidney graft: evidence of recipient origin with adenoma-carcinoma sequence. Am J Transplant 2013; 13:984-992. [PMID: 23425311 DOI: 10.1111/ajt.12163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/17/2012] [Accepted: 12/26/2012] [Indexed: 01/25/2023]
Abstract
Papillary renal-cell carcinoma (pRCC) is unusual for its occurrence in kidneys with chronic dysfunction, for its frequent multifocality and for its common association with papillary adenoma, a benign renal lesion morphologically indistinguishable from pRCC. Concomitant development of papillary adenoma and pRCC in five transplanted kidneys, where donor and recipient characteristics are well established, provided a unique opportunity for molecular studies of de novo pRCC carcinogenesis. We aimed to study this tumor type to determine whether or not the different papillary tumors have the same origin, and whether or not papillary adenomas are precursor lesions of pRCC. We performed XY-FISH in sex-mismatched kidney transplants, and polymorphic microsatellite DNA and high-resolution melting of mitochondrial DNA analyzes in all five patients on laser-microdissected tumor cells, then compared these molecular profiles to donor and recipient profiles. This study (i) identified the recipient origin of de novo papillary adenomas and pRCCs in a kidney transplant, (ii) demonstrated an identical origin for precursor cells of papillary adenomas and pRCCs and (iii) showed additional genetic alterations in pRCCs compared to papillary adenomas. This molecular approach of papillary tumors developed in transplanted kidney identified successive steps in carcinogenesis of human de novo papillary renal-cell carcinoma.
Collapse
Affiliation(s)
- J Verine
- Inserm, U 728, Paris, F-75010, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 728, F-75010, Paris, France.,AP-HP, Hôpital Saint-Louis, Department of Pathology, Paris, F-75010, France
| | - M Varna
- Inserm, U 728, Paris, F-75010, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 728, F-75010, Paris, France
| | - P Ratajczak
- Inserm, U 728, Paris, F-75010, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 728, F-75010, Paris, France
| | - M El-Bouchtaoui
- Inserm, U 728, Paris, F-75010, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 728, F-75010, Paris, France
| | - C Leboeuf
- Inserm, U 728, Paris, F-75010, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 728, F-75010, Paris, France
| | - L-F Plassa
- AP-HP, Hôpital Saint-Louis, Department of Biochemistry, Paris, F-75010, France
| | - H Soliman
- AP-HP, Hôpital Saint-Louis, Department of Biochemistry, Paris, F-75010, France
| | - W Sandid
- Inserm, U 728, Paris, F-75010, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 728, F-75010, Paris, France.,AP-HP, Hôpital Saint-Louis, Department of Pathology, Paris, F-75010, France
| | - I Abboud
- AP-HP, Hôpital Saint-Louis, Department of Nephrology and Renal Transplantation, Paris, F-75010, France
| | | | | | - M-N Peraldi
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 728, F-75010, Paris, France.,AP-HP, Hôpital Saint-Louis, Department of Nephrology and Renal Transplantation, Paris, F-75010, France
| | - P Mongiat-Artus
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 728, F-75010, Paris, France.,AP-HP, Hôpital Saint-Louis, Department of Urology, Paris, F-75010, France
| | - A Janin
- Inserm, U 728, Paris, F-75010, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 728, F-75010, Paris, France.,AP-HP, Hôpital Saint-Louis, Department of Pathology, Paris, F-75010, France
| |
Collapse
|
35
|
Irazabal MV, Torres VE. Experimental therapies and ongoing clinical trials to slow down progression of ADPKD. Curr Hypertens Rev 2013; 9:44-59. [PMID: 23971644 PMCID: PMC4067974 DOI: 10.2174/1573402111309010008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/19/2012] [Accepted: 11/30/2012] [Indexed: 12/19/2022]
Abstract
The improvement of imaging techniques over the years has contributed to the understanding of the natural history of autosomal dominant polycystic kidney disease, and facilitated the observation of its structural progression. Advances in molecular biology and genetics have made possible a greater understanding of the genetics, molecular, and cellular pathophysiologic mechanisms responsible for its development and have laid the foundation for the development of potential new therapies. Therapies targeting genetic mechanisms in ADPKD have inherent limitations. As a result, most experimental therapies at the present time are aimed at delaying the growth of the cysts and associated interstitial inflammation and fibrosis by targeting tubular epithelial cell proliferation and fluid secretion by the cystic epithelium. Several interventions affecting many of the signaling pathways disrupted in ADPKD have been effective in animal models and some are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Maria V. Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester MN, USA
