1
|
Wong A, Alejandro EU. Post translational modification regulation of transcription factors governing pancreatic β-cell identity and functional mass. Front Endocrinol (Lausanne) 2025; 16:1562646. [PMID: 40134803 PMCID: PMC11932907 DOI: 10.3389/fendo.2025.1562646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Dysfunction of the insulin-secreting β-cells is a key hallmark of Type 2 diabetes (T2D). In the natural history of the progression of T2D, factors such as genetics, early life exposures, lifestyle, and obesity dictate an individual's susceptibility risk to disease. Obesity is associated with insulin resistance and increased demand for insulin to maintain glucose homeostasis. Studies in both mouse and human islets have implicated the β-cell's ability to compensate through proliferation and survival (increasing functional β-cell mass) as a tipping point toward the development of disease. A growing body of evidence suggests the reduction of β-cell mass in T2D is driven majorly by loss of β-cell identity, rather than by apoptosis alone. The development and maintenance of pancreatic β-cell identity, function, and adaptation to stress is governed, in part, by the spatiotemporal expression of transcription factors (TFs), whose activity is regulated by signal-dependent post-translational modifications (PTM). In this review, we examine the role of these TFs in the developing pancreas and in the mature β-cell. We discuss functional implications of post-translational modifications on these transcription factors' activities and how an understanding of the pathways they regulate can inform therapies to promoteβ-cell regeneration, proliferation, and survival in diabetes.
Collapse
Affiliation(s)
- Alicia Wong
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Emilyn U. Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
2
|
Osako R, Hayano A, Kawaguchi A, Yamanaka R. Single-cell RNA-seq reveals diverse molecular signatures associated with Methotrexate resistance in primary central nervous system lymphoma cells. J Neurooncol 2025; 172:163-173. [PMID: 39636551 DOI: 10.1007/s11060-024-04893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Methotrexate is one of the most essential single agents in patients with primary central nervous system lymphoma (PCNSL). However, 25-50% result in relapse with a poor prognosis. Therefore, studies on methotrexate resistance are warranted to explore salvage chemotherapy for recurrent PCNSL. Single-cell sequence analysis enables the characterization of novel cell types and provides a precise understanding of cancer biology. METHODS Single-cell sequence analysis of parental and methotrexate-resistant PCNSL cells was performed. We used a Weighted Gene Co-expression Network Analysis to identify groups of significantly connected genes. RESULTS We identified consensus modules in both the HKBML and TK datasets. HLA-DRβ1, HLA-DQβ1,and SNRPG were hub genes those detected in both datasets revealed by network analysis. Cyclosporine A was selected as the candidate drug for treating methotrexate-resistant cells. CONCLUSION The results of the present study characterized the methotrexate resistance-related signaling pathways in cultured PCNSL cells. Overall, these results may account for variations in treatment responses and lead potential novel therapeutic strategies for patients with PCNSL.
Collapse
Affiliation(s)
- Ryosuke Osako
- Education and Research Center for Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Azusa Hayano
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyoku, Kyoto, 602-8566, Japan
| | - Atsushi Kawaguchi
- Education and Research Center for Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Ryuya Yamanaka
- Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyoku, Kyoto, 602-8566, Japan.
| |
Collapse
|
3
|
Shiraishi T, Matsumoto A. From non-coding to coding: The importance of long non-coding RNA translation in de novo gene birth. Biochim Biophys Acta Gen Subj 2025; 1869:130747. [PMID: 39708923 DOI: 10.1016/j.bbagen.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Recent emerging evidence demonstrates that some long non-coding RNAs (lncRNAs) can indeed be translated into functional polypeptides. These discoveries are pivotal for understanding de novo gene birth, the process by which new genes evolve from previously non-genic regions. In this review, we first introduce key methods, such as Ribo-seq and translation initiation site detection by translation complex analysis, for identifying coding sequences within lncRNAs and highlight examples of functional polypeptides derived from lncRNAs across species. These polypeptides play essential roles in maintaining cellular homeostasis and contribute to pathological processes, including cancer. However, because not all lncRNA-derived polypeptides appear to be functional, these lncRNAs may act as gene reservoirs. We also discuss how lncRNAs change their intracellular localization, how lncRNA-derived polypeptides evade immune surveillance, and how they gradually evolve into typical coding RNAs, providing evidence for the evolutionary model of de novo gene birth.
Collapse
Affiliation(s)
- Taichi Shiraishi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Akinobu Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| |
Collapse
|
4
|
Zhang X, Fan Y, Tan K. A bird's eye view of mitochondrial unfolded protein response in cancer: mechanisms, progression and further applications. Cell Death Dis 2024; 15:667. [PMID: 39261452 PMCID: PMC11390889 DOI: 10.1038/s41419-024-07049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Mitochondria are essential organelles that play critical roles in energy metabolism, apoptosis and various cellular processes. Accumulating evidence suggests that mitochondria are also involved in cancer development and progression. The mitochondrial unfolded protein response (UPRmt) is a complex cellular process that is activated when the protein-folding capacity of the mitochondria is overwhelmed. The core machinery of UPRmt includes upstream regulatory factors, mitochondrial chaperones and proteases. These components work together to eliminate misfolded proteins, increase protein-folding capacity, and restore mitochondrial function. Recent studies have shown that UPRmt is dysregulated in various cancers and contributes to tumor initiation, growth, metastasis, and therapeutic resistance. Considering the pivotal role of the UPRmt in oncogenesis, numerous compounds and synthetic drugs targeting UPRmt-related components induce cancer cell death and suppress tumor growth. In this review, we comprehensively summarize recent studies on the molecular mechanisms of UPRmt activation in C. elegans and mammals and elucidate the conceptual framework, functional aspects, and implications of the UPRmt for cancer therapy. In summary, we paint a developmental landscape of the UPRmt in different types of cancer and offer valuable insights for the development of novel cancer treatment strategies by targeting the UPRmt.
