1
|
Kasireddy B, Lourenco J, Gonzalez-Ortiz G, Bedford MR, Olukosi OA. Growth performance, nutrient utilization, gut integrity, short-chain fatty acids, and gene expression in Eimeria-challenged broilers receiving stimbiotics and wheat bran as an additional fiber source. Poult Sci 2025; 104:104877. [PMID: 40101510 PMCID: PMC11964626 DOI: 10.1016/j.psj.2025.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/25/2025] [Accepted: 02/01/2025] [Indexed: 03/20/2025] Open
Abstract
Stimbiotic (STB) supplementation and precise inclusion of dietary fiber (DF) can increase the number of fiber-fermenting microorganisms, enhance growth performance, and increase the cecal concentration of short-chain fatty acids (SCFA), potentially improving overall gut health. 1200 male byproduct-breeder day-old chicks were allocated to six treatments in a randomized complete block design. The treatments were: 1) 0 g/kg wheat bran (WB), no STB, no challenge (NCH); 2) 0 g/kg WB, 0.1 g/kg STB, no challenge (NCH- STB); 3) 0 g/kg WB, no STB, with challenge (CH); 4) 50 g/kg WB, no STB, with challenge (CH-WB) 5) 0 g/kg WB, 0.1 g/kg STB and with challenge (CH-STB); 6) 50 g/kg WB, 0.1 g/kg STB plus the challenge (CH-WB-STB). On d13, birds were inoculated with a solution containing E. tenella, E. maxima, and E. acervulina. Data were analyzed by one-way ANOVA, and Tukey HSD was used to separate the means. During the starter phase, weight gain (WG) was greater (P < 0.05), and FCR was lower (P < 0.05) in the WB compared with the control and STB groups. Birds in NCH and NCH-STB treatments had higher (P < 0.05) WG during the acute, whole challenge, grower, and overall phases. Dry matter digestibility (DMD) was higher (P < 0.05) for NCH-STB and CH-STB, and nitrogen (N) digestibility was higher in the CH-WB and CH-WB-STB than in the NCH-STB group. GLUT-1 and CAT-1 were increased (P < 0.05) in the CH-WB than in NCH-STB group. 4EBP1 was increased (P < 0.05) in CH, CH-WB-STB than NCH and NCH-STB groups, and FBXO9 was higher in CH, CH-WB, CH-WB-STB than NCH group. On d42, CH-WB and CH-WB-STB had lower levels (P < 0.05) of isobutyrate and isovalerate than NCH-STB group. In conclusion, neither STB nor WB inclusion influenced growth performance and SCFA profile in Eimeria-challenged birds. Wheat-bran inclusion decreased ceca branched-chain fatty acids (BCFA), which suggests a lower protein fermentation in the ceca, likely as a result of modification of the ceca microbiota.
Collapse
Affiliation(s)
- Bhargavi Kasireddy
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Jeferson Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | | | | | - Oluyinka A Olukosi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Marshall K, Twum Y, Li Y, Gao W. Spotting targets with 2D-DIGE proteomics. Adv Clin Chem 2024; 125:1-22. [PMID: 39988404 DOI: 10.1016/bs.acc.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) has been a staple of protein studies for almost three decades since first described in 1997. Although the advent of omic technologies has greatly expanded protein research and discovery, 2D-DIGE has consistently been the mainstay in biomedical applications. Differential protein expression is a hallmark of many disease states and identification of these biomarkers can improve diagnosis, prognosis and treatment. In this review, we examine the use of 2D-DIGE in exploring the cellular environment in physiologic and pathophysiologic states. We highlight this technology in protein identification and quantification, functional modification and biochemical pathways of interest. 2D-DIGE remains a useful tool due low cost and high resolving power for comparative and quantitative purposes in assessing disease states and facilitating identification of unique and novel biomarkers.
Collapse
Affiliation(s)
- Kent Marshall
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, United States
| | - Yaw Twum
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, United States
| | - Yulu Li
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, United States
| | - Weimin Gao
- Department of Public Health, Brooks College of Health, University of North Florida, Jacksonville, FL, United States.
| |
Collapse
|
3
|
Duan R, Zhai Y, Wang Q, Zhao L, Wang Y, Yu N, Zhang J, Guo W. LINC01764 promotes colorectal cancer cells proliferation, metastasis, and 5-fluorouracil resistance by regulating glucose and glutamine metabolism via promoting c-MYC translation. MedComm (Beijing) 2024; 5:e70003. [PMID: 39534558 PMCID: PMC11555016 DOI: 10.1002/mco2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Few biomarkers are available for predicting chemotherapeutic response and prognosis in colorectal cancer (CRC). Long-noncoding RNAs (lncRNAs) are essential for CRC development and growth. Therefore, studying lncRNAs may reveal potential predictors of chemotherapy response and prognosis in CRC. LINC01764 was analyzed using datasets from Fudan University Shanghai Cancer Center's advanced CRC patients' RNA-seq and The Cancer Genome Atlas datasets. Gene set enrichment analysis was employed to detect related pathways. Cotransfection experiments, RNA pulldown assays, RNA-binding protein immunoprecipitation, protein synthesis activity, and dual-luciferase reporter assays were performed to determine interactions among LINC01764, hnRNPK, and c-MYC. High LINC01764 expression correlates with metastasis, a poor response to FOLFOX/XELOX chemotherapy, and a poor prognosis in CRC. LINC01764 enhance glycolysis and glutamine metabolism to promote CRC cells proliferation, metastasis, and 5-fluorouracil (5-FU) resistance. LINC01764 specifically binds to hnRNPK, facilitating its interaction with c-MYC mRNA and promoting internal ribosome entry site (IRES)-dependent translation of c-MYC, thereby exerting oncogenic effects. LINC01764 induced 5-FU chemoresistance by upregulating the c-MYC, glucose, and glutamine metabolism pathways, which downregulated UPP1, crucial for activating 5-FU. Conclusively, LINC01764 promotes CRC progression and 5-FU resistance through hnRNPK-mediated-c-MYC IRES-dependent translational regulation, which suggests its potential as a predictor of CRC chemotherapy response and prognosis.
Collapse
Affiliation(s)
- Ran Duan
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Medical OncologyFujian Cancer Hospital and Fujian Medical University Cancer HospitalFujian Medical UniversityFuzhouChina
| | - Yujia Zhai
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qiushuang Wang
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Liqin Zhao
- Department of OncologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixuan Wang
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Nuoya Yu
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jieyun Zhang
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Weijian Guo
- Department of Gastrointestinal Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Quintas A, Harvey R, Horvilleur E, Garland G, Schmidt T, Kalmar L, Dezi V, Marini A, Fulton A, Pöyry TA, Cole C, Turner M, Sawarkar R, Chapman M, Bushell M, Willis A. Eukaryotic initiation factor 4B is a multi-functional RNA binding protein that regulates histone mRNAs. Nucleic Acids Res 2024; 52:12039-12054. [PMID: 39225047 PMCID: PMC11514447 DOI: 10.1093/nar/gkae767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
RNA binding proteins drive proliferation and tumorigenesis by regulating the translation and stability of specific subsets of messenger RNAs (mRNAs). We have investigated the role of eukaryotic initiation factor 4B (eIF4B) in this process and identify 10-fold more RNA binding sites for eIF4B in tumour cells from patients with diffuse large B-cell lymphoma compared to control B cells and, using individual-nucleotide resolution UV cross-linking and immunoprecipitation, find that eIF4B binds the entire length of mRNA transcripts. eIF4B stimulates the helicase activity of eIF4A, thereby promoting the unwinding of RNA structure within the 5' untranslated regions of mRNAs. We have found that, in addition to its well-documented role in mRNA translation, eIF4B additionally interacts with proteins associated with RNA turnover, including UPF1 (up-frameshift protein 1), which plays a key role in histone mRNA degradation at the end of S phase. Consistent with these data, we locate an eIF4B binding site upstream of the stem-loop structure in histone mRNAs and show that decreased eIF4B expression alters histone mRNA turnover and delays cell cycle progression through S phase. Collectively, these data provide insight into how eIF4B promotes tumorigenesis.
Collapse
Affiliation(s)
- Ana Quintas
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Emilie Horvilleur
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Tobias Schmidt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Veronica Dezi
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alberto Marini
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alexander M Fulton
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Tuija A A Pöyry
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Cameron H Cole
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Martin Turner
- Immunology Programme, Babraham Institute, Babraham Science Campus, Cambridgeshire CB22 3AT, UK
| | - Ritwick Sawarkar
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
5
|
Manav N, Jit BP, Kataria B, Sharma A. Cellular and epigenetic perspective of protein stability and its implications in the biological system. Epigenomics 2024; 16:879-900. [PMID: 38884355 PMCID: PMC11370918 DOI: 10.1080/17501911.2024.2351788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/30/2024] [Indexed: 06/18/2024] Open
Abstract
Protein stability is a fundamental prerequisite in both experimental and therapeutic applications. Current advancements in high throughput experimental techniques and functional ontology approaches have elucidated that impairment in the structure and stability of proteins is intricately associated with the cause and cure of several diseases. Therefore, it is paramount to deeply understand the physical and molecular confounding factors governing the stability of proteins. In this review article, we comprehensively investigated the evolution of protein stability, examining its emergence over time, its relationship with organizational aspects and the experimental methods used to understand it. Furthermore, we have also emphasized the role of Epigenetics and its interplay with post-translational modifications (PTMs) in regulating the stability of proteins.
Collapse
Affiliation(s)
- Nisha Manav
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
| | - Babita Kataria
- Department of Medical Oncology, National Cancer Institute, All India Institute of Medical Sciences, Jhajjar, 124105, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences New Delhi, Ansari Nagar, 110029, India
- Department of Biochemistry, National Cancer Institute, All India Institute of Medical Sciences, Jhajjar, 124105, India
| |
Collapse
|
6
|
Stillinovic M, Sarangdhar MA, Andina N, Tardivel A, Greub F, Bombaci G, Ansermet C, Zatti M, Saha D, Xiong J, Sagae T, Yokogawa M, Osawa M, Heller M, Keogh A, Keller I, Angelillo-Scherrer A, Allam R. Ribonuclease inhibitor and angiogenin system regulates cell type-specific global translation. SCIENCE ADVANCES 2024; 10:eadl0320. [PMID: 38820160 PMCID: PMC11141627 DOI: 10.1126/sciadv.adl0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Translation of mRNAs is a fundamental process that occurs in all cell types of multicellular organisms. Conventionally, it has been considered a default step in gene expression, lacking specific regulation. However, recent studies have documented that certain mRNAs exhibit cell type-specific translation. Despite this, it remains unclear whether global translation is controlled in a cell type-specific manner. By using human cell lines and mouse models, we found that deletion of the ribosome-associated protein ribonuclease inhibitor 1 (RNH1) decreases global translation selectively in hematopoietic-origin cells but not in the non-hematopoietic-origin cells. RNH1-mediated cell type-specific translation is mechanistically linked to angiogenin-induced ribosomal biogenesis. Collectively, this study unravels the existence of cell type-specific global translation regulators and highlights the complex translation regulation in vertebrates.
