1
|
Uyama T, Sasaki S, Sikder MM, Okada-Iwabu M, Ueda N. The PLAAT family as phospholipid-related enzymes. Prog Lipid Res 2025; 98:101331. [PMID: 40074088 DOI: 10.1016/j.plipres.2025.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The phospholipase A and acyltransferase (PLAAT) family is a group of structurally related proteins that are conserved among vertebrates. In humans, the family comprises five members (PLAAT1-5), which share common domain structures, and functions as phospholipase A1/A2 and acyltransferase enzymes. Regarding acyltransferase activities, PLAATs produce N-acyl-phosphatidylethanolamines, which serve as the precursor of bioactive N-acylethanolamines (NAEs). Recent evidence strongly suggests that PLAAT proteins play a crucial role in maintaining homeostasis in various organelles, such as the endoplasmic reticulum, lysosomes, mitochondria, and peroxisomes. In this process, PLAAT proteins bind to organelles and degrade them in an enzyme activity-dependent manner. Their physiological significance was revealed by the inability of PLAAT-deficient animals to degrade organelles during the maturation of the eye lens, resulting in the development of cataracts. Furthermore, the deficiency of PLAAT1, 3, and 5 in mice caused resistance to high-fat diet-induced fatty liver, the lean phenotype represented by a marked decrease in adipose tissue mass, and the exacerbation of testicular inflammation due to decreased levels of anti-inflammatory NAEs, respectively. In addition, human PLAAT3 was identified as a causative gene for lipodystrophy. We herein provide an overview of the molecular and biological properties of PLAAT proteins.
Collapse
Affiliation(s)
- Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| | - Sumire Sasaki
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Mohammad Mamun Sikder
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Miki Okada-Iwabu
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| |
Collapse
|
2
|
Ebrahimi Samani S, Tatsukawa H, Hitomi K, Kaartinen MT. Transglutaminase 1: Emerging Functions beyond Skin. Int J Mol Sci 2024; 25:10306. [PMID: 39408635 PMCID: PMC11476513 DOI: 10.3390/ijms251910306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Transglutaminase enzymes catalyze Ca2+- and thiol-dependent posttranslational modifications of glutamine-residues that include esterification, hydrolysis and transamidation, which results in covalent protein-protein crosslinking. Among the eight transglutaminase family members in mammals, transglutaminase 1 (TG1) plays a crucial role in skin barrier formation via crosslinking and insolubilizing proteins in keratinocytes. Despite this established function in skin, novel functions have begun merging in normal tissue homeostasis as well as in pathologies. This review summarizes our current understanding of the structure, activation, expression and activity patterns of TG1 and discusses its putative novel role in other tissues, such as in vascular integrity, and in diseases, such as cancer and fibrosis.
Collapse
Affiliation(s)
- Sahar Ebrahimi Samani
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada;
| | - Hideki Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.T.); (K.H.)
| | - Kiyotaka Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.T.); (K.H.)
