1
|
Xu K, Li Z, Mao L, Guo Z, Chen Z, Chai Y, Xie C, Yang X, Na J, Li W, Ou G. AlphaFold2-guided engineering of split-GFP technology enables labeling of endogenous tubulins across species while preserving function. PLoS Biol 2024; 22:e3002615. [PMID: 39159282 PMCID: PMC11361732 DOI: 10.1371/journal.pbio.3002615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/29/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Dynamic properties are essential for microtubule (MT) physiology. Current techniques for in vivo imaging of MTs present intrinsic limitations in elucidating the isotype-specific nuances of tubulins, which contribute to their versatile functions. Harnessing the power of the AlphaFold2 pipeline, we engineered a strategy for the minimally invasive fluorescence labeling of endogenous tubulin isotypes or those harboring missense mutations. We demonstrated that a specifically designed 16-amino acid linker, coupled with sfGFP11 from the split-sfGFP system and integration into the H1-S2 loop of tubulin, facilitated tubulin labeling without compromising MT dynamics, embryonic development, or ciliogenesis in Caenorhabditis elegans. Extending this technique to human cells and murine oocytes, we visualized MTs with the minimal background fluorescence and a pathogenic tubulin isoform with fidelity. The utility of our approach across biological contexts and species set an additional paradigm for studying tubulin dynamics and functional specificity, with implications for understanding tubulin-related diseases known as tubulinopathies.
Collapse
Affiliation(s)
- Kaiming Xu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhiyuan Li
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Linfan Mao
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhengyang Guo
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhe Chen
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Chao Xie
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Xuerui Yang
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Jie Na
- School of Medicine, Tsinghua University, Beijing, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Haertle L, Munawar U, Hernández HNC, Arroyo-Barea A, Heckel T, Cuenca I, Martin L, Höschle C, Müller N, Vogt C, Bischler T, Del Campo PL, Han S, Buenache N, Zhou X, Bassermann F, Waldschmidt J, Steinbrunn T, Rasche L, Stühmer T, Martinez-Lopez J, Martin Kortüm K, Barrio S. Clonal competition assays identify fitness signatures in cancer progression and resistance in multiple myeloma. Hemasphere 2024; 8:e110. [PMID: 38993727 PMCID: PMC11237348 DOI: 10.1002/hem3.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 07/13/2024] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease and the management of relapses is one of the biggest clinical challenges. TP53 alterations are established high-risk markers and are included in the current disease staging criteria. KRAS is the most frequently mutated gene affecting around 20% of MM patients. Applying Clonal Competition Assays (CCA) by co-culturing color-labeled genetically modified cell models, we recently showed that mono- and biallelic alterations in TP53 transmit a fitness advantage to the cells. Here, we report a similar dynamic for two mutations in KRAS (G12A and A146T), providing a biological rationale for the high frequency of KRAS and TP53 alterations at MM relapse. Resistance mutations, on the other hand, did not endow MM cells with a general fitness advantage but rather presented a disadvantage compared to the wild-type. CUL4B KO and IKZF1 A152T transmit resistance against immunomodulatory agents, PSMB5 A20T to proteasome inhibition. However, MM cells harboring such lesions only outcompete the culture in the presence of the respective drug. To better prevent the selection of clones with the potential of inducing relapse, these results argue in favor of treatment-free breaks or a switch of the drug class given as maintenance therapy. In summary, the fitness benefit of TP53 and KRAS mutations was not treatment-related, unlike patient-derived drug resistance alterations that may only induce an advantage under treatment. CCAs are suitable models for the study of clonal evolution and competitive (dis)advantages conveyed by a specific genetic lesion of interest, and their dependence on external factors such as the treatment.
Collapse
Affiliation(s)
- Larissa Haertle
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
- Department of Medicine III, Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Umair Munawar
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Hipólito N C Hernández
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Andres Arroyo-Barea
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
- Department of Biochemistry and Molecular Biology, Pharmacy School Complutense University Madrid Madrid Spain
| | - Tobias Heckel
- Core Unit Systems Medicine University of Würzburg Würzburg Germany
| | - Isabel Cuenca
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Lucia Martin
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Carlotta Höschle
- TranslaTUM, Center for Translational Cancer Research Technical University of Munich Munich Germany
| | - Nicole Müller
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Cornelia Vogt
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | | | - Paula L Del Campo
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Seungbin Han
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Natalia Buenache
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Xiang Zhou
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Florian Bassermann
- Department of Medicine III, Klinikum rechts der Isar Technical University of Munich Munich Germany
- TranslaTUM, Center for Translational Cancer Research Technical University of Munich Munich Germany
| | - Johannes Waldschmidt
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Torsten Steinbrunn
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
- Department of Medical Oncology Dana-Farber Cancer Institute, Harvard Medical School Boston Massachusetts USA
| | - Leo Rasche
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Thorsten Stühmer
- Comprehensive Cancer Center Mainfranken University Hospital Würzburg Würzburg Germany
| | - Joaquin Martinez-Lopez
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - K Martin Kortüm
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Santiago Barrio
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| |
Collapse
|
3
|
Cardoso-Carneiro D, Pinheiro J, Fontão P, Nogueira R, Gabriela-Freitas M, Raquel-Cunha A, Mendes A, Longatto-Filho A, Marques F, Moreira MAR, Reis RM, Martinho O. Unveiling the RKIP and EGFR Inverse Relationship in Solid Tumors: A Case Study in Cervical Cancer. Cancers (Basel) 2024; 16:2182. [PMID: 38927888 PMCID: PMC11202200 DOI: 10.3390/cancers16122182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Raf Kinase Inhibitor Protein (RKIP) is recognized as a bona fide tumor suppressor gene, and its diminished expression or loss is associated with the progression and poor prognosis of various solid tumors. It exerts multifaceted roles in carcinogenesis by modulating diverse intracellular signaling pathways, including those governed by HER receptors such as MAPK. Given the significance of HER receptor overexpression in numerous tumor types, we investigated the potential oncogenic relationship between RKIP and HER receptors in solid tumors. Through a comprehensive in silico analysis of 30 TCGA PanCancer Atlas studies encompassing solid tumors (10,719 samples), we uncovered compelling evidence of an inverse correlation between RKIP and EGFR expression in solid tumors observed in 25 out of 30 studies. Conversely, a predominantly positive association was noted for the other HER receptors (ERBB2, ERBB3, and ERBB4). In particular, cervical cancer (CC) emerged as a tumor type exhibiting a robust inverse association between RKIP and EGFR expression, a finding that was further validated in a cohort of 202 patient samples. Subsequent in vitro experiments involving pharmacological and genetic modulation of EGFR and RKIP showed that RKIP depletion led to significant upregulation of EGFR mRNA levels and induction of EGFR phosphorylation. Conversely, EGFR overactivation decreased RKIP expression in CC cell lines. Additionally, we identified a common molecular signature among patients depicting low RKIP and high EGFR expression and demonstrated the prognostic value of this inverse correlation in CC patients. In conclusion, our findings reveal an inverse association between RKIP and EGFR expression across various solid tumors, shedding new light on the underlying molecular mechanisms contributing to the aggressive phenotype associated with RKIP and EGFR in cervical cancer.
Collapse
Affiliation(s)
- Diana Cardoso-Carneiro
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, 4710-057 Braga, Portugal; (D.C.-C.); (J.P.); (P.F.); (R.N.); (M.G.-F.); (A.R.-C.); (A.M.); (A.L.-F.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Joana Pinheiro
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, 4710-057 Braga, Portugal; (D.C.-C.); (J.P.); (P.F.); (R.N.); (M.G.-F.); (A.R.-C.); (A.M.); (A.L.-F.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Patrícia Fontão
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, 4710-057 Braga, Portugal; (D.C.-C.); (J.P.); (P.F.); (R.N.); (M.G.-F.); (A.R.-C.); (A.M.); (A.L.-F.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Rosete Nogueira
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, 4710-057 Braga, Portugal; (D.C.-C.); (J.P.); (P.F.); (R.N.); (M.G.-F.); (A.R.-C.); (A.M.); (A.L.-F.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- CGC Genetics/Centro de Genética Clínica, Unilabs-Laboratory of Pathology, 4000-432 Porto, Portugal
| | - Maria Gabriela-Freitas
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, 4710-057 Braga, Portugal; (D.C.-C.); (J.P.); (P.F.); (R.N.); (M.G.-F.); (A.R.-C.); (A.M.); (A.L.-F.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Raquel-Cunha
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, 4710-057 Braga, Portugal; (D.C.-C.); (J.P.); (P.F.); (R.N.); (M.G.-F.); (A.R.-C.); (A.M.); (A.L.-F.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Adriana Mendes
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, 4710-057 Braga, Portugal; (D.C.-C.); (J.P.); (P.F.); (R.N.); (M.G.-F.); (A.R.-C.); (A.M.); (A.L.-F.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, 4710-057 Braga, Portugal; (D.C.-C.); (J.P.); (P.F.); (R.N.); (M.G.-F.); (A.R.-C.); (A.M.); (A.L.-F.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Medical Laboratory of Medical Investigation (LIM), Department of Pathology, Medical School, University of São Paulo, São Paulo 01246-903, SP, Brazil
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Fábio Marques
- Department of Pathology, School of Medicine, Federal University of Goiás, Goiás 74605-050, GO, Brazil; (F.M.); (M.A.R.M.)
| | - Marise A. R. Moreira
- Department of Pathology, School of Medicine, Federal University of Goiás, Goiás 74605-050, GO, Brazil; (F.M.); (M.A.R.M.)
| | - Rui M. Reis
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, 4710-057 Braga, Portugal; (D.C.-C.); (J.P.); (P.F.); (R.N.); (M.G.-F.); (A.R.-C.); (A.M.); (A.L.-F.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, 4710-057 Braga, Portugal; (D.C.-C.); (J.P.); (P.F.); (R.N.); (M.G.-F.); (A.R.-C.); (A.M.); (A.L.-F.); (R.M.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| |
Collapse
|
4
|
Sutherland RL, Boyne DJ, Brenner DR, Cheung WY. The Impact of BRAF Mutation Status on Survival Outcomes and Treatment Patterns among Metastatic Colorectal Cancer Patients in Alberta, Canada. Cancers (Basel) 2023; 15:5748. [PMID: 38136294 PMCID: PMC10741517 DOI: 10.3390/cancers15245748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Colorectal cancer presents via multiple different clinical phenotypes that can arise from a variety of different genetic and molecular alterations. The aim of this study was to describe survival outcomes and treatment patterns of metastatic colorectal cancer (mCRC) patients by v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutation status. The Alberta Cancer Registry was used to identify all patients >18 years old who had been diagnosed with mCRC in Alberta between 1 January 2017 and 31 December 2019 and had received at least one cycle of systemic therapy. Treatment patterns were compared between wild-type and mutant BRAF mCRC patients. Cox regression models and Kaplan-Meier curves were created to assess survival differences by both treatment pattern and BRAF status. A total of 488 patients were identified with mCRC, of which 42 (11.4%) were confirmed to have a BRAF mutation. The most common first-line treatment regimen was either capecitabine and oxaliplatin (CAPOX) or leucovorin calcium (folinic acid), fluorouracil, and oxaliplatin (FOLFOX). The median overall survival for mCRC patients was 20.01 months. Mutant BRAF patients had a median survival of 8.21 months compared to 20.03 months among those with wild-type BRAF. BRAF mutations among mCRC patients are associated with a considerably poor prognosis, reinforcing the need for clinical BRAF testing among newly diagnosed patients to better understand their prognosis.
Collapse
Affiliation(s)
- R. Liam Sutherland
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Devon J. Boyne
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Darren R. Brenner
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Winson Y. Cheung
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
5
|
Sharma A, Lysenko A, Boroevich KA, Tsunoda T. DeepInsight-3D architecture for anti-cancer drug response prediction with deep-learning on multi-omics. Sci Rep 2023; 13:2483. [PMID: 36774402 PMCID: PMC9922304 DOI: 10.1038/s41598-023-29644-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
Modern oncology offers a wide range of treatments and therefore choosing the best option for particular patient is very important for optimal outcome. Multi-omics profiling in combination with AI-based predictive models have great potential for streamlining these treatment decisions. However, these encouraging developments continue to be hampered by very high dimensionality of the datasets in combination with insufficiently large numbers of annotated samples. Here we proposed a novel deep learning-based method to predict patient-specific anticancer drug response from three types of multi-omics data. The proposed DeepInsight-3D approach relies on structured data-to-image conversion that then allows use of convolutional neural networks, which are particularly robust to high dimensionality of the inputs while retaining capabilities to model highly complex relationships between variables. Of particular note, we demonstrate that in this formalism additional channels of an image can be effectively used to accommodate data from different omics layers while implicitly encoding the connection between them. DeepInsight-3D was able to outperform other state-of-the-art methods applied to this task. The proposed improvements can facilitate the development of better personalized treatment strategies for different cancers in the future.
