1
|
Nehal N, Rohilla A, Sartaj A, Baboota S, Ali J. Folic acid modified precision nanocarriers: charting new frontiers in breast cancer management beyond conventional therapies. J Drug Target 2024; 32:855-873. [PMID: 38748872 DOI: 10.1080/1061186x.2024.2356735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Breast cancer presents a significant global health challenge, ranking highest incidence rate among all types of cancers. Functionalised nanocarriers offer a promising solution for precise drug delivery by actively targeting cancer cells through specific receptors, notably folate receptors. By overcoming the limitations of passive targeting in conventional therapies, this approach holds the potential for enhanced treatment efficacy through combination therapy. Encouraging outcomes from studies like in vitro and in vivo, underscore the promise of this innovative approach. This review explores the therapeutic potential of FA (Folic acid) functionalised nanocarriers tailored for breast cancer management, discussing various chemical modification techniques for functionalization. It examines FA-conjugated nanocarriers containing chemotherapeutics to enhance treatment efficacy and addresses the pharmacokinetic aspect of these functionalised nanocarriers. Additionally, the review integrates active targeting via folic acid with theranostics, photothermal therapy, and photodynamic therapy, offering a comprehensive management strategy. Emphasising rigorous experimental validation for practical utility, the review underscores the need to bridge laboratory research to clinical application. While these functionalised nanocarriers show promise, their credibility and applicability in real-world settings necessitate thorough validation for effective clinical use.
Collapse
Affiliation(s)
- Nida Nehal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Aashish Rohilla
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Mehraj U, Mushtaq U, Mir MA, Saleem A, Macha MA, Lone MN, Hamid A, Zargar MA, Ahmad SM, Wani NA. Chemokines in Triple-Negative Breast Cancer Heterogeneity: New Challenges for Clinical Implications. Semin Cancer Biol 2022; 86:769-783. [PMID: 35278636 DOI: 10.1016/j.semcancer.2022.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Tumor heterogeneity is a hallmark of cancer and one of the primary causes of resistance to therapies. Triple-negative breast cancer (TNBC), which accounts for 15% to 20% of all breast cancers and is the most aggressive subtype, is very diverse, connected to metastatic potential and response to therapy. It is a very diverse disease at the molecular, pathologic, and clinical levels. TNBC is substantially more likely to recur and has a worse overall survival rate following diagnosis than other breast cancer subtypes. Chemokines, low molecular weight proteins that stimulate chemotaxis, have been shown to control the cues responsible for TNBC heterogeneity. In this review, we have focused on tumor heterogeneity and the role of chemokines in modulating tumor heterogeneity, since this is the most critical issue in treating TNBC. Additionally, we examined numerous cues mediated by chemokine networks that contribute to the heterogeneity of TNBC. Recent developments in our knowledge of the chemokine networks that regulate TNBC heterogeneity may pave the door for developing difficult-to-treat TNBC treatment options.
Collapse
Affiliation(s)
- Umar Mehraj
- Department of Bioresources, School of Life Sciences, University of Kashmir, Srinagar, Jammu & Kashmir India
| | - Umer Mushtaq
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Manzoor A Mir
- Department of Bioresources, School of Life Sciences, University of Kashmir, Srinagar, Jammu & Kashmir India
| | - Afnan Saleem
- Division of Animal Biotechnology Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science & Technology Awantipora, Jammu & Kashmir, India
| | - Mohammad Nadeem Lone
- Department of Chemistry, School of Physical & Chemical Sciences, Central University of Kashmir, Ganderbal J & K, India
| | - Abid Hamid
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Mohammed A Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, India
| | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India.
