1
|
Le T, Htun S, Pandey MK, Sun Y, Magnusen AF, Ullah E, Lauzon J, Beres S, Lee C, Guan B, Hufnagel RB, Brooks BP, Baranzini SE, Slavotinek A. A zebrafish model of crim1 loss of function has small and misshapen lenses with dysregulated clic4 and fgf1b expression. Front Cell Dev Biol 2025; 13:1522094. [PMID: 40114969 PMCID: PMC11922885 DOI: 10.3389/fcell.2025.1522094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Heterozygous deletions predicting haploinsufficiency for the Cysteine Rich Motor Neuron 1 (CRIM1) gene have been identified in two families with macrophthalmia, colobomatous, with microcornea (MACOM), an autosomal dominant trait. Crim1 encodes a type I transmembrane protein that is expressed at the cell membrane of lens epithelial and fiber cells at the stage of lens pit formation. Decreased Crim1 expression in the mouse reduced the number of lens epithelial cells and caused defective adhesion between lens epithelial cells and between the epithelial and fiber cells. Methods We present three patients with heterozygous deletions and truncating variants predicted to result in haploinsufficiency for CRIM1 as further evidence for the role of this gene in eye defects, including retinal coloboma, optic pallor, and glaucoma. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to make a stable Danio rerio model of crim1 deficiency, generating zebrafish that were homozygous for a 2 basepair deletion, c.339_340delCT p.Leu112Leufs*, in crim1. Results Homozygous, crim1 -/- larvae demonstrated smaller eyes and small and misshapen lenses compared to controls, but we did not observe colobomas. Bulk RNA-Seq using dissected eyes from crim1 -/- larvae and controls at 72 h post fertilization showed significant downregulation of crim1 and chloride intracellular channel 4 (clic4) and upregulation of fibroblast growth factor 1b (fgf1b) and complement component 1, q subcomponent (c1q), amongst other dysregulated genes. Discussion Our work strengthens the association between haploinsufficiency for CRIM1 and eye defects and characterizes a stable model of crim1 loss of function for future research.
Collapse
Affiliation(s)
- Tien Le
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Stephanie Htun
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yihui Sun
- Department of Neurology, Weill Institute for Neurosciences., University of California San Francisco, San Francisco, CA, United States
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States
| | - Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ehsan Ullah
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Julie Lauzon
- Department of Medical Genetics and Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Shannon Beres
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurology and Neurosciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Chung Lee
- Stanford University Pediatrics/Medical Genetics, Stanford University, Stanford, CA, United States
| | - Bin Guan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sergio E Baranzini
- Department of Neurology, Weill Institute for Neurosciences., University of California San Francisco, San Francisco, CA, United States
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States
| | - Anne Slavotinek
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
2
|
Podyacheva E, Snezhkova J, Onopchenko A, Dyachuk V, Toropova Y. The Role of MicroRNAs in the Pathogenesis of Doxorubicin-Induced Vascular Remodeling. Int J Mol Sci 2024; 25:13335. [PMID: 39769102 PMCID: PMC11728060 DOI: 10.3390/ijms252413335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/14/2025] Open
Abstract
Doxorubicin (DOX), a cornerstone chemotherapeutic agent, effectively combats various malignancies but is marred by significant cardiovascular toxicity, including endothelial damage, chronic heart failure, and vascular remodeling. These adverse effects, mediated by oxidative stress, mitochondrial dysfunction, inflammatory pathways, and dysregulated autophagy, underscore the need for precise therapeutic strategies. Emerging research highlights the critical role of microRNAs (miRNAs) in DOX-induced vascular remodeling and cardiotoxicity. miRNAs, such as miR-21, miR-22, miR-25, miR-126, miR-140-5p, miR-330-5p, miR-146, miR-143, miR-375, miR-125b, miR-451, miR-34a-5p, and miR-9, influence signaling pathways like TGF-β/Smad, AMPKa/SIRT, NF-κB, mTOR, VEGF, and PI3K/AKT/Nrf2, impacting vascular homeostasis, angiogenesis, and endothelial-to-mesenchymal transition. Despite existing studies, gaps remain in understanding the full spectrum of miRNAs involved and their downstream effects on vascular remodeling. This review synthesizes the current knowledge on miRNA dysregulation during DOX exposure, focusing on their dual roles in cardiovascular pathology and tumor progression. Strategies to reduce DOX cardiotoxicity include modulating miRNA expression to restore signaling balance, targeting pro-inflammatory and pro-fibrotic pathways, and leveraging miRNA inhibitors or mimics. This review aims to organize and integrate the existing knowledge on the role of miRNAs in vascular remodeling, particularly in the contexts of DOX treatment and the progression of various cardiovascular diseases, including their potential involvement in tumor growth.
Collapse
Affiliation(s)
| | | | | | | | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia or (E.P.); (J.S.); (A.O.); (V.D.)
| |
Collapse
|
3
|
Ban JQ, Ao LH, He X, Zhao H, Li J. Advances in macrophage-myofibroblast transformation in fibrotic diseases. Front Immunol 2024; 15:1461919. [PMID: 39445007 PMCID: PMC11496091 DOI: 10.3389/fimmu.2024.1461919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) has emerged as a discovery in the field of fibrotic disease research. MMT is the process by which macrophages differentiate into myofibroblasts, leading to organ fibrosis following organ damage and playing an important role in fibrosis formation and progression. Recently, many new advances have been made in studying the mechanisms of MMT occurrence in fibrotic diseases. This article reviews some critical recent findings on MMT, including the origin of MMT in myofibroblasts, the specific mechanisms by which MMT develops, and the mechanisms and effects of MMT in the kidneys, lungs, heart, retina, and other fibrosis. By summarizing the latest research related to MMT, this paper provides a theoretical basis for elucidating the mechanisms of fibrosis in various organs and developing effective therapeutic targets for fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and
Disease Control, Ministry of Education, Guizhou Medical University,
Guiyang, China
| |
Collapse
|
4
|
Tanaka S, Portilla D, Okusa MD. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nat Rev Nephrol 2023; 19:721-732. [PMID: 37608184 DOI: 10.1038/s41581-023-00752-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Perivascular niches in the kidney comprise heterogeneous cell populations, including pericytes and fibroblasts, with distinct functions. These perivascular cells have crucial roles in preserving kidney homeostasis as they maintain microvascular networks by stabilizing the vasculature and regulating capillary constriction. A subset of kidney perivascular cells can also produce and secrete erythropoietin; this ability can be enhanced with hypoxia-inducible factor-prolyl hydroxylase inhibitors, which are used to treat anaemia in chronic kidney disease. In the pathophysiological state, kidney perivascular cells contribute to the progression of kidney fibrosis, partly via transdifferentiation into myofibroblasts. Moreover, perivascular cells are now recognized as major innate immune sentinels in the kidney that produce pro-inflammatory cytokines and chemokines following injury. These mediators promote immune cell infiltration, leading to persistent inflammation and progression of kidney fibrosis. The crosstalk between perivascular cells and tubular epithelial, immune and endothelial cells is therefore a key process in physiological and pathophysiological states. Here, we examine the multiple roles of kidney perivascular cells in health and disease, focusing on the latest advances in this field of research.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Didier Portilla
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Podyacheva E, Danilchuk M, Toropova Y. Molecular mechanisms of endothelial remodeling under doxorubicin treatment. Biomed Pharmacother 2023; 162:114576. [PMID: 36989721 DOI: 10.1016/j.biopha.2023.114576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Doxorubicin (DOX) is an effective antineoplastic agent used to treat various types of cancers. However, its use is limited by the development of cardiotoxicity, which may result in heart failure. The exact mechanisms underlying DOX-induced cardiotoxicity are not fully understood, but recent studies have shown that endothelial-mesenchymal transition (EndMT) and endothelial damage play a crucial role in this process. EndMT is a biological process in which endothelial cells lose their characteristics and transform into mesenchymal cells, which have a fibroblast-like phenotype. This process has been shown to contribute to tissue fibrosis and remodeling in various diseases, including cancer and cardiovascular diseases. DOX-induced cardiotoxicity has been demonstrated to increase the expression of EndMT markers, suggesting that EndMT may play a critical role in the development of this condition. Furthermore, DOX-induced cardiotoxicity has been shown to cause endothelial damage, leading to the disruption of the endothelial barrier function and increased vascular permeability. This can result in the leakage of plasma proteins, leading to tissue edema and inflammation. Moreover, DOX can impair the production of nitric oxide, endothelin-1, neuregulin, thrombomodulin, thromboxane B2 etc. by endothelial cells, leading to vasoconstriction, thrombosis and further impairing cardiac function. In this regard, this review is devoted to the generalization and structuring of information about the known molecular mechanisms of endothelial remodeling under the action of DOX.