Collapse
Affiliation(s)
- Alok Sharma
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia.
| | - Artem Lysenko
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
| | - Keith A Boroevich
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan.
- Laboratory for Medical Science Mathematics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Zhang M, Meng L, Zhang Z, Wu J, Chen X, Wang Y, He J. The relationships of OSBPL3 expression with KI-67 expression and KRAS mutations in CRC: implications for diagnosis and prognosis. BMC Med Genomics 2022; 15:259. [PMID: 36517805 PMCID: PMC9753258 DOI: 10.1186/s12920-022-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND OSBPL3 is overexpressed in a variety of malignancies and is closely associated with tumor growth and metastasis. However, its expression and function in colorectal cancer (CRC) are unclear. We aimed to investigate its prognostic and therapeutic value in this disease by detecting its expression in CRC and its correlation with the clinicopathological characteristics and prognosis of patients. METHODS A total of 92 CRC samples were included in this study. According to the 2020 WHO diagnostic criteria, the criteria of the American Joint Committee on Cancer (AJCC) 8th edition staging system were used. OSBPL3 and Ki-67 expression in these samples was detected by immunohistochemistry. OSBPL3 mRNA expression was detected by qRT-PCR. KRAS/NRAS mutations were detected by an amplification refractory mutation system (ARMS). Data analysis was performed using the statistical analysis software Prism 8. RESULTS OSBPL3 was found to be significantly overexpressed in CRC tumor tissues and was associated with worse progression-free survival and overall survival in patients. Additionally, OSBPL3 expression was negatively correlated with the degree of tumor differentiation. KRAS mutations were detected in approximately 32.6% of patients and were significantly associated with high OSBPL3 expression. In addition, OSBPL3 and Ki-67 expression was significantly correlated. CONCLUSIONS OSBPL3 is highly expressed in CRC samples and predicts a worse prognosis. OSBPL3 may become a new potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Min Zhang
- grid.59053.3a0000000121679639Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Lei Meng
- grid.59053.3a0000000121679639Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Zhaoxuan Zhang
- grid.59053.3a0000000121679639Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Jing Wu
- grid.59053.3a0000000121679639Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Xi Chen
- grid.59053.3a0000000121679639Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| | - Yuejing Wang
- grid.186775.a0000 0000 9490 772XAnhui Medical University, Hefei, Anhui China
| | - Jie He
- grid.59053.3a0000000121679639Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui China
| |
Collapse
|
7
|
Bell PD, Pai RK. Immune Response in Colorectal Carcinoma: A Review of Its Significance as a Predictive and Prognostic Biomarker. Histopathology 2022; 81:696-714. [PMID: 35758208 DOI: 10.1111/his.14713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Colorectal carcinoma is a leading cause of cancer-related death worldwide. There is significant prognostic heterogeneity in stage II and III tumours, necessitating the development of new biomarkers to better identify patients at risk of disease progression. Recently, the tumour immune environment, particularly the type and quantity of T lymphocytes, has been shown to be a useful biomarker in predicting prognosis for patients with colorectal carcinoma. In this review, the significance of the immune response in colorectal carcinoma, including its influence on prognosis and response to therapy, will be detailed.
Collapse
Affiliation(s)
- Phoenix D Bell
- Department of Pathology, University of Pittsburgh Medical Centre, Pittsburgh, PA, 15213, USA
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh Medical Centre, Pittsburgh, PA, 15213, USA
| |
Collapse
|
8
|
Chen R, Wang Z, Liu L, Pan Z. Discovery of Novel Photocaged ERK1/2 Inhibitors as Light-controlled Anticancer Agents. Chem Commun (Camb) 2022; 58:4901-4904. [DOI: 10.1039/d2cc00456a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although extracellular regulated protein kinases (ERKs) are considered important targets for the treatment of various cancers, the occurrence of severe side effects in clinical trials restricts the development of ERK...
Collapse
|
9
|
Shang Y, Ding S, Liu Q. The Effects and Regulative Mechanism of Scutellaria Baicalensis Georgi Stems and Leaves Flavonoids in Promoting Neurogenesis and Improving Memory Impairment Mediated by BDNF-ERK-CREB Signal Pathway in Rats. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:354-366. [PMID: 34455975 DOI: 10.2174/1871527320666210827112048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/30/2021] [Accepted: 07/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND It is well known that Alzheimer's disease (AD) is a degenerative disease, and accompanied by memory impairment and main pathological changes of the extracellular senile plaque (SP) and intracellular neurofibrillary tangles (NFTs). However, there are many evidences showing that the disorders of neurogenesis are also regarded as a new opinion in AD. OBJECTIVE To investigate the effects and regulative mechanism of Scutellaria baicalensis Georgi stems and leaves flavonoids in promoting neurogenesis and improving memory impairment mediated by BDNF-ERK-CREB signal pathway in rats. METHODS Male Wistar rats were intracerebroventricularly injected with amyloid-beta protein 25-35 (Aβ25-35) in combination with aluminum trichloride (AlCl3) and recombinant human transforming growth factor-β1 (RHTGF-β1) (composited Aβ), to establish an AD model. Morris water maze was used to screen AD model of rats and measure the rats' learning and memory ability. The expression of cell neurogenesis related molecule Ki67 protein in the hippocampal gyrus of rats was detected by the immunohistochemical method. The expression of mRNA and protein of Grb2, SOS1, Ras, ERK and BDNF in the BDNF-ERK-CREB signaling pathway, in the hippocampus and cerebral cortex were assayed by the Quantitative real-time PCR (qPCR) and Western blotting methods, respectively. RESULTS Intracerebroventricular injection of composited Aβ could produce the rats' memory impairment, decrease the protein expression of Ki67 in the hippocampal gyrus, and increase the mRNA and protein expression levels of Grb2, SOS1, Ras, ERK and BDNF in the hippocampus and cerebral cortex. However, SSF could significantly ameliorate the rats' memory impairment, lower the reduction of Ki67 protein expression in the hippocampal gyrus and regulate the mRNA and protein expression abnormal levels of Grb2, SOS1, Ras, ERK and BDNF in the hippocampus and cerebral cortex induced by composited Aβ. CONCLUSION Composited Aβ can result in memory impairment, decrease neurogenesis and regulate the mRNA and protein abnormal expression of Grb2, SOS1, Ras, ERK and BDNF in BDNF-ERK-CREB signaling pathway. The effects of SSF in promoting neurogenesis and improving memory impairment may be related to the regulation in Grb2, SOS1, Ras, ERK and BDNF molecules' expression of the BDNF-ERK-CREB signaling pathway.
Collapse
Affiliation(s)
- Yazhen Shang
- Institute of Traditional Chinese Medicine, Chengde Medical College / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, An Yuan Road, Chengde 067000. China
| | - Shengkai Ding
- Institute of Traditional Chinese Medicine, Chengde Medical College / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, An Yuan Road, Chengde 067000. China
| | - Qianqian Liu
- Institute of Traditional Chinese Medicine, Chengde Medical College / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, An Yuan Road, Chengde 067000. China
| |
Collapse
|
10
|
Lu JW, Sun Y, Fong PSA, Lin LI, Liu D, Gong Z. Lipopolysaccharides Enhance Epithelial Hyperplasia and Tubular Adenoma in Intestine-Specific Expression of krasV12 in Transgenic Zebrafish. Biomedicines 2021; 9:biomedicines9080974. [PMID: 34440178 PMCID: PMC8393945 DOI: 10.3390/biomedicines9080974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intestinal carcinogenesis is a multistep process that begins with epithelial hyperplasia, followed by a transition to an adenoma and then to a carcinoma. Many etiological factors, including KRAS mutations and inflammation, have been implicated in oncogenesis. However, the potential synergistic effects between KRAS mutations and inflammation as well as the potential mechanisms by which they promote intestinal carcinogenesis remain unclear. Thus, the objective of this study was to investigate the synergistic effects of krasV12, lipopolysaccharides (LPS), and/or dextran sulfate sodium (DSS) on inflammation, tumor progression, and intestinal disorders using transgenic adults and larvae of zebrafish. Histopathology and pathological staining were used to examine the intestines of krasV12 transgenic zebrafish treated with LPS and/or DSS. LPS and/or DSS treatment enhanced intestinal inflammation in krasV12 transgenic larvae with concomitant increases in the number of neutrophils and macrophages in the intestines. The expression of krasV12, combined with LPS treatment, also enhanced epithelial hyperplasia and tubular adenoma, demonstrated by histopathological examinations and by increases in cell apoptosis, cell proliferation, and downstream signaling of phosphorylated AKT serine/threonine kinase 1 (AKT), extracellular-signal-regulated kinase (ERK), and histone. We also found that krasV12 expression, combined with LPS treatment, significantly enhanced changes in intestinal morphology, specifically (1) decreases in goblet cell number, goblet cell size, villi height, and intervilli space, as well as (2) increases in villi width and smooth muscle thickness. Moreover, krasV12 transgenic larvae cotreated with DSS and LPS exhibited exacerbated intestinal inflammation. Cotreatment with DSS and LPS in krasV12-expressing transgenic adult zebrafish also enhanced epithelial hyperplasia and tubular adenoma, compared with wild-type fish that received the same cotreatment. In conclusion, our data suggest that krasV12 expression, combined with LPS and/or DSS treatment, can enhance intestinal tumor progression by activating the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway and may provide a valuable in vivo platform to investigate tumor initiation and antitumor drugs for gastrointestinal cancers.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (Y.S.); (P.-S.A.F.)
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan;
- Correspondence: (J.-W.L.); (Z.G.); Tel.: +65-6516-2860 (Z.G.)
| | - Yuxi Sun
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (Y.S.); (P.-S.A.F.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Pei-Shi Angelina Fong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (Y.S.); (P.-S.A.F.)
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan;
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Dong Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (Y.S.); (P.-S.A.F.)
- Correspondence: (J.-W.L.); (Z.G.); Tel.: +65-6516-2860 (Z.G.)
| |
Collapse
|
11
|
Sekizawa K, Nakagawa K, Ichikawa Y, Suwa H, Ozawa M, Momiyama M, Ishibe A, Watanabe J, Ota M, Kato I, Endo I. Relationship between stromal regulatory T cells and the response to neoadjuvant chemotherapy for locally advanced rectal cancer. Surg Today 2021; 52:198-206. [PMID: 34081199 DOI: 10.1007/s00595-021-02311-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/25/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND In addition to the direct power of anticancer drugs, the effectiveness of anticancer therapy depends on the host immune function. The present study investigated whether or not the reduction rate and histological response of preoperative chemotherapy were related to the immune microenvironment surrounding a primary tumor of the rectum. METHODS Sixty-five patients received preoperative chemotherapy followed by resection from 2012 to 2014; all of these patients were retrospectively analyzed. CD3, CD8, and FoxP3 were immunohistochemically examined as markers for T lymphocytes, cytotoxic T lymphocytes, and regulatory T lymphocytes (Treg), respectively. The correlation between the tumor-infiltrating lymphocyte composition and the tumor reduction rate and histological response to neoadjuvant chemotherapy was investigated. RESULTS The average tumor reduction rate was 41.5% ± 18.8%. According to RECIST, 47 patients (72.3%) achieved a partial response (PR), and 1 patient (1.5%) achieved a complete response (CR). Eight patients (12.3%) showed a grade 2 histological response, and 2 (3.1%) showed a grade 3 response. A multivariate analysis demonstrated that a low Treg infiltration in stromal cell areas was significantly associated with the achievement of a PR or CR [odds ratio (OR) 7.69; 95% confidence interval (CI) 1.96-33.33; p < 0.01] and a histological grade 2 or 3 response (OR 11.11; 95% CI 1.37-98.04; p = 0.02). CONCLUSION A low Treg infiltration in the stromal cell areas may be a marker of a good response to neoadjuvant chemotherapy in patients with locally advanced rectal cancer.