Collapse
Affiliation(s)
- Martina Stillinovic
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mayuresh Anant Sarangdhar
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nicola Andina
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Aubry Tardivel
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Frédéric Greub
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Giuseppe Bombaci
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Camille Ansermet
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Marco Zatti
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Dipanjali Saha
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Jieyu Xiong
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Takeru Sagae
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Manfred Heller
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Adrian Keogh
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Irene Keller
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Anne Angelillo-Scherrer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ramanjaneyulu Allam
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Irshad IU, Sharma AK. Decoding stoichiometric protein synthesis in E. coli through translation rate parameters. BIOPHYSICAL REPORTS 2023; 3:100131. [PMID: 37789867 PMCID: PMC10542608 DOI: 10.1016/j.bpr.2023.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
E. coli is one of the most widely used organisms for understanding the principles of cellular and molecular genetics. However, we are yet to understand the origin of several experimental observations related to the regulation of gene expression in E. coli. One of the prominent examples in this context is the proportional synthesis in multiprotein complexes where all of their obligate subunits are produced in proportion to their stoichiometry. In this work, by combining the next-generation sequencing data with the stochastic simulations of protein synthesis, we explain the origin of proportional protein synthesis in multicomponent complexes. We find that the estimated initiation rates for the translation of all subunits in those complexes are proportional to their stoichiometry. This constraint on protein synthesis kinetics enforces proportional protein synthesis without requiring any feedback mechanism. We also find that the translation initiation rates in E. coli are influenced by the coding sequence length and the enrichment of A and C nucleotides near the start codon. Thus, this study rationalizes the role of conserved and nonrandom features of genes in regulating the translation kinetics and unravels a key principle of the regulation of protein synthesis.
Collapse
Affiliation(s)
| | - Ajeet K. Sharma
- Department of Physics, Indian Institute of Technology Jammu, Jammu, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu, India
| |
Collapse
|
8
|
Gong Q, Li W, Ali T, Hu Y, Mou S, Liu Z, Zheng C, Gao R, Li A, Li T, Li N, Yu Z, Li S. eIF4E phosphorylation mediated LPS induced depressive-like behaviors via ameliorated neuroinflammation and dendritic loss. Transl Psychiatry 2023; 13:352. [PMID: 37978167 PMCID: PMC10656522 DOI: 10.1038/s41398-023-02646-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
The translational defect has emerged as a common feature of neurological disorders. Studies have suggested that alterations between opposing and balanced synaptic protein synthesis and turnover processes could lead to synaptic abnormalities, followed by depressive symptoms. Further studies link this phenomenon with eIF4E and TrkB/BDNF signaling. However, the interplay between the eIF4E and TrkB/BDNF signaling in the presence of neuroinflammation is yet to be explored. To illuminate the role of eIF4E activities within LPS-induced neuroinflammation and depression symptomology, we applied animal behavioral, biochemical, and pharmacological approaches. In addition, we sought to determine whether eIF4E dysregulated activities correlate with synaptic protein loss via the TrkB/BDNF pathway. Our results showed that LPS administration induced depressive-like behaviors, accompanied by neuroinflammation, reduced spine numbers, and synaptic protein dysregulation. Concurrently, LPS treatment enhanced eIF4E phosphorylation and TrkB/BDNF signaling defects. However, eFT508 treatment rescued the LPS-elicited neuroinflammation and depressive behaviors, as well as altered eIF4E phosphorylation, synaptic protein expression, and TrkB/BDNF signaling. The causal relation of eIF4E with BDNF signaling was further explored with TrkB antagonist K252a, which could reverse the effects of eFT508, validating the interplay between the eIF4E and TrkB/BDNF signaling in regulating depressive behaviors associated with neuroinflammation via synaptic protein translational regulation. In conclusion, our results support the involvement of eIF4E-associated translational dysregulation in synaptic protein loss via TrkB/BDNF signaling, eventually leading to depressiven-like behaviors upon inflammation-linked stress.
Collapse
Affiliation(s)
- Qichao Gong
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Weifen Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Science Center. No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Tahir Ali
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Yue Hu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Shengnan Mou
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Zizhen Liu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Chengyou Zheng
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Ruyan Gao
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Axiang Li
- College of Forensic Medicine, Institute of Forensic Injury, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Tao Li
- College of Forensic Medicine, Institute of Forensic Injury, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, 518107, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Science Center. No 89, Taoyuan Road, Nanshan District, 518052, Shenzhen, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China.
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Lin S, Liu C, Zhao X, Han X, Li X, Ye Y, Li Z. Recent Advances of Pyridinone in Medicinal Chemistry. Front Chem 2022; 10:869860. [PMID: 35402370 PMCID: PMC8984125 DOI: 10.3389/fchem.2022.869860] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Pyridinones have been adopted as an important block in medicinal chemistry that could serve as hydrogen bond donors and acceptors. With the help of feasible synthesis routes via established condensation reactions, the physicochemical properties of such a scaffold could be manipulated by adjustment of polarity, lipophilicity, and hydrogen bonding, and eventually lead to its wide application in fragment-based drug design, biomolecular mimetics, and kinase hinge-binding motifs. In addition, most pyridinone derivatives exhibit various biological activities ranging from antitumor, antimicrobial, anti-inflammatory, and anticoagulant to cardiotonic effects. This review focuses on recent contributions of pyridinone cores to medicinal chemistry, and addresses the structural features and structure–activity relationships (SARs) of each drug-like molecule. These advancements contribute to an in-depth understanding of the potential of this biologically enriched scaffold and expedite the development of its new applications in drug discovery.
Collapse
Affiliation(s)
- Shibo Lin
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
- *Correspondence: Shibo Lin,
| | - Chun Liu
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiaotian Zhao
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiao Han
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Xuanhao Li
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Yongqin Ye
- Department of Pharmacy, Chengdu Second People’s Hospital, Chengdu, China
| | - Zheyu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
10
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
11
|
Tu L, Liao Z, Luo Z, Wu Y, Herrmann A, Huo S. Ultrasound-controlled drug release and drug activation for cancer therapy. EXPLORATION (BEIJING, CHINA) 2021; 1:20210023. [PMID: 37323693 PMCID: PMC10190934 DOI: 10.1002/exp.20210023] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 06/15/2023]
Abstract
Traditional chemotherapy suffers from severe toxicity and side effects that limit its maximum application in cancer therapy. To overcome this challenge, an ideal treatment strategy would be to selectively control the release or regulate the activity of drugs to minimize the undesirable toxicity. Recently, ultrasound (US)-responsive drug delivery systems (DDSs) have attracted significant attention due to the non-invasiveness, high tissue penetration depth, and spatiotemporal controllability of US. Moreover, the US-induced mechanical force has been proven to be a robust method to site-selectively rearrange or cleave bonds in mechanochemistry. This review describes the US-activated DDSs from the fundamental basics and aims to present a comprehensive summary of the current understanding of US-responsive DDSs for controlled drug release and drug activation. First, we summarize the typical mechanisms for US-responsive drug release and drug activation. Second, the main factors affecting the ultrasonic responsiveness of drug carriers are outlined. Furthermore, representative examples of US-controlled drug release and drug activation are discussed, emphasizing their novelty and design principles. Finally, the challenges and an outlook on this promising therapeutic strategy are discussed.
Collapse
Affiliation(s)
- Li Tu
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Yun‐Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| | - Andreas Herrmann
- DWI – Leibniz Institute for Interactive MaterialsAachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenP. R. China
| |
Collapse
|
12
|
Anderson R, Agarwal A, Ghosh A, Guan B, Casteel J, Dvorina N, Baldwin WM, Mazumder B, Nazarko TY, Merrick WC, Buchner DA, Hatzoglou M, Kondratov RV, Komar AA. eIF2A-knockout mice reveal decreased life span and metabolic syndrome. FASEB J 2021; 35:e21990. [PMID: 34665898 PMCID: PMC8848898 DOI: 10.1096/fj.202101105r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Eukaryotic initiation factor 2A (eIF2A) is a 65 kDa protein that functions in minor initiation pathways, which affect the translation of only a subset of messenger ribonucleic acid (mRNAs), such as internal ribosome entry site (IRES)-containing mRNAs and/or mRNAs harboring upstream near cognate/non-AUG start codons. These non-canonical initiation events are important for regulation of protein synthesis during cellular development and/or the integrated stress response. Selective eIF2A knockdown in cellular systems significantly inhibits translation of such mRNAs, which rely on alternative initiation mechanisms for their translation. However, there exists a gap in our understanding of how eIF2A functions in mammalian systems in vivo (on the organismal level) and ex vivo (in cells). Here, using an eIF2A-knockout (KO) mouse model, we present evidence implicating eIF2A in the biology of aging, metabolic syndrome and central tolerance. We discovered that eIF2A-KO mice have reduced life span and that eIF2A plays an important role in maintenance of lipid homeostasis, the control of glucose tolerance, insulin resistance and also reduces the abundance of B lymphocytes and dendritic cells in the thymic medulla of mice. We also show the eIF2A KO affects male and female mice differently, suggesting that eIF2A may affect sex-specific pathways. Interestingly, our experiments involving pharmacological induction of endoplasmic reticulum (ER) stress with tunicamycin did not reveal any substantial difference between the response to ER stress in eIF2A-KO and wild-type mice. The identification of eIF2A function in the development of metabolic syndrome bears promise for the further identification of specific eIF2A targets responsible for these changes.