Collapse
Affiliation(s)
- Xinyu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
5
|
Huang YA, Wang X, Kim JC, Yao X, Sethi A, Strohm A, Doherty TA. PIP-seq identifies novel heterogeneous lung innate lymphocyte population activation after combustion product exposure. Sci Rep 2024; 14:20167. [PMID: 39215111 PMCID: PMC11364781 DOI: 10.1038/s41598-024-70880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Innate lymphoid cells (ILCs) are a heterogeneous population that play diverse roles in airway inflammation after exposure to allergens and infections. However, how ILCs respond after exposure to environmental toxins is not well understood. Here we show a novel method for studying the heterogeneity of rare lung ILC populations by magnetic enrichment for lung ILCs followed by particle-templated instant partition sequencing (PIP-seq). Using this method, we were able to identify novel group 1 and group 2 ILC subsets that exist after exposure to both fungal allergen and burn pit-related constituents (BPC) that include dioxin, aromatic hydrocarbon, and particulate matter. Toxin exposure in combination with fungal allergen induced activation of specific ILC1/NK and ILC2 populations as well as promoted neutrophilic lung inflammation. Oxidative stress pathways and downregulation of specific ribosomal protein genes (Rpl41 and Rps19) implicated in anti-inflammatory responses were present after BPC exposure. Increased IFNγ expression and other pro-neutrophilic mediator transcripts were increased in BPC-stimulated lung innate lymphoid cells. Further, the addition of BPC induced Hspa8 (encodes HSC70) and aryl hydrocarbon transcription factor activity across multiple lung ILC subsets. Overall, using an airway disease model that develops after occupational and environmental exposures, we demonstrate an effective method to better understand heterogenous ILC subset activation.
Collapse
Affiliation(s)
- Yung-An Huang
- Divison of Allergy and Immunology, Department of Medicine, University of California San Diego, Biomedical Sciences Building, Room 5090, 9500 Gilman Drive, La Jolla, CA, 92093-0635, USA
- Veterans Affairs San Diego Health Care System, San Diego, CA, USA
| | - Xinyu Wang
- Divison of Allergy and Immunology, Department of Medicine, University of California San Diego, Biomedical Sciences Building, Room 5090, 9500 Gilman Drive, La Jolla, CA, 92093-0635, USA
- Veterans Affairs San Diego Health Care System, San Diego, CA, USA
| | - Jong-Chan Kim
- Divison of Allergy and Immunology, Department of Medicine, University of California San Diego, Biomedical Sciences Building, Room 5090, 9500 Gilman Drive, La Jolla, CA, 92093-0635, USA
- Veterans Affairs San Diego Health Care System, San Diego, CA, USA
| | - Xiang Yao
- Divison of Allergy and Immunology, Department of Medicine, University of California San Diego, Biomedical Sciences Building, Room 5090, 9500 Gilman Drive, La Jolla, CA, 92093-0635, USA
- Veterans Affairs San Diego Health Care System, San Diego, CA, USA
| | - Anshika Sethi
- Divison of Allergy and Immunology, Department of Medicine, University of California San Diego, Biomedical Sciences Building, Room 5090, 9500 Gilman Drive, La Jolla, CA, 92093-0635, USA
- Veterans Affairs San Diego Health Care System, San Diego, CA, USA
| | - Allyssa Strohm
- Divison of Allergy and Immunology, Department of Medicine, University of California San Diego, Biomedical Sciences Building, Room 5090, 9500 Gilman Drive, La Jolla, CA, 92093-0635, USA
- Veterans Affairs San Diego Health Care System, San Diego, CA, USA
| | - Taylor A Doherty
- Divison of Allergy and Immunology, Department of Medicine, University of California San Diego, Biomedical Sciences Building, Room 5090, 9500 Gilman Drive, La Jolla, CA, 92093-0635, USA.
- Veterans Affairs San Diego Health Care System, San Diego, CA, USA.
| |
Collapse
|
6
|
Zhang X, Li Z, Zhang X, Yuan Z, Zhang L, Miao P. ATF family members as therapeutic targets in cancer: From mechanisms to pharmacological interventions. Pharmacol Res 2024; 208:107355. [PMID: 39179052 DOI: 10.1016/j.phrs.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The activating transcription factor (ATF)/ cAMP-response element binding protein (CREB) family represents a large group of basic zone leucine zip (bZIP) transcription factors (TFs) with a variety of physiological functions, such as endoplasmic reticulum (ER) stress, amino acid stress, heat stress, oxidative stress, integrated stress response (ISR) and thus inducing cell survival or apoptosis. Interestingly, ATF family has been increasingly implicated in autophagy and ferroptosis in recent years. Thus, the ATF family is important for homeostasis and its dysregulation may promote disease progression including cancer. Current therapeutic approaches to modulate the ATF family include direct modulators, upstream modulators, post-translational modifications (PTMs) modulators. This review summarizes the structural domain and the PTMs feature of the ATF/CREB family and comprehensively explores the molecular regulatory mechanisms. On this basis, their pathways affecting proliferation, metastasis, and drug resistance in various types of cancer cells are sorted out and discussed. We then systematically summarize the status of the therapeutic applications of existing ATF family modulators and finally look forward to the future prospect of clinical applications in the treatment of tumors by modulating the ATF family.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochun Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Peng Miao
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
7
|
Huang YA, Wang X, Kim JC, Yao X, Sethi A, Strohm A, Doherty TA. PIP-Seq identifies novel heterogeneous lung innate lymphocyte population activation after combustion product exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600420. [PMID: 38979234 PMCID: PMC11230265 DOI: 10.1101/2024.06.24.600420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Innate lymphoid cells (ILCs) are a heterogeneous population that play diverse roles in airway inflammation after exposure to allergens and infections. However, how ILCs respond after exposure to environmental toxins is not well understood. Here we show a novel method for studying the heterogeneity of rare lung ILC populations by magnetic enrichment for lung ILCs followed by particle-templated instant partition sequencing (PIP-seq). Using this method, we were able to identify novel group 1 and group 2 ILC subsets that exist after exposure to both fungal allergen and burn pit-related constituents (BPC) that include dioxin, aromatic hydrocarbon, and particulate matter. Toxin exposure in combination with fungal allergen induced activation of specific ILC1/NK and ILC2 populations as well as promoted neutrophilic lung inflammation. Oxidative stress pathways and downregulation of specific ribosomal protein genes ( Rpl41 and Rps19 ) implicated in anti-inflammatory responses were present after BPC exposure. Increased IFNγ expression and other pro-neutrophilic mediator transcripts were increased in BPC-stimulated lung innate lymphoid cells. Further, the addition of BPC induced Hspa8 (encodes HSC70) and aryl hydrocarbon transcription factor activity across multiple lung ILC subsets. Overall, using an airway disease model that develops after occupational and environmental exposures, we demonstrate an effective method to better understand heterogenous ILC subset activation.