Collapse
Affiliation(s)
- Kentaro Sekizawa
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazuya Nakagawa
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yasushi Ichikawa
- Department of Oncology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirokazu Suwa
- Department of Surgery, Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Mayumi Ozawa
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Masashi Momiyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Atsushi Ishibe
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Jun Watanabe
- Department of Surgery, Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Mitsuyoshi Ota
- Department of Surgery, Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
12
|
Harikrishnan V, Kumari S, Ramkumar S, Sankaran R, Ramalingam S, Sairam T. Correlation of the Expression of BRAF V600E Mutation With Various Phenotypic Expressions of Thyroid Neoplasms. Cureus 2021; 13:e16048. [PMID: 34345541 PMCID: PMC8322827 DOI: 10.7759/cureus.16048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/07/2022] Open
Abstract
Aims We aimed to assess the incidence of the BRAF V600E mutation in thyroid neoplasms at a tertiary care center and its association with various phenotypic features. Methods and material We included all cases diagnosed as thyroid neoplasm in the past decade at the Department of Pathology of our institute and obtained their clinical details from the medical records department of the institute after obtaining permission from the authorities and due International Human Epigenome Consortium clearance. We included data on age, sex, clinical presentation, hormone status, and T and N status of the malignant neoplasms. Hematoxylin and eosin (H&E) slides of all cases were evaluated for the type of neoplasm, nuclear features, invasion into the capsule and vascular spaces, extrathyroidal extension, lymph node metastases, mitoses, necrosis, and presence/absence of amyloid. Paraffin blocks of sections with high tumor density and less normal tissue were chosen for evaluation after H&E staining. The slides showing tumors with large areas of hemorrhage, cystic change, or necrosis were excluded. Two primers were used to amplify a 339-bp fragment containing the V600E mutation in exon 15 of BRAF. Tissues were prepared from formalin-fixed paraffin-embedded (FFPE) blocks, and DNA was isolated using a standard protocol BRAF NF and BRAF NR Primer Standardized Protocol For FFPE Tissue DNA. Percentages and tables have been used for data presentation. Results Among 47 identified cases, 14 were positive for the BRAF V600E mutation and had papillary carcinoma (n = 9) or follicular neoplasms (n = 5; follicular adenoma, n = 3; follicular carcinoma, n = 2). In the BRAF-positive papillary carcinomas, five cases were aged 20-30 years, eight were female, eight (88.88%) were euthyroid, and one was hypothyroid. Furthermore, 55.55% (5/9 cases) of BRAF-positive cases were stage I, 33.3% (3/9 cases) were stage II, and 0.02% (1/9 cases) were stage III. Conclusions In our cohort, 31% of cases of papillary thyroid carcinoma (PTC) and 18.72% of follicular neoplasms expressed the BRAF V600E mutation. BRAF V600E mutation-positive papillary thyroid carcinomas consistently showed all characteristic nuclear features, such as nuclear crowding, overlapping, and grooves. Considering the greater prevalence in the younger age group, the importance of mutation surveillance in PTCs for a total thyroidectomy may be warranted in mutation-positive patients.
Collapse
Affiliation(s)
| | - Shantha Kumari
- Pathology, PSG institute of medical sciences and research, Coimbatore, IND
| | | | - Ramalingam Sankaran
- Pharmacology, PSG Institute of Medical Sciences and Research, Coimbatore, IND
| | - Sudha Ramalingam
- Community Medicine, PSG Institute of Medical Sciences and Research, Coimbatore, IND
| | - Thiagarajan Sairam
- Molecular Biology, PSG Institute of Medical Sciences and Research, Coimbatore, IND
| |
Collapse
|
13
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
14
|
Mahmoud A, Elkhalifa D, Alali F, Al Moustafa AE, Khalil A. Novel Polymethoxylated Chalcones as Potential Compounds Against KRAS-Mutant Colorectal Cancers. Curr Pharm Des 2020; 26:1622-1633. [PMID: 32026770 DOI: 10.2174/1381612826666200206095400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND/OBJECTIVE KRAS-mutant colorectal cancers (CRC) are tumors that are associated with poor prognosis. However, no effective treatments are available to target them. Therefore, we designed and synthesized novel chalcone analogs, small organic molecules, to investigate their effects on KRAS-mutant CRC cells. METHODS Fourteen new chalcone analogs were synthesized, optimized, characterized, and tested against two KRAS-mutant CRC cell lines (HCT-116 and LoVo), one p-53 and BRAF mutant CRC cell line (HT-29) and one normal immortalized colon cells (NCE-1 E6/E7). Effects on cell viability, apoptosis, cell cycle, migration, colony formation, EMT, and angiogenesis were investigated. RESULTS Compounds 3 and 14 were the most effective. Compound 3 showed potent activity against HCT-116 and LoVo cell lines (GI50 of 6.10 μM and 7.00 μM, respectively). While compound 14 showed GI50 of 8.60 μM and 8.80 μM on HCT-116 and LoVo cell lines, respectively. Both compounds were approximately 2-3 times more selective toward cancer cells rather than normal colon cells. Compound 3 was effective in inducing apoptosis in HCT-116 cells via Bax upregulation and Bcl-2 downregulation. Invasion and metastasis of KRAS-mutant cells were modulated by compounds 3 and 14 through significant inhibition of cell migration and the prevention of colony formation. In addition, they reversed EMT by downregulation of EMT markers (vimentin, fascin, and β- catenin) and upregulation of cell-cell adhesion marker, E-cadherin. Furthermore, compounds 3 and 14 had significantly inhibited angiogenesis in ovo. CONCLUSION Compounds 3 and 14 represent potent and selective leads for KRAS-mutant CRC cells, thus, further in vitro and in vivo studies are necessary to confirm their effect on KRAS-mutant CRCs.
Collapse
Affiliation(s)
- Alaa Mahmoud
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Dana Elkhalifa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Feras Alali
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Ashraf Khalil
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
15
|
Cao Y, Gu J, Yan L, Deng S, Mao F, Cai W, Li H, Liu X, Wang J, Wu K, Cai K. The value of haematological parameters and serum tumour markers for predicting KRAS mutations in 784 Chinese colorectal cancer patients: a retrospective analysis. BMC Cancer 2020; 20:1099. [PMID: 33183271 PMCID: PMC7659200 DOI: 10.1186/s12885-020-07551-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Identifying the mutation status of KRAS is important for optimizing treatment in patients with colorectal cancer (CRC). The aim of this study was to investigate the predictive value of haematological parameters and serum tumour markers (STMs) for KRAS gene mutations. METHODS The clinical data of patients with colorectal cancer from January 2014 to December 2018 were retrospectively collected, and the associations between KRAS mutations and other indicators were analysed. Receiver operating characteristic (ROC) curve analysis was performed to quantify the predictive value of these factors. Univariate and multivariate logistic regression models were applied to identify predictors of KRAS mutations by calculating the odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). RESULTS KRAS mutations were identified in 276 patients (35.2%). ROC analysis revealed that age, CA12-5, AFP, SCC, CA72-4, CA15-3, FERR, CYFRA21-1, MCHC, and tumor location could not predict KRAS mutations (P = 0.154, 0.177, 0.277, 0.350, 0.864, 0.941, 0.066, 0.279, 0.293, and 0.053 respectively), although CEA, CA19-9, NSE and haematological parameter values showed significant predictive value (P = 0.001, < 0.001, 0.043 and P = 0.003, < 0.001, 0.001, 0.031, 0.030, 0.016, 0.015, 0.019, and 0.006, respectively) but without large areas under the curve. Multivariate logistic regression analysis showed that CA19-9 was significantly associated with KRAS mutations and was the only independent predictor of KRAS positivity (P = 0.016). CONCLUSIONS Haematological parameters and STMs were related to KRAS mutation status, and CA19-9 was an independent predictive factor for KRAS gene mutations. The combination of these clinical factors can improve the ability to identify KRAS mutations in CRC patients.
Collapse
Affiliation(s)
- Yinghao Cao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junnan Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Lizhao Yan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Shenghe Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fuwei Mao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Wentai Cai
- College of life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hang Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Xinghua Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
16
|
Wei J, Rybczynska AA, Meng P, Terpstra M, Saber A, Sietzema J, Timens W, Schuuring E, Hiltermann TJN, Groen HJM, van der Wekken AJ, van den Berg A, Kok K. An All-In-One Transcriptome-Based Assay to Identify Therapy-Guiding Genomic Aberrations in Nonsmall Cell Lung Cancer Patients. Cancers (Basel) 2020; 12:cancers12102843. [PMID: 33019710 PMCID: PMC7650834 DOI: 10.3390/cancers12102843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
The number of genomic aberrations known to be relevant in making therapeutic decisions for non-small cell lung cancer patients has increased in the past decade. Multiple molecular tests are required to reliably establish the presence of these aberrations, which is challenging because available tissue specimens are generally small. To optimize diagnostic testing, we developed a transcriptome-based next-generation sequencing (NGS) assay based on single primed enrichment technology. We interrogated 11 cell lines, two patient-derived frozen biopsies, nine pleural effusion, and 29 formalin-fixed paraffin-embedded (FFPE) samples. All clinical samples were selected based on previously identified mutations at the DNA level in EGFR, KRAS, ALK, PIK3CA, BRAF, AKT1, MET, NRAS, or ROS1 at the DNA level, or fusion genes at the chromosome level, or by aberrant protein expression of ALK, ROS1, RET, and NTRK1. A successful analysis is dependent on the number of unique reads and the RNA quality, as indicated by the DV200 value. In 27 out of 51 samples with >50 K unique reads and a DV200 >30, all 19 single nucleotide variants (SNVs)/small insertions and deletions (INDELs), three MET exon 14 skipping events, and 13 fusion gene transcripts were detected at the RNA level, giving a test accuracy of 100%. In summary, this lung-cancer-specific all-in-one transcriptome-based assay for the simultaneous detection of mutations and fusion genes is highly sensitive.
Collapse
Affiliation(s)
- Jiacong Wei
- Department of Genetics, University Medical Centre Groningen, University of Groningen, 9700RB Groningen, The Netherlands; (J.W.); (A.A.R.); (M.T.)
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Anna A. Rybczynska
- Department of Genetics, University Medical Centre Groningen, University of Groningen, 9700RB Groningen, The Netherlands; (J.W.); (A.A.R.); (M.T.)
| | - Pei Meng
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, 9700RB Groningen, The Netherlands; (P.M.); (A.S.); (J.S.); (W.T.); (E.S.); (A.v.d.B.)
- Department of Pathology, Collaborative and Creative Centre, Shantou University Medical College, Shantou 515063, Guangdong, China
| | - Martijn Terpstra
- Department of Genetics, University Medical Centre Groningen, University of Groningen, 9700RB Groningen, The Netherlands; (J.W.); (A.A.R.); (M.T.)
| | - Ali Saber
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, 9700RB Groningen, The Netherlands; (P.M.); (A.S.); (J.S.); (W.T.); (E.S.); (A.v.d.B.)
| | - Jantine Sietzema
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, 9700RB Groningen, The Netherlands; (P.M.); (A.S.); (J.S.); (W.T.); (E.S.); (A.v.d.B.)
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, 9700RB Groningen, The Netherlands; (P.M.); (A.S.); (J.S.); (W.T.); (E.S.); (A.v.d.B.)
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, 9700RB Groningen, The Netherlands; (P.M.); (A.S.); (J.S.); (W.T.); (E.S.); (A.v.d.B.)
| | - T. Jeroen N. Hiltermann
- Department of Pulmonary Diseases, University Medical Centre Groningen, University of Groningen, 9700RB Groningen, The Netherlands; (T.J.N.H.); (H.J.M.G.); (A.J.v.d.W.)
| | - Harry J. M. Groen
- Department of Pulmonary Diseases, University Medical Centre Groningen, University of Groningen, 9700RB Groningen, The Netherlands; (T.J.N.H.); (H.J.M.G.); (A.J.v.d.W.)
| | - Anthonie J. van der Wekken
- Department of Pulmonary Diseases, University Medical Centre Groningen, University of Groningen, 9700RB Groningen, The Netherlands; (T.J.N.H.); (H.J.M.G.); (A.J.v.d.W.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, 9700RB Groningen, The Netherlands; (P.M.); (A.S.); (J.S.); (W.T.); (E.S.); (A.v.d.B.)
| | - Klaas Kok
- Department of Genetics, University Medical Centre Groningen, University of Groningen, 9700RB Groningen, The Netherlands; (J.W.); (A.A.R.); (M.T.)