Collapse
Affiliation(s)
- Richard Anderson
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Anchal Agarwal
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Arnab Ghosh
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Bo‐Jhih Guan
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Jackson Casteel
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Nina Dvorina
- Department of Inflammation and ImmunityCleveland Clinic Lerner College of MedicineClevelandOhioUSA
| | - William M. Baldwin
- Department of Inflammation and ImmunityCleveland Clinic Lerner College of MedicineClevelandOhioUSA
| | - Barsanjit Mazumder
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | | | - William C. Merrick
- Department of BiochemistryCase Western Reserve University School of MedicineClevelandOhioUSA
| | - David A. Buchner
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA,Department of BiochemistryCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Maria Hatzoglou
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Roman V. Kondratov
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Anton A. Komar
- Center for Gene Regulation in Health and DiseaseDepartment of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandOhioUSA,Department of BiochemistryCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
13
|
Grosso S, Marini A, Gyuraszova K, Voorde JV, Sfakianos A, Garland GD, Tenor AR, Mordue R, Chernova T, Morone N, Sereno M, Smith CP, Officer L, Farahmand P, Rooney C, Sumpton D, Das M, Teodósio A, Ficken C, Martin MG, Spriggs RV, Sun XM, Bushell M, Sansom OJ, Murphy D, MacFarlane M, Le Quesne JPC, Willis AE. The pathogenesis of mesothelioma is driven by a dysregulated translatome. Nat Commun 2021; 12:4920. [PMID: 34389715 PMCID: PMC8363647 DOI: 10.1038/s41467-021-25173-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/25/2021] [Indexed: 12/22/2022] Open
Abstract
Malignant mesothelioma (MpM) is an aggressive, invariably fatal tumour that is causally linked with asbestos exposure. The disease primarily results from loss of tumour suppressor gene function and there are no 'druggable' driver oncogenes associated with MpM. To identify opportunities for management of this disease we have carried out polysome profiling to define the MpM translatome. We show that in MpM there is a selective increase in the translation of mRNAs encoding proteins required for ribosome assembly and mitochondrial biogenesis. This results in an enhanced rate of mRNA translation, abnormal mitochondrial morphology and oxygen consumption, and a reprogramming of metabolic outputs. These alterations delimit the cellular capacity for protein biosynthesis, accelerate growth and drive disease progression. Importantly, we show that inhibition of mRNA translation, particularly through combined pharmacological targeting of mTORC1 and 2, reverses these changes and inhibits malignant cell growth in vitro and in ex-vivo tumour tissue from patients with end-stage disease. Critically, we show that these pharmacological interventions prolong survival in animal models of asbestos-induced mesothelioma, providing the basis for a targeted, viable therapeutic option for patients with this incurable disease.
Collapse
Affiliation(s)
- Stefano Grosso
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Alberto Marini
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Katarina Gyuraszova
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | | | | | - Gavin D Garland
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Angela Rubio Tenor
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ryan Mordue
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Tanya Chernova
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Nobu Morone
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Marco Sereno
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Claire P Smith
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Leah Officer
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Pooyeh Farahmand
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Claire Rooney
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Madhumita Das
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ana Teodósio
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Catherine Ficken
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Maria Guerra Martin
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ruth V Spriggs
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Xiao-Ming Sun
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Owen J Sansom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Daniel Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Marion MacFarlane
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
| | - John P C Le Quesne
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK.
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
- Glenfield Hospital, Groby Road, University Hospitals Leicester NHS Trust Leicester, Leicester, UK.
| | - Anne E Willis
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Haartmans MJJ, Emanuel KS, Tuijthof GJM, Heeren RMA, Emans PJ, Cillero-Pastor B. Mass Spectrometry-based Biomarkers for Knee Osteoarthritis: A Systematic Review. Expert Rev Proteomics 2021; 18:693-706. [PMID: 34228576 DOI: 10.1080/14789450.2021.1952868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Knee osteoarthritis (OA) is a joint disease, affecting multiple tissues in the joint. Early detection and intervention may delay OA development and avoid total knee arthroplasty. Specific biomarker profiles for early detection and guiding clinical decision-making of OA have not yet been identified. One technique that can contribute to the finding of this "OA biomarker" is mass spectrometry (MS), which offers the possibility to analyze different molecules in tissues or fluids. Several proteomic, lipidomic, metabolomic and other -omic approaches aim to identify these molecular profiles; however, variation in methods and techniques complicate the finding of promising candidate biomarkers.Areas covered: In this systematic review, we aim to provide an overview of molecules in OA knee patients. Possible biomarkers in several tissue types of OA and non-OA patients, as well as current limitations and possible future suggestions will be discussed.Expert opinion: According to this review, we do not believe one specific biomarker will function as predictive molecule for OA. Likely, a group of molecules will give insight in OA development and possible therapeutic targets. For clinical implementation of MS-analysis in clinical decision-making, standardized procedures, large cohort studies and sharing protocols and data is necessary.
Collapse
Affiliation(s)
- Mirella J J Haartmans
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.,Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Kaj S Emanuel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Gabrielle J M Tuijthof
- Department of Research Engineering, Maastricht University Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
15
|
Zhao P, Huo S, Fan J, Chen J, Kiessling F, Boersma AJ, Göstl R, Herrmann A. Activation of the Catalytic Activity of Thrombin for Fibrin Formation by Ultrasound. Angew Chem Int Ed Engl 2021; 60:14707-14714. [PMID: 33939872 PMCID: PMC8252103 DOI: 10.1002/anie.202105404] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 12/11/2022]
Abstract
The regulation of enzyme activity is a method to control biological function. We report two systems enabling the ultrasound-induced activation of thrombin, which is vital for secondary hemostasis. First, we designed polyaptamers, which can specifically bind to thrombin, inhibiting its catalytic activity. With ultrasound generating inertial cavitation and therapeutic medical focused ultrasound, the interactions between polyaptamer and enzyme are cleaved, restoring the activity to catalyze the conversion of fibrinogen into fibrin. Second, we used split aptamers conjugated to the surface of gold nanoparticles (AuNPs). In the presence of thrombin, these assemble into an aptamer tertiary structure, induce AuNP aggregation, and deactivate the enzyme. By ultrasonication, the AuNP aggregates reversibly disassemble releasing and activating the enzyme. We envision that this approach will be a blueprint to control the function of other proteins by mechanical stimuli in the sonogenetics field.
Collapse
Affiliation(s)
- Pengkun Zhao
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Shuaidong Huo
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical ScienceXiamen University361102XiamenChina
| | - Jilin Fan
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Junlin Chen
- Institute for Experimental Molecular ImagingUniversity Hospital AachenForckenbeckstr. 5552074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingUniversity Hospital AachenForckenbeckstr. 5552074AachenGermany
| | - Arnold J. Boersma
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Robert Göstl
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Andreas Herrmann
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| |
Collapse
|
16
|
Zhao P, Huo S, Fan J, Chen J, Kiessling F, Boersma AJ, Göstl R, Herrmann A. Aktivierung der katalytischen Aktivität von Thrombin für die Bildung von Fibrin durch Ultraschall. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pengkun Zhao
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
| | - Shuaidong Huo
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
- Institut für Technische und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
- Fujian Provincial Key Laboratory of Innovative Drug Target Research School of Pharmaceutical Science Xiamen University 361102 Xiamen China
| | - Jilin Fan
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
| | - Junlin Chen
- Institut für Experimentelle Molekulare Bildgebung Uniklinik Aachen Forckenbeckstr. 55 52074 Aachen Deutschland
| | - Fabian Kiessling
- Institut für Experimentelle Molekulare Bildgebung Uniklinik Aachen Forckenbeckstr. 55 52074 Aachen Deutschland
| | - Arnold J. Boersma
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
| | - Robert Göstl
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Niederlande
- DWI – Leibniz-Institut für Interaktive Materialien Forckenbeckstr. 50 52056 Aachen Deutschland
- Institut für Technische und Makromolekulare Chemie RWTH Aachen Worringerweg 1 52074 Aachen Deutschland
| |
Collapse
|
17
|
Bellotti A, Murphy J, Lin L, Petralia R, Wang YX, Hoffman D, O'Leary T. Paradoxical relationships between active transport and global protein distributions in neurons. Biophys J 2021; 120:2085-2101. [PMID: 33812847 PMCID: PMC8390833 DOI: 10.1016/j.bpj.2021.02.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Neural function depends on continual synthesis and targeted trafficking of intracellular components, including ion channel proteins. Many kinds of ion channels are trafficked over long distances to specific cellular compartments. This raises the question of whether cargo is directed with high specificity during transit or whether cargo is distributed widely and sequestered at specific sites. We addressed this question by experimentally measuring transport and expression densities of Kv4.2, a voltage-gated transient potassium channel that exhibits a specific dendritic expression that increases with distance from the soma and little or no functional expression in axons. In over 500 h of quantitative live imaging, we found substantially higher densities of actively transported Kv4.2 subunits in axons as opposed to dendrites. This paradoxical relationship between functional expression and traffic density supports a model—commonly known as the sushi belt model—in which trafficking specificity is relatively low and active sequestration occurs in compartments where cargo is expressed. In further support of this model, we find that kinetics of active transport differs qualitatively between axons and dendrites, with axons exhibiting strong superdiffusivity, whereas dendritic transport resembles a weakly directed random walk, promoting mixing and opportunity for sequestration. Finally, we use our data to constrain a compartmental reaction-diffusion model that can recapitulate the known Kv4.2 density profile. Together, our results show how nontrivial expression patterns can be maintained over long distances with a relatively simple trafficking mechanism and how the hallmarks of a global trafficking mechanism can be revealed in the kinetics and density of cargo.
Collapse
Affiliation(s)
- Adriano Bellotti
- National Institute of Child Health and Human Development, Bethesda, Maryland; Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Murphy
- National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Lin Lin
- National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Ronald Petralia
- National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland
| | - Ya-Xian Wang
- National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland
| | - Dax Hoffman
- National Institute of Child Health and Human Development, Bethesda, Maryland.
| | - Timothy O'Leary
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
18
|
Angiogenin (ANG)-Ribonuclease Inhibitor (RNH1) System in Protein Synthesis and Disease. Int J Mol Sci 2021; 22:ijms22031287. [PMID: 33525475 PMCID: PMC7866052 DOI: 10.3390/ijms22031287] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Protein synthesis is a highly complex process executed by well-organized translation machinery. Ribosomes, tRNAs and mRNAs are the principal components of this machinery whereas RNA binding proteins and ribosome interacting partners act as accessory factors. Angiogenin (ANG)-Ribonuclease inhibitor (RNH1) system is one such accessory part of the translation machinery that came into focus afresh due to its unconventional role in the translation. ANG is conventionally known for its ability to induce blood vessel formation and RNH1 as a "sentry" to protect RNAs from extracellular RNases. However, recent studies suggest them to be important in translation regulation. During cell homeostasis, ANG in the nucleus promotes rRNA transcription. While under stress, ANG translocates to the cytosol and cleaves tRNA into fragments which inhibit ribosome biogenesis and protein synthesis. RNH1, which intimately interacts with ANG to inhibit its ribonucleolytic activity, can also bind to the 40S ribosomes and control translation by yet to be known mechanisms. Here, we review recent advancement in the knowledge of translation regulation by the ANG-RNH1 system. We also gather information about this system in cell homeostasis as well as in pathological conditions such as cancer and ribosomopathies. Additionally, we discuss the future research directions and therapeutic potential of this system.