Collapse
|
6
|
Modulation of Monocyte Response by Microrna-15b/106a/374a During Antibody-mediated Rejection in Kidney Transplantation. Transplantation 2022; 107:1089-1101. [PMID: 36398319 DOI: 10.1097/tp.0000000000004393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Increasing evidence suggest that microRNAs are involved in the physiopathology of acute or chronic renal disease. In kidney transplantation, as key regulators of cellular homeostasis, microRNAs may be involved in the regulation of immune cell function and the allograft response. Here, we investigated the change in circulating microRNA expression profile and their involvement in the profound transcriptional changes associated with antibody-mediated rejection (ABMR). METHODS Blood samples were collected at the time of the 710 kidney allograft biopsies at 4 European transplant centers. Messenger RNA and microRNA profiling analyses were performed in a discovery-to-validation study within 3 independent cohorts encompassing N = 126, N = 135, and N = 416 patients, respectively. RESULTS Compared with samples with no ABMR, 14 microRNAs were significantly decreased in ABMR samples. Among them, expression levels of microRNA-15b, microRNA-106a, and microRNA-374a gradually decreased with the severity of ABMR lesions. From their in silico-predicted target genes, a high proportion proved to be significantly upregulated in the paired transcriptomic analysis. Gene ontology analyses of microRNA-15b/-106a/-374a suggested enrichment in myeloid-related pathways, which was further refined by in silico and ex vivo transcriptomic analyses, showing a specific origin from classical CD14 + monocytes. Finally, human CD14 + monocytes were subjected to transduction by antago-microRNAs to mimic ABMR pathology. MicroRNA-15b/-106a/-374a impairment resulted in cellular activation with an increased expression of CD69, CRIM1, IPO7, and CAAP1, direct and common targets of the 3 microRNAs. CONCLUSIONS Together, our data provide new insights into circulating microRNAs as markers and key players in ABMR, and they suggest monocyte involvement in this process.
Collapse
|
7
|
Wang Y, Zhang Y, Li Y, Kou X, Xue Z. Mechanisms of Biochanin A Alleviating PM2.5 Organic Extracts-Induced EMT of A549 Cells through the PI3K/Akt Pathway. JOURNAL OF NATURAL PRODUCTS 2022; 85:2290-2301. [PMID: 36181478 DOI: 10.1021/acs.jnatprod.2c00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important step in tumor progression, which enables tumor cells to acquire migration and invasion characteristics. The aim of this study was to investigate the mechanism of biological biochanin A (BCA) in ameliorating fine particulate matter (PM2.5) lung injury. The results showed that PM2.5 could induce spindle-like changes in cell morphology, causing the ability of migration and invasion. However, they were significantly inhibited by BCA treatment (10/20/30 μm). After BCA treatment, the release and transcription of chemokine CXCL12 and its receptor gene CXCR4 were inhibited, and the release of growth inducer TGF-β1 was significantly reduced. In addition, BCA promoted the transcription of E-cadherin and β-catenin, inhibiting the expression of N-cadherin, vimentin, and fibronectin, and down-regulated the expression of MMP-2/9. We found that BCA effectively interfered with the PI3K/Akt signaling pathway activated by PM2.5. In conclusion, PM2.5 can induce EMT in lung cancer cells, and BCA may reverse this process by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China
| | - Yixia Zhang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China
| | - Yonghui Li
- Cardiovascular Department, Tianjin Fourth Center Hospital, 300140, Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China
| |
Collapse
|
8
|
Monika P, Waiker PV, Chandraprabha MN, Rangarajan A, Murthy KNC. Myofibroblast progeny in wound biology and wound healing studies. Wound Repair Regen 2021; 29:531-547. [PMID: 34009713 DOI: 10.1111/wrr.12937] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Fibroblasts and myofibroblasts play a myriad of important roles in human tissue function, especially in wound repair and healing. Among all cells, fibroblasts are group of cells that decide the status of wound as they maintain tissue homeostasis. Currently, the increase in the deleterious effects of chronic wound and their morbidity rate has necessitated the need to understand the influence of fibroblasts and myofibroblasts, which chiefly originate locally from tissue-resident fibroblasts to address the same. Wound pathophysiology is complex, herein, we have discussed fibroblast and myofibroblast heterogeneity in skin and different organs by understanding the phenotypical and functional properties of each of its sub-populations in the process of wound healing. Recent advancements in fibroblast activation, differentiation to myofibroblasts, proliferation and migration are discussed in detail. Fibroblasts and myofibroblasts are key players in wound healing and wound remodelling, respectively, and their significance in wound repair is discussed. An increased understanding of their biology during wound healing also gives an opportunity to explore more of fibroblast and myofibroblast focused therapies to treat chronic wounds which are clinical challenges. In this regard, in the current review, we have described the different methods for isolation of primary fibroblasts and myofibroblasts from both animal models and humans, and their characterization. Additionally, we have also provided details on possible molecular targets for better understanding of prognosis, diagnosis and treatment of chronic wounds. Information will help both researchers and clinicians in providing molecular insight that enable them for effective chronic wound management. The knowledge of intimate dialogue between the fibroblast, sub-populations like, myofibroblast and their microenvironment, will serve useful in determining novel, efficient and specific therapeutic targets to treat pathological wound conditions.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bangalore, India
| | | | | | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
9
|
Wen Y, Yan HR, Wang B, Liu BC. Macrophage Heterogeneity in Kidney Injury and Fibrosis. Front Immunol 2021; 12:681748. [PMID: 34093584 PMCID: PMC8173188 DOI: 10.3389/fimmu.2021.681748] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Kidney macrophages are central in kidney disease pathogenesis and have therapeutic potential in preventing tissue injury and fibrosis. Recent studies highlighted that kidney macrophages are notably heterogeneous immune cells that fulfill opposing functions such as clearing deposited pathogens, maintaining immune tolerance, initiating and regulating inflammatory responses, promoting kidney fibrosis, and degrading the extracellular matrix. Macrophage origins can partially explain macrophage heterogeneity in the kidneys. Circulating Ly6C+ monocytes are recruited to inflammatory sites by chemokines, while self-renewed kidney resident macrophages contribute to kidney repair and fibrosis. The proliferation of resident macrophages or infiltrating monocytes provides an alternative explanation of macrophage accumulation after kidney injury. In addition, dynamic Ly6C expression on infiltrating monocytes accompanies functional changes in handling kidney inflammation and fibrosis. Mechanisms underlying kidney macrophage heterogeneity, either by recruiting monocyte subpopulations, regulating macrophage polarization, or impacting distinctive macrophage functions, may help develop macrophage-targeted therapies for kidney diseases.