| | - Mari T. Kaartinen
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada;
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
3
|
Wilhelmus MMM, Chouchane O, Loos M, Jongenelen CAM, Brevé JJP, Jonker A, Bol JGJM, Smit AB, Drukarch B. Absence of tissue transglutaminase reduces amyloid-beta pathology in APP23 mice. Neuropathol Appl Neurobiol 2022; 48:e12796. [PMID: 35141929 PMCID: PMC9304226 DOI: 10.1111/nan.12796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 02/05/2022] [Indexed: 11/29/2022]
Abstract
Aims Alzheimer's disease (AD) is characterised by amyloid‐beta (Aβ) aggregates in the brain. Targeting Aβ aggregates is a major approach for AD therapies, although attempts have had little to no success so far. A novel treatment option is to focus on blocking the actual formation of Aβ multimers. The enzyme tissue transglutaminase (TG2) is abundantly expressed in the human brain and plays a key role in post‐translational modifications in Aβ resulting in covalently cross‐linked, stable and neurotoxic Aβ oligomers. In vivo absence of TG2 in the APP23 mouse model may provide evidence that TG2 plays a key role in development and/or progression of Aβ‐related pathology. Methods Here, we compared the effects on Aβ pathology in the presence or absence of TG2 using 12‐month‐old wild type, APP23 and a crossbreed of the TG2−/− mouse model and APP23 mice (APP23/TG2−/−). Results Using immunohistochemistry, we found that the number of Aβ deposits was significantly reduced in the absence of TG2 compared with age‐matched APP23 mice. To pinpoint possible TG2‐associated mechanisms involved in this observation, we analysed soluble brain Aβ1–40, Aβ1–42 and/or Aβ40/42 ratio, and mRNA levels of human APP and TG2 family members present in brain of the various mouse models. In addition, using immunohistochemistry, both beta‐pleated sheet formation in Aβ deposits and the presence of reactive astrocytes associated with Aβ deposits were analysed. Conclusions We found that absence of TG2 reduces the formation of Aβ pathology in the APP23 mouse model, suggesting that TG2 may be a suitable therapeutic target for reducing Aβ deposition in AD.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Osoul Chouchane
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Maarten Loos
- Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | - Cornelis A M Jongenelen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John J P Brevé
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Allert Jonker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John G J M Bol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, VU University Amsterdam, The Netherlands
| | - Benjamin Drukarch
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Vitória JJM, Trigo D, da Cruz E Silva OAB. Revisiting APP secretases: an overview on the holistic effects of retinoic acid receptor stimulation in APP processing. Cell Mol Life Sci 2022; 79:101. [PMID: 35089425 PMCID: PMC11073327 DOI: 10.1007/s00018-021-04090-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide and is characterized by the accumulation of the β-amyloid peptide (Aβ) in the brain, along with profound alterations in phosphorylation-related events and regulatory pathways. The production of the neurotoxic Aβ peptide via amyloid precursor protein (APP) proteolysis is a crucial step in AD development. APP is highly expressed in the brain and is complexly metabolized by a series of sequential secretases, commonly denoted the α-, β-, and γ-cleavages. The toxicity of resulting fragments is a direct consequence of the first cleaving event. β-secretase (BACE1) induces amyloidogenic cleavages, while α-secretases (ADAM10 and ADAM17) result in less pathological peptides. Hence this first cleavage event is a prime therapeutic target for preventing or reverting initial biochemical events involved in AD. The subsequent cleavage by γ-secretase has a reduced impact on Aβ formation but affects the peptides' aggregating capacity. An array of therapeutic strategies are being explored, among them targeting Retinoic Acid (RA) signalling, which has long been associated with neuronal health. Additionally, several studies have described altered RA levels in AD patients, reinforcing RA Receptor (RAR) signalling as a promising therapeutic strategy. In this review we provide a holistic approach focussing on the effects of isoform-specific RAR modulation with respect to APP secretases and discuss its advantages and drawbacks in subcellular AD related events.