Collapse
|
19
|
Gallart-Palau X, Serra A, Sze SK. System-wide molecular dynamics of endothelial dysfunction in Gram-negative sepsis. BMC Biol 2020; 18:175. [PMID: 33234129 PMCID: PMC7687804 DOI: 10.1186/s12915-020-00914-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
Background Inflammation affecting whole organism vascular networks plays a central role in the progression and establishment of several human diseases, including Gram-negative sepsis. Although the molecular mechanisms that control inflammation of specific vascular beds have been partially defined, knowledge lacks on the impact of these on the molecular dynamics of whole organism vascular beds. In this study, we have generated an in vivo model by coupling administration of lipopolysaccharide with stable isotope labeling in mammals to mimic vascular beds inflammation in Gram-negative sepsis and to evaluate its effects on the proteome molecular dynamics. Proteome molecular dynamics of individual vascular layers (glycocalyx (GC), endothelial cells (EC), and smooth muscle cells (SMC)) were then evaluated by coupling differential systemic decellularization in vivo with unbiased systems biology proteomics. Results Our data confirmed the presence of sepsis-induced disruption of the glycocalyx, and we show for the first time the downregulation of essential molecular maintenance processes in endothelial cells affecting this apical vascular coating. Similarly, a novel catabolic phenotype was identified in the newly synthesized EC proteomes that involved the impairment of protein synthesis, which affected multiple cellular mechanisms, including oxidative stress, the immune system, and exacerbated EC-specific protein turnover. In addition, several endogenous molecular protective mechanisms involving the synthesis of novel antithrombotic and anti-inflammatory proteins were also identified as active in EC. The molecular dynamics of smooth muscle cells in whole organism vascular beds revealed similar patterns of impairment as those identified in EC, although this was observed to a lesser extent. Furthermore, the dynamics of protein posttranslational modifications showed disease-specific phosphorylation sites in the EC proteomes. Conclusions Together, the novel findings reported here provide a broader picture of the molecular dynamics that take place in whole organism vascular beds in Gram-negative sepsis inflammation. Similarly, the obtained data can pave the way for future therapeutic strategies aimed at intervening in specific protein synthesis mechanisms of the vascular unit during acute inflammatory processes.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,University Hospital Institut Pere Mata, Reus, Tarragona, Spain.,Institut Investigació Sanitària Pere Virgili (IISPV), Reus, Tarragona, Spain.,Centro de investigación Biomédica en Salud Mental CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.,IMDEA Food & Health Sciences Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain.,Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Aida Serra
- IMDEA Food & Health Sciences Research Institute, +Pec Proteomics, Campus of International Excellence UAM+CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049, Madrid, Spain. .,Proteored - Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
20
|
Ravi V, Jain A, Mishra S, Sundaresan NR. Measuring Protein Synthesis in Cultured Cells and Mouse Tissues Using the Non‐radioactive SUnSET Assay. ACTA ACUST UNITED AC 2020; 133:e127. [DOI: 10.1002/cpmb.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Venkatraman Ravi
- Cardiovascular and Muscle Research Laboratory Department of Microbiology and Cell Biology Indian Institute of Science Bengaluru India
| | - Aditi Jain
- Centre for BioSystems Science and Engineering Indian Institute of Science Bengaluru India
| | - Sneha Mishra
- Cardiovascular and Muscle Research Laboratory Department of Microbiology and Cell Biology Indian Institute of Science Bengaluru India
| | - Nagalingam Ravi Sundaresan
- Cardiovascular and Muscle Research Laboratory Department of Microbiology and Cell Biology Indian Institute of Science Bengaluru India
| |
Collapse
|
21
|
Bowling HL, Kasper A, Patole C, Venkatasubramani JP, Leventer SP, Carmody E, Sharp K, Berry-Kravis E, Kirshenbaum K, Klann E, Bhattacharya A. Optimization of Protocols for Detection of De Novo Protein Synthesis in Whole Blood Samples via Azide-Alkyne Cycloaddition. J Proteome Res 2020; 19:3856-3866. [PMID: 32786687 DOI: 10.1021/acs.jproteome.0c00299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aberrant protein synthesis and protein expression are a hallmark of many conditions ranging from cancer to Alzheimer's. Blood-based biomarkers indicative of changes in proteomes have long been held to be potentially useful with respect to disease prognosis and treatment. However, most biomarker efforts have focused on unlabeled plasma proteomics that include nonmyeloid origin proteins with no attempt to dynamically tag acute changes in proteomes. Herein we report a method for evaluating de novo protein synthesis in whole blood liquid biopsies. Using a modification of the "bioorthogonal noncanonical amino acid tagging" (BONCAT) protocol, rodent whole blood samples were incubated with l-azidohomoalanine (AHA) to allow incorporation of this selectively reactive non-natural amino acid within nascent polypeptides. Notably, failure to incubate the blood samples with EDTA prior to implementation of azide-alkyne "click" reactions resulted in the inability to detect probe incorporation. This live-labeling assay was sensitive to inhibition with anisomycin and nascent, tagged polypeptides were localized to a variety of blood cells using FUNCAT. Using labeled rodent blood, these tagged peptides could be consistently identified through standard LC/MS-MS detection of known blood proteins across a variety of experimental conditions. Furthermore, this assay could be expanded to measure de novo protein synthesis in human blood samples. Overall, we present a rapid and convenient de novo protein synthesis assay that can be used with whole blood biopsies that can quantify translational change as well as identify differentially expressed proteins that may be useful for clinical applications.
Collapse
Affiliation(s)
- Heather L Bowling
- Center for Neural Science, New York University, New York, New York 10003, United States
| | - Amanda Kasper
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Chhaya Patole
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Janani Priya Venkatasubramani
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| | - Sarah Parker Leventer
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Erin Carmody
- Department of Pediatrics, and Departments of Neurological Sciences and Biochemistry, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Kevin Sharp
- Department of Pediatrics, and Departments of Neurological Sciences and Biochemistry, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, and Departments of Neurological Sciences and Biochemistry, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Eric Klann
- Center for Neural Science, New York University, New York, New York 10003, United States.,NYU Neuroscience Institute, New York University School of Medicine, New York, New York 10016, United States
| | - Aditi Bhattacharya
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine, Bangalore 560065, India
| |
Collapse
|
22
|
Mishra RK, Datey A, Hussain T. mRNA Recruiting eIF4 Factors Involved in Protein Synthesis and Its Regulation. Biochemistry 2019; 59:34-46. [DOI: 10.1021/acs.biochem.9b00788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rishi Kumar Mishra
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Ayushi Datey
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
23
|
Leipheimer J, Bloom ALM, Panepinto JC. Protein Kinases at the Intersection of Translation and Virulence. Front Cell Infect Microbiol 2019; 9:318. [PMID: 31572689 PMCID: PMC6749009 DOI: 10.3389/fcimb.2019.00318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
As free living organisms, fungi are challenged with a variety of environmental insults that threaten their cellular processes. In some cases, these challenges mimic conditions present within mammals, resulting in the accidental selection of virulence factors over evolutionary time. Be it within a host or the soil, fungi must contend with environmental challenges through the production of stress effector proteins while maintaining factors required for viability in any condition. Initiation and upkeep of this balancing act is mainly under the control of kinases that affect the propensity and selectivity of protein translation. This review will focus on kinases in pathogenic fungi that facilitate a virulence phenotype through translational control.
Collapse
Affiliation(s)
- Jay Leipheimer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Amanda L M Bloom
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - John C Panepinto
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
24
|
Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in Biomaterials for Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705328. [PMID: 29736981 PMCID: PMC6261797 DOI: 10.1002/adma.201705328] [Citation(s) in RCA: 501] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/12/2018] [Indexed: 04/14/2023]
Abstract
Advances in biomaterials for drug delivery are enabling significant progress in biology and medicine. Multidisciplinary collaborations between physical scientists, engineers, biologists, and clinicians generate innovative strategies and materials to treat a range of diseases. Specifically, recent advances include major breakthroughs in materials for cancer immunotherapy, autoimmune diseases, and genome editing. Here, strategies for the design and implementation of biomaterials for drug delivery are reviewed. A brief history of the biomaterials field is first established, and then commentary on RNA delivery, responsive materials development, and immunomodulation are provided. Current challenges associated with these areas as well as opportunities to address long-standing problems in biology and medicine are discussed throughout.
Collapse
Affiliation(s)
- Owen S Fenton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Katy N Olafson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Padmini S Pillai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, School of Engineering and Applied Science, Philadelphia, PA, 19104, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
25
|
Schwertz H, Rowley JW, Zimmerman GA, Weyrich AS, Rondina MT. Retinoic acid receptor-α regulates synthetic events in human platelets. J Thromb Haemost 2017; 15:2408-2418. [PMID: 28981191 DOI: 10.1111/jth.13861] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 12/01/2022]
Abstract
Essentials Platelets express retinoic acid receptor (RAR)α protein, specifically binding target mRNAs. mRNAs under RARα control include MAP1LC3B2, SLAIN2, and ANGPT1. All-trans retinoic acid (atRA) releases RARα from its target mRNA. RARα expressed in human platelets exerts translational control via direct mRNA binding. SUMMARY Background Translational control mechanisms in platelets are incompletely defined. Here, we determined whether the nuclear transcription factor RARα controls protein translational events in human platelets. Methods Isolated human platelets were treated with the pan-RAR agonist all-trans-retinoic acid (atRA). Global and targeted translational events were examined. Results Stimulation of platelets with atRA significantly increased global protein expression. RARα protein bound to a subset of platelet mRNAs, as measured by next-generation RNA-sequencing. In-depth analyses of 5' and 3'-untranslated regions of the RARα-bound mRNAs revealed consensus RARα binding sites in microtubule-associated protein 1 light chain 3 beta 2 (MAP1LC3B2), SLAIN motif-containing protein 2 (SLAIN2) and angiopoietin-1 (ANGPT1) transcripts. When platelets were treated with atRA, binding interactions between RARα protein and mRNA for MAP1LC3B2, SLAIN2 and ANGPT1 were significantly decreased. Consistent with the release of bound RARα protein from MAP1LCB2mRNA, we observed an increase in the synthesis of MAP1LC3B2 protein. Conclusions These findings provide the first evidence that RARα, a nuclear transcriptional factor, regulates synthetic events in anucleate human platelets. They also reveal an additional non-genomic role for RARα in platelets that may have implications for the vitamin A-dependent signaling in humans.