Collapse
Affiliation(s)
- Yi Wen
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong-Ru Yan
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
10
|
Small molecules against the origin and activation of myofibroblast for renal interstitial fibrosis therapy. Biomed Pharmacother 2021; 139:111386. [PMID: 34243594 DOI: 10.1016/j.biopha.2021.111386] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathological response in a broad range of prevalent chronic kidney diseases and ultimately leads to renal failure and death. Although RIF causes a high morbi-mortality worldwide, effective therapeutic drugs are urgently needed. Myofibroblasts are identified as the main effector during the process of RIF. Multiple types of cells, including fibroblasts, epithelial cells, endothelial cells, macrophages and pericytes, contribute to renal myofibroblasts origin, and lots of mediators, including signaling pathways (Transforming growth factor-β1, mammalian target of rapamycin and reactive oxygen species) and epigenetic modifications (Histone acetylation, microRNA and long non-coding RNA) are participated in renal myofibroblasts activation during renal fibrogenesis, suggesting that these mediators may be the promising targets for treating RIF. In addition, many small molecules show profound therapeutic effects on RIF by suppressing the origin and activation of renal myofibroblasts. Taken together, the review focuses on the mechanisms of the origin and activation of renal myofibroblasts in RIF and the small molecules against them improving RIF, which will provide a new insight for RIF therapy.
Collapse
|
11
|
Arai H, Sato Y, Yanagita M. Fibroblast heterogeneity and tertiary lymphoid tissues in the kidney. Immunol Rev 2021; 302:196-210. [PMID: 33951198 PMCID: PMC8360208 DOI: 10.1111/imr.12969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts reside in various organs and support tissue structure and homeostasis under physiological conditions. Phenotypic alterations of fibroblasts underlie the development of diverse pathological conditions, including organ fibrosis. Recent advances in single‐cell biology have revealed that fibroblasts comprise heterogeneous subpopulations with distinct phenotypes, which exert both beneficial and detrimental effects on the host organs in a context‐dependent manner. In the kidney, phenotypic alterations of resident fibroblasts provoke common pathological conditions of chronic kidney disease (CKD), such as renal anemia and peritubular capillary loss. Additionally, in aged injured kidneys, fibroblasts provide functional and structural supports for tertiary lymphoid tissues (TLTs), which serve as the ectopic site of acquired immune reactions in various clinical contexts. TLTs are closely associated with aging and CKD progression, and the developmental stages of TLTs reflect the severity of renal injury. In this review, we describe the current understanding of fibroblast heterogeneity both under physiological and pathological conditions, with special emphasis on fibroblast contribution to TLT formation in the kidney. Dissecting the heterogeneous characteristics of fibroblasts will provide a promising therapeutic option for fibroblast‐related pathological conditions, including TLT formation.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Medical Innovation Center, TMK Project, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition. Proc Natl Acad Sci U S A 2020; 117:20741-20752. [PMID: 32788346 DOI: 10.1073/pnas.1917663117] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unresolved inflammation can lead to tissue fibrosis and impaired organ function. Macrophage-myofibroblast transition (MMT) is one newly identified mechanism by which ongoing chronic inflammation causes progressive fibrosis in different forms of kidney disease. However, the mechanisms underlying MMT are still largely unknown. Here, we discovered a brain-specific homeobox/POU domain protein Pou4f1 (Brn3a) as a specific regulator of MMT. Interestingly, we found that Pou4f1 is highly expressed by macrophages undergoing MMT in sites of fibrosis in human and experimental kidney disease, identified by coexpression of the myofibroblast marker, α-SMA. Unexpectedly, Pou4f1 expression peaked in the early stage in renal fibrogenesis in vivo and during MMT of bone marrow-derived macrophages (BMDMs) in vitro. Mechanistically, chromatin immunoprecipitation (ChIP) assay identified that Pou4f1 is a Smad3 target and the key downstream regulator of MMT, while microarray analysis defined a Pou4f1-dependent fibrogenic gene network for promoting TGF-β1/Smad3-driven MMT in BMDMs at the transcriptional level. More importantly, using two mouse models of progressive renal interstitial fibrosis featuring the MMT process, we demonstrated that adoptive transfer of TGF-β1-stimulated BMDMs restored both MMT and renal fibrosis in macrophage-depleted mice, which was prevented by silencing Pou4f1 in transferred BMDMs. These findings establish a role for Pou4f1 in MMT and renal fibrosis and suggest that Pou4f1 may be a therapeutic target for chronic kidney disease with progressive renal fibrosis.