- Correspondence: ; Tel.: +31-655256364/+31-503617100
| |
Collapse
|
17
|
Upregulation of OSBPL3 by HIF1A promotes colorectal cancer progression through activation of RAS signaling pathway. Cell Death Dis 2020; 11:571. [PMID: 32709922 PMCID: PMC7381633 DOI: 10.1038/s41419-020-02793-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Oxysterol-binding protein like protein 3 (OSBPL3) has been shown involving in the development of several human cancers. However, the relationship between OSBPL3 and colorectal cancer (CRC), particularly the role of OSBPL3 in the proliferation, invasion and metastasis of CRC remains unclear. In this study, we investigated the role of OSBPL3 in CRC and found that its expression was significantly higher in CRC tissues than that in normal tissues. In addition, high expression of OSBPL3 was closely related to poor differentiation, advanced TNM stage and poor prognosis of CRC. Further experiments showed that over-expression of OSBPL3 promoted the proliferation, invasion and metastasis of CRC in vitro and in vivo models. Moreover, we revealed that OSBPL3 promoted CRC progression through activation of RAS signaling pathway. Furthermore, we demonstrated that hypoxia induced factor 1 (HIF-1A) can regulate the expression of OSBPL3 via binding to the hypoxia response element (HRE) in the promoter of OSBPL3. In summary, Upregulation of OSBPL3 by HIF1A promotes colorectal cancer progression through activation of RAS signaling pathway. This novel mechanism provides a comprehensive understanding of both OSBPL3 and the RAS signaling pathway in the progression of CRC and indicates that the HIF1A–OSBPL3–RAS axis is a potential target for early therapeutic intervention in CRC progression.
Collapse
|
18
|
Ward RA, Fawell S, Floc'h N, Flemington V, McKerrecher D, Smith PD. Challenges and Opportunities in Cancer Drug Resistance. Chem Rev 2020; 121:3297-3351. [PMID: 32692162 DOI: 10.1021/acs.chemrev.0c00383] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been huge progress in the discovery of targeted cancer therapies in recent years. However, even for the most successful and impactful cancer drugs which have been approved, both innate and acquired mechanisms of resistance are commonplace. These emerging mechanisms of resistance have been studied intensively, which has enabled drug discovery scientists to learn how it may be possible to overcome such resistance in subsequent generations of treatments. In some cases, novel drug candidates have been able to supersede previously approved agents; in other cases they have been used sequentially or in combinations with existing treatments. This review summarizes the current field in terms of the challenges and opportunities that cancer resistance presents to drug discovery scientists, with a focus on small molecule therapeutics. As part of this review, common themes and approaches have been identified which have been utilized to successfully target emerging mechanisms of resistance. This includes the increase in target potency and selectivity, alternative chemical scaffolds, change of mechanism of action (covalents, PROTACs), increases in blood-brain barrier permeability (BBBP), and the targeting of allosteric pockets. Finally, wider approaches are covered such as monoclonal antibodies (mAbs), bispecific antibodies, antibody drug conjugates (ADCs), and combination therapies.
Collapse
Affiliation(s)
- Richard A Ward
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stephen Fawell
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nicolas Floc'h
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Paul D Smith
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
19
|
Ibrahim H, Lim YC. KRAS-associated microRNAs in colorectal cancer. Oncol Rev 2020; 14:454. [PMID: 32685110 PMCID: PMC7365993 DOI: 10.4081/oncol.2020.454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancerrelated death worldwide. Despite progress in treatment of cancers, CRC with KRAS mutations are resistant towards anti-EGFR treatment. MicroRNAs have been discovered in an exponential manner within the last few years and have been known to exert either an onco-miRNA or tumor suppressive effect. Here, the various roles of microRNAs involved in the initiation and progression of KRAS-regulated CRC are summarized. A thorough understanding of the roles and functions of the plethora of microRNAs associated with KRAS in CRC will grant insights into the provision of other potential therapeutic targets as well as treatment. MicroRNAs may also serve as potential molecular classifier or early detection biomarkers for future treatment and diagnosis of CRC.
Collapse
Affiliation(s)
| | - Ya Chee Lim
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei Darussalam
| |
Collapse
|
20
|
Naulaerts S, Menden MP, Ballester PJ. Concise Polygenic Models for Cancer-Specific Identification of Drug-Sensitive Tumors from Their Multi-Omics Profiles. Biomolecules 2020; 10:E963. [PMID: 32604779 PMCID: PMC7356608 DOI: 10.3390/biom10060963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
In silico models to predict which tumors will respond to a given drug are necessary for Precision Oncology. However, predictive models are only available for a handful of cases (each case being a given drug acting on tumors of a specific cancer type). A way to generate predictive models for the remaining cases is with suitable machine learning algorithms that are yet to be applied to existing in vitro pharmacogenomics datasets. Here, we apply XGBoost integrated with a stringent feature selection approach, which is an algorithm that is advantageous for these high-dimensional problems. Thus, we identified and validated 118 predictive models for 62 drugs across five cancer types by exploiting four molecular profiles (sequence mutations, copy-number alterations, gene expression, and DNA methylation). Predictive models were found in each cancer type and with every molecular profile. On average, no omics profile or cancer type obtained models with higher predictive accuracy than the rest. However, within a given cancer type, some molecular profiles were overrepresented among predictive models. For instance, CNA profiles were predictive in breast invasive carcinoma (BRCA) cell lines, but not in small cell lung cancer (SCLC) cell lines where gene expression (GEX) and DNA methylation profiles were the most predictive. Lastly, we identified the best XGBoost model per cancer type and analyzed their selected features. For each model, some of the genes in the selected list had already been found to be individually linked to the response to that drug, providing additional evidence of the usefulness of these models and the merits of the feature selection scheme.
Collapse
Affiliation(s)
- Stefan Naulaerts
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France;
- Institut Paoli-Calmettes, F-13009 Marseille, France
- Aix-Marseille Université, F-13284 Marseille, France
- CNRS UMR7258, F-13009 Marseille, France
- Ludwig Institute for Cancer Research, de Duve Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Michael P. Menden
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, 85764 Neuherberg, Germany;
- Department of Biology, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsried, Germany
- German Centre for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Pedro J. Ballester
- Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France;
- Institut Paoli-Calmettes, F-13009 Marseille, France
- Aix-Marseille Université, F-13284 Marseille, France
- CNRS UMR7258, F-13009 Marseille, France
| |
Collapse
|
21
|
Liu H, Nazmun N, Hassan S, Liu X, Yang J. BRAF mutation and its inhibitors in sarcoma treatment. Cancer Med 2020; 9:4881-4896. [PMID: 32476297 PMCID: PMC7367634 DOI: 10.1002/cam4.3103] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/26/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
The mitogen‐activated protein kinase (MAPK) signaling pathway plays a significant role in mediating cellular physiological activities, such as proliferation, differentiation, apoptosis, and senescence. This signaling pathway is composed of several major proto‐oncogenes of RAS/RAF/MEK/ERK, among which the BRAF proto‐oncogene, as one of the three members of the RAF family, has a higher mutation rate than ARAF and CRAF and has attracted extensive attention. Regarding the BRAF mutation, approximately 95% of BRAF mutations belong to the BRAF V600E mutation, which can enhance the expression of the MAPK signaling pathway and is thus related to the occurrence and development of various malignant tumors and has been successfully identified as a therapeutic target. Moreover, drug resistance to BRAF inhibitor treatment also appears to be an important issue. Considering the successful use of BRAF inhibitors in melanoma, we provide a brief overview of the BRAF mutations, including their basic structures and activation mechanisms, and the new classification method for BRAF mutations. Most importantly, we summarize the results of BRAF inhibitor treatment in different sarcomas. To overcome drug resistance to BRAF inhibitor treatment, we also outline the different mechanisms of drug resistance to BRAF inhibitor treatment and introduce the combination strategy of BRAF inhibitors with other targeted therapies.
Collapse
Affiliation(s)
- Haotian Liu
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, P.R. China
| | - Nahar Nazmun
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, P.R. China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, P.R. China.,International Medical School, Tianjin Medical University, Tianjin, P.R. China
| | - Shafat Hassan
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, P.R. China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, P.R. China.,International Medical School, Tianjin Medical University, Tianjin, P.R. China
| | - Xinyue Liu
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, P.R. China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, P.R. China
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, P.R. China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, P.R. China
| |
Collapse
|
22
|
Exon-4 Mutations in KRAS Affect MEK/ERK and PI3K/AKT Signaling in Human Multiple Myeloma Cell Lines. Cancers (Basel) 2020; 12:cancers12020455. [PMID: 32079091 PMCID: PMC7072554 DOI: 10.3390/cancers12020455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/12/2023] Open
Abstract
Approximately 20% of multiple myeloma (MM) cases harbor a point mutation in KRAS. However, there is still no final consent on whether KRAS-mutations are associated with disease outcome. Specifically, no data exist on whether KRAS-mutations have an impact on survival of MM patients at diagnosis in the era of novel agents. Direct blockade of KRAS for therapeutic purposes is mostly impossible, but recently a mutation-specific covalent inhibitor targeting KRASp.G12C entered into clinical trials. However, other KRAS hotspot-mutations exist in MM patients, including the less common exon-4 mutations. For the current study, the coding regions of KRAS were deep-sequenced in 80 newly diagnosed MM patients, uniformely treated with three cycles of bortezomib plus dexamethasone and cyclophosphamide (VCD)-induction, followed by high-dose chemotherapy and autologous stem cell transplantation. Moreover, the functional impact of KRASp.G12A and the exon-4 mutations p.A146T and p.A146V on different survival pathways was investigated. Specifically, KRASWT, KRASp.G12A, KRASp.A146T, and KRASp.A146V were overexpressed in HEK293 cells and the KRASWT MM cell lines JJN3 and OPM2 using lentiviral transduction and the Sleeping Beauty vector system. Even though KRAS-mutations were not correlated with survival, all KRAS-mutants were found capable of potentially activating MEK/ERK- and sustaining PI3K/AKT-signaling in MM cells.
Collapse
|
23
|
Doxorubicin conjugated AuNP/biopolymer composites facilitate cell cycle regulation and exhibit superior tumor suppression potential in KRAS mutant colorectal cancer. J Biotechnol 2019; 306:149-158. [DOI: 10.1016/j.jbiotec.2019.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
|
24
|
Ward RA, Anderton MJ, Bethel P, Breed J, Cook C, Davies EJ, Dobson A, Dong Z, Fairley G, Farrington P, Feron L, Flemington V, Gibbons FD, Graham MA, Greenwood R, Hanson L, Hopcroft P, Howells R, Hudson J, James M, Jones CD, Jones CR, Li Y, Lamont S, Lewis R, Lindsay N, McCabe J, McGuire T, Rawlins P, Roberts K, Sandin L, Simpson I, Swallow S, Tang J, Tomkinson G, Tonge M, Wang Z, Zhai B. Discovery of a Potent and Selective Oral Inhibitor of ERK1/2 (AZD0364) That Is Efficacious in Both Monotherapy and Combination Therapy in Models of Nonsmall Cell Lung Cancer (NSCLC). J Med Chem 2019; 62:11004-11018. [DOI: 10.1021/acs.jmedchem.9b01295] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Richard A. Ward
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Mark J. Anderton
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Paul Bethel
- Chemical Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield Campus, Macclesfield SK10 2NA, U.K
| | - Jason Breed
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Calum Cook
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Emma J. Davies
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Andrew Dobson
- Chemical Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield Campus, Macclesfield SK10 2NA, U.K
| | - Zhiqiang Dong
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Gary Fairley
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Paul Farrington
- Bioscience, Oncology R&D, AstraZeneca, Alderley Park, Macclesfield SK10 4TG, U.K
| | - Lyman Feron
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Vikki Flemington
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Francis D. Gibbons
- DMPK, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Mark A. Graham
- Chemical Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield Campus, Macclesfield SK10 2NA, U.K
| | - Ryan Greenwood
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Lyndsey Hanson
- Bioscience, Oncology R&D, AstraZeneca, Alderley Park, Macclesfield SK10 4TG, U.K
| | - Philip Hopcroft
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Rachel Howells
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | | | | | | | | | - Yongchao Li
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Scott Lamont
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Richard Lewis
- Medicinal Chemistry, Respiratory, Inflammation and Autoimmune (RIA), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Nicola Lindsay
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - James McCabe
- Chemical Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield Campus, Macclesfield SK10 2NA, U.K
| | - Thomas McGuire
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Philip Rawlins
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Karen Roberts
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | | | | | - Steve Swallow
- Chemical Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield Campus, Macclesfield SK10 2NA, U.K
| | - Jia Tang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Gary Tomkinson
- Chemical Development, Pharmaceutical Technology & Development, AstraZeneca, Macclesfield Campus, Macclesfield SK10 2NA, U.K
| | - Michael Tonge
- Oncology and Discovery Sciences R&D, AstraZeneca, Darwin Building and Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Rd, Cambridge CB4 0WG, U.K
| | - Zhenhua Wang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P.R. China
| | - Baochang Zhai
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P.R. China
| |
Collapse
|
25
|
Roncarati R, Lupini L, Shankaraiah RC, Negrini M. The Importance of microRNAs in RAS Oncogenic Activation in Human Cancer. Front Oncol 2019; 9:988. [PMID: 31612113 PMCID: PMC6777413 DOI: 10.3389/fonc.2019.00988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
microRNAs (miRNAs) regulate gene expression by modulating the translation of protein-coding RNAs. Their aberrant expression is involved in various human diseases, including cancer. Here, we summarize the experimental pieces of evidence that proved how dysregulated miRNA expression can lead to RAS (HRAS, KRAS, or NRAS) activation irrespective of their oncogenic mutations. These findings revealed relevant pathogenic mechanisms as well as mechanisms of resistance to target therapies. Based on this knowledge, potential approaches for the control of RAS oncogenic activation can be envisioned.