Collapse
Affiliation(s)
- José J M Vitória
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T, Dunworth M, Destefano-Shields C, Dasgupta N, Davidson S, Lindquist DM, Fuller CE, Smith RD, Cleveland JL, Casero RA, Soleimani M. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J Neuroinflammation 2020; 17:301. [PMID: 33054763 PMCID: PMC7559641 DOI: 10.1186/s12974-020-01955-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polyamine catabolism plays a key role in maintaining intracellular polyamine pools, yet its physiological significance is largely unexplored. Here, we report that the disruption of polyamine catabolism leads to severe cerebellar damage and ataxia, demonstrating the fundamental role of polyamine catabolism in the maintenance of cerebellar function and integrity. METHODS Mice with simultaneous deletion of the two principal polyamine catabolic enzymes, spermine oxidase and spermidine/spermine N1-acetyltransferase (Smox/Sat1-dKO), were generated by the crossbreeding of Smox-KO (Smox-/-) and Sat1-KO (Sat1-/-) animals. Development and progression of tissue injury was monitored using imaging, behavioral, and molecular analyses. RESULTS Smox/Sat1-dKO mice are normal at birth, but develop progressive cerebellar damage and ataxia. The cerebellar injury in Smox/Sat1-dKO mice is associated with Purkinje cell loss and gliosis, leading to neuroinflammation and white matter demyelination during the latter stages of the injury. The onset of tissue damage in Smox/Sat1-dKO mice is not solely dependent on changes in polyamine levels as cerebellar injury was highly selective. RNA-seq analysis and confirmatory studies revealed clear decreases in the expression of Purkinje cell-associated proteins and significant increases in the expression of transglutaminases and markers of neurodegenerative microgliosis and astrocytosis. Further, the α-Synuclein expression, aggregation, and polyamination levels were significantly increased in the cerebellum of Smox/Sat1-dKO mice. Finally, there were clear roles of transglutaminase-2 (TGM2) in the cerebellar pathologies manifest in Smox/Sat1-dKO mice, as pharmacological inhibition of transglutaminases reduced the severity of ataxia and cerebellar injury in Smox/Sat1-dKO mice. CONCLUSIONS These results indicate that the disruption of polyamine catabolism, via coordinated alterations in tissue polyamine levels, elevated transglutaminase activity and increased expression, polyamination, and aggregation of α-Synuclein, leads to severe cerebellar damage and ataxia. These studies indicate that polyamine catabolism is necessary to Purkinje cell survival, and for sustaining the functional integrity of the cerebellum.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA.
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Research Services, Veterans Affairs Medical Center, Albuquerque, NM, 87108, USA.
- Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, 915 Camino de Salud, Bldg. 289, IDTC 3315, Albuquerque, NM, 87113, USA.
- Present Address: Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, Albuquerque, NM, 87131, USA.
| | - Marybeth Brooks
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Present Address: Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, Albuquerque, NM, 87131, USA
| | - Sharon Barone
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Research Services, Veterans Affairs Medical Center, Albuquerque, NM, 87108, USA
- Present Address: Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, Albuquerque, NM, 87131, USA
| | - Negah Rahmati
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Matthew Dunworth
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Christina Destefano-Shields
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Nupur Dasgupta
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Steve Davidson
- Department of Anesthesiology and Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Diana M Lindquist
- Department of Radiology, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Christine E Fuller
- Upstate Medical University Department of Pathology, Syracuse, NY, 13219, USA
| | - Roger D Smith
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, USA
| | - Robert A Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA.
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Research Services, Veterans Affairs Medical Center, Albuquerque, NM, 87108, USA.
- Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, 915 Camino de Salud, Bldg. 289, IDTC 3315, Albuquerque, NM, 87113, USA.
- Present Address: Department of Internal Medicine, Division of Nephrology, University of New Mexico College of Medicine, Albuquerque, NM, 87131, USA.
| |
Collapse
|
6
|
Tripathy D, Migazzi A, Costa F, Roncador A, Gatto P, Fusco F, Boeri L, Albani D, Juárez-Hernández JL, Musio C, Colombo L, Salmona M, Wilhelmus MMM, Drukarch B, Pennuto M, Basso M. Increased transcription of transglutaminase 1 mediates neuronal death in in vitro models of neuronal stress and Aβ1-42-mediated toxicity. Neurobiol Dis 2020; 140:104849. [PMID: 32222473 DOI: 10.1016/j.nbd.2020.104849] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/01/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. At the pre-symptomatic phase of the disease, the processing of the amyloid precursor protein (APP) produces toxic peptides, called amyloid-β 1-42 (Aβ 1-42). The downstream effects of Aβ 1-42 production are not completely uncovered. Here, we report the involvement of transglutaminase 1 (TG1) in in vitro AD models of neuronal toxicity. TG1 was increased at late stages of the disease in the hippocampus of a mouse model of AD and in primary cortical neurons undergoing stress. Silencing of TGM1 gene was sufficient to prevent Aβ-mediated neuronal death. Conversely, its overexpression enhanced cell death. TGM1 upregulation was mediated at the transcriptional level by an activator protein 1 (AP1) binding site that when mutated halted TGM1 promoter activation. These results indicate that TG1 acts downstream of Aβ-toxicity, and that its stress-dependent increase makes it suitable for pharmacological intervention.