Collapse
|
13
|
Arai H, Yanagita M. Janus-Faced: Molecular Mechanisms and Versatile Nature of Renal Fibrosis. KIDNEY360 2020; 1:697-704. [PMID: 35372942 PMCID: PMC8815544 DOI: 10.34067/kid.0001972020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/14/2020] [Indexed: 04/23/2023]
Abstract
Renal fibrosis is a major hallmark of CKD, regardless of the underlying etiology. In fibrosis development and progression, myofibroblasts play a pivotal role, producing extracellular matrix and interacting with various resident cells in the kidney. Over the past decade, the origin of myofibroblasts has been thoroughly investigated. Emerging evidence suggests that renal myofibroblasts originate from several cellular sources, including resident fibroblasts, pericytes, and bone marrow-derived cells. The contribution of resident fibroblasts is most crucial, and currently available data strongly suggest the importance of functional heterogeneity and plasticity of fibroblasts in kidney disease progression. Resident fibroblasts acquire distinct phenotypes based on their local microenvironment and exert multifactorial functions. For example, age-dependent alterations of renal fibroblasts make a significant contribution to the formation of tertiary lymphoid tissues, which promote local inflammation after injury in the aged kidney. In conjunction with fibrosis development, dysfunction of resident fibroblasts provokes unique pathologic conditions including renal anemia and peritubular capillary loss, both of which are major complications of CKD. Although renal fibrosis is considered detrimental in general, recent studies suggest it has beneficial roles, such as maintaining functional crosstalk with injured proximal tubular cells and supporting their regeneration. These findings provide novel insight into the mechanisms of renal fibrosis, which could be regarded as an adaptive process of kidney injury and repair. Precise understanding of the functional heterogeneity of resident fibroblasts and myofibroblasts has the potential to facilitate the development of novel therapeutics against kidney diseases. In this review, we describe the current perspective on the origin of myofibroblasts and fibroblast heterogeneity, with special emphasis on the dual aspects of renal fibrosis, both beneficial and detrimental, in CKD progression.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Antiepithelial-Mesenchymal Transition of Herbal Active Substance in Tumor Cells via Different Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9253745. [PMID: 32377312 PMCID: PMC7183534 DOI: 10.1155/2020/9253745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process through which epithelial cells differentiate into mesenchymal cells. EMT plays an important role in embryonic development and wound healing; however, EMT also contributes to some pathological processes, such as tumor metastasis and fibrosis. EMT mechanisms, including gene mutation and transcription factor regulation, are complicated and not yet well understood. In this review, we introduce some herbal active substances that exert antitumor activity through inhibiting EMT that is induced by hypoxia, high blood glucose level, lipopolysaccharide, or other factors.
Collapse
|
15
|
Cui L, Lyu Y, Jin X, Wang Y, Li X, Wang J, Zhang J, Deng Z, Yang N, Zheng Z, Guo Y, Wang C, Mao R, Xu J, Gao F, Jin C, Zhang J, Tian H, Xu GT, Lu L. miR-194 suppresses epithelial-mesenchymal transition of retinal pigment epithelial cells by directly targeting ZEB1. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:751. [PMID: 32042767 DOI: 10.21037/atm.2019.11.90] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT) of the retinal pigment epithelial (RPE) cells is a critical step in the pathogenesis of proliferative vitreoretinopathy (PVR). Some microRNAs (miRNAs) participate in regulating RPE cell EMT as post-transcriptional regulators. However, the function of miR-194 in RPE cell EMT remains elusive. Here, the role of miR-194 in PVR was investigated. Methods Retinal layers were obtained using laser capture microdissection (LCM). Gene expression at the mRNA and protein level in the tissues and cells was examined using quantitative reverse transcription (RT)-polymerase chain reaction and Western blotting, respectively. The related protein expression was observed by immunostaining. The effect of miR-194 on RPE cell EMT was examined by gel contraction, wound healing, and cell migration assays. RNAseq was performed in ARPE-19 with transfection of pSuper-scramble and pSuper-miR-194. The target gene of miR-194 was identified and confirmed via bioinformatics analysis and dual-luciferase reporter assay. ARPE-19 (adult retinal pigment epithelium-19) cells were treated with transforming growth factor (TGF)-β1 in the same fashion as the in vitro RPE cell EMT model. A PVR rat model was prepared by intravitreous injection of ARPE-19 cells with plasma-rich platelets. Results miR-194 was preferentially expressed in the RPE cell layer compared with the outer nuclear layer (ONL), inner nuclear layer (INL), and ganglion cell layer in rat retina. RNAseq analysis indicated that miR-194 overexpression was involved in RPE cell processes, including phagocytosis, ECM-receptor interaction, cell adhesion molecules, and focal adhesion. miR-194 overexpression significantly inhibited the TGF-β1-induced EMT phenotype of RPE cells in vitro. Zinc finger E-box binding homeobox 1 (ZEB1), a key transcription factor in EMT, was confirmed as the direct functional target of miR-194. Knockdown of ZEB1 attenuated TGF-β1-induced α-smooth muscle actin expression in ARPE-19 cells, and overexpression of miR-194 could significantly reduce the expression of some genes which were up-regulated by ZEB1. Exogenous miR-194 administration in vivo effectively suppressed PVR in the rat model, both functionally and structurally. Conclusions Our findings demonstrate for the first time that miR-194 suppresses RPE cell EMT by functionally targeting ZEB1. The clinical application of miR-194 in patients with PVR merits further investigation.
Collapse
Affiliation(s)
- Lian Cui
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Yali Lyu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University Medical school, Shanghai 200011, China
| | - Yueye Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiang Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Juan Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Jieping Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhongzhu Deng
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Nan Yang
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Zixuan Zheng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Yizheng Guo
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Chao Wang
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Rui Mao
- Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Jingying Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Furong Gao
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Caixia Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Haibin Tian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| | - Guo-Tong Xu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 310000, China.,The collaborative Innovation Center for Brain Science, Tongji University, Shanghai 310000, China
| | - Lixia Lu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200072, China.,Laboratory of Clinical Visual Science, Department of Regenerative Medicine, and Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
16
|
Thomson RJ, McMorran B, Hoy W, Jose M, Whittock L, Thornton T, Burgio G, Mathews JD, Foote S. New Genetic Loci Associated With Chronic Kidney Disease in an Indigenous Australian Population. Front Genet 2019; 10:330. [PMID: 31040861 PMCID: PMC6476903 DOI: 10.3389/fgene.2019.00330] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
The common occurrence of renal disease in Australian Aboriginal populations such as Tiwi Islanders may be determined by environmental and genetic factors. To explore genetic contributions, we performed a genome-wide association study (GWAS) of urinary albumin creatinine ratio (ACR) in a sample of 249 Tiwi individuals with genotype data from a 370K Affymetrix single nucleotide polymorphism (SNP) array. A principal component analysis (PCA) of the 249 individual Tiwi cohort and samples from 11 populations included in phase III of the HapMap Project indicated that Tiwi Islanders are a relatively distinct and unique population with no close genetic relationships to the other ethnic groups. After adjusting for age and sex, the proportion of ACR variance explained by the 370K SNPs was estimated to be 37% (using the software GCTA.31; likelihood ratio = 8.06, p-value = 0.002). The GWAS identified eight SNPs that were nominally significantly associated with ACR (p < 0.0005). A replication study of these SNPs was performed in an independent cohort of 497 individuals on the eight SNPs. Four of these SNPs were significantly associated with ACR in the replication sample (p < 0.05), rs4016189 located near the CRIM1 gene (p = 0.000751), rs443816 located in the gene encoding UGT2B11 (p = 0.022), rs6461901 located near the NFE2L3 gene, and rs1535656 located in the RAB14 gene. The SNP rs4016189 was still significant after adjusting for multiple testing. A structural equation model (SEM) demonstrated that the rs4016189 SNP was not associated with other phenotypes such as estimated glomerular filtration rate (eGFR), diabetes, and blood pressure.