| |
Collapse
|
3
|
Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed Pharmacother 2021; 146:112530. [PMID: 34915416 DOI: 10.1016/j.biopha.2021.112530] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Breast carcinomas repeat their number and grow exponentially making it extremely frequent malignancy among women. Approximately, 70-80% of early diagnosed or non-metastatic conditions are treatable while the metastatic cases are considered ineffective to treat with current ample amount of therapy. Target based anti-cancer treatment has been in the limelight for decades and is perceived significant consideration of scientists. Aptamers are the 'coming of age' therapeutic approach, selected using an appropriate tool from the library of sequences. Aptamers are non-immunogenic, stable, and high-affinity ligand which are poised to reach the clinical benchmark. With the heed in nanoparticle application, the delivery of aptamer to the specific site could be enhanced which also protects them from nuclease degradation. Moreover, nanoparticles due to robust structure, high drug entrapment, and modifiable release of cargo could serve as a successful candidate in the treatment of breast carcinoma. This review would showcase the method and modified method of selection of aptamers, aptamers that were able to make its way towards clinical trial and their targetability and selectivity towards breast cancers. The appropriate usage of aptamer-based biosensor in breast cancer diagnosis have also been discussed.
Collapse
|
4
|
Paul D. Cancer as a form of life: Musings of the cancer and evolution symposium. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:120-139. [PMID: 33991584 DOI: 10.1016/j.pbiomolbio.2021.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
Advanced cancer is one of the major problems in oncology as currently, despite the recent technological and scientific advancements, the mortality of metastatic disease remains very high at 70-90%. The field of oncology is in urgent need of novel ideas in order to improve quality of life and prognostic of cancer patients. The Cancer and Evolution Symposium organized online October 14-16, 2020 brought together a group of specialists from different fields that presented innovative strategies for better understanding, preventing, diagnosing, and treating cancer. Today still, the main reasons behind the high incidence and mortality of advanced cancer are, on one hand, the paucity of funding and effort directed to cancer prevention and early detection, and, on the other hand, the lack of understanding of the cancer process itself. I argue that besides being a disease, cancer is also a form of life, and, this frame of reference may provide a fresh look on this complex process. Here, I provide a different angle to several contemporary cancer theories discussing them from the perspective of "cancer-forms of life" (i.e. bionts) point of view. The perspectives and the several "bionts" introduced here, by no means exclusive or comprehensive, are just a shorthand that will hopefully encourage the readers, to further explore the contemporary oncology theoretical landscape.
Collapse
Affiliation(s)
- Doru Paul
- Medical Oncology, Weill Cornell Medicine, 1305 York Avenue 12th Floor, New York, NY, 10021, USA.
| |
Collapse
|
5
|
Xiao Y, Wang X, Zhang H, Ulintz PJ, Li H, Guan Y. FastClone is a probabilistic tool for deconvoluting tumor heterogeneity in bulk-sequencing samples. Nat Commun 2020; 11:4469. [PMID: 32901013 PMCID: PMC7478963 DOI: 10.1038/s41467-020-18169-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Dissecting tumor heterogeneity is a key to understanding the complex mechanisms underlying drug resistance in cancers. The rich literature of pioneering studies on tumor heterogeneity analysis spurred a recent community-wide benchmark study that compares diverse modeling algorithms. Here we present FastClone, a top-performing algorithm in accuracy in this benchmark. FastClone improves over existing methods by allowing the deconvolution of subclones that have independent copy number variation events within the same chromosome regions. We characterize the behavior of FastClone in identifying subclones using stage III colon cancer primary tumor samples as well as simulated data. It achieves approximately 100-fold acceleration in computation for both simulated and patient data. The efficacy of FastClone will allow its application to large-scale data and clinical data, and facilitate personalized medicine in cancers.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xueqing Wang
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hongjiu Zhang