Collapse
Affiliation(s)
- Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Alice Migazzi
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Federica Costa
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Alessandro Roncador
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Pamela Gatto
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy
| | - Federica Fusco
- Department of Neuroscience, Laboratory of Genetics of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Laboratory of Genetics of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - J Leon Juárez-Hernández
- Institute of Biophysics, Trento Unit, National Research Council (IBF-CNR), Bruno Kessler Foundation (FBK), LabSSAH, Via alla Cascata 56/C, 38123 Trento, Italy
| | - Carlo Musio
- Institute of Biophysics, Trento Unit, National Research Council (IBF-CNR), Bruno Kessler Foundation (FBK), LabSSAH, Via alla Cascata 56/C, 38123 Trento, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Biochemistry and Protein Chemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Laboratory of Biochemistry and Protein Chemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - M M Micha Wilhelmus
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| | - Benjamin Drukarch
- VU University Medical Center, Neuroscience Campus Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| | - Maria Pennuto
- Dulbecco Telethon Institute Lab of Neurodegenerative Diseases, Centre for Integrative Biology (CIBIO), University of Trento, Italy; Department of Biomedical sciences, via Ugo Bassi 58/B, University of Padova, 35131 Padova, Italy; Padova Neuroscience Center, 35100 Padova, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, TN, Italy.
| |
Collapse
|
7
|
Chou CM, Lee YL, Liao CW, Huang YC, Fan CK. Enhanced expressions of neurodegeneration-associated factors, UPS impairment, and excess Aβ accumulation in the hippocampus of mice with persistent cerebral toxocariasis. Parasit Vectors 2017; 10:620. [PMID: 29273062 PMCID: PMC5741903 DOI: 10.1186/s13071-017-2578-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/06/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Toxocariasis is a worldwide zoonotic parasitic disease mainly caused by Toxocara canis. Humans can be infected by accidental ingestion of T. canis embryonated ovum-contaminated food, water, or encapsulated larvae in paratenic hosts' viscera or meat. Since humans and mice are paratenic hosts of T. canis, the wandering larvae might cause mechanical tissue damage and excretory-secretory antigens may trigger inflammatory injuries to local organs. Long-term residence of T. canis larvae in a paratenic host's brain may cause cerebral toxocariasis (CT) that contributes to cerebral damage, neuroinflammation and neuropsychiatric disorders in mice and clinical patients. Since the hippocampus has been long recognized as being responsible for learning and memory functions, parasitic invasion of this site may cause neuroinflammatory and neurodegenerative disorders. The present study intended to assess pathological changes, expressions of neurodegeneration-associated factors (NDAFs), including transforming growth factor (TGF)-β1, S100B, glial fibrillary acidic protein (GFAP), transglutaminase type 2 (TG2), claudin-5, substance P (SP) and interleukin (IL)-1β, and the ubiquitin-proteasome system (UPS) function in the hippocampus and associated cognitive behavior in ICR mice orally inoculated with a high, medium or low-dose of T. canis embryonated ova during a 20-week investigation. RESULTS Results indicated although there were insignificant differences in learning and memory function between the experimental mice and uninfected control mice, possibly because the site where T. canis larvae invaded was the surrounding area but not the hippocampus per se. Nevertheless, enhanced expressions of NDAF, persistent UPS impairment and excess amyloid β (Aβ) accumulation concomitantly emerged in the experimental mice hippocampus at 8, 16 and 20 weeks post-infection. CONCLUSIONS We thus postulate that progressive CT may still progress to neurodegeneration due to enhanced NDAF expressions, persistent UPS impairment and excess Aβ accumulation in the hippocampus.