Collapse
Affiliation(s)
- H Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Departments of Surgery, University of Utah, Salt Lake City, UT, USA
| | - J W Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - G A Zimmerman
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - A S Weyrich
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - M T Rondina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Internal Medicine, University of Utah, Salt Lake City, UT, USA
- The Geriatric Research Education and Clinical Center (GRECC), University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine at the George E. Wahlen Salt Lake City VAMC, Salt Lake City, Utah, USA
| |
Collapse
|
26
|
Sbarrato T, Spriggs RV, Wilson L, Jones C, Dudek K, Bastide A, Pichon X, Pöyry T, Willis AE. An improved analysis methodology for translational profiling by microarray. RNA (NEW YORK, N.Y.) 2017; 23:1601-1613. [PMID: 28842509 PMCID: PMC5648029 DOI: 10.1261/rna.060525.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Translational regulation plays a central role in the global gene expression of a cell, and detection of such regulation has allowed deciphering of critical biological mechanisms. Genome-wide studies of the regulation of translation (translatome) performed on microarrays represent a substantial proportion of studies, alongside with recent advances in deep-sequencing methods. However, there has been a lack of development in specific processing methodologies that deal with the distinct nature of translatome array data. In this study, we confirm that polysome profiling yields skewed data and thus violates the conventional transcriptome analysis assumptions. Using a comprehensive simulation of translatome array data varying the percentage and symmetry of deregulation, we show that conventional analysis methods (Quantile and LOESS normalizations) and statistical tests failed, respectively, to correctly normalize the data and to identify correctly deregulated genes (DEGs). We thus propose a novel analysis methodology available as a CRAN package; Internal Control Analysis of Translatome (INCATome) based on a normalization tied to a group of invariant controls. We confirm that INCATome outperforms the other normalization methods and allows a stringent identification of DEGs. More importantly, INCATome implementation on a biological translatome data set (cells silenced for splicing factor PSF) resulted in the best normalization performance and an improved validation concordance for identification of true positive DEGs. Finally, we provide evidence that INCATome is able to infer novel biological pathways with superior discovery potential, thus confirming the benefits for researchers of implementing INCATome for future translatome studies as well as for existing data sets to generate novel avenues for research.
Collapse
Affiliation(s)
- Thomas Sbarrato
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France
- Inserm, UMR_S 1067, Marseille F-13288, France
- CNRS, UMR 7333, Marseille F-13288, France
| | - Ruth V Spriggs
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Lindsay Wilson
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Carolyn Jones
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Kate Dudek
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Amandine Bastide
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Xavier Pichon
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Tuija Pöyry
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Anne E Willis
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
27
|
Luo XN, Song QQ, Yu J, Song J, Wang XL, Xia D, Sun P, Han J. Identification of the internal ribosome entry sites (IRES) of prion protein gene. Int J Biochem Cell Biol 2017; 93:46-51. [PMID: 29107182 DOI: 10.1016/j.biocel.2017.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 11/30/2022]
Abstract
Many studies demonstrated that there are several type bands of prion protein in cells. However, the formation of different prion protein bands is elusive. After several low molecular weight bands of prion protein appeared in SMB-S15 cells infected with scrapie agent Chandler, we think that IRES-dependent translation mechanism induced by prion is involved in the formation of prion protein bands. Then we designed a series of pPrP-GFP fusing plasmids and bicistronic plasmids to identify the IRES sites of prion protein gene and found 3 IRES sites inside of PrP mRNA. We also demonstrated that cap-independent translation of PrP was associated with the ER stress through Tunicamycin treatment. We still found that only IRE1 and PERK pathway regulated the IRES-dependent translation of PrP in this study. Our results indicated, we found that PrP gene had an IRES-dependent translation initiation mechanism and we successfully identified the IRESs inside of the prion protein gene.
Collapse
Affiliation(s)
- Xiao-Nuan Luo
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qin-Qin Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Yu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin-Ling Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong Xia
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Sun
- Inner Mongolia Medical University, Huhehot, China
| | - Jun Han
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
28
|
Chan KP, Gao Y, Goh JX, Susanti D, Yeo ELL, Chao SH, Kah JCY. Exploiting the Protein Corona from Cell Lysate on DNA Functionalized Gold Nanoparticles for Enhanced mRNA Translation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10408-10417. [PMID: 28276241 DOI: 10.1021/acsami.6b15269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study describes the use of DNA functionalized gold nanoparticles (AuNPs) to enhance the synthesis of proteins in cell lysate and examines the mechanisms behind the enhanced mRNA translation. With an appropriate DNA oligomer sequence that hybridizes to the 3'-untranslated region of two mRNA of interest, insulin and green fluorescent protein (GFP), we found that these DNA conjugated AuNPs (AuNP-DNA) introduced into HeLa cell lysate enhanced the synthesis of insulin and GFP by up to 2.18 and 1.80-fold, respectively, over baseline production with just the mRNA present. The insulin synthesis was markedly reduced with non-DNA citrate-capped AuNP (1.25-fold) and AuNP-DNA with a nonspecific poly(T) sequence (1.25-fold). We showed that both nonspecific adsorption of ribosomes and translation factors to form a lysate protein corona on AuNP-DNA and weak hybridization between DNA oligomers and mRNA of interest were important factors that brought translation factors, ribosomes, and mRNA into close proximity of each other. This could reduce the recycling time of ribosomes during mRNA translation, thereby increasing the efficiency of protein synthesis. The outcome of this work shows that with rational DNA design, it could be possible to modulate intracellular biological processes with AuNP-DNA and increase their production of proteins for various biomedical applications.
Collapse
Affiliation(s)
- Kian Ping Chan
- Department of Biomedical Engineering, National University of Singapore , Singapore 117583
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , Singapore 138668
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore 117456
| | - Yang Gao
- Department of Biomedical Engineering, National University of Singapore , Singapore 117583
| | - Jeremy Xianwei Goh
- Department of Biomedical Engineering, National University of Singapore , Singapore 117583
| | - Dewi Susanti
- Faculty of Science, National University of Singapore , Singapore 117546
| | - Eugenia Li Ling Yeo
- Department of Biomedical Engineering, National University of Singapore , Singapore 117583
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , Singapore 138668
- Department of Microbiology and Immunology, National University of Singapore , Singapore 117545
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore , Singapore 117583
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore 117456
| |
Collapse
|
29
|
Grassi ML, Palma CDS, Thomé CH, Lanfredi GP, Poersch A, Faça VM. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics 2016; 151:2-11. [PMID: 27394697 DOI: 10.1016/j.jprot.2016.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a well-orchestrated process that culminates with loss of epithelial phenotype and gain of a mesenchymal and migratory phenotype. EMT enhances cancer cell invasiveness and drug resistance, favoring metastasis. Dysregulation of transcription factors, signaling pathways, miRNAs and growth factors including EGF, TGF-beta and HGF can trigger EMT. In ovarian cancer, overexpression of the EGFR family is associated with more aggressive clinical behavior. Here, the ovarian adenocarcinoma cell line Caov-3 was induced to EMT with EGF in order to identify specific mechanisms controlled by this process. Caov-3 cells induced to EMT were thoroughly validated and a combination of subcellular proteome enrichment, GEL-LC-MS/MS and SILAC strategy allowed consistent proteome identification and quantitation. Protein network analysis of differentially expressed proteins highlighted regulation of metabolism and cell cycle. Activation of relevant signaling pathways, such as PI3K/Akt/mTOR and Ras/Erk MAPK, in response to EGF-induced EMT was validated. Also, EMT did not affected the proliferation rate of Caov-3 cells, but led to cell cycle arrest in G1 phase regulated by increased levels of p21Waf1/Cip1, independently of p53. Furthermore, a decrease in G1 and G2 checkpoint proteins was observed, supporting the involvement of EGF-induced EMT in cell cycle control. BIOLOGICAL SIGNIFICANCE Cancer is a complex multistep process characterized by accumulation of several hallmarks including epithelial to mesenchymal transition (EMT), which promotes cellular and microenvironmental changes resulting in invasion and migration to distant sites, favoring metastasis. EMT can be triggered by different extracellular stimuli, including growth factors such as EGF. In ovarian cancer, the most lethal gynecological cancer, overexpression of the EGFR family is associated with more aggressive clinical behavior, increasing mortality rate caused by metastasis. Our proteomic data, together with specific validation of specific cellular mechanisms demonstrated that EGF-induced EMT in Caov-3 cells leads to important alterations in metabolic process (protein synthesis) and cell cycle control, supporting the implication of EGF/EMT in cancer metastasis, cancer stem cell generation and, therefore, poor prognosis for the disease.
Collapse
Affiliation(s)
- Mariana Lopes Grassi
- Dept. Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Cell-Based Therapy Center, Ribeirão Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Camila de Souza Palma
- Dept. Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Cell-Based Therapy Center, Ribeirão Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina Hassibe Thomé
- Dept. Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Cell-Based Therapy Center, Ribeirão Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme Pauperio Lanfredi
- Dept. Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Cell-Based Therapy Center, Ribeirão Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Aline Poersch
- Dept. Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vitor Marcel Faça
- Dept. Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Cell-Based Therapy Center, Ribeirão Preto Blood Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
30
|
Sbarrato T, Horvilleur E, Pöyry T, Hill K, Chaplin LC, Spriggs RV, Stoneley M, Wilson L, Jayne S, Vulliamy T, Beck D, Dokal I, Dyer MJS, Yeomans AM, Packham G, Bushell M, Wagner SD, Willis AE. A ribosome-related signature in peripheral blood CLL B cells is linked to reduced survival following treatment. Cell Death Dis 2016; 7:e2249. [PMID: 27253413 PMCID: PMC5143378 DOI: 10.1038/cddis.2016.148] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 01/14/2023]
Abstract
We have used polysome profiling coupled to microarray analysis to examine the translatome of a panel of peripheral blood (PB) B cells isolated from 34 chronic lymphocytic leukaemia (CLL) patients. We have identified a ‘ribosome-related' signature in CLL patients with mRNAs encoding for ribosomal proteins and factors that modify ribosomal RNA, e.g. DKC1 (which encodes dyskerin, a pseudouridine synthase), showing reduced polysomal association and decreased expression of the corresponding proteins. Our data suggest a general impact of dyskerin dysregulation on the translational apparatus in CLL and importantly patients with low dyskerin levels have a significantly shorter period of overall survival following treatment. Thus, translational dysregulation of dyskerin could constitute a mechanism by which the CLL PB B cells acquire an aggressive phenotype and thus have a major role in oncogenesis.