Collapse
Affiliation(s)
- Roberta Roncarati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,CNR, Institute of Genetics and Biomedical Research, National Research Council of Italy, Milan, Italy
| | - Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ram C Shankaraiah
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
26
|
Ji D, Zhang L, Zhu Q, Bai Y, Wu Y, Xu Y. Discovery of potent, orally bioavailable ERK1/2 inhibitors with isoindolin-1-one structure by structure-based drug design. Eur J Med Chem 2018; 164:334-341. [PMID: 30605831 DOI: 10.1016/j.ejmech.2018.12.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/28/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
Constitutive activation of MAPK (RAS/RAF/MEK/ERK) pathway is frequently observed in many tumors and thus has become an interesting therapeutic target for cancer therapy. Despite the successful development of BRAF and MEK inhibitors in clinic treatment, resistance often appears to re-enhance ERK1/2 signaling. Inspired by the central role of the ERK1/2 signaling cascade in cancer, we describe the scaffold-hopping generation of a series of isoindolin-1-one ERK1/2 inhibitors. Our new compounds could inhibit proliferation of KRAS and BRAF mutant cells lines at low nanomolar concentrations. Compound 22a possesses acceptable pharmacokinetic profiles and showed considerable in vivo antitumor efficacy in a HCT-116 xenograft model, providing a promising basis for further optimization towards clinical ERK1/2 inhibitors.
Collapse
Affiliation(s)
- Dezhong Ji
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China
| | - Lingzhi Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Qihua Zhu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Bai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yaoyao Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
27
|
Schram AM, Gandhi L, Mita MM, Damstrup L, Campana F, Hidalgo M, Grande E, Hyman DM, Heist RS. A phase Ib dose-escalation and expansion study of the oral MEK inhibitor pimasertib and PI3K/MTOR inhibitor voxtalisib in patients with advanced solid tumours. Br J Cancer 2018; 119:1471-1476. [PMID: 30425349 PMCID: PMC6288157 DOI: 10.1038/s41416-018-0322-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This phase Ib study evaluated the safety, maximum-tolerated dose (MTD), pharmacokinetics, pharmacodynamics, and preliminary efficacy of pimasertib (MSC1936369B), a MEK1/2 inhibitor, in combination with voxtalisib (SAR245409), a pan-PI3K and mTORC1/mTORC2 inhibitor, in patients with advanced solid tumours. METHODS This study included a dose escalation and expansion in patients with select tumour types and alterations in the MAPK or PI3K pathways. A 3 + 3 design was used to determine MTD. Patients were evaluated for adverse events and tumour response. RESULTS 146 patients were treated, including 63 in dose escalation and 83 in expansion. The MTD was pimasertib 90 mg and voxtalisib 70 mg daily. Based on the safety profile, the recommended phase 2 dose (RP2D) was pimasertib 60 mg and voxtalisib 70 mg. The most frequent treatment-emergent adverse events (TEAEs) were diarrhoea (75%), fatigue (57%), and nausea (50%). Responses included a complete response in one patient (1%), partial response in five (5%), and stable disease in 51 (46%). At the RP2D, 74 patients required dose interruption (73%), 20 required dose reduction (20%), and 26 discontinued treatment due to TEAEs (26%). CONCLUSIONS The combination of pimasertib and voxtalisib showed poor long-term tolerability and limited anti-tumour activity in patients with advanced solid tumours.
Collapse
Affiliation(s)
| | - Leena Gandhi
- New York University Perlmutter Cancer Center, New York, NY, USA
| | | | | | | | | | | | - David M Hyman
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
28
|
Roointan A, Ahmad Mir T, Ibrahim Wani S, Mati-Ur-Rehman, Hussain KK, Ahmed B, Abrahim S, Savardashtaki A, Gandomani G, Gandomani M, Chinnappan R, Akhtar MH. Early detection of lung cancer biomarkers through biosensor technology: A review. J Pharm Biomed Anal 2018; 164:93-103. [PMID: 30366148 DOI: 10.1016/j.jpba.2018.10.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023]
Abstract
Lung cancer is undoubtedly one of the most serious health issues of the 21 st century. It is the second leading cause of cancer-related deaths in both men and women worldwide, accounting for about 1.5 million deaths annually. Despite advances in the treatment of lung cancer with new pharmaceutical products and technological improvements, morbidity and mortality rates remains a significant challenge for the cancer biologists and oncologists. The vast majority of lung cancer patients present with advanced-stage of pathological process that ultimately leads to poor prognosis and a five-year survival rate less than 20%. Early and accurate screening and analysis using cost-effective means are urgently needed to effectively diagnose the disease, improve the survival rate or to reduce mortality and morbidity associated with lung cancer patients. Thus, the only hope for early recognition of risk factors and timely diagnosis and treatment of lung cancer is biosensors technology. Novel biosensing based diagnostics approaches for predicting metastatic risks are likely to have significant therapeutic and clinical impact in the near future. This article systematically provides a brief overview of various biosensing platforms for identification of lung cancer disease biomarkers, with a specific focus on recent advancements in electrochemical and optical biosensors, analytical performances of different biosensors, challenges and further research opportunities for routine clinical analysis.
Collapse
Affiliation(s)
- Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tanveer Ahmad Mir
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan; Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, South Korea; Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia; Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan.
| | - Shadil Ibrahim Wani
- Department of Immunology and Molecular Medicine,Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Mati-Ur-Rehman
- Department of Radiological Sciences, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Khalil Khadim Hussain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, South Korea; Department of pharmacy, University of central Punjab 1-Khayaban-e-Jinnah, Johar Town, Lahore, Pakistan
| | - Bilal Ahmed
- Department of Intellectual Information Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Shugufta Abrahim
- Department of Intellectual Information Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Amir Savardashtaki
- Department of Environmental Sciences, Cyprus International University, Nicosia, Cyprus
| | - Ghazaal Gandomani
- Department of Bioengineering, Biotechnology Research Center, Cyprus International University, Nicosia, Cyprus
| | - Molood Gandomani
- Department of pharmacy, University of central Punjab 1-Khayaban-e-Jinnah, Johar Town, Lahore, Pakistan
| | - Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Mahmood H Akhtar
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, South Korea
| |
Collapse
|
29
|
Feng Y, Feng G, Lu X, Qian W, Ye J, Manrique CA, Ma C, Lu Y. Exploratory analysis of introducing next-generation sequencing-based method to treatment-naive lung cancer patients. J Thorac Dis 2018; 10:5904-5912. [PMID: 30505499 DOI: 10.21037/jtd.2018.09.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background The utilization of cancer-linked genetic alterations for categorizing patients against optimal treatment is becoming increasingly popular, especially in non-small cell lung cancer (NSCLC). However, disadvantages of the conventional techniques, such as the low throughput and limited detectable alteration types, lead to the demand of large-scale parallel sequencing for different forms of genetic variants. Methods We evaluated the potential of performing next-generation sequencing (NGS)-based methods in a cohort of 61 treatment-naive NSCLC patients to profile their driver mutations, using a panel consisting of 8 well-established driver genes of lung cancer. Results Our data revealed that 80% of patients harbored driver mutations. Moreover, our data revealed a few rare mutations, such as BRAF K601E and EGFR exon 20 insertion, which cannot be detected using commercially available single gene testing kits of conventional methods. We detected one patient with dual driver mutations. Next, correlations between driver mutations and clinical characteristics were interrogated in this cohort. Our results revealed that EGFR alterations were positively correlated with early stage, adenocarcinoma, alveolar and papillary component, TTF1 expression, and negatively correlated with P40 and Ki67 expression. ERBB2 alterations were associated with younger age and micro-invasive feature of tumor. Rearrangements of ALK indicated tumor relapse. Conclusions Our study highlights the potential of NGS-based methods in treatment-naive patients, thus paving its way for routine clinical use. Investigation of clinical correlation of driver mutations might be helpful for clinicians in cancer diagnosis and has implications for seeking patients with specific gene alteration in clinical studies.
Collapse
Affiliation(s)
- Yufang Feng
- Department of Pathology, Zhangjiagang First Peoples Hospital, Suzhou 215000, China
| | - Gaohua Feng
- Department of Respiratory Medicine, Zhangjiagang Hospital of Traditional Chinese Medicine, Suzhou 215000, China
| | - Xiaoling Lu
- Department of Oncology, Zhangjiagang First Peoples Hospital, Suzhou 215000, China
| | - Wenxia Qian
- Department of Respiratory Medicine, Zhangjiagang First Peoples Hospital, Suzhou 215000, China
| | - Junyi Ye
- Burning Rock Biotech, Guangzhou 510000, China
| | - Carmen Areses Manrique
- Complexo Hospitalario Universitario de Ourense, Calle Ramon Puga Noguerol, Ourense, Spain
| | - Chunping Ma
- Department of Thoracic Surgery, Zhangjiagang First Peoples Hospital, Suzhou 215000, China
| | - Yadong Lu
- Department of Thoracic Surgery, Zhangjiagang First Peoples Hospital, Suzhou 215000, China
| | | |
Collapse
|
30
|
Akbay EA, Kim J. Autochthonous murine models for the study of smoker and never-smoker associated lung cancers. Transl Lung Cancer Res 2018; 7:464-486. [PMID: 30225211 DOI: 10.21037/tlcr.2018.06.04] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung cancer accounts for the greatest number of cancer deaths in the world. Tobacco smoke-associated cancers constitute the majority of lung cancer cases but never-smoker cancers comprise a significant and increasing fraction of cases. Recent genomic and transcriptomic sequencing efforts of lung cancers have revealed distinct sets of genetic aberrations of smoker and never-smoker lung cancers that implicate disparate biology and therapeutic strategies. Autochthonous mouse models have contributed greatly to our understanding of lung cancer biology and identified novel therapeutic targets and strategies in the era of targeted therapy. With the emergence of immuno-oncology, mouse models may continue to serve as valuable platforms for novel biological insights and therapeutic strategies. Here, we will review the variety of available autochthonous mouse models of lung cancer, their relation to human smoker and never-smoker lung cancers, and their application to immuno-oncology and immune checkpoint blockade that is revolutionizing lung cancer therapy.