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester MN, USA
| |
Collapse
|
36
|
Basu J, Ludlow JW. Developmental engineering the kidney: leveraging principles of morphogenesis for renal regeneration. ACTA ACUST UNITED AC 2012; 96:30-8. [PMID: 22457175 DOI: 10.1002/bdrc.20224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple methodological approaches are currently under active development for application in tissue engineering and regenerative medicine of tubular and solid organs. Most recently, developmental engineering (TE/RM), or the leveraging of embryonic and morphological paradigms to recapitulate aspects of organ development, has been proposed as a strategy for the sequential, iterative de novo assembly of tissues and organs as discrete developmental modules ex vivo, prior to implantation in vivo. In this article, we focus on the kidney to highlight in detail how principles of developmental biology are impacting approaches to TE of this complex solid organ. Ultimately, such methodologies may facilitate the establishment of clinically relevant therapeutic strategies for regeneration of renal structure and function, greatly impacting treatment regimens for chronic kidney disease.
Collapse
Affiliation(s)
- Joydeep Basu
- Tengion, Inc., Winston-Salem, North Carolina 27103, USA. joydeep.
| | | |
Collapse
|
37
|
Little MH. Renal organogenesis: what can it tell us about renal repair and regeneration? Organogenesis 2012; 7:229-41. [PMID: 22198432 DOI: 10.4161/org.7.4.18057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The increasing prevalence of chronic kidney disease in the absence of new treatment modalities has become a strong driver for innovation in nephrology. An increasing understanding of stem cell biology has kindled the prospects of regenerative options for kidney disease. However, the kidney itself is not a regenerative organ, as all the nephrons are formed during embryonic development. Here, we will investigate advances in the molecular genetics of renal organogenesis, including what this can tell us about lineage relationships, and discuss how this may serve to inform us about both the normal processes of renal repair and options for regenerative therapies.
Collapse
Affiliation(s)
- Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia.
| |
Collapse
|
38
|
Abstract
The kidney is widely regarded as an organ without regenerative abilities. However, in recent years this dogma has been challenged on the basis of observations of kidney recovery following acute injury, and the identification of renal populations that demonstrate stem cell characteristics in various species. It is currently speculated that the human kidney can regenerate in some contexts, but the mechanisms of renal regeneration remain poorly understood. Numerous controversies surround the potency, behaviour and origins of the cell types that are proposed to perform kidney regeneration. The present review explores the current understanding of renal stem cells and kidney regeneration events, and examines the future challenges in using these insights to create new clinical treatments for kidney disease.
Collapse
|
39
|
Abstract
Nuclear reprogramming has reshaped stem cell science and created new avenues for cell-based therapies. The ability to bestow any given phenotype upon adult cells regardless of their origin is an exciting possibility. How can this powerful tool be harnessed for the treatment of kidney disease? Many approaches, including induced pluripotent stem cell (iPSC) production, direct lineage conversion, and reprogramming to a kidney progenitor, are now possible. Indeed, the generation of iPSC lines from adult kidney-derived cells has been successfully achieved. This, however, is just the beginning of the challenge. This review will discuss the fundamental concepts of transcription factor-based reprogramming in its various forms, highlighting recent advances in the field and how these are applicable to the kidney. The relative merits of each approach will be discussed in the context of what is a realistic and feasible strategy for kidney regeneration via reprogramming.