Collapse
|
8
|
Mekiten O, Yitzhaky A, Gould N, Rosenblum K, Hertzberg L. Ribosome subunits are upregulated in brain samples of a subgroup of individuals with schizophrenia: A systematic gene expression meta-analysis. J Psychiatr Res 2023; 164:372-381. [PMID: 37413782 DOI: 10.1016/j.jpsychires.2023.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
One of the new theories accounting for the underlying pathophysiology of schizophrenia is excitation/inhibition imbalance. Interestingly, perturbation in protein synthesis machinery as well as oxidative stress can lead to excitation/inhibition imbalance. We thus performed a systematic meta-analysis of the expression of 79 ribosome subunit genes and two oxidative-stress related genes, HIF1A and NQO1, in brain samples of individuals with schizophrenia vs. healthy controls. We integrated 12 gene expression datasets, following the PRISMA guidelines (overall 511 samples, 253 schizophrenia and 258 controls). Five ribosome subunit genes were significantly upregulated in a subgroup of the patients with schizophrenia, while 24 (30%) showed a tendency for upregulation. HIF1A and NQO1 were also found to be significantly upregulated. Moreover, HIF1A and NQO1 showed positive correlation with the expression of the upregulated ribosome subunit genes. Our results, together with previous findings, suggest a possible role for altered mRNA translation in the pathogenesis of schizophrenia, in association with markers of increased oxidative stress in a subgroup of patients. Further studies should define whether the upregulation of ribosome subunits result in altered mRNA translation, which proteins are modulated and how it characterizes a subgroup of the patients with schizophrenia.
Collapse
Affiliation(s)
- Ori Mekiten
- Faculty of Medicine, Tel-Aviv University, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Nathaniel Gould
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel; Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Libi Hertzberg
- Faculty of Medicine, Tel-Aviv University, Israel; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel; Shalvata Mental Health Center, Israel.
| |
Collapse
|
9
|
Cook J, Greene ES, Ramser A, Mullenix G, Dridi JS, Liyanage R, Wideman R, Dridi S. Comparative- and network-based proteomic analysis of bacterial chondronecrosis with osteomyelitis lesions in broiler's proximal tibiae identifies new molecular signatures of lameness. Sci Rep 2023; 13:5947. [PMID: 37045932 PMCID: PMC10097873 DOI: 10.1038/s41598-023-33060-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Bacterial Chondronecrosis with Osteomyelitis (BCO) is a specific cause of lameness in commercial fast-growing broiler (meat-type) chickens and represents significant economic, health, and wellbeing burdens. However, the molecular mechanisms underlying the pathogenesis remain poorly understood. This study represents the first comprehensive characterization of the proximal tibia proteome from healthy and BCO chickens. Among a total of 547 proteins identified, 222 were differentially expressed (DE) with 158 up- and 64 down-regulated proteins in tibia of BCO vs. normal chickens. Biological function analysis using Ingenuity Pathways showed that the DE proteins were associated with a variety of diseases including cell death, organismal injury, skeletal and muscular disorder, immunological and inflammatory diseases. Canonical pathway and protein-protein interaction network analysis indicated that these DE proteins were involved in stress response, unfolded protein response, ribosomal protein dysfunction, and actin cytoskeleton signaling. Further, we identified proteins involved in bone resorption (osteoclast-stimulating factor 1, OSFT1) and bone structural integrity (collagen alpha-2 (I) chain, COL2A1), as potential key proteins involved in bone attrition. These results provide new insights by identifying key protein candidates involved in BCO and will have significant impact in understanding BCO pathogenesis.
Collapse
Affiliation(s)
- Jennifer Cook
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Alison Ramser
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Garrett Mullenix
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Jalila S Dridi
- École Universitaire de Kinésithérapie, Université d'Orléans, Rue de Chartres, 45100, Orléans, France
| | - Rohana Liyanage
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Robert Wideman
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA.
| |
Collapse
|
10
|
Lomakin IB, Devarkar SC, Patel S, Grada A, Bunick C. Sarecycline inhibits protein translation in Cutibacterium acnes 70S ribosome using a two-site mechanism. Nucleic Acids Res 2023; 51:2915-2930. [PMID: 36864821 PMCID: PMC10085706 DOI: 10.1093/nar/gkad103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 03/04/2023] Open
Abstract
Acne vulgaris is a chronic disfiguring skin disease affecting ∼1 billion people worldwide, often having persistent negative effects on physical and mental health. The Gram-positive anaerobe, Cutibacterium acnes is implicated in acne pathogenesis and is, therefore, a main target for antibiotic-based acne therapy. We determined a 2.8-Å resolution structure of the 70S ribosome of Cutibacterium acnes by cryogenic electron microscopy and discovered that sarecycline, a narrow-spectrum antibiotic against Cutibacterium acnes, may inhibit two active sites of this bacterium's ribosome in contrast to the one site detected previously on the model ribosome of Thermus thermophilus. Apart from the canonical binding site at the mRNA decoding center, the second binding site for sarecycline exists at the nascent peptide exit tunnel, reminiscent of the macrolides class of antibiotics. The structure also revealed Cutibacterium acnes-specific features of the ribosomal RNA and proteins. Unlike the ribosome of the Gram-negative bacterium Escherichia coli, Cutibacterium acnes ribosome has two additional proteins, bS22 and bL37, which are also present in the ribosomes of Mycobacterium smegmatis and Mycobacterium tuberculosis. We show that bS22 and bL37 have antimicrobial properties and may be involved in maintaining the healthy homeostasis of the human skin microbiome.
Collapse
Affiliation(s)
- Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520, USA
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
| | - Shivali Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
| | - Ayman Grada
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520, USA
- Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
11
|
Neill G, Masson GR. A stay of execution: ATF4 regulation and potential outcomes for the integrated stress response. Front Mol Neurosci 2023; 16:1112253. [PMID: 36825279 PMCID: PMC9941348 DOI: 10.3389/fnmol.2023.1112253] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
ATF4 is a cellular stress induced bZIP transcription factor that is a hallmark effector of the integrated stress response. The integrated stress response is triggered by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 complex that can be carried out by the cellular stress responsive kinases; GCN2, PERK, PKR, and HRI. eIF2α phosphorylation downregulates mRNA translation initiation en masse, however ATF4 translation is upregulated. The integrated stress response can output two contradicting outcomes in cells; pro-survival or apoptosis. The mechanism for choice between these outcomes is unknown, however combinations of ATF4 heterodimerisation partners and post-translational modifications have been linked to this regulation. This semi-systematic review article covers ATF4 target genes, heterodimerisation partners and post-translational modifications. Together, this review aims to be a useful resource to elucidate the mechanisms controlling the effects of the integrated stress response. Additional putative roles of the ATF4 protein in cell division and synaptic plasticity are outlined.