Collapse
Affiliation(s)
- Chia-Mei Chou
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan.,Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan
| | - Chien-Wei Liao
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan.,Research Center of International Tropical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan
| | - Ying-Chieh Huang
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan
| | - Chia-Kwung Fan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan. .,Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan. .,Research Center of International Tropical Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan. .,Tropical Medicine Division, International PhD Program in Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St, Taipei, 11031, Taiwan.
| |
Collapse
|
8
|
Gaetano Gatta N, Romano R, Fioretti E, Gentile V. Transglutaminase inhibition: possible therapeutic mechanisms to protect cells from death in neurological disorders. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Zhang J, Wang S, Huang W, Bennett DA, Dickson DW, Wang D, Wang R. Tissue Transglutaminase and Its Product Isopeptide Are Increased in Alzheimer's Disease and APPswe/PS1dE9 Double Transgenic Mice Brains. Mol Neurobiol 2016; 53:5066-78. [PMID: 26386840 PMCID: PMC4799778 DOI: 10.1007/s12035-015-9413-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/31/2015] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is characterized by intracellular and extracellular protein aggregates, including microtubule-associated protein tau and cleavage product of amyloid precursor protein, β-amyloid (Aβ). Tissue transglutaminase (tTG) is a calcium-dependent enzyme that cross-links proteins forming a γ-glutamyl-ε-lysine isopeptide bond. Highly resistant to proteolysis, this bond can induce protein aggregation and deposition. We set out to determine if tTG may play a role in pathogenesis of AD. Previous studies have shown that tTG and isopeptide are increased in advanced AD, but they have not addressed if this is an early or late feature of AD. In the present study, we measured tTG expression levels and enzyme activity in the brains of individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI), and AD, as well as a transgenic mouse model of AD. We found that both enzyme expression and activity were increased in MCI as well as AD compared to NCI. In the transgenic model of AD, tTG expression and enzyme activity increased sharply with age and were relatively specific for the hippocampus. We also assessed overlap of isopeptide immunoreactivity with neurodegeneration-related proteins with Western blots and found neurofilament, tau, and Aβ showed co-localization with isopeptide in both AD and transgenic mice. These results suggest that tTG might be a key factor in pathogenesis of abnormal protein aggregation in AD.
Collapse
Affiliation(s)
- Ji Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Suqing Wang
- Department of Nutrition and Food Health, School of Public Health, Wuhan University, Wuhan, China
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI, 53706, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Dennis W Dickson
- Department of Pathology (Neuropathology) and Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA
| | - Dengshun Wang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI, 53706, USA.
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
10
|
Gaetano Gatta N, Cammarota G, Gentile V. Possible roles of transglutaminases in molecular mechanisms responsible for human neurodegenerative diseases. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.4.529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
de Jager M, Boot MV, Bol JGJM, Brevé JJP, Jongenelen CAM, Drukarch B, Wilhelmus MMM. The blood clotting Factor XIIIa forms unique complexes with amyloid-beta (Aβ) and colocalizes with deposited Aβ in cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2015; 42:255-72. [PMID: 25871449 DOI: 10.1111/nan.12244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/09/2015] [Indexed: 12/11/2022]
Abstract
AIMS Cerebral amyloid angiopathy (CAA) is a key pathological hallmark of Alzheimer's disease (AD) characterized by accumulation of amyloid-beta (Aβ) protein in blood vessel walls. CAA impairs vessel functioning, affects blood brain barrier integrity and accelerates cognitive decline of AD patients. Unfortunately, mechanisms underlying Aβ deposition in the vessel wall remain largely unknown. Factor XIIIa (FXIIIa) is a blood-derived transglutaminase crucial in blood coagulation by cross-linking fibrin molecules. Evidence is mounting that blood-derived factors are present in CAA and may play a role in protein deposition in the vessel wall. We therefore investigated whether FXIIIa is present in CAA and if FXIIIa cross-link activity affects Aβ aggregation. METHODS Using immunohistochemistry, we investigated the distribution of FXIIIa, its activator thrombin and in situ FXIIIa activity in CAA in post-mortem AD tissue. We used surface plasmon resonance and Western blot analysis to study binding of FXIIIa to Aβ and the formation of FXIIIa-Aβ complexes, respectively. In addition, we studied cytotoxicity of FXIIIa-Aβ complexes to cerebrovascular cells. RESULTS FXIIIa, thrombin and in situ FXIIIa activity colocalize with the Aβ deposition in CAA. Furthermore, FXIIIa binds to Aβ with a higher binding affinity for Aβ1-42 compared with Aβ1-40 . Moreover, highly stable FXIIIa-Aβ complexes are formed independently of FXIIIa cross-linking activity that protected cerebrovascular cells from Aβ-induced toxicity in vitro. CONCLUSIONS Our data showed that FXIIIa colocalizes with Aβ in CAA and that FXIIIa forms unique protein complexes with Aβ that might play an important role in Aβ deposition and persistence in the vessel wall.