Collapse
Affiliation(s)
- Russell J. Thomson
- Centre for Research in Mathematics, School of Computing, Engineering and Mathematics, Western Sydney University, Sydney, NSW, Australia
| | - Brendan McMorran
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Wendy Hoy
- Centre for Chronic Disease, Faculty of Health, The University of Queensland, Brisbane, QLD, Australia
| | - Matthew Jose
- Menzies Institute of Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Lucy Whittock
- Institute for Marine and Antarctic Studies, College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Tim Thornton
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, United States
| | - Gaétan Burgio
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - John Duncan Mathews
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Simon Foote
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
17
|
Phua YL, Chen KH, Hemker SL, Marrone AK, Bodnar AJ, Liu X, Clugston A, Kostka D, Butterworth MB, Ho J. Loss of miR-17~92 results in dysregulation of Cftr in nephron progenitors. Am J Physiol Renal Physiol 2019; 316:F993-F1005. [PMID: 30838872 DOI: 10.1152/ajprenal.00450.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have previously demonstrated that loss of miR-17~92 in nephron progenitors in a mouse model results in renal hypodysplasia and chronic kidney disease. Clinically, decreased congenital nephron endowment because of renal hypodysplasia is associated with an increased risk of hypertension and chronic kidney disease, and this is at least partly dependent on the self-renewal of nephron progenitors. Here, we present evidence for a novel molecular mechanism regulating the self-renewal of nephron progenitors and congenital nephron endowment by the highly conserved miR-17~92 cluster. Whole transcriptome sequencing revealed that nephron progenitors lacking this cluster demonstrated increased Cftr expression. We showed that one member of the cluster, miR-19b, is sufficient to repress Cftr expression in vitro and that perturbation of Cftr activity in nephron progenitors results in impaired proliferation. Together, these data suggest that miR-19b regulates Cftr expression in nephron progenitors, with this interaction playing a role in appropriate nephron progenitor self-renewal during kidney development to generate normal nephron endowment.
Collapse
Affiliation(s)
- Yu Leng Phua
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Kevin Hong Chen
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Department of Biological Sciences, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | - Shelby L Hemker
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - April K Marrone
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Andrew J Bodnar
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Xiaoning Liu
- Department of Cell Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Andrew Clugston
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania.,Department of Developmental Biology and Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Dennis Kostka
- Department of Developmental Biology and Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Michael B Butterworth
- Department of Cell Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh , Pittsburgh, Pennsylvania.,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol 2019; 15:144-158. [PMID: 30692665 DOI: 10.1038/s41581-019-0110-2] [Citation(s) in RCA: 648] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Macrophages have important roles in immune surveillance and in the maintenance of kidney homeostasis; their response to renal injury varies enormously depending on the nature and duration of the insult. Macrophages can adopt a variety of phenotypes: at one extreme, M1 pro-inflammatory cells contribute to infection clearance but can also promote renal injury; at the other extreme, M2 anti-inflammatory cells have a reparative phenotype and can contribute to the resolution phase of the response to injury. In addition, bone marrow monocytes can differentiate into myeloid-derived suppressor cells that can regulate T cell immunity in the kidney. However, macrophages can also promote renal fibrosis, a major driver of progression to end-stage renal disease, and the CD206+ subset of M2 macrophages is strongly associated with renal fibrosis in both human and experimental diseases. Myofibroblasts are important contributors to renal fibrosis and recent studies provide evidence that macrophages recruited from the bone marrow can transition directly into myofibroblasts within the injured kidney. This process is termed macrophage-to-myofibroblast transition (MMT) and is driven by transforming growth factor-β1 (TGFβ1)-Smad3 signalling via a Src-centric regulatory network. MMT may serve as a key checkpoint for the progression of chronic inflammation into pathogenic fibrosis.
Collapse
|
19
|
Weiskirchen R, Weiskirchen S, Tacke F. Organ and tissue fibrosis: Molecular signals, cellular mechanisms and translational implications. Mol Aspects Med 2018; 65:2-15. [PMID: 29958900 DOI: 10.1016/j.mam.2018.06.003] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/25/2018] [Indexed: 02/08/2023]
Abstract
Fibrosis denotes excessive scarring, which exceeds the normal wound healing response to injury in many tissues. Although the extracellular matrix deposition appears unstructured disrupting the normal tissue architecture and subsequently impairing proper organ function, fibrogenesis is a highly orchestrated process determined by defined sequences of molecular signals and cellular response mechanisms. Persistent injury and parenchymal cell death provokes tissue inflammation, macrophage activation and immune cell infiltration. The release of biologically highly active soluble mediators (alarmins, cytokines, chemokines) lead to the local activation of collagen producing mesenchymal cells such as pericytes, myofibroblasts or Gli1 positive mesenchymal stem cell-like cells, to a transition of various cell types into myofibroblasts as well as to the recruitment of fibroblast precursors. Clinical observations and experimental models highlighted that fibrosis is not a one-way road. Specific mechanistic principles of fibrosis regression involve the resolution of chronic tissue injury, the shift of inflammatory processes towards recovery, deactivation of myofibroblasts and finally fibrolysis of excess matrix scaffold. The thorough understanding of common principles of fibrogenic molecular signals and cellular mechanisms in various organs - such as liver, kidney, lung, heart or skin - is the basis for developing improved diagnostics including biomarkers or imaging techniques and novel antifibrotic therapeutics.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Frank Tacke
- Dept. of Medicine III, University Hospital Aachen, Germany.
| |
Collapse
|
20
|
Lee HM, Hwang KA, Choi KC. Diverse pathways of epithelial mesenchymal transition related with cancer progression and metastasis and potential effects of endocrine disrupting chemicals on epithelial mesenchymal transition process. Mol Cell Endocrinol 2017; 457:103-113. [PMID: 28042023 DOI: 10.1016/j.mce.2016.12.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 01/04/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are natural or synthetic compounds that interfere with normal functions of natural hormones in the body, leading to a disruption of the endocrine system. Specifically, EDCs have the potential to cause formation of several hormone-dependent cancers, including breast, ovarian, and prostate cancers. Epithelial mesenchymal transition (EMT) process by which epithelial cells lose their cell polarity and cell-cell adhesion and acquire mesenchymal phenotype is closely associated with malignant transformation and the initiation of cancer metastasis. As a key epithelial marker responsible for adherens junction, E-cadherin enables the cells to maintain epithelial phenotypes. EMT event is induced by E-cadherin loss which can be carried out by many transcription factors (TFs), including Snail, Slug, ZEB1, ZEB2, Kruppel-like factor 8 (KLF8), and Twist. N-cadherin, fibronectin, and vimentin are mesenchymal markers needed for cellular migration. The EMT process is regulated by several signaling pathways mediated by transforming growth factor β (TGF-β), Wnt-β-catenin, Notch, Hedgehog, and receptor tyrosine kinases. In the present article, we reviewed the current understanding of cancer progression effects of synthetic chemical EDCs such as bisphenol A (BPA), phthalates, tetrachlorodibenzo-p-dioxin (TCDD), and triclosan by focusing their roles in the EMT process. Collectively, the majority of previous studies revealed that BPA, phthalates, TCDD, and triclosan have the potential to induce cancer metastasis through regulating EMT markers and migration via several signaling pathways associated with the EMT program. Therefore, it is considered that the exposure to these EDCs can increase the risk aggravating the disease for the patients suffering cancer and that more regulations about the use of these EDCs are needed.