Collapse
Affiliation(s)
- Graham Neill
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
12
|
Li MY, Zhao C, Chen L, Yao FY, Zhong FM, Chen Y, Xu S, Jiang JY, Yang YL, Min QH, Lin J, Zhang HB, Liu J, Wang XZ, Huang B. Quantitative Proteomic Analysis of Plasma Exosomes to Identify the Candidate Biomarker of Imatinib Resistance in Chronic Myeloid Leukemia Patients. Front Oncol 2022; 11:779567. [PMID: 34993140 PMCID: PMC8724304 DOI: 10.3389/fonc.2021.779567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Background Imatinib (IM), a tyrosine kinase inhibitor (TKI), has markedly improved the survival and life quality of chronic myeloid leukemia (CML) patients. However, the lack of specific biomarkers for IM resistance remains a serious clinical challenge. Recently, growing evidence has suggested that exosome-harbored proteins were involved in tumor drug resistance and could be novel biomarkers for the diagnosis and drug sensitivity prediction of cancer. Therefore, we aimed to investigate the proteomic profile of plasma exosomes derived from CML patients to identify ideal biomarkers for IM resistance. Methods We extracted exosomes from pooled plasma samples of 9 imatinib-resistant CML patients and 9 imatinib-sensitive CML patients by ultracentrifugation. Then, we identified the expression levels of exosomal proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS) based label free quantification. Bioinformatics analyses were used to analyze the proteomic data. Finally, the western blot (WB) and parallel reaction monitoring (PRM) analyses were applied to validate the candidate proteins. Results A total of 2812 proteins were identified in plasma exosomes from imatinib-resistant and imatinib-sensitive CML patients, including 279 differentially expressed proteins (DEPs) with restricted criteria (fold change≥1.5 or ≤0.667, p<0.05). Compared with imatinib-sensitive CML patients, 151 proteins were up-regulated and 128 proteins were down-regulated. Bioinformatics analyses revealed that the main function of the upregulated proteins was regulation of protein synthesis, while the downregulated proteins were mainly involved in lipid metabolism. The top 20 hub genes were obtained using STRING and Cytoscape, most of which were components of ribosomes. Moreover, we found that RPL13 and RPL14 exhibited exceptional upregulation in imatinib-resistant CML patients, which were further confirmed by PRM and WB. Conclusion Proteomic analysis of plasma exosomes provides new ideas and important information for the study of IM resistance in CML. Especially the exosomal proteins (RPL13 and RPL14), which may have great potential as biomarkers of IM resistance.
Collapse
Affiliation(s)
- Mei-Yong Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cui Zhao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Huanggang Central Hospital Affiliated to Changjiang University, Huanggang, China
| | - Lian Chen
- Department of Ultrasound, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fang-Yi Yao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fang-Min Zhong
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuai Xu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun-Yao Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Lin Yang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing-Hua Min
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin Lin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hai-Bin Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Zhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
14
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
15
|
Ribosome Biogenesis and Cancer: Overview on Ribosomal Proteins. Int J Mol Sci 2021; 22:ijms22115496. [PMID: 34071057 PMCID: PMC8197113 DOI: 10.3390/ijms22115496] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cytosolic ribosomes (cytoribosomes) are macromolecular ribonucleoprotein complexes that are assembled from ribosomal RNA and ribosomal proteins, which are essential for protein biosynthesis. Mitochondrial ribosomes (mitoribosomes) perform translation of the proteins essential for the oxidative phosphorylation system. The biogenesis of cytoribosomes and mitoribosomes includes ribosomal RNA processing, modification and binding to ribosomal proteins and is assisted by numerous biogenesis factors. This is a major energy-consuming process in the cell and, therefore, is highly coordinated and sensitive to several cellular stressors. In mitochondria, the regulation of mitoribosome biogenesis is essential for cellular respiration, a process linked to cell growth and proliferation. This review briefly overviews the key stages of cytosolic and mitochondrial ribosome biogenesis; summarizes the main steps of ribosome biogenesis alterations occurring during tumorigenesis, highlighting the changes in the expression level of cytosolic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs) in different types of tumors; focuses on the currently available information regarding the extra-ribosomal functions of CRPs and MRPs correlated to cancer; and discusses the role of CRPs and MRPs as biomarkers and/or molecular targets in cancer treatment.
Collapse
|
16
|
Butz F, Eichelmann AK, Mayne GC, Wang T, Bastian I, Chiam K, Marri S, Sykes PJ, Wijnhoven BP, Toxopeus E, Michael MZ, Karapetis CS, Hummel R, Watson DI, Hussey DJ. MicroRNA Profiling in Oesophageal Adenocarcinoma Cell Lines and Patient Serum Samples Reveals a Role for miR-451a in Radiation Resistance. Int J Mol Sci 2020; 21:8898. [PMID: 33255413 PMCID: PMC7727862 DOI: 10.3390/ijms21238898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Many patients with Oesophageal Adenocarcinoma (OAC) do not benefit from chemoradiotherapy treatment due to therapy resistance. To better understand the mechanisms involved in resistance and to find potential biomarkers, we investigated the association of microRNAs, which regulate gene expression, with the response to individual treatments, focusing on radiation. Intrinsic radiation resistance and chemotherapy drug resistance were assessed in eight OAC cell lines, and miRNA expression profiling was performed via TaqMan OpenArray qPCR. miRNAs discovered were either uniquely associated with resistance to radiation, cisplatin, or 5-FU, or were common to two or all three of the treatments. Target mRNA pathway analyses indicated several potential mechanisms of treatment resistance. miRNAs associated with the in vitro treatment responses were then investigated for association with pathologic response to neoadjuvant chemoradiotherapy (nCRT) in pre-treatment serums of patients with OAC. miR-451a was associated uniquely with resistance to radiation treatment in the cell lines, and with the response to nCRT in patient serums. Inhibition of miR-451a in the radiation resistant OAC cell line OE19 increased radiosensitivity (Survival Fraction 73% vs. 87%, p = 0.0003), and altered RNA expression. Pathway analysis of effected small non-coding RNAs and corresponding mRNA targets suggest potential mechanisms of radiation resistance in OAC.