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.,Microsoft Inc., Redmond, WA, USA
| | - Peter J Ulintz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hongyang Li
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA. .,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Fan J, Dai X, Wang Z, Huang B, Shi H, Luo D, Zhang J, Cai W, Nie X, Hirsch FR. Concomitant EGFR Mutation and EML4-ALK Rearrangement in Lung Adenocarcinoma Is More Frequent in Multifocal Lesions. Clin Lung Cancer 2019; 20:e517-e530. [PMID: 31138506 DOI: 10.1016/j.cllc.2019.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The coexistence of epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement in patients with multifocal lung adenocarcinomas (LUAC) constitutes a rare molecular subtype of lung cancer. We aimed to investigate the intertumoral heterogeneity of pathologic and genetic characteristics of multifocal LUAC with EGFR/ALK co-alterations. PATIENTS AND METHODS A total of 1059 LUAC patients who underwent resection were investigated to screen for EGFR or ALK alterations using amplification refractory mutation system polymerase chain reaction and immunohistochemistry/fluorescence in situ hybridization. Molecular testing was extensively performed in patients with synchronous multifocal LUAC. Clonal evolution analysis was implemented using next-generation sequencing. RESULTS A total of 97 multiple synchronous lesions were observed among 1059 LUAC patients. Patients with at least 1 sample harboring EGFR mutation or ALK rearrangement were 62.89% (61/97) and 14.43% (14/97), respectively. Patients with concomitant EGFR and ALK alterations were 4.71% (4/97). Comparatively, patients with unifocal LUAC harboring EGFR mutation, ALK rearrangement, and EGFR/ALK co-alterations were 58.25% (570/962), 6.44% (62/962), and 0.83% (8/962), respectively. The prevalence of EGFR/ALK co-alterations in the multifocal LUAC was significantly higher than that in the unifocal LUAC (4.71% (4/97) vs. 0.83% (8/962)). Furthermore, we present 4 cases of EGFR/ALK co-altered multifocal LUAC with different morphological and molecular patterns. In addition to radiographic, pathological, and molecular testing results, clonal evolutional analysis could also be used to distinguish intertumoral heterogeneity. CONCLUSION The results highlight the importance of distinguishing synchronous primary tumors from intrapulmonary metastases, and of assessing the relative abundance of EGFR mutation and ALK rearrangement in patients with multifocal adenocarcinomas with EGFR/ALK co-alterations.
Collapse
Affiliation(s)
- Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenkao Wang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weijing Cai
- Shanghai Tongshu Biotechnology Co, Ltd, Shanghai, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Fred R Hirsch
- Clinical Institute for Lung Cancer, Mount Sinai Cancer, Mount Sinai Health System, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
7
|
Simon E, Bick T, Sarji S, Shentzer T, Prinz E, Yehiam L, Sabo E, Ben-Izhak O, Hershkovitz D. Clinically significant sub-clonality for common drivers can be detected in 26% of KRAS/EGFR mutated lung adenocarcinomas. Oncotarget 2018; 8:45736-45749. [PMID: 28501852 PMCID: PMC5542222 DOI: 10.18632/oncotarget.17399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/05/2017] [Indexed: 12/30/2022] Open
Abstract
Genetic sub-clonality has been described in multiple malignancies, however the presence of sub-clonality for major drivers in lung adenocarcinoma and its clinical significance is a subject under debate. Using molecular and morphometric approach, 347 lung adenocarcinoma samples were analyzed for KRAS and EGFR sub-clonality, which was further correlated with clinical and pathological variables.KRAS and EGFR mutations were identified in 100 (29%) and 82 (23%) cases, respectively. One hundred and forty four KRAS or EGFR positive cases were also available for morphometric analysis, among which 37 (26%) were defined as sub-clonal. The presence of sub-clonality was associated with shorter survival time (p=0.02). Interestingly, cases with sub-clonality were also associated with earlier disease stage (89% vs 66% stage I disease in sub-clonal vs clonal cases, respectively, p=0.01) and less lymph node involvement (8% vs 25% in sub-clonal vs clonal cases, respectively, p=0.02). Our findings demonstrate the presence of sub-clonality for mutations in common drivers in lung adenocarcinoma and link it both to earlier disease stage and to poor survival. These findings are in line with the different evolutionary models that can present with genetic sub-clonality.