Collapse
Affiliation(s)
- M de Jager
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - M V Boot
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - J G J M Bol
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - J J P Brevé
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - C A M Jongenelen
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - B Drukarch
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - M M M Wilhelmus
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Fontaine SN, Sabbagh JJ, Baker J, Martinez-Licha CR, Darling A, Dickey CA. Cellular factors modulating the mechanism of tau protein aggregation. Cell Mol Life Sci 2015; 72:1863-79. [PMID: 25666877 DOI: 10.1007/s00018-015-1839-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/18/2014] [Accepted: 01/13/2015] [Indexed: 01/12/2023]
Abstract
Pathological accumulation of the microtubule-associated protein tau, in the form of neurofibrillary tangles, is a major hallmark of Alzheimer's disease, the most prevalent neurodegenerative condition worldwide. In addition to Alzheimer's disease, a number of neurodegenerative diseases, called tauopathies, are characterized by the accumulation of aggregated tau in a variety of brain regions. While tau normally plays an important role in stabilizing the microtubule network of the cytoskeleton, its dissociation from microtubules and eventual aggregation into pathological deposits is an area of intense focus for therapeutic development. Here we discuss the known cellular factors that affect tau aggregation, from post-translational modifications to molecular chaperones.
Collapse
Affiliation(s)
- Sarah N Fontaine
- Department of Molecular Medicine, College of Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | | | | | | | | | | |
Collapse
|
13
|
Shindyapina AV, Petrunia IV, Komarova TV, Sheshukova EV, Kosorukov VS, Kiryanov GI, Dorokhov YL. Dietary methanol regulates human gene activity. PLoS One 2014; 9:e102837. [PMID: 25033451 PMCID: PMC4102594 DOI: 10.1371/journal.pone.0102837] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/23/2014] [Indexed: 12/02/2022] Open
Abstract
Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH to formaldehyde (FA), which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.
Collapse
Affiliation(s)
- Anastasia V. Shindyapina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Igor V. Petrunia
- N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Tatiana V. Komarova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | | | | | - Gleb I. Kiryanov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Yuri L. Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
14
|
Scharadin TM, Eckert RL. TIG3: an important regulator of keratinocyte proliferation and survival. J Invest Dermatol 2014; 134:1811-1816. [PMID: 24599174 PMCID: PMC4057967 DOI: 10.1038/jid.2014.79] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 12/11/2013] [Accepted: 01/16/2014] [Indexed: 01/12/2023]
Abstract
Tazarotene induced gene 3 (TIG3) is a tumor suppressor protein. In normal human epidermis, TIG3 is present in the differentiated, suprabasal layers and regulates terminal differentiation. TIG3 level is reduced in hyperproliferative diseases, including psoriasis and skin cancer, suggesting that loss of TIG3 is associated with enhanced cell proliferation. Moreover, transient expression of TIG3 leads to terminal differentiation in normal keratinocytes and apoptosis in skin cancer cells. In both cell types, TIG3 distributes to the cell membrane and to the centrosome. At the cell membrane, TIG3 interacts with and activates type I transglutaminase (TG1) to enhance keratinocyte terminal differentiation. TIG3 at the centrosome acts to inhibit centrosome separation during mitosis and to alter microtubule function. These findings argue that TIG3 is involved in control of keratinocyte differentiation and that loss of TIG3 in transformed cells contributes to the malignant phenotype.