Collapse
Affiliation(s)
- Frederike Butz
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, SA 5042, Australia; (A.-K.E.); (G.C.M.); (T.W.); (I.B.); (K.C.); (S.M.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Surgery CCM|CVK, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ann-Kathrin Eichelmann
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, SA 5042, Australia; (A.-K.E.); (G.C.M.); (T.W.); (I.B.); (K.C.); (S.M.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of General, Visceral and Transplant Surgery, University Hospital of Münster, Waldeyerstrasse 1, 48149 Münster, Germany
| | - George C. Mayne
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, SA 5042, Australia; (A.-K.E.); (G.C.M.); (T.W.); (I.B.); (K.C.); (S.M.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Tingting Wang
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, SA 5042, Australia; (A.-K.E.); (G.C.M.); (T.W.); (I.B.); (K.C.); (S.M.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Isabell Bastian
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, SA 5042, Australia; (A.-K.E.); (G.C.M.); (T.W.); (I.B.); (K.C.); (S.M.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Karen Chiam
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, SA 5042, Australia; (A.-K.E.); (G.C.M.); (T.W.); (I.B.); (K.C.); (S.M.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Shashikanth Marri
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, SA 5042, Australia; (A.-K.E.); (G.C.M.); (T.W.); (I.B.); (K.C.); (S.M.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Pamela J. Sykes
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, SA 5042, Australia; (A.-K.E.); (G.C.M.); (T.W.); (I.B.); (K.C.); (S.M.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Bas P. Wijnhoven
- Department of Surgery, Erasmus MC-Erasmus University Medical Centre, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (B.P.W.); (E.T.)
| | - Eelke Toxopeus
- Department of Surgery, Erasmus MC-Erasmus University Medical Centre, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (B.P.W.); (E.T.)
| | - Michael Z. Michael
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, SA 5042, Australia; (A.-K.E.); (G.C.M.); (T.W.); (I.B.); (K.C.); (S.M.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Gastroenterology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Christos S. Karapetis
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, SA 5042, Australia; (A.-K.E.); (G.C.M.); (T.W.); (I.B.); (K.C.); (S.M.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
| | - Richard Hummel
- Department of Surgery, University Hospital of Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany;
| | - David I. Watson
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, SA 5042, Australia; (A.-K.E.); (G.C.M.); (T.W.); (I.B.); (K.C.); (S.M.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Damian J. Hussey
- Flinders Health and Medical Research Institute—Cancer Program, Flinders University, Bedford Park, SA 5042, Australia; (A.-K.E.); (G.C.M.); (T.W.); (I.B.); (K.C.); (S.M.); (P.J.S.); (M.Z.M.); (C.S.K.); (D.I.W.)
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| |
Collapse
|
17
|
Kumar A, Rahal A, Sohal JS, Gupta VK. Bacterial stress response: understanding the molecular mechanics to identify possible therapeutic targets. Expert Rev Anti Infect Ther 2020; 19:121-127. [PMID: 32811215 DOI: 10.1080/14787210.2020.1813021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Bacteria are ubiquitous and many of them are pathogenic in nature. Entry of bacteria in host and its recognition by host defense system induce stress in host cells. With time, bacteria have also developed strategies including drug resistance to escape from antibacterial therapy as well as host defense mechanism. AREAS COVERED Bacterial stress initiates and promotes adaptive immune response through several integrated mechanisms. The mechanisms of bacteria to up and down regulate different pathways involved in these responses have been discussed. The genetic expression of these pathways can be manipulated by the pharmacological interventions. Present review discusses in these contexts and explores the possibilities to overcome stress induced by bacterial pathogens and to suggest new possible therapeutic targets. EXPERT OPINION In our opinion, there are two important fronts to regulate the bacterial stress. One is to target caspase involved in the process of transformation and translation at gene level and protein expression. Second is the identification of bacterial genes that lead to synthesis of abnormal end products supporting bacterial survival in host environment and also to surpass the host defense mechanism. Identification of such genes and their expression products could be an effective option to encounter bacterial resistance.
Collapse
Affiliation(s)
- Amit Kumar
- College of Biotechnology, SVPUAT , Meerut, India
| | - Anu Rahal
- Division of Animal Health, ICAR- CIRG , Mathura, India
| | - Jagdip Singh Sohal
- Amity University Jaipur, Centre for Mycobacterial Disease Research, Amity University , Jaipur, India
| | | |
Collapse
|
18
|
Geng W, Ren J, Shi H, Qin F, Xu X, Xiao S, Jiao Y, Wang A. RPL41 sensitizes retinoblastoma cells to chemotherapeutic drugs via ATF4 degradation. J Cell Physiol 2020; 236:2214-2225. [PMID: 32783256 DOI: 10.1002/jcp.30010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/07/2020] [Accepted: 08/01/2020] [Indexed: 01/03/2023]
Abstract
Retinoblastoma is the most common intraocular cancer with metastatic potential affecting infants and children. Although chemotherapy is available for retinoblastoma, side effects and drug resistance are frequent. Rpl41, encoding ribosomal protein L41 (RPL41), has been identified as a tumor suppressor gene, and its targeted degradation of activating transcription factor 4 (ATF4) produces an antitumor effect. The goal of the present study is to provide experimental evidence for the clinical application of a small peptide regimen in combination with chemotherapy for the treatment of retinoblastoma and to investigate the mechanism of their combined cytotoxicity. It was observed that treatment with the RPL41 peptide alone decreased the viability, migration, and invasion of retinoblastoma Y79 and Weri-Rb1 cells, in addition to promoting cell apoptosis and cell cycle arrest. Furthermore, RPL41 protein levels showed a significantly decreased trend in retinoblastoma specimens, whereas ATF4 protein levels tended to be increased. Mechanistically, ATF4 degradation as a result of RPL41 peptide treatment was observed in retinoblastoma Y79 and Weri-Rb1 cells. Most important, low-dose administration of the RPL41 peptide significantly enhanced the antitumor effect of carboplatin, and further analysis confirmed their synergistic effect as anti-retinoblastoma therapy, indicating that RPL41 sensitized Y79 and Weri-Rb1 retinoblastoma cells to carboplatin. Thus, our data provide a preclinical rationale for the exploration of the RPL41 peptide as a potential adjuvant to carboplatin treatment in retinoblastoma.