Collapse
Affiliation(s)
- Einav Simon
- Institute of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Tova Bick
- Institute of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Shada Sarji
- Institute of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Talia Shentzer
- Institute of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Elad Prinz
- The Technion Integrated Cancer Center, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liza Yehiam
- The Technion Integrated Cancer Center, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edmond Sabo
- Institute of Pathology, Rambam Health Care Campus, Haifa, Israel.,The Technion Integrated Cancer Center, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ofer Ben-Izhak
- Institute of Pathology, Rambam Health Care Campus, Haifa, Israel.,The Technion Integrated Cancer Center, B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dov Hershkovitz
- Institute of Pathology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
8
|
Scher HI, Graf RP, Schreiber NA, McLaughlin B, Jendrisak A, Wang Y, Lee J, Greene S, Krupa R, Lu D, Bamford P, Louw JE, Dugan L, Vargas HA, Fleisher M, Landers M, Heller G, Dittamore R. Phenotypic Heterogeneity of Circulating Tumor Cells Informs Clinical Decisions between AR Signaling Inhibitors and Taxanes in Metastatic Prostate Cancer. Cancer Res 2017; 77:5687-5698. [PMID: 28819021 PMCID: PMC5666339 DOI: 10.1158/0008-5472.can-17-1353] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/07/2017] [Accepted: 08/09/2017] [Indexed: 01/25/2023]
Abstract
The heterogeneity of an individual patient's tumor has been linked to treatment resistance, but quantitative biomarkers to rapidly and reproducibly evaluate heterogeneity in a clinical setting are currently lacking. Using established tools available in a College of American Pathologists-accredited and Clinical Laboratory Improvement Amendments-certified clinical laboratory, we quantified digital pathology features on 9,225 individual circulating tumor cells (CTC) from 179 unique metastatic castration-resistant prostate cancer (mCRPC) patients to define phenotypically distinct cell types. Heterogeneity was quantified on the basis of the diversity of cell types in individual patient samples using the Shannon index and associated with overall survival (OS) in the 145 specimens collected prior to initiation of the second or later lines of therapy. Low CTC phenotypic heterogeneity was associated with better OS in patients treated with androgen receptor signaling inhibitors (ARSI), whereas high heterogeneity was associated with better OS in patients treated with taxane chemotherapy. Overall, the results show that quantifying CTC phenotypic heterogeneity can help inform the choice between ARSI and taxanes in mCRPC patients. Cancer Res; 77(20); 5687-98. ©2017 AACR.
Collapse
Affiliation(s)
- Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - Nicole A Schreiber
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brigit McLaughlin
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | | | | | - David Lu
- Epic Sciences, La Jolla, California
| | | | | | | | - Hebert A Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin Fleisher
- Clinical Chemistry Service, Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Glenn Heller
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
9
|
Li R, Zheng K, Yuan C, Chen Z, Huang M. Be Active or Not: the Relative Contribution of Active and Passive Tumor Targeting of Nanomaterials. Nanotheranostics 2017; 1:346-357. [PMID: 29071198 PMCID: PMC5646738 DOI: 10.7150/ntno.19380] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/21/2017] [Indexed: 12/23/2022] Open
Abstract
Malignant tumor (cancer) remains as one of the deadliest diseases throughout the world, despite its overall mortality drops. Nanomaterials (NMs) have been widely studied as diagnostic and/or therapeutic agents for tumors. A feature of NMs, compared to small molecules, is that NMs can be concentrated passively in tumors through enhanced permeability and retention (EPR) effect. In the meantime, NMs can be engineered to target toward tumor specific markers in an active manner, e.g., receptor-mediated targeting. The relative contribution of the EPR effect and the receptor-mediated targeting to NM accumulation in tumor tissues has not been clearly defined yet. Here, we tackle this fundamental issue by reviewing previous studies. First, we summarize the current knowledge on these two tumor targeting strategies of NMs, and on how NMs arrive to tumors from blood circulation. We then demonstrate that contribution of the active and passive effects to total accumulation of NMs in tumors varies with time. Over time, the receptor-mediated targeting contributes more than the EPR effect with a ratio of 3 in the case of urokinase-type plasminogen activator receptor (uPAR)-mediated targeting and human serum albumin (HSA)-mediated EPR effect. Therefore, this review highlights the dynamics of active and passive targeting of NMs on their accumulation at tumor sites, and is valuable for future design of NMs in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Ke Zheng
- Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cai Yuan
- Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhuo Chen
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Mingdong Huang
- Fuzhou University, Fuzhou, Fujian, 350116, China.,Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
10
|
Wong F, Coban O, Weitsman G, Ng T. Integrating imaging, exosome and protein network rewiring information to track early tumour evolution of resistance mechanisms. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa5cbd] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Zinovyeva MV, Kostina MB, Chernov IP, Kondratyeva LG, Sverdlov ED. KLF5, a new player and new target in the permanently changing set of pancreatic cancer molecular drivers. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162016060157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Dong J, Aulestia FJ, Assad Kahn S, Zeniou M, Dubois LG, El-Habr EA, Daubeuf F, Tounsi N, Cheshier SH, Frossard N, Junier MP, Chneiweiss H, Néant I, Moreau M, Leclerc C, Haiech J, Kilhoffer MC. Bisacodyl and its cytotoxic activity on human glioblastoma stem-like cells. Implication of inositol 1,4,5-triphosphate receptor dependent calcium signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1018-1027. [PMID: 28109792 DOI: 10.1016/j.bbamcr.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Glioblastoma is the most common malignant brain tumor. The heterogeneity at the cellular level, metabolic specificities and plasticity of the cancer cells are a challenge for glioblastoma treatment. Identification of cancer cells endowed with stem properties and able to propagate the tumor in animal xenografts has opened a new paradigm in cancer therapy. Thus, to increase efficacy and avoid tumor recurrence, therapies need to target not only the differentiated cells of the tumor mass, but also the cancer stem-like cells. These therapies need to be effective on cells present in the hypoxic, slightly acidic microenvironment found within tumors. Such a microenvironment is known to favor more aggressive undifferentiated phenotypes and a slow-growing "quiescent state" that preserves the cells from chemotherapeutic agents, which mostly target proliferating cells. Based on these considerations, we performed a differential screening of the Prestwick Chemical Library of approved drugs on both proliferating and quiescent glioblastoma stem-like cells and identified bisacodyl as a cytotoxic agent with selectivity for quiescent glioblastoma stem-like cells. In the present study we further characterize bisacodyl activity and show its efficacy in vitro on clonal macro-tumorospheres, as well as in vivo in glioblastoma mouse models. Our work further suggests that bisacodyl acts through inhibition of Ca2+ release from the InsP3 receptors.
Collapse
Affiliation(s)
- Jihu Dong
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Francisco J Aulestia
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | - Suzana Assad Kahn
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Neurosurgery, Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital Stanford University, California, USA
| | - Maria Zeniou
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Luiz Gustavo Dubois
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine-IBPS, Sorbonne Universities, 75005 Paris, France
| | - Elias A El-Habr
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine-IBPS, Sorbonne Universities, 75005 Paris, France
| | - François Daubeuf
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Nassera Tounsi
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Samuel H Cheshier
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Neurosurgery, Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital Stanford University, California, USA
| | - Nelly Frossard
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Marie-Pierre Junier
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine-IBPS, Sorbonne Universities, 75005 Paris, France
| | - Hervé Chneiweiss
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine-IBPS, Sorbonne Universities, 75005 Paris, France
| | - Isabelle Néant
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | - Marc Moreau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | - Catherine Leclerc
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | - Jacques Haiech
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France.