Collapse
Affiliation(s)
- Hae-Miru Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
21
|
Abstract
Tubulointerstitial fibrosis is a chronic and progressive process affecting kidneys during aging and in chronic kidney disease (CKD), regardless of cause. CKD and renal fibrosis affect half of adults above age 70 and 10% of the world's population. Although no targeted therapy yet exists to slow renal fibrosis, a number of important recent advances have clarified the cellular and molecular mechanisms underlying the disease. In this review, I highlight these advances with a focus on cells and pathways that may be amenable to therapeutic targeting. I discuss pathologic changes regulating interstitial myofibroblast activation, including profibrotic and proinflammatory paracrine signals secreted by epithelial cells after either acute or chronic injury. I conclude by highlighting novel therapeutic targets and approaches with particular promise for development of new treatments for patients with fibrotic kidney disease.
Collapse
Affiliation(s)
- Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
22
|
Endothelial to mesenchymal transition in the cardiovascular system. Life Sci 2017; 184:95-102. [PMID: 28716564 DOI: 10.1016/j.lfs.2017.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023]
Abstract
Endothelial to mesenchymal transition (EndMT) is a special type of epithelial to mesenchymal transition. It is a process that is characterized by the loss of features of endothelial cells and acquisition of specific markers of mesenchymal cells. A variety of stimuli, such as inflammation, growth factors, and hypoxia, regulate EndMT through various signaling pathways and intracellular transcription factors. It has been demonstrated that epigenetic modifications are also involved in this process. Recent studies have identified the essential role of EndMT in the cardiovascular system. EndMT contributes to steps in cardiovascular development, such as cardiac valve formation and septation, as well as the pathogenesis of various cardiovascular disorders, such as congenital heart disease, myocardial fibrosis, myocardial infarction and pulmonary arterial hypertension. Thus, comprehensive understanding of the underlying mechanisms of EndMT will provide novel therapeutic strategies to overcome congenital heart disease due to abnormal development and other cardiovascular diseases. This review will focus on summarizing the currently understood signaling pathways and epigenetic modifications involved in the regulation of EndMT and the role of EndMT in pathophysiological conditions of the cardiovascular system.
Collapse
|
23
|
Wang S, Meng XM, Ng YY, Ma FY, Zhou S, Zhang Y, Yang C, Huang XR, Xiao J, Wang YY, Ka SM, Tang YJ, Chung ACK, To KF, Nikolic-Paterson DJ, Lan HY. TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget 2017; 7:8809-22. [PMID: 26684242 PMCID: PMC4891006 DOI: 10.18632/oncotarget.6604] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022] Open
Abstract
Myofibroblasts are a main cell-type of collagen-producing cells during tissue fibrosis, but their origins remains controversial. While bone marrow-derived myofibroblasts in renal fibrosis has been reported, the cell origin and mechanisms regulating their transition into myofibroblasts remain undefined. In the present study, cell lineage tracing studies by adoptive transfer of GFP+ or dye-labelled macrophages identified that monocyte/macrophages from bone marrow can give rise to myofibroblasts via the process of macrophage-myofibroblast transition (MMT) in a mouse model of unilateral ureteric obstruction. The MMT cells were a major source of collagen-producing fibroblasts in the fibrosing kidney, accounting for more than 60% of α-SMA+ myofibroblasts. The MMT process occurred predominantly within M2-type macrophages and was regulated by TGF-β/Smad3 signalling as deletion of Smad3 in the bone marrow compartment of GFP+ chimeric mice prevented the M2 macrophage transition into the MMT cells and progressive renal fibrosis. In vitro studies in Smad3 null bone marrow macrophages also showed that Smad3 was required for TGF-β1-induced MMT and collagen production. In conclusion, we have demonstrated that bone marrow-derived fibroblasts originate from the monocyte/macrophage population via a process of MMT. This process contributes to progressive renal tissue fibrosis and is regulated by TGF-β/Smad3 signalling.
Collapse
Affiliation(s)
- Shuang Wang
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ming Meng
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yee-Yung Ng
- Division of Nephrology, Department of Medicine, Institute of Clinical Medicine, Taipei Veterans General Hospital, National Yang Ming University, Taipei, Taiwan
| | - Frank Y Ma
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Shuang Zhou
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Zhang
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chen Yang
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ru Huang
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Xiao
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying-Ying Wang
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shuk-Man Ka
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yong-Jiang Tang
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Arthur C K Chung
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka-Fai To
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - David J Nikolic-Paterson
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences, Departments of Medicine and Therapeutics, Chemical Pathology, and Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
24
|
Phua YL, Gilbert T, Combes A, Wilkinson L, Little MH. Neonatal vascularization and oxygen tension regulate appropriate perinatal renal medulla/papilla maturation. J Pathol 2016; 238:665-76. [PMID: 26800422 DOI: 10.1002/path.4690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/21/2015] [Accepted: 01/11/2016] [Indexed: 11/11/2022]
Abstract
Congenital medullary dysplasia with obstructive nephropathy is a common congenital disorder observed in paediatric patients and represents the foremost cause of renal failure. However, the molecular processes regulating normal papillary outgrowth during the postnatal period are unclear. In this study, transcriptional profiling of the renal medulla across postnatal development revealed enrichment of non-canonical Wnt signalling, vascular development, and planar cell polarity genes, all of which may contribute to perinatal medulla/papilla maturation. These pathways were investigated in a model of papillary hypoplasia with functional obstruction, the Crim1(KST264/KST264) transgenic mouse. Postnatal elongation of the renal papilla via convergent extension was unaffected in the Crim1(KST264/KST264) hypoplastic renal papilla. In contrast, these mice displayed a disorganized papillary vascular network, tissue hypoxia, and elevated Vegfa expression. In addition, we demonstrate the involvement of accompanying systemic hypoxia arising from placental insufficiency, in appropriate papillary maturation. In conclusion, this study highlights the requirement for normal vascular development in collecting duct patterning, development of appropriate nephron architecture, and perinatal papillary maturation, such that disturbances contribute to obstructive nephropathy.