Collapse
Affiliation(s)
- Caroline E Hendry
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | | |
Collapse
|
40
|
Rota C, Imberti B, Pozzobon M, Piccoli M, De Coppi P, Atala A, Gagliardini E, Xinaris C, Benedetti V, Fabricio ASC, Squarcina E, Abbate M, Benigni A, Remuzzi G, Morigi M. Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev 2011; 21:1911-23. [PMID: 22066606 DOI: 10.1089/scd.2011.0333] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human amniotic fluid stem (hAFS) cells, a novel class of broadly multipotent stem cells that share characteristics of both embryonic and adult stem cells, have been regarded as promising candidate for cell therapy. Taking advantage by the well-established murine model of acute kidney injury (AKI), we studied the proregenerative effect of hAFS cells in immunodeficient mice injected with the nephrotoxic drug cisplatin. Infusion of hAFS cells in cisplatin mice improved renal function and limited tubular damage, although not to control level, and prolonged animal survival. Human AFS cells engrafted injured kidney predominantly in peritubular region without acquiring tubular epithelial markers. Human AFS cells exerted antiapoptotic effect, activated Akt, and stimulated proliferation of tubular cells possibly via local release of factors, including interleukin-6, vascular endothelial growth factor, and stromal cell-derived factor-1, which we documented in vitro to be produced by hAFS cells. The therapeutic potential of hAFS cells was enhanced by cell pretreatment with glial cell line-derived neurotrophic factor (GDNF), which markedly ameliorated renal function and tubular injury by increasing stem cell homing to the tubulointerstitial compartment. By in vitro studies, GDNF increased hAFS cell production of growth factors, motility, and expression of receptors involved in cell homing and survival. These findings indicate that hAFS cells can promote functional recovery and contribute to renal regeneration in AKI mice via local production of mitogenic and prosurvival factors. The effects of hAFS cells can be remarkably enhanced by GDNF preconditioning.
Collapse
Affiliation(s)
- Cinzia Rota
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ludlow JW, Kelley RW, Bertram TA. The future of regenerative medicine: urinary system. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:218-24. [PMID: 22070608 DOI: 10.1089/ten.teb.2011.0551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Regeneration of tissues and organs is now within the technological reach of modern medicine. With such advancements, substantial improvements to existing standards-of-care are very real possibilities. This review will focus on regenerative medicine approaches to treating specific maladies of the bladder and kidney, including the biological basis of regeneration and the history of regenerative medicine in the urinary system. Current clinical management approaches will be presented within the context of future directions including cell-based regenerative therapies.
Collapse
Affiliation(s)
- John W Ludlow
- Tengion, Inc., Winston-Salem, North Carolina 27103, USA.
| | | | | |
Collapse
|
42
|
Vanslambrouck J, Li J, Little MH. The Renal Papilla: An Enigma in Damage and Repair. J Am Soc Nephrol 2011; 22:2145-7. [DOI: 10.1681/asn.2011100984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
43
|
Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Renal tissue engineering with decellularized rhesus monkey kidneys: age-related differences. Tissue Eng Part A 2011; 17:2891-901. [PMID: 21902603 DOI: 10.1089/ten.tea.2010.0714] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
New therapies for severely damaged kidneys are needed due to limited regenerative capacity and organ donor shortages. The goal of this study was to repopulate decellularized kidney sections in vitro and to determine the impact of donor age on recellularization. This was addressed by generating decellularized kidney scaffolds from fetal, juvenile, and adult rhesus monkey kidney sections using a procedure that removes cellular components while preserving the structural and functional properties of the native extracellular matrix (ECM). Kidney scaffolds were recellularized using explants from different age groups (fetal, juvenile, adult) and fetal renal cell fractions. Results showed vimentin+ cytokeratin+ calbindin+ cell infiltration and organization around the scaffold ECM. The extent of cellular repopulation was greatest with scaffolds from the youngest donors, and with seeding of mixed fetal renal aggregates that formed tubular structures within the kidney scaffolds. These findings suggest that decellularized kidney sections from different age groups can be effectively repopulated with donor cells and the age of the donor is a critical factor in repopulation efficiency.