| | - Marie-Claude Kilhoffer
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| |
Collapse
|
13
|
Navone NM, Labanca E. Modeling Cancer Metastasis. PATIENT-DERIVED XENOGRAFT MODELS OF HUMAN CANCER 2017. [DOI: 10.1007/978-3-319-55825-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Greene SB, Dago AE, Leitz LJ, Wang Y, Lee J, Werner SL, Gendreau S, Patel P, Jia S, Zhang L, Tucker EK, Malchiodi M, Graf RP, Dittamore R, Marrinucci D, Landers M. Chromosomal Instability Estimation Based on Next Generation Sequencing and Single Cell Genome Wide Copy Number Variation Analysis. PLoS One 2016; 11:e0165089. [PMID: 27851748 PMCID: PMC5112954 DOI: 10.1371/journal.pone.0165089] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/06/2016] [Indexed: 01/06/2023] Open
Abstract
Genomic instability is a hallmark of cancer often associated with poor patient outcome and resistance to targeted therapy. Assessment of genomic instability in bulk tumor or biopsy can be complicated due to sample availability, surrounding tissue contamination, or tumor heterogeneity. The Epic Sciences circulating tumor cell (CTC) platform utilizes a non-enrichment based approach for the detection and characterization of rare tumor cells in clinical blood samples. Genomic profiling of individual CTCs could provide a portrait of cancer heterogeneity, identify clonal and sub-clonal drivers, and monitor disease progression. To that end, we developed a single cell Copy Number Variation (CNV) Assay to evaluate genomic instability and CNVs in patient CTCs. For proof of concept, prostate cancer cell lines, LNCaP, PC3 and VCaP, were spiked into healthy donor blood to create mock patient-like samples for downstream single cell genomic analysis. In addition, samples from seven metastatic castration resistant prostate cancer (mCRPC) patients were included to evaluate clinical feasibility. CTCs were enumerated and characterized using the Epic Sciences CTC Platform. Identified single CTCs were recovered, whole genome amplified, and sequenced using an Illumina NextSeq 500. CTCs were then analyzed for genome-wide copy number variations, followed by genomic instability analyses. Large-scale state transitions (LSTs) were measured as surrogates of genomic instability. Genomic instability scores were determined reproducibly for LNCaP, PC3, and VCaP, and were higher than white blood cell (WBC) controls from healthy donors. A wide range of LST scores were observed within and among the seven mCRPC patient samples. On the gene level, loss of the PTEN tumor suppressor was observed in PC3 and 5/7 (71%) patients. Amplification of the androgen receptor (AR) gene was observed in VCaP cells and 5/7 (71%) mCRPC patients. Using an in silico down-sampling approach, we determined that DNA copy number and genomic instability can be detected with as few as 350K sequencing reads. The data shown here demonstrate the feasibility of detecting genomic instabilities at the single cell level using the Epic Sciences CTC Platform. Understanding CTC heterogeneity has great potential for patient stratification prior to treatment with targeted therapies and for monitoring disease evolution during treatment.
Collapse
Affiliation(s)
| | - Angel E. Dago
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Laura J. Leitz
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Yipeng Wang
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Jerry Lee
- Epic Sciences, Inc., San Diego, CA, United States of America
| | | | - Steven Gendreau
- Genentech, Inc./ Roche, San Francisco, CA, United States of America
| | - Premal Patel
- Genentech, Inc./ Roche, San Francisco, CA, United States of America
| | - Shidong Jia
- Genentech, Inc./ Roche, San Francisco, CA, United States of America
| | - Liangxuan Zhang
- Genentech, Inc./ Roche, San Francisco, CA, United States of America
| | - Eric K. Tucker
- Epic Sciences, Inc., San Diego, CA, United States of America
| | | | - Ryon P. Graf
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Ryan Dittamore
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Dena Marrinucci
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Mark Landers
- Epic Sciences, Inc., San Diego, CA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Anantharaman A, Friedlander T, Lu D, Krupa R, Premasekharan G, Hough J, Edwards M, Paz R, Lindquist K, Graf R, Jendrisak A, Louw J, Dugan L, Baird S, Wang Y, Dittamore R, Paris PL. Programmed death-ligand 1 (PD-L1) characterization of circulating tumor cells (CTCs) in muscle invasive and metastatic bladder cancer patients. BMC Cancer 2016; 16:744. [PMID: 27658492 PMCID: PMC5034508 DOI: 10.1186/s12885-016-2758-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