Collapse
Affiliation(s)
- T Sbarrato
- Medical Research Council Toxicology Unit, Hodgkin Building, PO Box 138, Lancaster Rd, Leicester LE19HN, UK
| | - E Horvilleur
- Medical Research Council Toxicology Unit, Hodgkin Building, PO Box 138, Lancaster Rd, Leicester LE19HN, UK
| | - T Pöyry
- Medical Research Council Toxicology Unit, Hodgkin Building, PO Box 138, Lancaster Rd, Leicester LE19HN, UK
| | - K Hill
- The Babraham Institute, Babraham, Cambridge, UK
| | - L C Chaplin
- Medical Research Council Toxicology Unit, Hodgkin Building, PO Box 138, Lancaster Rd, Leicester LE19HN, UK
| | - R V Spriggs
- Medical Research Council Toxicology Unit, Hodgkin Building, PO Box 138, Lancaster Rd, Leicester LE19HN, UK
| | - M Stoneley
- Medical Research Council Toxicology Unit, Hodgkin Building, PO Box 138, Lancaster Rd, Leicester LE19HN, UK
| | - L Wilson
- Medical Research Council Toxicology Unit, Hodgkin Building, PO Box 138, Lancaster Rd, Leicester LE19HN, UK
| | - S Jayne
- Department of Cancer Studies, Ernest and Helen Scott Haematology Research Institute, University of Leicester, Lancaster Road, Leicester LE1 7H, UK
| | - T Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, 4 Newark Street, Whitechapel, London E1 2AT, UK
| | - D Beck
- Department of Cancer Studies, Ernest and Helen Scott Haematology Research Institute, University of Leicester, Lancaster Road, Leicester LE1 7H, UK
| | - I Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, 4 Newark Street, Whitechapel, London E1 2AT, UK
| | - M J S Dyer
- Department of Cancer Studies, Ernest and Helen Scott Haematology Research Institute, University of Leicester, Lancaster Road, Leicester LE1 7H, UK
| | - A M Yeomans
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
| | - G Packham
- Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton, UK
| | - M Bushell
- Medical Research Council Toxicology Unit, Hodgkin Building, PO Box 138, Lancaster Rd, Leicester LE19HN, UK
| | - S D Wagner
- Department of Cancer Studies, Ernest and Helen Scott Haematology Research Institute, University of Leicester, Lancaster Road, Leicester LE1 7H, UK
| | - A E Willis
- Medical Research Council Toxicology Unit, Hodgkin Building, PO Box 138, Lancaster Rd, Leicester LE19HN, UK
| |
Collapse
|
31
|
Walters B, Thompson SR. Cap-Independent Translational Control of Carcinogenesis. Front Oncol 2016; 6:128. [PMID: 27252909 PMCID: PMC4879784 DOI: 10.3389/fonc.2016.00128] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023] Open
Abstract
Translational regulation has been shown to play an important role in cancer and tumor progression. Despite this fact, the role of translational control in cancer is an understudied and under appreciated field, most likely due to the technological hurdles and paucity of methods available to establish that changes in protein levels are due to translational regulation. Tumors are subjected to many adverse stress conditions such as hypoxia or starvation. Under stress conditions, translation is globally downregulated through several different pathways in order to conserve energy and nutrients. Many of the proteins that are synthesized during stress in order to cope with the stress use a non-canonical or cap-independent mechanism of initiation. Tumor cells have utilized these alternative mechanisms of translation initiation to promote survival during tumor progression. This review will specifically discuss the role of cap-independent translation initiation, which relies on an internal ribosome entry site (IRES) to recruit the ribosomal subunits internally to the messenger RNA. We will provide an overview of the role of IRES-mediated translation in cancer by discussing the types of genes that use IRESs and the conditions under which these mechanisms of initiation are used. We will specifically focus on three well-studied examples: Apaf-1, p53, and c-Jun, where IRES-mediated translation has been demonstrated to play an important role in tumorigenesis or tumor progression.
Collapse
Affiliation(s)
- Beth Walters
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
32
|
Steffen P, Kwiatkowski M, Robertson WD, Zarrine-Afsar A, Deterra D, Richter V, Schlüter H. Protein species as diagnostic markers. J Proteomics 2016; 134:5-18. [DOI: 10.1016/j.jprot.2015.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/28/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
|
33
|
Somers J, Wilson LA, Kilday JP, Horvilleur E, Cannell IG, Pöyry TAA, Cobbold LC, Kondrashov A, Knight JRP, Puget S, Grill J, Grundy RG, Bushell M, Willis AE. A common polymorphism in the 5' UTR of ERCC5 creates an upstream ORF that confers resistance to platinum-based chemotherapy. Genes Dev 2015; 29:1891-6. [PMID: 26338418 PMCID: PMC4579346 DOI: 10.1101/gad.261867.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/14/2015] [Indexed: 01/08/2023]
Abstract
Somers et al. show that a common polymorphic variant in the ERCC5 5′ UTR generates an upstream ORF that affects both the background expression of this protein and its ability to be synthesized following exposure to agents that cause bulky adduct DNA damage. Individuals that harbor uORF1 have a marked resistance to platinum-based agents. We show that a common polymorphic variant in the ERCC5 5′ untranslated region (UTR) generates an upstream ORF (uORF) that affects both the background expression of this protein and its ability to be synthesized following exposure to agents that cause bulky adduct DNA damage. Individuals that harbor uORF1 have a marked resistance to platinum-based agents, illustrated by the significantly reduced progression-free survival of pediatric ependymoma patients treated with such compounds. Importantly, inhibition of DNA-PKcs restores sensitivity to platinum-based compounds by preventing uORF1-dependent ERCC5 expression. Our data support a model in which a heritable 5′ noncoding mRNA element influences individuals’ responses to platinum-based chemotherapy.
Collapse
Affiliation(s)
- Joanna Somers
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Lindsay A Wilson
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - John-Paul Kilday
- Children's Brain Tumour Research Centre, The Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Emilie Horvilleur
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Ian G Cannell
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tuija A A Pöyry
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Laura C Cobbold
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Alexander Kondrashov
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - John R P Knight
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Stéphanie Puget
- Departement de Neurochirugie Pédiatrique, Hôpital Necker, University Paris V Descartes, 75006 Paris, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Institut Gustave Roussy, 94805 Villejuif, France
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, The Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Martin Bushell
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| | - Anne E Willis
- Medical Research Council Toxicology Unit, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
34
|
Abstract
Hydroxylation is an emerging modification generally catalyzed by a family of ∼70 enzymes that are dependent on oxygen, Fe(II), ascorbate, and the Kreb's cycle intermediate 2-oxoglutarate (2OG). These "2OG oxygenases" sit at the intersection of nutrient availability and metabolism where they have the potential to regulate gene expression and growth in response to changes in co-factor abundance. Characterized 2OG oxygenases regulate fundamental cellular processes by catalyzing the hydroxylation or demethylation (via hydroxylation) of DNA, RNA, or protein. As such they have been implicated in various syndromes and diseases, but particularly cancer. In this review we discuss the emerging role of 2OG oxygenases in gene expression control, examine the regulation of these unique enzymes by nutrient availability and metabolic intermediates, and describe these properties in relation to the expanding role of these enzymes in cancer.
Collapse
|
35
|
Verdes JM, Márquez M, Calliari A, Battes D, Moraña JA, Gimeno EJ, Odriozola E, Giannitti F, Guerrero F, Fidalgo LE, Pumarola M. A novel pathogenic mechanism for cerebellar lesions produced by Solanum bonariense in cattle. J Vet Diagn Invest 2015; 27:278-86. [PMID: 25901005 DOI: 10.1177/1040638715582048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intoxication with Solanum bonariense in cattle causes cerebellar cortical degeneration with perikaryal vacuolation, axonal swelling, and death primarily of Purkinje cells, with accumulation of electron-dense residual storage bodies in membrane-bound vesicles. The pathogenesis of this disease is not fully understood. Previously, we proposed that inhibition of protein synthesis in Purkinje cells among other altered metabolic pathways could lead to cytoskeletal alterations, subsequently altering cell-specific axonal transport. In the present study, immunohistochemical and histochemical methods were used to identify neuronal cytoskeletal alterations and axonal loss, demyelination, and astrogliosis in the cerebellum of intoxicated bovines. Samples of cerebellum from 3 natural and 4 experimental cases and 2 control bovines were studied. Immunoreactivity against neurofilament (NF)-200KDa confirmed marked loss of Purkinje neurons, and phospho-NF protein, β-tubulin, and affinity reaction against phalloidin revealed an altered perikaryal distribution of neuronal cytoskeletal proteins in the remaining Purkinje cells in intoxicated cattle. Reactive astrogliosis in every layer of the cerebellar cortex was also observed with anti-glial fibrillary acidic protein immunohistochemistry. In affected cattle, demyelination and axonal loss in the cerebellar white matter, as well as basket cell loss were demonstrated with Klüver-Barrera and Bielschowsky stains, respectively. Based on these results, we propose that neuronal cytoskeletal alterations with subsequent interference of the axonal transport in Purkinje cells may play a relevant role in the pathogenesis of this neurodegenerative disorder, and also that demyelination and axonal loss in the cerebellar white matter, as well as astrogliosis in the gray matter, likely occur secondarily to Purkinje cell degeneration and death.
Collapse
Affiliation(s)
- José Manuel Verdes
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Mercedes Márquez
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Aldo Calliari
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Daniel Battes
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - José Antonio Moraña
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Eduardo Juan Gimeno
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Ernesto Odriozola
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Federico Giannitti
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Florentina Guerrero
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Luis Eusebio Fidalgo
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Martí Pumarola
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
36
|
Fu Q, Chen Z, Gong X, Cai Y, Chen Y, Ma X, Zhu R, Jin J. β-Catenin expression is regulated by an IRES-dependent mechanism and stimulated by paclitaxel in human ovarian cancer cells. Biochem Biophys Res Commun 2015; 461:21-7. [PMID: 25849888 DOI: 10.1016/j.bbrc.2015.03.161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 03/27/2015] [Indexed: 11/29/2022]
Abstract
Paclitaxel (PTX) is commonly used in the chemotherapy of ovarian cancer, but resistance occurs in most cases, allowing cancer progression. The Wnt/β-catenin pathway has been associated with this resistance, but there are no reports on the regulation of β-catenin expression at the translational level. In the present study, we found that PTX induced different transcription and translation levels of β-catenin in the human ovarian cancer cell lines A2780 and SKOV3. We also demonstrated that β-catenin mRNA contained an internal ribosome entry segment (IRES) that regulated its translation. Using gene transfection and reporter assays, we revealed that the entire CTNNB1 5'-untranslated region (UTR) contributed to IRES activity. Interestingly, we found that c-myc and cyclin D1 increased significantly in transfected cells with increasing PTX concentration, and cell-survival rates remained at 60% while the PTX concentration increased. Suppressing β-catenin resulted in decreased expression of c-myc and cyclin D1 and made these cells less resistant. These results indicate that β-catenin translation is initiated via the IRES and this is regulated by PTX, suggesting that regulation of the IRES-dependent translation of β-catenin may be involved in the cancer cell response to PTX treatment.