Collapse
Affiliation(s)
- Yu Leng Phua
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.,School of Medicine, Department of Pediatrics, Division of Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thierry Gilbert
- Centre for Developmental Biology, University Paul Sabatier, Toulouse, France
| | - Alexander Combes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lorine Wilkinson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Ma FY, Blease K, Nikolic-Paterson DJ. A role for spleen tyrosine kinase in renal fibrosis in the mouse obstructed kidney. Life Sci 2016; 146:192-200. [PMID: 26779657 DOI: 10.1016/j.lfs.2016.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 02/08/2023]
Abstract
AIMS Spleen tyrosine kinase (Syk) is a non-receptor tyrosine kinase involved in the signalling pathways of the B cell receptor, Fcγ-receptor and some leukocyte integrins. However, Syk can also be expressed by some non-haematopoietic cell types, although whether Syk signalling in these cells contributes to the pathogenesis of kidney disease is unknown. To address this question, we examined the function of Syk in antibody-independent renal interstitial fibrosis in the unilateral ureteric obstruction (UUO) model. MAIN METHODS Groups of C57BL/6J mice were treated with a selective Syk inhibitor (CC0417, 30 mg/kg/bid), vehicle, or no treatment, from the time of surgery until being killed 7 days later. KEY FINDINGS A substantial accumulation of interstitial Syk(+) cells was seen in the UUO kidney. Double staining identified Syk expression by infiltrating macrophages and by a subset of α-SMA(+) myofibroblasts. CC0417 treatment substantially reduced the Syk(+) cell population in conjunction with a reduction in both myofibroblast and macrophage accumulation. This was associated with a substantial reduction in collagen IV deposition and mRNA levels of pro-fibrotic (collagen I, collagen IV, fibronectin, α-SMA, TGF-β1 and PAI-1) and pro-inflammatory molecules (MCP-1, TNF-α and NOS2). CC0417 treatment reduced both PDGF-B mRNA levels and Ki67(+) proliferating interstitial cells in the UUO kidney. Furthermore, CC0417 inhibited PDGF-AB induced ERK activation and cell proliferation of cultured primary kidney fibroblasts. SIGNIFICANCE This study has identified a pathologic role for Syk in renal interstitial fibrosis. Syk inhibitors may have therapeutic potential in chronic fibrotic kidney disease.
Collapse
Affiliation(s)
- Frank Y Ma
- Department of Nephrology, Monash Medical Centre, Monash Health, Clayton, Victoria 3168, Australia; Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | | | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Monash Health, Clayton, Victoria 3168, Australia; Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia.
| |
Collapse
|
26
|
Phua YL, Chu JYS, Marrone AK, Bodnar AJ, Sims-Lucas S, Ho J. Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival. Physiol Rep 2015; 3:3/10/e12537. [PMID: 26438731 PMCID: PMC4632944 DOI: 10.14814/phy2.12537] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are small noncoding RNAs that post-transcriptionally regulate mRNA levels. While previous studies have demonstrated that miRNAs are indispensable in the nephron progenitor and ureteric bud lineage, little is understood about stromal miRNAs during kidney development. The renal stroma (marked by expression of FoxD1) gives rise to the renal interstitium, a subset of peritubular capillaries, and multiple supportive vascular cell types including pericytes and the glomerular mesangium. In this study, we generated FoxD1GC;Dicerfl/fl transgenic mice that lack miRNA biogenesis in the FoxD1 lineage. Loss of Dicer activity resulted in multifaceted renal anomalies including perturbed nephrogenesis, expansion of nephron progenitors, decreased renin-expressing cells, fewer smooth muscle afferent arterioles, and progressive mesangial cell loss in mature glomeruli. Although the initial lineage specification of FoxD1+ stroma was not perturbed, both the glomerular mesangium and renal interstitium exhibited ectopic apoptosis, which was associated with increased expression of Bcl2l11 (Bim) and p53 effector genes (Bax, Trp53inp1, Jun, Cdkn1a, Mmp2, and Arid3a). Using a combination of high-throughput miRNA profiling of the FoxD1+-derived cells and mRNA profiling of differentially expressed transcripts in FoxD1GC;Dicerfl/fl kidneys, at least 72 miRNA:mRNA target interactions were identified to be suppressive of the apoptotic program. Together, the results support an indispensable role for stromal miRNAs in the regulation of apoptosis during kidney development.
Collapse
Affiliation(s)
- Yu Leng Phua
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica Y S Chu
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - April K Marrone
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew J Bodnar
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sunder Sims-Lucas
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Cystic kidney diseases are common renal disorders characterized by the formation of fluid-filled epithelial cysts in the kidneys. The progressive growth and expansion of the renal cysts replace existing renal tissue within the renal parenchyma, leading to reduced renal function. While several genes have been identified in association with inherited causes of cystic kidney disease, the molecular mechanisms that regulate these genes in the context of post-transcriptional regulation are still poorly understood. There is increasing evidence that microRNA (miRNA) dysregulation is associated with the pathogenesis of cystic kidney disease. RECENT FINDINGS In this review, recent studies that implicate dysregulation of miRNA expression in cystogenesis will be discussed. The relationship of specific miRNAs, such as the miR-17∼92 cluster and cystic kidney disease, miR-92a and von Hippel-Lindau syndrome, and alterations in LIN28-LET7 expression in Wilms tumor will be explored. SUMMARY At present, there are no specific treatments available for patients with cystic kidney disease. Understanding and identifying specific miRNAs involved in the pathogenesis of these disorders may have the potential to lead to the development of novel therapies and biomarkers.
Collapse
|
28
|
Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ. Diverse origins of the myofibroblast—implications for kidney fibrosis. Nat Rev Nephrol 2015; 11:233-44. [PMID: 25584804 DOI: 10.1038/nrneph.2014.246] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fibrosis is the common end point of chronic kidney disease. The persistent production of inflammatory cytokines and growth factors leads to an ongoing process of extracellular matrix production that eventually disrupts the normal functioning of the organ. During fibrosis, the myofibroblast is commonly regarded as the predominant effector cell. Accumulating evidence has demonstrated a diverse origin of myofibroblasts in kidney fibrosis. Proposed major contributors of myofibroblasts include bone marrow-derived fibroblasts, tubular epithelial cells, endothelial cells, pericytes and interstitial fibroblasts; the published data, however, have not yet clearly defined the relative contribution of these different cellular sources. Myofibroblasts have been reported to originate from various sources, irrespective of the nature of the initial damage responsible for the induction of kidney fibrosis. Here, we review the possible relevance of the diversity of myofibroblast progenitors in kidney fibrosis and the implications for the development of novel therapeutic approaches. Specifically, we discuss the current status of preclinical and clinical antifibrotic therapy and describe targeting strategies that might help support resident and circulating cells to maintain or regain their original functional differentiation state. Such strategies might help these cells resist their transition to a myofibroblast phenotype to prevent, or even reverse, the fibrotic state.