Collapse
Affiliation(s)
- Esra A Akbay
- Department of Pathology, University of Texas Southwestern, Dallas, TX 75208, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX 75208, USA
| | - James Kim
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern, Dallas, TX 75208, USA.,Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern, Dallas, TX 75208, USA
| |
Collapse
|
31
|
miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Oncotarget 2018; 7:61312-61324. [PMID: 27494869 PMCID: PMC5308653 DOI: 10.18632/oncotarget.11016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022] Open
Abstract
The development and progression of CRC are regarded as a complicated network and progressive event including genetic and/or epigenetic alterations. Recent researches revealed that MicroRNAs are biomarkers and regulators of CRC progression. Analyses of published microarray datasets revealed that miR-450b-5p was highly up-regulated in CRC tissues. In addition, high expression of miR-450b-5p was significantly associated with KRAS mutation. However, the role of miR-450b-5p in the progression of CRC remains unknown. Here, we sought to validate the expression of miR-450b-5p in CRC tissues and investigate the role and underlying mechanism of miR-450b-5p in the progression of CRC. The results revealed that miR-450b-5p was up-regulated in CRC tissues, high expression level of miR-450b-5p was positively associated with poor differentiation, advanced TNM classification and poor prognosis. Moreover, miR-450b-5p was especially high in KRAS-mutated cell lines and could be up-regulated by KRAS/AP-1 signaling. Functional validation revealed that overexpression of miR-450b-5p promoted cell proliferation and tumor growth while inhibited apoptosis of CRC cells. Furthermore, we demonstrated that miR-450b-5p directly bound the 3′-UTRs of SFRP2 and SIAH1, and activated Wnt/β-Catenin signaling. In conclusion, miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Collectively, our work helped to understand the precise role of miR-450b-5p in the progression of CRC, and might promote the development of new therapeutic strategies against CRC.
Collapse
|
32
|
Predictive and Prognostic Implications of Mutation Profiling and Microsatellite Instability Status in Patients with Metastatic Colorectal Carcinoma. Gastroenterol Res Pract 2018; 2018:4585802. [PMID: 29643917 PMCID: PMC5831938 DOI: 10.1155/2018/4585802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 11/05/2017] [Accepted: 11/22/2017] [Indexed: 01/05/2023] Open
Abstract
To investigate whether mutation profiling and microsatellite instability (MSI) status were associated with clinicopathological features and the prognosis in metastatic colorectal cancer (mCRC), mutations in RAS (including KRAS, NRAS, and HRAS) and BRAF were determined by Sanger sequencing. Tumor mismatch repair proteins and MSI status were examined using immunohistochemistry and polymerase chain reaction, respectively. The clinical value of these abnormalities was statistically analyzed, and prognostic value of different treatment regimens was also evaluated. Among 461 mCRC patients, mutations in RAS, BRAF, and MSI-high (MSI-H) status were observed in 45.3% (209/461), 5.6% (26/461), and 6.5% (30/461) of cases, respectively. Brain metastasis and high carcinoembryonic antigen level were highly correlated with KRAS mutation (P = 0.011 and P < 0.001), and tumors from females or located in the right colon tended to harbor BRAF mutation (P = 0.039 and P = 0.001). RAS/BRAF mutations may predict brain and/or lung metastases. Although neither clinical nor prognostic importance of MSI status was identified in our study, KRAS and BRAF mutations were demonstrated to be independent prognostic factors for overall survival and progression-free survival. Besides, in wild-type group, patients treated with chemotherapy plus targeted therapy exhibited the most favorable prognosis. Therefore, RAS/BRAF mutations may serve as indicators for prognosis and treatment options in mCRC.
Collapse
|
33
|
Del Re M, Tiseo M, Bordi P, D'Incecco A, Camerini A, Petrini I, Lucchesi M, Inno A, Spada D, Vasile E, Citi V, Malpeli G, Testa E, Gori S, Falcone A, Amoroso D, Chella A, Cappuzzo F, Ardizzoni A, Scarpa A, Danesi R. Contribution of KRAS mutations and c.2369C > T (p.T790M) EGFR to acquired resistance to EGFR-TKIs in EGFR mutant NSCLC: a study on circulating tumor DNA. Oncotarget 2017; 8:13611-13619. [PMID: 26799287 PMCID: PMC5355124 DOI: 10.18632/oncotarget.6957] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/29/2015] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION KRAS oncogene mutations (MUTKRAS) drive resistance to EGFR inhibition by providing alternative signaling as demonstrated in colo-rectal cancer. In non-small cell lung cancer (NSCLC), the efficacy of treatment with EGFR tyrosine kinase inhibitors (EGFR-TKIs) depends on activating EGFR mutations (MUTEGFR). However, inhibition of EGFR may select resistant cells displaying alternative signaling, i.e., KRAS, or restoration of EGFR activity due to additional MUTEGFR, i.e., the c.2369C > T (p.T790MEGFR). AIM The aim of this study was to investigate the appearance of MUTKRAS during EGFR-TKI treatment and their contribution to drug resistance. METHODS This study used cell-free circulating tumor DNA (cftDNA) to evaluate the appearance of codon 12 MUTKRAS and p.T790MEGFR mutations in 33 advanced NSCLC patients progressing after an EGFR-TKI. RESULTS p.T790MEGFR was detected in 11 (33.3%) patients, MUTKRAS at codon 12 in 3 (9.1%) while both p.T790MEGFR and MUTKRAS codon 12 were found in 13 (39.4%) patients. Six patients (18.2%) were KRAS wild-type (WTKRAS) and negative for p.T790MEGFR. In 8 subjects paired tumor re-biopsy/plasma samples were available; the percent concordance of tissue/plasma was 62.5% for p.T790MEGFR and 37.5% for MUTKRAS. The analysis of time to progression (TTP) and overall survival (OS) in WTKRAS vs. MUTKRAS were not statistically different, even if there was a better survival with WTKRAS vs. MUTKRAS, i.e., TTP 14.4 vs. 11.4 months (p = 0.97) and OS 40.2 vs. 35.0 months (p = 0.56), respectively. CONCLUSIONS MUTKRAS could be an additional mechanism of escape from EGFR-TKI inhibition and cftDNA is a feasible approach to monitor the molecular development of drug resistance.
Collapse
Affiliation(s)
- Marzia Del Re
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Paola Bordi
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Armida D'Incecco
- Medical Oncology Unit, AUSL6, Istituto Toscano Tumori, Livorno, Italy
| | - Andrea Camerini
- Medical Oncology Unit, AUSL12, Istituto Toscano Tumori, Lido di Camaiore, Italy
| | - Iacopo Petrini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maurizio Lucchesi
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria, Pisa, Italy
| | | | - Daniele Spada
- Medical Oncolgy Unit, Ospedale Santa Maria della Misericordia, Urbino, Italy
| | - Enrico Vasile
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria, Pisa, Italy
| | - Valentina Citi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Malpeli
- ARC-NET Research Centre and Department of Pathology and Diagnostics, Azienda Ospedaliero-Universitaria, Verona, Italy
| | - Enrica Testa
- Medical Oncolgy Unit, Ospedale Santa Maria della Misericordia, Urbino, Italy
| | - Stefania Gori
- Medical Oncology Unit, Ospedale Sacro Cuore, Negrar, Italy
| | - Alfredo Falcone
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria, Pisa, Italy
| | - Domenico Amoroso
- Medical Oncology Unit, AUSL12, Istituto Toscano Tumori, Lido di Camaiore, Italy
| | - Antonio Chella
- Lung Diseases Unit, Azienda Ospedaliero-Universitaria, Pisa, Italy
| | - Federico Cappuzzo
- Medical Oncology Unit, AUSL6, Istituto Toscano Tumori, Livorno, Italy
| | - Andrea Ardizzoni
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Aldo Scarpa
- ARC-NET Research Centre and Department of Pathology and Diagnostics, Azienda Ospedaliero-Universitaria, Verona, Italy
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
34
|
Alvarez K, Orellana P, Villarroel C, Contreras L, Kawachi H, Kobayashi M, Wielandt AM, De la Fuente M, Triviño JC, Kronberg U, Carvallo P, López-Köstner F. EGFR pathway subgroups in Chilean colorectal cancer patients, detected by mutational and expression profiles, associated to different clinicopathological features. Tumour Biol 2017; 39:1010428317724517. [DOI: 10.1177/1010428317724517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Colorectal cancer is a multistep process affecting several signaling pathways including EGFR (epidermal growth factor receptor), a therapeutic target for metastatic disease. Our aim was to characterize the mutational and expression profiles of the EGFR pathway in colorectal tumors and to integrate these results according to five previously defined groups. We screened seven genes for mutations ( KRAS-BRAF-PIK3CA-PIK3R1-AKT1-MAP2K1-PTEN) and six proteins (EGFR-p110α-p85α-PTEN-phosphoAKT-phosphoMEK1) by immunohistochemistry, PTEN deletion, and MSI. At least one mutated gene was observed in 68% of tumors ( KRAS 45%, PIK3CA 21%, BRAF 14%, and PTEN 7%). PTEN deletion was observed in 10.7% of tumors and 19.6% were MSI-High. In all, 54% of tumors showed a high EGFR expression, 48% p110α, 4.4% phosphoAKT, and 22% phosphoMEK1; and 43% showed low PTEN expression and 22% p85α. In total, five groups of tumors were defined based on MSI, BRAF, and KRAS mutations. Three groups gather mainly early-stage tumors, whereas a fourth group is mostly conformed by advanced tumors. We described here that 71.4% of tumors from one group have a mutated PI3K/PTEN pathway, in comparison to other groups having 32%, 27%, and 25%. In addition, the five groups are differentiated by molecular features such as EGFR, p85α, p110α, and PTEN, showing variable expression among tumor groups. In conclusion, alterations on the EGFR pathway were found in a high percentage of colorectal cancer patients. Using the integration of diverse molecular markers, we ratified previous classification in an ethnic group having relevant genetic differences and living in a different environmental background, adding complementary molecular targets related to therapy.
Collapse
Affiliation(s)
- Karin Alvarez
- Laboratorio de Oncología y Genética Molecular, Unidad de Coloproctología, Clínica Las Condes, Santiago, Chile
| | - Paulina Orellana
- Laboratorio de Oncología y Genética Molecular, Unidad de Coloproctología, Clínica Las Condes, Santiago, Chile
| | - Cynthia Villarroel
- Laboratorio de Oncología y Genética Molecular, Unidad de Coloproctología, Clínica Las Condes, Santiago, Chile
| | - Luis Contreras
- Laboratorio de Anatomía Patológica, Clínica Las Condes, Santiago, Chile
| | - Hiroshi Kawachi
- Latin America Collaborative Research Center, Tokyo Medical and Dental University, Clínica Las Condes, Santiago, Chile
| | - Maki Kobayashi
- Latin America Collaborative Research Center, Tokyo Medical and Dental University, Clínica Las Condes, Santiago, Chile
| | - Ana Maria Wielandt
- Laboratorio de Oncología y Genética Molecular, Unidad de Coloproctología, Clínica Las Condes, Santiago, Chile
| | - Marjorie De la Fuente
- Laboratorio de Inmunidad Innata, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Udo Kronberg
- Laboratorio de Oncología y Genética Molecular, Unidad de Coloproctología, Clínica Las Condes, Santiago, Chile
| | - Pilar Carvallo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco López-Köstner
- Laboratorio de Oncología y Genética Molecular, Unidad de Coloproctología, Clínica Las Condes, Santiago, Chile
| |
Collapse
|
35
|
Pascual J, Jacobs J, Sansores-Garcia L, Natarajan M, Zeitlinger J, Aerts S, Halder G, Hamaratoglu F. Hippo Reprograms the Transcriptional Response to Ras Signaling. Dev Cell 2017; 42:667-680.e4. [DOI: 10.1016/j.devcel.2017.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/04/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
|
36
|
Janku F. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Cancer Treat Rev 2017; 59:93-101. [PMID: 28779636 DOI: 10.1016/j.ctrv.2017.07.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is an intracellular signaling pathway that has regulatory roles in cell survival, proliferation, and differentiation, and a critical role in tumorigenesis. In cancer, multiple studies have investigated the therapeutic targeting of the PI3K pathway, and multiple inhibitors targeting PI3K and its isoforms, protein kinase B/AKT, mammalian target of rapamycin (mTOR), and other pathway proteins have been developed. For the treatment of solid tumors, only allosteric mTOR inhibitors, such as everolimus and temsirolimus, are currently approved for clinical use. This review describes the PI3K inhibitors that have progressed from the laboratory to late-stage clinical trials, and discusses the challenges that have prevented other compounds from doing the same. Challenges to the therapeutic effectiveness of some PI3K inhibitors include the absence of reliable and effective biomarkers, their limited efficacy as single agents, insufficient development of rational therapeutic combinations, the use of schedules with a variety of off-target effects, and suboptimal therapeutic exposures. Therefore, with regard to PI3K inhibitors currently in late-stage clinical trials, the identification of appropriate biomarkers of efficacy and the development of optimal combination regimens and dosing schedules are likely to be important for graduation into clinical practice.