Collapse
Affiliation(s)
- Qianyun Fu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Zhen Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Xiaohai Gong
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yanfei Cai
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Yun Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Xin Ma
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Ruiyu Zhu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China.
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China.
| |
Collapse
|
37
|
Yu M, Li P, Basnet SKC, Kumarasiri M, Diab S, Teo T, Albrecht H, Wang S. Discovery of 4-(dihydropyridinon-3-yl)amino-5-methylthieno[2,3-d]pyrimidine derivatives as potent Mnk inhibitors: synthesis, structure-activity relationship analysis and biological evaluation. Eur J Med Chem 2015; 95:116-26. [PMID: 25800647 DOI: 10.1016/j.ejmech.2015.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/15/2014] [Accepted: 03/13/2015] [Indexed: 12/22/2022]
Abstract
Phosphorylation of the eukaryotic initiation factor 4E (eIF4E) by mitogen-activated protein kinase (MAPK)-interacting kinases (Mnks) is essential for oncogenesis but unnecessary for normal development. Thus, pharmacological inhibition of Mnks may offer an effective and non-toxic anti-cancer therapeutic strategy. Herein, we report the discovery of 4-(dihydropyridinon-3-yl)amino-5-methylthieno[2,3-d]pyrimidine derivatives as potent Mnk inhibitors. Docking study of 7a in Mnk2 suggests that the compound is stabilised in the ATP binding site through multiple hydrogen bonds and hydrophobic interaction. Cellular mechanistic studies on MV-4-11 cells with leads 7a, 8e and 8f reveal that they are able to down-regulate the phosphorylated eIF4E, Mcl-1 and cyclin D1, and induce apoptosis.
Collapse
Affiliation(s)
- Mingfeng Yu
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Peng Li
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sunita K C Basnet
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Malika Kumarasiri
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sarah Diab
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Theodosia Teo
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Hugo Albrecht
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia.
| |
Collapse
|
38
|
Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, Shaw PJ, Hautbergue GM. Invited review: decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol 2015; 41:109-34. [PMID: 25319671 PMCID: PMC4329338 DOI: 10.1111/nan.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain-of-function and/or protein loss-of-function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat-associated non-ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntington's disease, spinocerebellar ataxias, C9ORF72-related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins - and how these lead to neurodegeneration - remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression.
Collapse
Affiliation(s)
- M J Walsh
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J E Dodd
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - M J Stopford
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - S R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - G M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
39
|
eIF4A1 is a promising new therapeutic target in ER-negative breast cancer. Cell Death Differ 2015; 22:524-5. [PMID: 25613380 DOI: 10.1038/cdd.2014.210] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
40
|
Chen FC. Alternative RNA structure-coupled gene regulations in tumorigenesis. Int J Mol Sci 2014; 16:452-75. [PMID: 25551597 PMCID: PMC4307256 DOI: 10.3390/ijms16010452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022] Open
Abstract
Alternative RNA structures (ARSs), or alternative transcript isoforms, are critical for regulating cellular phenotypes in humans. In addition to generating functionally diverse protein isoforms from a single gene, ARS can alter the sequence contents of 5'/3' untranslated regions (UTRs) and intronic regions, thus also affecting the regulatory effects of these regions. ARS may introduce premature stop codon(s) into a transcript, and render the transcript susceptible to nonsense-mediated decay, which in turn can influence the overall gene expression level. Meanwhile, ARS can regulate the presence/absence of upstream open reading frames and microRNA targeting sites in 5'UTRs and 3'UTRs, respectively, thus affecting translational efficiencies and protein expression levels. Furthermore, since ARS may alter exon-intron structures, it can influence the biogenesis of intronic microRNAs and indirectly affect the expression of the target genes of these microRNAs. The connections between ARS and multiple regulatory mechanisms underline the importance of ARS in determining cell fate. Accumulating evidence indicates that ARS-coupled regulations play important roles in tumorigenesis. Here I will review our current knowledge in this field, and discuss potential future directions.
Collapse
Affiliation(s)
- Feng-Chi Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli County 350, Taiwan.
| |
Collapse
|
41
|
Francis C, Natarajan S, Lee MT, Khaladkar M, Buckley PT, Sul JY, Eberwine J, Kim J. Divergence of RNA localization between rat and mouse neurons reveals the potential for rapid brain evolution. BMC Genomics 2014; 15:883. [PMID: 25301173 PMCID: PMC4203888 DOI: 10.1186/1471-2164-15-883] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 09/23/2014] [Indexed: 12/12/2022] Open
Abstract
Background Neurons display a highly polarized architecture. Their ability to modify their features under intracellular and extracellular stimuli, known as synaptic plasticity, is a key component of the neurochemical basis of learning and memory. A key feature of synaptic plasticity involves the delivery of mRNAs to distinct sub-cellular domains where they are locally translated. Regulatory coordination of these spatio-temporal events is critical for synaptogenesis and synaptic plasticity as defects in these processes can lead to neurological diseases. In this work, using microdissected dendrites from primary cultures of hippocampal neurons of two mouse strains (C57BL/6 and Balb/c) and one rat strain (Sprague–Dawley), we investigate via microarrays, subcellular localization of mRNAs in dendrites of neurons to assay the evolutionary differences in subcellular dendritic transcripts localization. Results Our microarray analysis highlighted significantly greater evolutionary diversification of RNA localization in the dendritic transcriptomes (81% gene identity difference among the top 5% highly expressed genes) compared to the transcriptomes of 11 different central nervous system (CNS) and non-CNS tissues (average of 44% gene identity difference among the top 5% highly expressed genes). Differentially localized genes include many genes involved in CNS function. Conclusions Species differences in sub-cellular localization may reflect non-functional neutral drift. However, the functional categories of mRNA showing differential localization suggest that at least part of the divergence may reflect activity-dependent functional differences of neurons, mediated by species-specific RNA subcellular localization mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-883) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - James Eberwine
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
42
|
Uversky VN. Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 2014; 1:6. [PMID: 25988147 PMCID: PMC4428494 DOI: 10.3389/fmolb.2014.00006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/06/2014] [Indexed: 12/14/2022] Open
Abstract
Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs) are typically related to regulation, signaling, and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida Tampa, FL, USA ; Biology Department, Faculty of Science, King Abdulaziz University Jeddah, Saudi Arabia ; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
43
|
Hsu TI, Hsu CH, Lee KH, Lin JT, Chen CS, Chang KC, Su CYJ, Hsiao M, Lu PJ. MicroRNA-18a is elevated in prostate cancer and promotes tumorigenesis through suppressing STK4 in vitro and in vivo. Oncogenesis 2014; 3:e99. [PMID: 24752237 PMCID: PMC4007194 DOI: 10.1038/oncsis.2014.12] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) comprise a class of short, non-coding RNAs that regulate protein synthesis through posttranscriptional modifications. In this study, we found significant upregulation of miR-18a in prostate cancer specimens and prostate cancer cell lines compared with the normal controls. MiRNAs can be separated into two groups based on whether they regulate tumor suppressors or oncogenes. In our previous study, we found that miR-18a, which belongs to the miR17-92 cluster, is upregulated in prostate cancer; the objective of this study was to investigate the associated regulatory mechanisms. We found that miR-18a is upregulated in clinical tumor specimens and cancer cell lines. Our bioinformatics analysis showed that the serine/threonine-protein kinase 4 (STK4) 3' untranslated region contains a highly conserved binding site for the miR-18a seed region. Luciferase reporter assays were performed to indicate that STK4 is a direct target of miR-18a. Interestingly, miR-18a knockdown decreased cell growth in prostate cancer cells and significantly decreased prostate tumor growth in in vivo nude mice experiments through STK4-mediated dephosphorylation of AKT and thereby inducing apoptosis. Our results suggest that miR-18a acts as an oncomiR targeting STK4 in prostate cancer, and inhibition of miR-18a expression may offer therapeutically beneficial option for prostate cancer treatment.
Collapse
Affiliation(s)
- T-I Hsu
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - C-H Hsu
- Department of Plastic Surgery, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - K-H Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - J-T Lin
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - C-S Chen
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - K-C Chang
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - C-YJ Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - M Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - P-J Lu
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
44
|
Chen TM, Shih YH, Tseng JT, Lai MC, Wu CH, Li YH, Tsai SJ, Sun HS. Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation. Nucleic Acids Res 2013; 42:2932-44. [PMID: 24334956 PMCID: PMC3950685 DOI: 10.1093/nar/gkt1286] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human fibroblast growth factor 9 (FGF9) is a potent mitogen involved in many physiological processes. Although FGF9 messenger RNA (mRNA) is ubiquitously expressed in embryos, FGF9 protein expression is generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in human malignancies including cancers, but the mechanism remains largely unknown. Here, we report that FGF9 protein, but not mRNA, was increased in hypoxia. Two sequence elements, the upstream open reading frame (uORF) and the internal ribosome entry site (IRES), were identified in the 5' UTR of FGF9 mRNA. Functional assays indicated that FGF9 protein synthesis was normally controlled by uORF-mediated translational repression, which kept the protein at a low level, but was upregulated in response to hypoxia through a switch to IRES-dependent translational control. Our data demonstrate that FGF9 IRES functions as a cellular switch to turn FGF9 protein synthesis ‘on’ during hypoxia, a likely mechanism underlying FGF9 overexpression in cancer cells. Finally, we provide evidence to show that hypoxia-induced translational activation promotes FGF9 protein expression in colon cancer cells. Altogether, this dynamic working model may provide a new direction in anti-tumor therapies and cancer intervention.