Collapse
Affiliation(s)
- Wen Geng
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shengyang, Liaoning, China
| | - Jiaxu Ren
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shengyang, Liaoning, China
| | - Huimin Shi
- Department of Ophthalmology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Feng Qin
- Department of Ophthamology, Shenyang Aier Eye Hospital, Shenyang, Liaoning, China
| | - Xiaohe Xu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shengyang, Liaoning, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital of Harvard Medical School, Boston, Massachusetts
| | - Yisheng Jiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shengyang, Liaoning, China
| | - Aiyuan Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shengyang, Liaoning, China
| |
Collapse
|
19
|
Hu Y, Ranganathan M, Shu C, Liang X, Ganesh S, Osafo-Addo A, Yan C, Zhang X, Aouizerat BE, Krystal JH, D'Souza DC, Xu K. Single-cell Transcriptome Mapping Identifies Common and Cell-type Specific Genes Affected by Acute Delta9-tetrahydrocannabinol in Humans. Sci Rep 2020; 10:3450. [PMID: 32103029 PMCID: PMC7044203 DOI: 10.1038/s41598-020-59827-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/03/2020] [Indexed: 01/02/2023] Open
Abstract
Delta-9-tetrahydrocannabinol (THC) is known to modulate immune response in peripheral blood cells. The mechanisms of THC's effects on gene expression in human immune cells remains poorly understood. Combining a within-subject design with single cell transcriptome mapping, we report that THC acutely alters gene expression in 15,973 blood cells. We identified 294 transcriptome-wide significant genes among eight cell types including 69 common genes and 225 cell-type-specific genes affected by THC administration, including those genes involving in immune response, cytokine production, cell proliferation and apoptosis. We revealed distinct transcriptomic sub-clusters affected by THC in major immune cell types where THC perturbed cell-type-specific intracellular gene expression correlations. Gene set enrichment analysis further supports the findings of THC's common and cell-type-specific effects on immune response and cell toxicity. This comprehensive single-cell transcriptomic profiling provides important insights into THC's acute effects on immune function that may have important medical implications.
Collapse
Affiliation(s)
- Ying Hu
- Center for Biomedical Information and Information Technology, National Cancer Institute, Rockville, MD, 20850, USA
| | - Mohini Ranganathan
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Chang Shu
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Xiaoyu Liang
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Suhas Ganesh
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Awo Osafo-Addo
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Chunhua Yan
- Center for Biomedical Information and Information Technology, National Cancer Institute, Rockville, MD, 20850, USA
| | - Xinyu Zhang
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University, New York, NY, 10010, USA
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, 10010, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Deepak C D'Souza
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, 300 George street, Suite 901, New Haven, CT, 06511, USA.
- Connecticut Veteran Healthcare System, West Haven, CT, 06516, USA.
| |
Collapse
|
20
|
Aliouat A, Hatin I, Bertin P, François P, Stierlé V, Namy O, Salhi S, Jean-Jean O. Divergent effects of translation termination factor eRF3A and nonsense-mediated mRNA decay factor UPF1 on the expression of uORF carrying mRNAs and ribosome protein genes. RNA Biol 2019; 17:227-239. [PMID: 31619139 PMCID: PMC6973328 DOI: 10.1080/15476286.2019.1674595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In addition to its role in translation termination, eRF3A has been implicated in the nonsense-mediated mRNA decay (NMD) pathway through its interaction with UPF1. NMD is a RNA quality control mechanism, which detects and degrades aberrant mRNAs as well as some normal transcripts including those that harbour upstream open reading frames in their 5ʹ leader sequence. In this study, we used RNA-sequencing and ribosome profiling to perform a genome wide analysis of the effect of either eRF3A or UPF1 depletion in human cells. Our bioinformatics analyses allow to delineate the features of the transcripts controlled by eRF3A and UPF1 and to compare the effect of each of these factors on gene expression. We find that eRF3A and UPF1 have very different impacts on the human transcriptome, less than 250 transcripts being targeted by both factors. We show that eRF3A depletion globally derepresses the expression of mRNAs containing translated uORFs while UPF1 knockdown derepresses only the mRNAs harbouring uORFs with an AUG codon in an optimal context for translation initiation. Finally, we also find that eRF3A and UPF1 have opposite effects on ribosome protein gene expression. Together, our results provide important elements for understanding the impact of translation termination and NMD on the human transcriptome and reveal novel determinants of ribosome biogenesis regulation.
Collapse
Affiliation(s)
- Affaf Aliouat
- Sorbonne Université, CNRS, Biological Adaptation and Aging, B2A, 75005 Paris, France
| | - Isabelle Hatin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Pierre Bertin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Pauline François
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Vérène Stierlé
- Sorbonne Université, CNRS, Biological Adaptation and Aging, B2A, 75005 Paris, France
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Samia Salhi
- Sorbonne Université, CNRS, Biological Adaptation and Aging, B2A, 75005 Paris, France
| | - Olivier Jean-Jean
- Sorbonne Université, CNRS, Biological Adaptation and Aging, B2A, 75005 Paris, France
| |
Collapse
|
21
|
Cruz-Rivera YE, Perez-Morales J, Santiago YM, Gonzalez VM, Morales L, Cabrera-Rios M, Isaza CE. A Selection of Important Genes and Their Correlated Behavior in Alzheimer's Disease. J Alzheimers Dis 2019; 65:193-205. [PMID: 30040709 PMCID: PMC6087431 DOI: 10.3233/jad-170799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2017, approximately 5 million Americans were living with Alzheimer’s disease (AD), and it is estimated that by 2050 this number could increase to 16 million. In this study, we apply mathematical optimization to approach microarray analysis to detect differentially expressed genes and determine the most correlated structure among their expression changes. The analysis of GSE4757 microarray dataset, which compares expression between AD neurons without neurofibrillary tangles (controls) and with neurofibrillary tangles (cases), was casted as a multiple criteria optimization (MCO) problem. Through the analysis it was possible to determine a series of Pareto efficient frontiers to find the most differentially expressed genes, which are here proposed as potential AD biomarkers. The Traveling Sales Problem (TSP) model was used to find the cyclical path of maximal correlation between the expression changes among the genes deemed important from the previous stage. This leads to a structure capable of guiding biological exploration with enhanced precision and repeatability. Ten genes were selected (FTL, GFAP, HNRNPA3, COX1, ND2, ND3, ND4, NUCKS1, RPL41, and RPS10) and their most correlated cyclic structure was found in our analyses. The biological functions of their products were found to be linked to inflammation and neurodegenerative diseases and some of them had not been reported for AD before. The TSP path connects genes coding for mitochondrial electron transfer proteins. Some of these proteins are closely related to other electron transport proteins already reported as important for AD.
Collapse
Affiliation(s)
- Yazeli E Cruz-Rivera
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Jaileene Perez-Morales
- Department of Basic Science-Biochemistry Division, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Yaritza M Santiago
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Valerie M Gonzalez
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Luisa Morales
- Public Health Program, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Mauricio Cabrera-Rios
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - Clara E Isaza
- The Applied Optimization Group/Department of Industrial Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico.,Public Health Program, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
22
|
Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2018; 234:8327-8341. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
"Moonlighting protein" is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.