Collapse
Affiliation(s)
- Filip Janku
- MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Houston, TX, USA.
| |
Collapse
|
37
|
Wang B, He L, Miao W, Wu G, Jiang H, Wu Y, Qu J, Li M. Identification of key genes associated with Schmid-type metaphyseal chondrodysplasia based on microarray data. Int J Mol Med 2017; 39:1428-1436. [PMID: 28440393 PMCID: PMC5428963 DOI: 10.3892/ijmm.2017.2954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/28/2017] [Indexed: 12/19/2022] Open
Abstract
This study aimed to gain a better understanding of the molecular circuitry of Schmid-type metaphyseal chondrodysplasia (SMCD), and to identify more potential genes associated with the pathogenesis of SMCD. Microarray data from GSE72261 were downloaded from the NCBI GEO database, including collagen X p.Asn617Lys knock-in mutation (ColXN617K), ablated XBP1 activity (Xbp1CartΔEx2), compound mutant (C/X), and wild-type (WT) specimens. Differentially expressed genes (DEGs) were screened in Xbp1 vs. WT, Col vs. WT and CX vs. WT, respectively. Pathway enrichment analysis of these DEGs was performed. Transcription factors (TFs) of the overlapping DEGs were identified. Weighted correlation network analysis (WGCNA) was performed to find modules of DEGs with high correlations, followed by gene function analysis and a protein-protein interaction network construction. In total, 481, 1,530 and 1,214 DEGs were identified in Xbp1 vs. WT, Col vs. WT and CX vs. WT, respectively. These DEGs were enriched in different pathways, such as extracellular matrix (ECM)-receptor interaction and metabolism-related pathways. A total of 7 TFs were found to regulate 19 common upregulated genes, and 4 TFs were identified to regulate 21 common downregulated genes. Two significant gene co-expression modules were enriched and DEGs in the 2 modules were mainly enriched in different biological processes, such as ribosome biogenesis. Moreover, Kras (downregulated), Col5a1 (upregulated) and Furin (upregulated) were both identified in the regulatory networks and protein-protein interaction (PPI) network. On the whole, our findings indicate that the Kras, Col5a1 and Furin genes may play essential roles in the molecular mechanisms of SMCD, which warrants further investigation.
Collapse
Affiliation(s)
- Bing Wang
- Department of Pediatric Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Li He
- Department of Child Health Care, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Wusheng Miao
- Department of Pediatric Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Ge Wu
- Department of Pediatric Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Hai Jiang
- Department of Pediatric Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Yongtao Wu
- Department of Pediatric Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Jining Qu
- Department of Pediatric Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Min Li
- Department of Pediatric Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
38
|
Ward RA, Bethel P, Cook C, Davies E, Debreczeni JE, Fairley G, Feron L, Flemington V, Graham MA, Greenwood R, Griffin N, Hanson L, Hopcroft P, Howard TD, Hudson J, James M, Jones CD, Jones CR, Lamont S, Lewis R, Lindsay N, Roberts K, Simpson I, St-Gallay S, Swallow S, Tang J, Tonge M, Wang Z, Zhai B. Structure-Guided Discovery of Potent and Selective Inhibitors of ERK1/2 from a Modestly Active and Promiscuous Chemical Start Point. J Med Chem 2017; 60:3438-3450. [PMID: 28376306 DOI: 10.1021/acs.jmedchem.7b00267] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
There are a number of small-molecule inhibitors targeting the RAS/RAF/MEK/ERK signaling pathway that have either been approved or are in clinical development for oncology across a range of disease indications. The inhibition of ERK1/2 is of significant current interest, as cell lines with acquired resistance to BRAF and MEK inhibitors have been shown to maintain sensitivity to ERK1/2 inhibition in preclinical models. This article reports on our recent work to identify novel, potent, and selective reversible ERK1/2 inhibitors from a low-molecular-weight, modestly active, and highly promiscuous chemical start point, compound 4. To guide and inform the evolution of this series, inhibitor binding mode information from X-ray crystal structures was critical in the rapid exploration of this template to compound 35, which was active when tested in in vivo antitumor efficacy experiments.
Collapse
Affiliation(s)
- Richard A Ward
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Paul Bethel
- AstraZeneca , Charter Way, Macclesfield, SK10 2NA, U.K
| | - Calum Cook
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Emma Davies
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Judit E Debreczeni
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Gary Fairley
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Lyman Feron
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Vikki Flemington
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Mark A Graham
- AstraZeneca , Charter Way, Macclesfield, SK10 2NA, U.K
| | - Ryan Greenwood
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | | | | | - Philip Hopcroft
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Tina D Howard
- AstraZeneca , Alderley Park, Macclesfield SK10 4TG, U.K
| | - Julian Hudson
- AstraZeneca , Alderley Park, Macclesfield SK10 4TG, U.K
| | - Michael James
- AstraZeneca , Alderley Park, Macclesfield SK10 4TG, U.K
| | | | | | - Scott Lamont
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Richard Lewis
- AstraZeneca , Charter Way, Macclesfield, SK10 2NA, U.K
| | - Nicola Lindsay
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Karen Roberts
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Iain Simpson
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | | | - Steve Swallow
- AstraZeneca , Charter Way, Macclesfield, SK10 2NA, U.K
| | - Jia Tang
- Pharmaron Beijing Co., Ltd. , 6 Taihe Road BDA, Beijing, 100176, P.R. China
| | - Michael Tonge
- IMED Oncology and Discovery Sciences, AstraZeneca , Darwin Building, and AstraZeneca, Hodgkin Building, c/o Darwin Building, 310 Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Zhenhua Wang
- Pharmaron Beijing Co., Ltd. , 6 Taihe Road BDA, Beijing, 100176, P.R. China
| | - Baochang Zhai
- Pharmaron Beijing Co., Ltd. , 6 Taihe Road BDA, Beijing, 100176, P.R. China
| |
Collapse
|
39
|
Marsden L, Jennings LJ, Gadd S, Yu M, Perlman EJ, Cajaiba MM. BRAF exon 15 mutations in pediatric renal stromal tumors: prevalence in metanephric stromal tumors. Hum Pathol 2017; 60:32-36. [DOI: 10.1016/j.humpath.2016.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/16/2016] [Accepted: 09/14/2016] [Indexed: 11/28/2022]
|
40
|
Chang YC, Chiu CC, Yuo CY, Chan WL, Chang YS, Chang WH, Wu SM, Chou HL, Liu TC, Lu CY, Yang WK, Chang JG. An XIST-related small RNA regulates KRAS G-quadruplex formation beyond X-inactivation. Oncotarget 2016; 7:86713-86729. [PMID: 27880931 PMCID: PMC5349948 DOI: 10.18632/oncotarget.13433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022] Open
Abstract
X-inactive-specific transcript (XIST), a long non-coding RNA, is essential for the initiation of X-chromosome inactivation. However, little is known about other roles of XIST in the physiological process in eukaryotic cells. In this study, the bioinformatics approaches revealed XIST could be processed into a small non-coding RNA XPi2. The XPi2 RNA was confirmed by a northern blot assay; its expression was gender-independent, suggesting the role of XPi2 was beyond X-chromosome inactivation. The pull-down assay combined with LC-MS-MS identified two XPi2-associated proteins, nucleolin and hnRNP A1, connected to the formation of G-quadruplex. Moreover, the microarray data showed the knockdown of XPi2 down-regulated the KRAS pathway. Consistently, we tested the expression of ten genes, including KRAS, which was correlated with a G-quadruplex formation and found the knockdown of XPi2 caused a dramatic decrease in the transcription level of KRAS among the ten genes. The results of CD/NMR assay also supported the interaction of XPi2 and the polypurine-polypyrimidine element of KRAS. Accordingly, XPi2 may stimulate the KRAS expression by attenuating G-quadruplex formation. Our present work sheds light on the novel role of small RNA XPi2 in modulating the G-quadruplex formation which may play some essential roles in the KRAS- associated carcinogenesis.
Collapse
Affiliation(s)
- Yuli C. Chang
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cytogenetics, Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Yee Yuo
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Ling Chan
- Epigenome Research Center, China Medical University and Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University
| | - Ya-Sian Chang
- Epigenome Research Center, China Medical University and Hospital, Taichung, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Hsin Chang
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shou-Mei Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Han-Lin Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ta-Chih Liu
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Cytogenetics, Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Wen-Kuang Yang
- Cell/Gene Therapy Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Gowth Chang
- Epigenome Research Center, China Medical University and Hospital, Taichung, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
You C, Liang H, Sun W, Li J, Liu Y, Fan Q, Zhang H, Yue X, Li J, Chen X, Ba Y. Deregulation of the miR-16-KRAS axis promotes colorectal cancer. Sci Rep 2016; 6:37459. [PMID: 27857191 PMCID: PMC5114589 DOI: 10.1038/srep37459] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/31/2016] [Indexed: 12/23/2022] Open
Abstract
KRAS plays a significant role in the etiology and progression of colorectal cancer (CRC), but the mechanism underlying this process has not been fully elucidated. In this study, we found that the KRAS protein levels were higher in CRC tissues than in the normal adjacent tissues, whereas its mRNA levels varied irregularly, suggesting that a post-transcriptional mechanism is involved in the regulation of KRAS. Then, we performed bioinformatic analyses to search for miRNAs that potentially target KRAS. We predicted and experimentally validated that miR-16 directly recognizes the 3'-UTR of the KRAS transcript and regulates KRAS expression. Furthermore, the in vitro results showed that the repression of KRAS by miR-16 suppressed the proliferation and invasion and induced the apoptosis of CRC cells, and the in vivo results revealed that miR-16 exerted a tumor-suppressive effect by negatively regulating KRAS in xenograft mice. Taken together, our findings provide evidence supporting the role of miR-16 as a tumor suppressor in CRC by targeting KRAS.
Collapse
Affiliation(s)
- Chaoying You
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Tianjin, 300060, China
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Wu Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Tianjin, 300060, China
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Jialu Li
- Department of Gastroenterology, Tianjin First Center Hospital, 24 Fukang Road, Tianjin, 300192, China
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Qian Fan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Tianjin, 300060, China
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Tianjin, 300060, China
| | - Xin Yue
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Tianjin, 300060, China
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210046, China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhuxi Road, Tiyuanbei, Tianjin, 300060, China
| |
Collapse
|
42
|
Molecular Markers and Targeted Therapeutics in Metastatic Tumors of the Spine: Changing the Treatment Paradigms. Spine (Phila Pa 1976) 2016; 41 Suppl 20:S218-S223. [PMID: 27488299 DOI: 10.1097/brs.0000000000001833] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY TYPE A review of the literature. OBJECTIVE The aim of this study was to discuss the evolution of molecular signatures and the history and development of targeted therapeutics in metastatic tumor types affecting the spinal column. SUMMARY OF BACKGROUND DATA Molecular characterization of metastatic spine tumors is expected to usher in a revolution in diagnostic and treatment paradigms. Molecular characterization will provide critical information that can be used for initial diagnosis, prognosticating the ideal treatment strategy, assessment of treatment efficacy, surveillance and monitoring recurrence, and predicting complications, clinical outcome, and overall survival in patients diagnosed with metastatic cancers to the spinal column. METHODS A review of the literature was performed focusing on illustrative examples of the role that molecular-based therapeutics have played in clinical outcomes for patients diagnosed with metastatic tumor types affecting the spinal column. RESULTS The impact of molecular therapeutics including receptor tyrosine kinases and immune checkpoint inhibitors and the ability of molecular signatures to provide prognostic information are discussed in metastatic breast cancer, lung cancer, prostate cancer, melanoma, and renal cell cancer affecting the spinal column. CONCLUSION For the providers who will ultimately counsel patients diagnosed with metastases to the spinal column, molecular advancements will radically alter the management/surgical paradigms utilized. Ultimately, the translation of these molecular advancements into routine clinical care will greatly improve the quality and quantity of life for patients diagnosed with spinal malignancies and provide better overall outcomes and counseling for treating physicians. LEVEL OF EVIDENCE N/A.