Collapse
Affiliation(s)
- Lucas L Falke
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| | - Shima Gholizadeh
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| | - Robbert J Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands
| |
Collapse
|
29
|
Kramann R, DiRocco DP, Humphreys BD. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease. J Pathol 2013; 231:273-89. [PMID: 24006178 DOI: 10.1002/path.4253] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/26/2013] [Indexed: 12/19/2022]
Abstract
Fibrosis and scar formation results from chronic progressive injury in virtually every tissue and affects a growing number of people around the world. Myofibroblasts drive fibrosis, and recent work has demonstrated that mesenchymal cells, including pericytes and perivascular fibroblasts, are their main progenitors. Understanding the cellular mechanisms of pericyte/fibroblast-to-myofibroblast transition, myofibroblast proliferation and the key signalling pathways that regulate these processes is essential to develop novel targeted therapeutics for the growing patient population suffering from solid organ fibrosis. In this review, we summarize the current knowledge about different progenitor cells of myofibroblasts, discuss major pathways that regulate their transdifferentiation and discuss the current status of novel targeted anti-fibrotic therapeutics in development.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; RWTH Aachen University, Division of Nephrology, Aachen, Germany
| | | | | |
Collapse
|
30
|
Clarke DL, Carruthers AM, Mustelin T, Murray LA. Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. FIBROGENESIS & TISSUE REPAIR 2013; 6:20. [PMID: 24279676 PMCID: PMC4176485 DOI: 10.1186/1755-1536-6-20] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022]
Abstract
Repairing damaged tissues is an essential homeostatic mechanism that enables clearance of dead or damaged cells after injury, and the maintenance of tissue integrity. However, exaggeration of this process in the lung can lead to the development of fibrotic scar tissue. This is characterized by excessive accumulation of extracellular matrix (ECM) components such as fibronectin, proteoglycans, hyaluronic acid, and interstitial collagens. After tissue injury, or a breakdown of tissue integrity, a cascade of events unfolds to maintain normal tissue homeostasis. Inflammatory mediators are released from injured epithelium, leading to both platelet activation and inflammatory cell migration. Inflammatory cells are capable of releasing multiple pro-inflammatory and fibrogenic mediators such as transforming growth factor (TGF)β and interleukin (IL)-13, which can trigger myofibroblast proliferation and recruitment. The myofibroblast population is also expanded as a result of epithelial cells undergoing epithelial-to-mesenchymal transition and of the activation of resident fibroblasts, leading to ECM deposition and tissue remodeling. In the healthy lung, wound healing then proceeds to restore the normal architecture of the lung; however, fibrosis can develop when the wound is severe, the tissue injury persists, or the repair process becomes dysregulated. Understanding the processes regulating aberrant wound healing and the matrix in the chronic fibrotic lung disease idiopathic pulmonary fibrosis (IPF), is key to identifying new treatments for this chronic debilitating disease. This review focuses primarily on the emerging role of enzymes in the lungs of patients with IPF. Elevated expression of a number of enzymes that can directly modulate the ECM has been reported, and recent data indicates that modulating the activity of these enzymes can have a downstream effect on fibrotic tissue remodeling.
Collapse
|
31
|
Kramann R, Dirocco DP, Maarouf OH, Humphreys BD. Matrix Producing Cells in Chronic Kidney Disease: Origin, Regulation, and Activation. CURRENT PATHOBIOLOGY REPORTS 2013; 1. [PMID: 24319648 DOI: 10.1007/s40139-013-0026-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic injury to the kidney causes kidney fibrosis with irreversible loss of functional renal parenchyma and leads to the clinical syndromes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Regardless of the type of initial injury, kidney disease progression follows the same pathophysiologic processes characterized by interstitial fibrosis, capillary rarefaction and tubular atrophy. Myofibroblasts play a pivotal role in fibrosis by driving excessive extracellular matrix (ECM) deposition. Targeting these cells in order to prevent the progression of CKD is a promising therapeutic strategy, however, the cellular source of these cells is still controversial. In recent years, a growing amount of evidence points to resident mesenchymal cells such as pericytes and perivascular fibroblasts, which form extensive networks around the renal vasculature, as major contributors to the pool of myofibroblasts in renal fibrogenesis. Identifying the cellular origin of myofibroblasts and the key regulatory pathways that drive myofibroblast proliferation and transdifferentiation as well as capillary rarefaction is the first step to developing novel anti-fibrotic therapeutics to slow or even reverse CKD progression and ultimately reduce the prevalence of ESRD. This review will summarize recent findings concerning the cellular source of myofibroblasts and highlight recent discoveries concerning the key regulatory signaling pathways that drive their expansion and progression in CKD.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Boston, Massachusetts ; Harvard Medical School, Boston, Massachusetts ; RWTH Aachen University, Division of Nephrology, Aachen, Germany
| | | | | | | |
Collapse
|
32
|
Ghosh AK, Murphy SB, Kishore R, Vaughan DE. Global gene expression profiling in PAI-1 knockout murine heart and kidney: molecular basis of cardiac-selective fibrosis. PLoS One 2013; 8:e63825. [PMID: 23724005 PMCID: PMC3665822 DOI: 10.1371/journal.pone.0063825] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/07/2013] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is defined as an abnormal matrix remodeling due to excessive synthesis and accumulation of extracellular matrix proteins in tissues during wound healing or in response to chemical, mechanical and immunological stresses. At present, there is no effective therapy for organ fibrosis. Previous studies demonstrated that aged plasminogen activator inhibitor-1 (PAI-1) knockout mice develop spontaneously cardiac-selective fibrosis without affecting any other organs. We hypothesized that differential expressions of profibrotic and antifibrotic genes in PAI-1 knockout hearts and unaffected organs lead to cardiac selective fibrosis. In order to address this prediction, we have used a genome-wide gene expression profiling of transcripts derived from aged PAI-1 knockout hearts and kidneys. The variations of global gene expression profiling were compared within four groups: wildtype heart vs. knockout heart; wildtype kidney vs. knockout kidney; knockout heart vs. knockout kidney and wildtype heart vs. wildtype kidney. Analysis of illumina-based microarray data revealed that several genes involved in different biological processes such as immune system processing, response to stress, cytokine signaling, cell proliferation, adhesion, migration, matrix organization and transcriptional regulation were affected in hearts and kidneys by the absence of PAI-1, a potent inhibitor of urokinase and tissue-type plasminogen activator. Importantly, the expressions of a number of genes, involved in profibrotic pathways including Ankrd1, Pi16, Egr1, Scx, Timp1, Timp2, Klf6, Loxl1 and Klotho, were deregulated in PAI-1 knockout hearts compared to wildtype hearts and PAI-1 knockout kidneys. While the levels of Ankrd1, Pi16 and Timp1 proteins were elevated during EndMT, the level of Timp4 protein was decreased. To our knowledge, this is the first comprehensive report on the influence of PAI-1 on global gene expression profiling in the heart and kidney and its implication in fibrogenesis and several other biological processes. The significance of these observations in the light of heart-specific profibrotic signaling and fibrogenesis are discussed.
Collapse
Affiliation(s)
- Asish K. Ghosh
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Sheila B. Murphy
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Raj Kishore
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Douglas E. Vaughan
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|