Collapse
Affiliation(s)
- Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
23
|
Geng W, Qin F, Ren J, Xiao S, Wang A. Mini-peptide RPL41 attenuated retinal neovascularization by inducing degradation of ATF4 in oxygen-induced retinopathy mice. Exp Cell Res 2018; 369:243-250. [PMID: 29803741 DOI: 10.1016/j.yexcr.2018.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022]
Abstract
Endoplasmic reticulum (ER) stress signaling is activated in retinal degeneration disease. Activating transcription factor 4 (ATF4), an important mediator of the unfolded protein response (UPR), is a key element that maintains cell survival and proliferation in hypoxic conditions. Our previous studies showed that a small ribosomal protein L41 (RPL41) inhibits ATF4 by inducing its phosphorylation and degradation. In the present study, the effects of mini-peptide RPL41 on retinal neovascularization (RNV) in oxygen-induced retinopathy (OIR) mice was investigated. We induced OIR in C57BL/6 mice and obtained retinas from normoxia, OIR, OIR control (treated with PBS), and OIR treated (treated with RPL41) mice. Our results showed that ER stress signaling was activated and ATF4 was overexpressed in the retinas of OIR mice. After intravitreal injection of RPL41, the size of RNV and vaso-obliteration, and the number of preretinal neovascular cell nuclei in the retinas of OIR mice were significantly decreased. Western blot analysis and quantitative real-time polymerase chain reaction (qPCR) showed ATF4 and VEGF expression decreased after intravitreal injection of RPL41. Furthermore, the expression levels of inflammatory genes including TNF-α, IL-1β, and IL-6 were significantly decreased compared with the OIR control mice. In conclusion, RPL41 prevented pathologic neovascularization and exerted anti-inflammatory effects by degrading the important ER stress factor ATF4, thus, RPL41 could be a promising therapeutic agent for the treatment of neovascular eye diseases, especially retinopathy of prematurity (ROP).
Collapse
Affiliation(s)
- Wen Geng
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shengyang, Liaoning 110004, PR China
| | - Feng Qin
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shengyang, Liaoning 110004, PR China
| | - Jiaxu Ren
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shengyang, Liaoning 110004, PR China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital of Harvard Medical School, Boston, MA 02115, USA
| | - Aiyuan Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shengyang, Liaoning 110004, PR China.
| |
Collapse
|
24
|
Russo A, Maiolino S, Pagliara V, Ungaro F, Tatangelo F, Leone A, Scalia G, Budillon A, Quaglia F, Russo G. Enhancement of 5-FU sensitivity by the proapoptotic rpL3 gene in p53 null colon cancer cells through combined polymer nanoparticles. Oncotarget 2018; 7:79670-79687. [PMID: 27835895 PMCID: PMC5346744 DOI: 10.18632/oncotarget.13216] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/14/2016] [Indexed: 01/09/2023] Open
Abstract
Colon cancer is one of the leading causes of cancer-related death worldwide and the therapy with 5-fluorouracil (5-FU) is mainly limited due to resistance. Recently, we have demonstrated that nucleolar stress upon 5-FU treatment leads to the activation of ribosome-free rpL3 (L3) as proapoptotic factor. In this study, we analyzed L3 expression profile in colon cancer tissues and demonstrated that L3 mRNA amount decreased with malignant progression and the intensity of its expression was inversely related to tumor grade and Bcl-2/Bax ratio. With the aim to develop a combined therapy of 5-FU plus plasmid encoding L3 (pL3), we firstly assessed the potentiation of the cytotoxic effect of 5-FU on colon cancer cells by L3. Next, 10 μM 5-FU and 2 μg of pL3 were encapsulated in biocompatible nanoparticles (NPs) chemically conjugated with HA to achieve active tumor-targeting ability in CD44 overexpressing cancer cells. We showed the specific intracellular accumulation of NPs in cells and a sustained release for 5-FU and L3. Analysis of cytotoxicity and apoptotic induction potential of combined NPs clearly showed that the 5-FU plus L3 were more effective in inducing apoptosis than 5-FU or L3 alone. Furthermore, we show that the cancer-specific chemosensitizer effect of combined NPs may be dependent on L3 ability to affect 5-FU efflux by controlling P-gp (P-glycoprotein) expression. These results led us to propose a novel combined therapy with the use of 5-FU plus L3 in order to establish individualized therapy by examining L3 profiles in tumors to yield a better clinical outcomes.
Collapse
Affiliation(s)
- Annapina Russo
- Laboratory of Biochemistry, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Sara Maiolino
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Valentina Pagliara
- Laboratory of Biochemistry, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Francesca Ungaro
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Fabiana Tatangelo
- Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS, 80131 Napoli, Italy
| | - Alessandra Leone
- Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS, 80131 Napoli, Italy
| | | | - Alfredo Budillon
- Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS, 80131 Napoli, Italy
| | - Fabiana Quaglia
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Giulia Russo
- Laboratory of Biochemistry, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| |
Collapse
|
25
|
Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN. Surviving Stress: Modulation of ATF4-Mediated Stress Responses in Normal and Malignant Cells. Trends Endocrinol Metab 2017; 28:794-806. [PMID: 28797581 PMCID: PMC5951684 DOI: 10.1016/j.tem.2017.07.003] [Citation(s) in RCA: 421] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 01/14/2023]
Abstract
Activating transcription factor 4 (ATF4) is a stress-induced transcription factor that is frequently upregulated in cancer cells. ATF4 controls the expression of a wide range of adaptive genes that allow cells to endure periods of stress, such as hypoxia or amino acid limitation. However, under persistent stress conditions, ATF4 promotes the induction of apoptosis. Recent advances point to a role for post-translational modifications (PTMs) and epigenetic mechanisms in balancing these pro- and anti-survival effects of ATF4. We review here how PTMs and epigenetic modifiers associated with ATF4 may be exploited by cancer cells to cope with cellular stress conditions that are intrinsically associated with tumor growth. Identification of mechanisms that modulate ATF4-mediated transcription and its effects on cellular metabolism may uncover new targets for cancer treatment.
Collapse
Affiliation(s)
- Inge M N Wortel
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud university medical center, Nijmegen, The Netherlands; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud university medical center, Nijmegen, The Netherlands
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL 32610-0245, USA.