Collapse
|
43
|
BRAF V600E mutation in hairy cell leukemia: from bench to bedside. Blood 2016; 128:1918-1927. [DOI: 10.1182/blood-2016-07-418434] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022] Open
Abstract
AbstractHairy cell leukemia (HCL) is a distinct clinicopathological entity whose underlying genetic lesion has remained a mystery for over half a century. The BRAF V600E mutation is now recognized as the causal genetic event of HCL because it is somatic, present in the entire tumor clone, detectable in almost all cases at diagnosis (encompassing the whole disease spectrum), and stable at relapse. BRAF V600E leads to the constitutive activation of the RAF-MEK-extracellular signal-regulated kinase (ERK) signaling pathway which represents the key event in the molecular pathogenesis of HCL. KLF2 and CDNK1B (p27) mutations may cooperate with BRAF V600E in promoting leukemic transformation. Sensitive molecular assays for detecting BRAF V600E allow HCL (highly responsive to purine analogs) to be better distinguished from HCL-like disorders, which are treated differently. In vitro preclinical studies on purified HCL cells proved that BRAF and MEK inhibitors can induce marked dephosphorylation of MEK/ERK, silencing of RAF-MEK-ERK pathway transcriptional output, loss of the HCL-specific gene expression profile signature, change of morphology from “hairy” to “smooth,” and eventually apoptosis. The overall response rate of refractory/relapsed HCL patients to the BRAF inhibitor vemurafenib approached 100%, with 35% to 40% complete remissions (CRs). The median relapse free-survival was about 19 months in patients who had achieved CR and 6 months in those who had obtained a partial response. Future therapeutic perspectives include: (1) combining BRAF inhibitors with MEK inhibitors or immunotherapy (anti-CD20 monoclonal antibody) to increase the percentage of CRs and (2) better understanding of the molecular mechanisms underlying resistance of HCL cells to BRAF inhibitors.
Collapse
|
44
|
Sloane HS, Landers JP, Kelly KA. Hybridization-Induced Aggregation Technology for Practical Clinical Testing: KRAS Mutation Detection in Lung and Colorectal Tumors. J Mol Diagn 2016; 18:546-53. [PMID: 27289420 DOI: 10.1016/j.jmoldx.2016.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/04/2016] [Accepted: 02/18/2016] [Indexed: 11/29/2022] Open
Abstract
KRAS mutations have emerged as powerful predictors of response to targeted therapies in the treatment of lung and colorectal cancers; thus, prospective KRAS genotyping is essential for appropriate treatment stratification. Conventional mutation testing technologies are not ideal for routine clinical screening, as they often involve complex, time-consuming processes and/or costly instrumentation. In response, we recently introduced a unique analytical strategy for revealing KRAS mutations, based on the allele-specific hybridization-induced aggregation (HIA) of oligonucleotide probe-conjugated microbeads. Using simple, inexpensive instrumentation, this approach allows for the detection of any common KRAS mutation in <10 minutes after PCR. Here, we evaluate the clinical utility of the HIA method for mutation detection (HIAMD). In the analysis of 20 lung and colon tumor pathology specimens, we observed a 100% correlation between the KRAS mutation statuses determined by HIAMD and sequencing. In addition, we were able to detect KRAS mutations in a background of 75% wild-type DNA-a finding consistent with that reported for sequencing. With this, we show that HIAMD allows for the rapid and cost-effective detection of KRAS mutations, without compromising analytical performance. These results indicate the validity of HIAMD as a mutation-testing technology suitable for practical clinical testing. Further expansion of this platform may involve the detection of mutations in other key oncogenic pathways.
Collapse
Affiliation(s)
- Hillary S Sloane
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - James P Landers
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Department of Pathology, University of Virginia, Charlottesville, Virginia; Department of Mechanical Engineering, University of Virginia, Charlottesville, Virginia
| | - Kimberly A Kelly
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia; Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
45
|
Dong YU, Ren W, Qi J, Jin BO, Li Y, Tao H, Xu R, Li Y, Zhang Q, Han B. EGFR, ALK, RET, KRAS and BRAF alterations in never-smokers with non-small cell lung cancer. Oncol Lett 2016; 11:2371-2378. [PMID: 27073482 PMCID: PMC4812214 DOI: 10.3892/ol.2016.4235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/01/2016] [Indexed: 12/23/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), caused by various mutations in a spectrum of cancer driver genes, may have distinct pathological characteristics and drug responses. Extensive genetic screening and pathological characterization is required for the design of customized therapies to improve patient outcomes. Notably, NSCLC in never-smokers exhibits distinctive clinicopathological features, which are frequently associated with tumorigenic mutations, and thus may be treated as a unique disease entity. However, to the best of our knowledge, these mutations have not been extensively and accurately characterized in an NSCLC study with a large sample size. Therefore, the present study enrolled a large cohort of NSCLC patients, which consisted of 358 never-smokers, for the screening of genetic alterations in the epidermal growth factor receptor (EGFR), ret proto-oncogene (RET), anaplastic lymphoma kinase (ALK), Kirsten rat sarcoma viral oncogene homolog (KRAS) and B-Raf proto-oncogene serine/threonine kinase (BRAF) tumorigenic genes. It was identified that the mutation rate was 47.8, 7.5, 3.6, 1.4 and 0.3% for EGFR, ALK, KRAS, RET and BRAF, respectively. In addition, clinicopathological features associated with these mutations were characterized. EGFR mutations were more frequently observed in female and older patients. By contrast, KRAS mutations were more frequently detected in male patients, and ALK and RET translocations in younger patients. The cancer cells were frequently well-differentiated in carcinoma cases exhibiting EGFR mutations, however, were less differentiated in those with ALK translocations. In conclusion, the present study determined the frequency of oncogenic alterations and associated clinicopathological features in NSCLC exhibited by never-smokers using a large sample size. The results of the present study may enrich our knowledge of NSCLC in never-smokers and provide useful insights for improvement of the outcome of molecularly targeted therapies for the treatment of NSCLC.
Collapse
Affiliation(s)
- Y U Dong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, P.R. China; Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jun Qi
- Department of Thoracic Surgery, Chongqing Cancer Institute, Chongqing 400040, P.R. China
| | - B O Jin
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ying Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Huiqing Tao
- Shanghai Yuanqi Bio-Pharmaceutical Company Ltd., Shanghai 201403, P.R. China
| | - Ren Xu
- Shanghai Yuanqi Bio-Pharmaceutical Company Ltd., Shanghai 201403, P.R. China
| | - Yanqing Li
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qinxian Zhang
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
46
|
Poomakkoth N, Issa A, Abdulrahman N, Abdelaziz SG, Mraiche F. p90 ribosomal S6 kinase: a potential therapeutic target in lung cancer. J Transl Med 2016; 14:14. [PMID: 26791782 PMCID: PMC4721001 DOI: 10.1186/s12967-016-0768-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/20/2015] [Indexed: 01/01/2023] Open
Abstract
A global survey of cancer has shown that lung cancer is the most common cause of the new cancer cases and cancer deaths in men worldwide. The mortality from lung cancer is more than the combined mortality from breast, prostate and colorectal cancers. The two major histological types of lung cancer are non-small cell lung cancer (NSCLC) accounting for about 85 % of cases and small cell lung cancer accounting for 15 % of cases. NSCLC, the more prevalent form of lung cancer, is often diagnosed at an advanced stage and has a very poor prognosis. Many factors have been shown to contribute to the development of lung cancer in humans including tobacco smoking, exposure to environmental carcinogens (asbestos, or radon) and genetic factors. Despite the advances in treatment, lung cancer remains one of the leading causes of cancer death worldwide. Interestingly, the overall 5 year survival from lung cancer has not changed appreciably in the past 25 years. For this reason, novel and more effective treatments and strategies for NSCLC are critically needed. p90 ribosomal S6 kinase (RSK), a serine threonine kinase that lies downstream of the Ras–MAPK (mitogen activated protein kinase) cascade, has been demonstrated to be involved in the regulation of cell proliferation in various malignancies through indirect (e.g., modulation of transcription factors) or direct effects on the cell-cycle machinery. Increased expression of RSK has been demonstrated in various cancers, including lung cancer. This review focuses on the role of RSK in lung cancer and its potential therapeutic application.
Collapse
Affiliation(s)
| | - Aya Issa
- College of Pharmacy, Qatar University, P.O. Box 2713, Doha, Qatar.
| | | | | | - Fatima Mraiche
- College of Pharmacy, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
47
|
Zhang SY, Zhang SQ, Nagaraju GP, El-Rayes BF. Biomarkers for personalized medicine in GI cancers. Mol Aspects Med 2015; 45:14-27. [DOI: 10.1016/j.mam.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023]
|
48
|
Ishii T, Kohashi K, Iura K, Maekawa A, Bekki H, Yamada Y, Yamamoto H, Nabeshima K, Kawashima H, Iwamoto Y, Oda Y. Activation of the Akt-mTOR and MAPK pathways in dedifferentiated liposarcomas. Tumour Biol 2015; 37:4767-76. [PMID: 26518767 DOI: 10.1007/s13277-015-4232-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/12/2015] [Indexed: 11/27/2022] Open
Abstract
The Akt/mTOR and MAPK pathways play important roles in modulating cellular function in response to extracellular signals, and they are known to be activated in certain kinds of sarcomas. Few investigations have examined these pathways in dedifferentiated liposarcoma (DDLS), in relation to clinicopathological features. Clinicopathological and immunohistochemical analyses were conducted using 99 DDLS specimens. An in vitro study was also conducted to examine the antitumor effects of an mTOR inhibitor and a MEK inhibitor on two DDLS cell lines. The clinicopathological analyses revealed that the AJCC staging was a significant prognostic factor for overall survival and that the tumor size, depth, and location were significant prognostic factors for event-free survival. Phosphorylated Akt (pAkt), pmTOR, pS6RP, p4E-BP1, pMEK, and pERK expressions were positive in 57.4, 52.4, 71.4, 57.1, 84.1, and 50.8 % of the dedifferentiated component of the 63 primary DDLSs. Positive staining for pmTOR was significantly more frequent in the dedifferentiated component than the well-differentiated component. A univariate prognostic analysis revealed that pmTOR expression was associated with poor prognosis in the tumors in the retroperitoneum/ventral body cavity. The mTOR and MEK inhibitors dose-dependently inhibited the cell proliferation of both DDLS cell lines and decreased the expression of downstream pS6RP and pERK, respectively. The combined use of the two inhibitors enhanced antiproliferative activity. In conclusion, the Akt/mTOR and MAPK pathways were activated in DDLS specimens, and the inhibition of these pathways decreased cell proliferation in DDLS cell lines. Our findings suggest that these pathways could be a therapeutic target for patients with DDLS.
Collapse
Affiliation(s)
- Takeaki Ishii
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Iura
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Maekawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hirofumi Bekki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka, Japan
| | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yukihide Iwamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
49
|
Millan M, Merino S, Caro A, Feliu F, Escuder J, Francesch T. Treatment of colorectal cancer in the elderly. World J Gastrointest Oncol 2015; 7:204-20. [PMID: 26483875 PMCID: PMC4606175 DOI: 10.4251/wjgo.v7.i10.204] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/30/2015] [Accepted: 08/30/2015] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer has a high incidence, and approximately 60% of colorectal cancer patients are older than 70, with this incidence likely increasing in the near future. Elderly patients (> 70-75 years of age) are a very heterogeneous group, ranging from the very fit to the very frail. Traditionally, these patients have often been under-treated and recruited less frequently to clinical trials than younger patients, and thus are under-represented in publications about cancer treatment. Recent studies suggest that fit elderly patients can be treated in the same way as their younger counterparts, but the treatment of frail patients with comorbidities is still a matter of controversy. Many factors should be taken into account, including fitness for treatment, the wishes of the patient and family, and quality of life. This review will focus on the existing evidence for surgical, oncologic, and palliative treatment in patients over 70 years old with colorectal cancer. Careful patient assessment is necessary in order to individualize treatment approach, and this should rely on a multidisciplinary process. More well-designed controlled trials are needed in this patient population.
Collapse
|
50
|
|