Collapse
Affiliation(s)
- Tsung-Ming Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Institute of Bioinformatics and Biosignaling, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan and Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Low WK, Li J, Zhu M, Kommaraju SS, Shah-Mittal J, Hull K, Liu JO, Romo D. Second-generation derivatives of the eukaryotic translation initiation inhibitor pateamine A targeting eIF4A as potential anticancer agents. Bioorg Med Chem 2013; 22:116-25. [PMID: 24359706 DOI: 10.1016/j.bmc.2013.11.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/15/2013] [Accepted: 11/23/2013] [Indexed: 02/06/2023]
Abstract
A series of pateamine A (1) derivatives were synthesized for structure/activity relationship (SAR) studies and a selection of previous generation analogs were re-evaluated based on current information regarding the mechanism of action of these translation inhibitors. Structural modifications in the new generation of derivatives focused on alterations to the C19-C22 Z,E-diene and the trienyl side chain of the previously described simplified, des-methyl, des-amino pateamine A (DMDAPatA, 2). Derivatives were tested for anti-proliferative activity in cell culture and for inhibition of mammalian cap-dependent translation in vitro. Activity was highly dependent on the rigidity and conformation of the macrolide and the functionality of the side chain. The only well tolerated substitutions were replacement of the N,N-dimethyl amino group found on the side chain of 2 with other tertiary amine groups. SAR reported here suggests that this site may be modified in future studies to improve serum stability, cell-type specificity, and/or specificity towards rapidly proliferating cells.
Collapse
Affiliation(s)
- Woon-Kai Low
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| | - Jing Li
- Natural Product LINCHPIN Laboratory, Department of Chemistry, Texas A&M University, P.O. Box 300012, College Station, TX 77842-3012, USA
| | - Mingzhao Zhu
- Natural Product LINCHPIN Laboratory, Department of Chemistry, Texas A&M University, P.O. Box 300012, College Station, TX 77842-3012, USA
| | - Sai Shilpa Kommaraju
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Janki Shah-Mittal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Ken Hull
- Natural Product LINCHPIN Laboratory, Department of Chemistry, Texas A&M University, P.O. Box 300012, College Station, TX 77842-3012, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | - Daniel Romo
- Natural Product LINCHPIN Laboratory, Department of Chemistry, Texas A&M University, P.O. Box 300012, College Station, TX 77842-3012, USA; Department of Chemistry, Texas A&M University, P.O. Box 300012, College Station, TX 77842-3012, USA.
| |
Collapse
|
46
|
A role for eukaryotic initiation factor 4B overexpression in the pathogenesis of diffuse large B-cell lymphoma. Leukemia 2013; 28:1092-102. [PMID: 24135829 PMCID: PMC4017261 DOI: 10.1038/leu.2013.295] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 01/05/2023]
Abstract
Dysregulated expression of factors that control protein synthesis is associated with poor prognosis of many cancers, but the underlying mechanisms are not well defined. Analysis of the diffuse large B-cell lymphoma (DLBCL) translatome revealed selective upregulation of mRNAs encoding anti-apoptotic and DNA repair proteins. We show that enhanced synthesis of these proteins in DLBCL is mediated by the relief of repression that is normally imposed by structure in the 5′-untranslated regions of their corresponding mRNAs. This process is driven by signaling through mammalian target of rapamycin, resulting in increased synthesis of eukaryotic initiation factor (eIF) 4B complex (eIF4B), a known activator of the RNA helicase eIF4A. Reducing eIF4B expression alone is sufficient to decrease synthesis of proteins associated with enhanced tumor cell survival, namely DAXX, BCL2 and ERCC5. Importantly, eIF4B-driven expression of these key survival proteins is directly correlated with patient outcome, and eIF4B, DAXX and ERCC5 are identified as novel prognostic markers for poor survival in DLBCL. Our work provides new insights into the mechanisms by which the cancer-promoting translational machinery drives lymphomagenesis.
Collapse
|
47
|
Abstract
Recent work has demonstrated the importance of post-transcriptional gene regulation in toxic responses. In the present study, we used two rat models to investigate mRNA translation in the liver following xenobiotic-induced toxicity. By combining polysome profiling with genomic methodologies, we were able to assess global changes in hepatic mRNA translation. Dio3 (iodothyronine deiodinase type III) was identified as a gene that exhibited specific translational repression and had a functional role in a number of relevant canonical pathways. Western blot analysis indicated that this repression led to reduced D3 (the protein expressed by Dio3) levels, enhanced over time and with increased dose. Using Northern blotting techniques and qRT-PCR (quantitative reverse transcription–PCR), we confirmed further that there was no reduction in Dio3 mRNA, suggesting that translational repression of Dio3 is an important determinant of the reduced D3 protein expression following liver damage. Finally, we show that drug-induced hepatotoxicity appears to cause localized disruptions in thyroid hormone levels in the liver and plasma. We suggest that this leads to reduced translation of Dio3 mRNA, which results in decreased D3 production. It may therefore be possible that this is an important mechanism by which the liver can, upon early signs of damage, act rapidly to maintain its own energy equilibrium, thereby avoiding global disruption of the hypothalamic–pituitary–thyroid axis.
Collapse
|
48
|
Ishikawa K, Ito K, Inoue JI, Semba K. Cell growth control by stable Rbg2/Gir2 complex formation under amino acid starvation. Genes Cells 2013; 18:859-72. [PMID: 23899355 DOI: 10.1111/gtc.12082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/02/2013] [Indexed: 11/28/2022]
Abstract
The molecular fine-tuning mechanisms underlying adaptive responses to environmental stresses in eukaryotes remain largely unknown. Here, we report on a novel stress-induced cell growth control mechanism involving a highly conserved complex containing Rbg2 and Gir2 subunits, which are the budding yeast orthologs of human Drg2 and Dfrp2, respectively. We found that the complex is responsible for efficient cell growth under amino acid starvation. Using native PAGE analyses, we observed that, individually, Rbg2 and Gir2 were labile proteins. However, they formed a complex that stabilized each other, and this stability became significantly enhanced after amino acid starvation. We observed that the stabilization of the complex was strictly dependent on GDP or GTP binding to Rbg2. A point mutation (S77N) that inactivated nucleotide binding impaired formation of the complex and disrupted the stress-induced cell growth. Interestingly, the complex bound the translational activator Gcn1 in a dose-dependent manner according to the stress level, suggesting a dynamic association with the cellular translational machinery. We propose that the Rbg2/Gir2 complex is a modulator that maintains cellular homoeostasis, thus promoting the survival of eukaryotic organisms in stressful environments.
Collapse
Affiliation(s)
- Kosuke Ishikawa
- Departments of Life Science & Medical Bio-Science, Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | | | | | | |
Collapse
|
49
|
Noutsios GT, Silveyra P, Bhatti F, Floros J. Exon B of human surfactant protein A2 mRNA, alone or within its surrounding sequences, interacts with 14-3-3; role of cis-elements and secondary structure. Am J Physiol Lung Cell Mol Physiol 2013; 304:L722-35. [PMID: 23525782 PMCID: PMC3680765 DOI: 10.1152/ajplung.00324.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/03/2013] [Indexed: 01/22/2023] Open
Abstract
Human surfactant protein A, an innate immunity molecule, is encoded by two genes: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The 5' untranslated (5'UTR) splice variant of SP-A2 (ABD), but not of SP-A1 (AD), contains exon B (eB), which is an enhancer for transcription and translation. We investigated whether eB contains cis-regulatory elements that bind trans-acting factors in a sequence-specific manner as well as the role of the eB mRNA secondary structure. Binding of cytoplasmic NCI-H441 proteins to wild-type eB, eB mutant, AD, and ABD 5'UTR mRNAs were studied by RNA electromobility shift assays (REMSAs). The bound proteins were identified by mass spectroscopy and specific antibodies (Abs). We found that 1) proteins bind eB mRNA in a sequence-specific manner, with two cis-elements identified within eB to be important; 2) eB secondary structure is necessary for binding; 3) mass spectroscopy and specific Abs in REMSAs identified 14-3-3 proteins to bind (directly or indirectly) eB and the natural SP-A2 (ABD) splice variant but not the SP-A1 (AD) splice variant; 4) other ribosomal and cytoskeletal proteins, and translation factors, are also present in the eB mRNA-protein complex; 5) knockdown of 14-3-3 β/α isoform resulted in a downregulation of SP-A2 expression. In conclusion, proteins including the 14-3-3 family bind two cis-elements within eB of hSP-A2 mRNA in a sequence- and secondary structure-specific manner. Differential regulation of SP-A1 and SP-A2 is mediated by the 14-3-3 protein family as well as by a number of other proteins that bind UTRs with or without eB mRNA.
Collapse
Affiliation(s)
- Georgios T Noutsios
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
50
|
Willimott S, Beck D, Ahearne MJ, Adams VC, Wagner SD. Cap-translation inhibitor, 4EGI-1, restores sensitivity to ABT-737 apoptosis through cap-dependent and -independent mechanisms in chronic lymphocytic leukemia. Clin Cancer Res 2013; 19:3212-23. [PMID: 23633452 DOI: 10.1158/1078-0432.ccr-12-2185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The lymph node microenvironment promotes resistance to chemotherapy in chronic lymphocytic leukemia (CLL), partly through induction of BCL2 family prosurvival proteins. Currently available inhibitors do not target all BCL2 family prosurvival proteins and their effectiveness is also modified by proapoptotic BCL2 homology domain 3 (BH3) only protein expression. The goal of this study was to evaluate synergy between the eIF4E/eIF4G interaction inhibitor, 4EGI-1, and the BH3 mimetic, ABT-737. EXPERIMENTAL DESIGN CLL cells were cultured in conditions to mimic the lymph node microenvironment. Protein synthesis and cap-complex formation were determined. Polysome association of mRNAs from BCL2 family survival genes was analyzed by translational profiling. The effects of 4EGI-1 and the BCL2/BCL2L1 antagonist, ABT-737, on CLL cell apoptosis were determined. RESULTS Protein synthesis was increased approximately 6-fold by stromal cell/CD154 culture in a phosphoinositide 3-kinase α (PI3Kα)-specific manner and was reduced by 4EGI-1. PI3K inhibitors and 4EGI-1 also reduced cap-complex formation but only 4EGI-1 consistently reduced BCL2L1 and BCL2A1 protein levels. 4EGI-1, but not PI3K inhibitors or rapamycin, induced an endoplasmic reticulum stress response including proapoptotic NOXA and the translation inhibitor phosphorylated eIF2α. 4EGI-1 and ABT-737 synergized to cause apoptosis, independent of levels of prosurvival protein expression in individual patients. CONCLUSIONS Overall protein synthesis and cap-complex formation are induced by microenvironment stimuli in CLL. Inhibition of the cap-complex was not sufficient to repress BCL2 family prosurvival expression, but 4EGI-1 inhibited BCL2A1 and BCL2L1 while inducing NOXA through cap-dependent and -independent mechanisms. 4EGI-1 and ABT-737 synergized to produce apoptosis, and these agents may be the basis for a therapeutically useful combination.
Collapse
Affiliation(s)
- Shaun Willimott
- Department of Cancer Studies and Molecular Medicine and MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | | | | | | | | |
Collapse
|