Collapse
Affiliation(s)
- Karina H Nakayama
- Center of Excellence in Translational Human Stem Cell Research, California National Primate Research Center, University of California, Davis, California 95616-8542, USA
| | | | | | | |
Collapse
|
44
|
Basu J, Genheimer CW, Sangha N, Quinlan SF, Guthrie KI, Kelley R, Ilagan RM, Jain D, Bertram T, Ludlow JW. Organ specific regenerative markers in peri-organ adipose: kidney. Lipids Health Dis 2011; 10:171. [PMID: 21957910 PMCID: PMC3190351 DOI: 10.1186/1476-511x-10-171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/29/2011] [Indexed: 11/15/2022] Open
Abstract
Background Therapeutically bioactive cell populations are currently understood to promote regenerative outcomes in vivo by leveraging mechanisms of action including secretion of growth factors, site specific engraftment and directed differentiation. Constitutive cellular populations undoubtedly participate in the regenerative process. Adipose tissue represents a source of therapeutically bioactive cell populations. The potential of these cells to participate in various aspects of the regenerative process has been demonstrated broadly. However, organ association of secretory and developmental markers to specific peri-organ adipose depots has not been investigated. To characterize this topographical association, we explored the potential of cells isolated from the stromal vascular fraction (SVF) of kidney sourced adipose to express key renal associated factors. Results We report that renal adipose tissue is a novel reservoir for EPO expressing cells. Kidney sourced adipose stromal cells demonstrate hypoxia regulated expression of EPO and VEGF transcripts. Using iso-electric focusing, we demonstrate that kidney and non-kidney sourced adipose stromal cells present unique patterns of EPO post-translational modification, consistent with the idea that renal and non-renal sources are functionally distinct adipose depots. In addition, kidney sourced adipose stromal cells specifically express the key renal developmental transcription factor WT1. Conclusions Taken together, these data are consistent with the notion that kidney sourced adipose stromal (KiSAS) cells may be primed to recreate a regenerative micro-environment within the kidney. These findings open the possibility of isolating solid-organ associated adipose derived cell populations for therapeutic applications in organ-specific regenerative medicine products.
Collapse
Affiliation(s)
- Joydeep Basu
- Bioprocess Research and Assay Development, Tengion Inc, 3929 Westpoint Blvd., Suite G, Winston-Salem, NC 27103, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kidney repair and stem cells: a complex and controversial process. Pediatr Nephrol 2011; 26:1427-34. [PMID: 21336814 DOI: 10.1007/s00467-011-1789-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/17/2011] [Accepted: 01/24/2011] [Indexed: 02/06/2023]
Abstract
Over the last decade, stem cells have been the topic of much debate and investigation for their regenerative potential in the case of renal injury. This review focuses on bone marrow stem cells (BMSC) for renal repair and the potential origins of the controversial results between studies. Some authors have shown that BMSC can differentiate into renal cells and reverse renal dysfunction while others obtained contradictory results. One significant variation between these studies is the choice of BMSC used. According to the literature and our own experience, unfractionated bone marrow cells and hematopoietic stem cells are able to lead to long-term cell tissue engraftment and repair, whereas mesenchymal stem cells have a short-term paracrine effect. Detection of the bone-marrow-derived cells is also an important source of error. However, the major difference between studies is the model of kidney injury used. Two categories of models have to be distinguished: acute and chronic kidney disease. However, variation within these categories also exists. The outcomes of various strategies for BMSC transplantation after injury to the kidney must be compared within a single model and cannot be transposed from one model to another.
Collapse
|
46
|
Uncharted waters: nephrogenesis and renal regeneration in fish and mammals. Pediatr Nephrol 2011; 26:1435-43. [PMID: 21336813 DOI: 10.1007/s00467-011-1795-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 12/25/2022]
Abstract
The major functions of the vertebrate kidney are the removal of metabolic waste and the balance of salt and water. These roles are fulfilled by nephrons, which generally comprise a blood filter (glomerulus) attached to an epithelial tubule. The number of nephrons in the mammalian kidney is set at the end of kidney organogenesis in the late fetal or neonatal period. Subsequent increases in nephron size and functionality then occur during postnatal growth to match increases in body mass/fluid. Because of this strategy of renal development, injuries or birth defects that reduce nephron number lead to a permanent nephron deficit and increase the risk of kidney disease. In contrast to mammals, fish kidneys continue to add nephrons throughout their lifespan. In response to renal injury, fish increase the rate of nephrogenesis, effectively replacing lost nephrons and maintaining their nephron endowment. A better understanding of the remarkable nephrogenic abilities of fish kidneys may lead to innovative ways to restore nephrogenesis in the adult mammalian kidney. This review examines our current understanding of nephrogenesis in mammals and fish and explores possible explanations for why fish, but not mammals, utilize a perpetual nephrogenesis strategy to grow and maintain their kidneys.