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud university medical center, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Zhang W, Tong D, Liu F, Li D, Li J, Cheng X, Wang Z. RPS7 inhibits colorectal cancer growth via decreasing HIF-1α-mediated glycolysis. Oncotarget 2016; 7:5800-14. [PMID: 26735579 PMCID: PMC4868722 DOI: 10.18632/oncotarget.6807] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/09/2015] [Indexed: 12/30/2022] Open
Abstract
Ribosomal protein S7 (RPS7) acts as a tumor suppressor in primary tumorigenesis but its role in cancer metabolism remains unclear. In this study, we demonstrate that RPS7 inhibits the colorectal cancer (CRC) cell glycolysis by suppressing the expression of hypoxia-inducible transcription factor-1α (HIF-1α) and the metabolic promoting proteins glucose transporter 4 (GLUT4) and lactate dehydrogenase B (LDHB). Further study found that the enhanced expression of HIF-1α abrogates the overexpression effects of RPS7 on CRC. In vivo assays also demonstrate that RPS7 suppresses colorectal cancer tumorigenesis and glycolysis. Clinically, the tissue microarray (TMA) analysis discloses the negative regulatory association between RPS7 and HIF-1α in colorectal cancer. Meanwhile, overexpression of RPS7 in colorectal cancer tissues predicts good overall survival and progression-free survival, but high expression level of HIF-1α indicates poor overall survival and progression-free survival. Overall, we reveal that RPS7 inhibits colorectal cancer glycolysis through HIF-1α-associated signaling and may be a promising biomarker for prognosis prediction and a potential target for therapeutic treatment.
Collapse
Affiliation(s)
- Wen Zhang
- Cancer Institute and Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Duo Tong
- Cancer Institute and Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fei Liu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jiajia Li
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Cheng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ziliang Wang
- Cancer Institute and Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
27
|
Activating Transcription Factor 4 (ATF4) modulates Rho GTPase levels and function via regulation of RhoGDIα. Sci Rep 2016; 6:36952. [PMID: 27841340 PMCID: PMC5107905 DOI: 10.1038/srep36952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/21/2016] [Indexed: 01/21/2023] Open
Abstract
In earlier studies, we showed that ATF4 down-regulation affects post-synaptic development and dendritic spine morphology in neurons through increased turnover of the Rho GTPase Cell Division Cycle 42 (Cdc42) protein. Here, we find that ATF4 down-regulation in both hippocampal and cortical neuron cultures reduces protein and message levels of RhoGDIα, a stabilizer of the Rho GTPases including Cdc42. This effect is rescued by an shATF4-resistant active form of ATF4, but not by a mutant that lacks transcriptional activity. This is, at least in part, due to the fact that Arhgdia, the gene encoding RhoGDIα, is a direct transcriptional target of ATF4 as is shown in ChIP assays. This pathway is not restricted to neurons. This is seen in an impairment of cell migration on ATF4 reduction in non-neuronal cells. In conclusion, we have identified a new cellular pathway in which ATF4 regulates the expression of RhoGDIα that in turn affects Rho GTPase protein levels, and thereby, controls cellular functions as diverse as memory and cell motility.
Collapse
|
28
|
Fahl SP, Wang M, Zhang Y, Duc ACE, Wiest DL. Regulatory Roles of Rpl22 in Hematopoiesis: An Old Dog with New Tricks. Crit Rev Immunol 2016; 35:379-400. [PMID: 26853850 DOI: 10.1615/critrevimmunol.v35.i5.30] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribosomal proteins have long been known to serve critical roles in facilitating the biogenesis of the ribosome and its ability to synthesize proteins. However, evidence is emerging that suggests ribosomal proteins are also capable of performing tissue-restricted, regulatory functions that impact normal development and pathological conditions, including cancer. The challenge in studying such regulatory functions is that elimination of many ribosomal proteins also disrupts ribosome biogenesis and/or function. Thus, it is difficult to determine whether developmental abnormalities resulting from ablation of a ribosomal protein result from loss of core ribosome functions or from loss of the regulatory function of the ribosomal protein. Rpl22, a ribosomal protein component of the large 60S subunit, provides insight into this conundrum; Rpl22 is dispensable for both ribosome biogenesis and protein synthesis yet its ablation causes tissue-restricted disruptions in development. Here we review evidence supporting the regulatory functions of Rpl22 and other ribosomal proteins.
Collapse
Affiliation(s)
- Shawn P Fahl
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Minshi Wang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Yong Zhang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Anne-Cecile E Duc
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
29
|
Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep 2016; 17:1374-1395. [PMID: 27629041 DOI: 10.15252/embr.201642195] [Citation(s) in RCA: 1672] [Impact Index Per Article: 185.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
In response to diverse stress stimuli, eukaryotic cells activate a common adaptive pathway, termed the integrated stress response (ISR), to restore cellular homeostasis. The core event in this pathway is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by one of four members of the eIF2α kinase family, which leads to a decrease in global protein synthesis and the induction of selected genes, including the transcription factor ATF4, that together promote cellular recovery. The gene expression program activated by the ISR optimizes the cellular response to stress and is dependent on the cellular context, as well as on the nature and intensity of the stress stimuli. Although the ISR is primarily a pro-survival, homeostatic program, exposure to severe stress can drive signaling toward cell death. Here, we review current understanding of the ISR signaling and how it regulates cell fate under diverse types of stress.
Collapse
Affiliation(s)
- Karolina Pakos-Zebrucka
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Izabela Koryga
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Mila Ljujic
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
30
|
Xu X, Xiong X, Sun Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. SCIENCE CHINA-LIFE SCIENCES 2016; 59:656-72. [DOI: 10.1007/s11427-016-0018-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 01/29/2023]
|
31
|
Yang G, Zong H. Overexpression of PDZK1IP1, EEF1A2 and RPL41 genes in intrahepatic cholangiocarcinoma. Mol Med Rep 2016; 13:4786-90. [PMID: 27082702 DOI: 10.3892/mmr.2016.5110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 02/24/2016] [Indexed: 11/05/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive malignancy in the liver, which is associated with a poor prognosis. However, the molecular pathogenesis of iCCA remains unclear. RNA-Seq for tumor and para-tumor sample pairs enables the characterization of changes in the gene expression profiles of patients with iCCA. The present study analyzed RNA‑Seq data of seven iCCA para‑tumor and tumor sample pairs. Differential gene expression analysis demonstrated significant upregulation of PDZK1IP1, EEF1A2 and RPL41 (ENSG00000279483) genes in the iCCA samples when compared with the matched para‑tumor samples. Furthermore, genes associated with the immune system, metabolism and metabolic energy were significantly downregulated in the iCCA tumor tissues, indicating that this is involved in the pathogenesis of iCCA. The present study aimed to elucidate the gene expression patterns associated with the tumorigenesis of iCCA by comparing tumor and normal tissues, in order to isolate novel diagnostic factors for iCCA.
Collapse
Affiliation(s)
- Guanghua Yang
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Huajie Zong
- Department of General Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
32
|
Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015; 7:92-104. [PMID: 25735597 DOI: 10.1093/jmcb/mjv014] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/05/2014] [Indexed: 01/05/2023] Open
Abstract
Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Juan Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Peng Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
33
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
34
|
|