Collapse
Affiliation(s)
- Tiffany M Scharadin
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L Eckert
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Departments of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Wolf J, Jäger C, Morawski M, Lachmann I, Schönknecht P, Mothes T, Arendt T. Tissue transglutaminase in Alzheimer's disease - facts and fiction: a reply to "Tissue transglutaminase is a biochemical marker for Alzheimer's disease". Neurobiol Aging 2013; 35:e5-9. [PMID: 24300236 DOI: 10.1016/j.neurobiolaging.2013.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/27/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Johannes Wolf
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Medical Faculty of the University Leipzig, Leipzig, Germany
| | - Carsten Jäger
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | | | - Peter Schönknecht
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Thomas Mothes
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Medical Faculty of the University Leipzig, Leipzig, Germany.
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Wilhelmus MMM, Drukarch B. Tissue transglutaminase is a biochemical marker for Alzheimer's disease. Neurobiol Aging 2013; 35:e3-4. [PMID: 24080177 DOI: 10.1016/j.neurobiolaging.2013.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.
| | - Benjamin Drukarch
- Department of Anatomy and Neurosciences, Cellular Neuropharmacology Section, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Transglutaminase is a therapeutic target for oxidative stress, excitotoxicity and stroke: a new epigenetic kid on the CNS block. J Cereb Blood Flow Metab 2013; 33:809-18. [PMID: 23571278 PMCID: PMC3677119 DOI: 10.1038/jcbfm.2013.53] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transglutaminases (TGs) are multifunctional, calcium-dependent enzymes that have been recently implicated in stroke pathophysiology. Classically, these enzymes are thought to participate in cell injury and death in chronic neurodegenerative conditions via their ability to catalyze covalent, nondegradable crosslinks between proteins or to incorporate polyamines into protein substrates. Accumulating lines of inquiry indicate that specific TG isoforms can shuttle into the nucleus when they sense pathologic changes in calcium or oxidative stress, bind to chromatin and thereby transduce these changes into transcriptional repression of genes involved in metabolic or oxidant adaptation. Here, we review the evidence that supports principally a role for one isoform of this family, TG2, in cell injury and death associated with hemorrhagic or ischemic stroke. We also outline an evolving model in which TG2 is a critical mediator between pathologic signaling and epigenetic modifications that lead to gene repression. Accordingly, the salutary effects of TG inhibitors in stroke may derive from their ability to restore homeostasis by removing inappropriate deactivation of adaptive genetic programs by oxidative stress or extrasynaptic glutamate receptor signaling.
Collapse
|
18
|
Jeitner TM, Battaile K, Cooper AJL. γ-Glutamylamines and neurodegenerative diseases. Amino Acids 2012; 44:129-42. [PMID: 22407484 DOI: 10.1007/s00726-011-1209-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/22/2011] [Indexed: 12/12/2022]
Abstract
Transglutaminases catalyze the formation of γ-glutamylamines utilizing glutamyl residues and amine-bearing compounds such as lysyl residues and polyamines. These γ-glutamylamines can be released from proteins by proteases in an intact form. The free γ-glutamylamines can be catabolized to 5-oxo-L-proline and the free amine by γ-glutamylamine cyclotransferase. Free γ-glutamylamines, however, accumulate in the CSF and affected areas of Huntington Disease brain. This observation suggests transglutaminase-derived γ-glutamylamines may play a more significant role in neurodegeneration than previously thought. The following monograph reviews the metabolism of γ-glutamylamines and examines the possibility that these species contribute to neurodegeneration.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Neurosciences, Biomedical Research Core, Winthrop University Hospital, 222 Station Plaza North, Mineola, USA.
| | | | | |
Collapse
|