Collapse
|
47
|
Abstract
Regenerative medicine based on the transplantation of stem or progenitor cells into damaged tissues has the potential to treat a wide range of chronic diseases1. However, most organs are not easily accessible, necessitating the need to develop surgical methods to gain access to these structures. In this video article, we describe a method for transplanting cells directly into the kidney of adult zebrafish, a popular model to study regeneration and disease2. Recipient fish are pre-conditioned by irradiation to suppress the immune rejection of the injected cells3. We demonstrate how the head kidney can be exposed by a lateral incision in the flank of the fish, followed by the injection of cells directly in to the organ. Using fluorescently labeled whole kidney marrow cells comprising a mixed population of renal and hematopoietic precursors, we show that nephron progenitors can engraft and differentiate into new renal tissue - the gold standard of any cell-based regenerative therapy. This technique can be adapted to deliver purified stem or progenitor cells and/or small molecules to the kidney as well as other internal organs and further enhances the zebrafish as a versatile model to study regenerative medicine.
Collapse
Affiliation(s)
- Cuong Q Diep
- Center for Regenerative Medicine, Massachusetts General Hospital, MA, USA
| | | |
Collapse
|
48
|
Dussaule JC, Guerrot D, Huby AC, Chadjichristos C, Shweke N, Boffa JJ, Chatziantoniou C. The role of cell plasticity in progression and reversal of renal fibrosis. Int J Exp Pathol 2011; 92:151-7. [PMID: 21314743 DOI: 10.1111/j.1365-2613.2011.00760.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The need for novel insights into the mechanisms of progression of renal disease has become urgent during the last several years because of the increasing incidence of chronic renal disease worldwide. Independent of the underlying disease, the subsequent progression of renal fibrosis is characterized mainly by both an exaggerated synthesis and abnormal accumulation of extracellular matrix proteins produced by mesenchymal cells within the kidney. These cells are mainly myofibroblasts deriving from a variety of renal cells such as vascular smooth muscle, mesangial, resident stem, tubular epithelial, vascular endothelial cells or pericytes. The appearance of myofibroblasts is a reversible process, as suggested by studies in experimental models showing regression of renal fibrosis during therapy with antagonists and/or blockers of the renin-angiotensin system. An additional factor that can also affect the mechanisms of progression/regression of fibrosis is the plasticity of podocytes controlling glomerular filtration.
Collapse
Affiliation(s)
- Jean-Claude Dussaule
- Inserm UMR 702, Université Pierre et Marie Curie-Paris VI, Tenon Hospital, Paris, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Petrovic V, Jovanovic I, Pesic I, Stefanovic V. Role of stem cells in kidney repair. Ren Fail 2010; 32:1237-44. [DOI: 10.3109/0886022x.2010.517352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
50
|
Yuan L, Wu MJ, Sun HY, Xiong J, Zhang Y, Liu CY, Fu LL, Liu DM, Liu HQ, Mei CL. VEGF-modified human embryonic mesenchymal stem cell implantation enhances protection against cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol 2010; 300:F207-18. [PMID: 20943766 DOI: 10.1152/ajprenal.00073.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The implantation of mesenchymal stem cells (MSC) has been reported as a new technique to restore renal tubular structure and improve renal function in acute kidney injury (AKI). Vascular endothelial growth factor (VEGF) plays an important role in the renoprotective function of MSC. Whether upregulation of VEGF by a combination of MSC and VEGF gene transfer could enhance the protective effect of MSC in AKI is not clear. We investigated the effects of VEGF-modified human embryonic MSC (VEGF-hMSC) in healing cisplatin-injured renal tubular epithelial cells (TCMK-1) with a coculture system. We found that TCMK-1 viability declined 3 days after cisplatin pretreatment and that coculture with VEGF-hMSC enhanced cell protection via mitogenic and antiapoptotic actions. In addition, administration of VEGF-hMSC in a nude mouse model of cisplatin-induced kidney injury offered better protective effects on renal function, tubular structure, and survival as represented by increased cell proliferation, decreased cellular apoptosis, and improved peritubular capillary density. These data suggest that VEGF-modified hMSC implantation could provide advanced benefits in the protection against AKI by increasing antiapoptosis effects and improving microcirculation and cell proliferation.
Collapse
Affiliation(s)
- Li Yuan
- Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|