Background While programmed death 1 (PD-1) and programmed death-ligand 1 (PD-L1) checkpoint inhibitors have activity in a proportion of patients with advanced bladder cancer, strongly predictive and prognostic biomarkers are still lacking. In this study, we evaluated PD-L1 protein expression on circulating tumor cells (CTCs) isolated from patients with muscle invasive (MIBC) and metastatic (mBCa) bladder cancer and explore the prognostic value of CTC PD-L1 expression on clinical outcomes. Methods Blood samples from 25 patients with MIBC or mBCa were collected at UCSF and shipped to Epic Sciences. All nucleated cells were subjected to immunofluorescent (IF) staining and CTC identification by fluorescent scanners using algorithmic analysis. Cytokeratin expressing (CK)+ and (CK)−CTCs (CD45−, intact nuclei, morphologically distinct from WBCs) were enumerated. A subset of patient samples underwent genetic characterization by fluorescence in situ hybridization (FISH) and copy number variation (CNV) analysis. Results CTCs were detected in 20/25 (80 %) patients, inclusive of CK+ CTCs (13/25, 52 %), CK−CTCs (14/25, 56 %), CK+ CTC Clusters (6/25, 24 %), and apoptotic CTCs (13/25, 52 %). Seven of 25 (28 %) patients had PD-L1+ CTCs; 4 of these patients had exclusively CK−/CD45−/PD-L1+ CTCs. A subset of CTCs were secondarily confirmed as bladder cancer via FISH and CNV analysis, which revealed marked genomic instability. Although this study was not powered to evaluate survival, exploratory analyses demonstrated that patients with high PD-L1+/CD45−CTC burden and low burden of apoptotic CTCs had worse overall survival. Conclusions CTCs are detectable in both MIBC and mBCa patients. PD-L1 expression is demonstrated in both CK+ and CK−CTCs in patients with mBCa, and genomic analysis of these cells supports their tumor origin. Here we demonstrate the ability to identify CTCs in patients with advanced bladder cancer through a minimally invasive process. This may have the potential to guide checkpoint inhibitor immune therapies that have been established to have activity, often with durable responses, in a proportion of these patients. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2758-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Archana Anantharaman
- Division of Hematology-Oncology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1825 4th Street, 6th Floor, San Francisco, CA, 94158, USA
| | - Terence Friedlander
- Division of Hematology-Oncology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1825 4th Street, 6th Floor, San Francisco, CA, 94158, USA.
| | - David Lu
- Epic Sciences, San Diego, CA, USA
| | | | - Gayatri Premasekharan
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Jeffrey Hough
- Division of Hematology-Oncology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1825 4th Street, 6th Floor, San Francisco, CA, 94158, USA
| | - Matthew Edwards
- Division of Hematology-Oncology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1825 4th Street, 6th Floor, San Francisco, CA, 94158, USA
| | - Rosa Paz
- Division of Hematology-Oncology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1825 4th Street, 6th Floor, San Francisco, CA, 94158, USA
| | - Karla Lindquist
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Pamela L Paris
- Division of Hematology-Oncology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1825 4th Street, 6th Floor, San Francisco, CA, 94158, USA.,Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Pathologists and liquid biopsies: to be or not to be? Virchows Arch 2016; 469:601-609. [PMID: 27553354 DOI: 10.1007/s00428-016-2004-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/25/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
Abstract
Recently, the advent of therapies targeting genomic alterations has improved the care of patients with certain types of cancer. While molecular targets were initially detected in nucleic acid samples extracted from tumor tissue, detection of nucleic acids in circulating blood has allowed the development of what has become known as liquid biopsies, which provide a complementary and alternative sample source allowing identification of genomic alterations that might be addressed by targeted therapy. Consequently, liquid biopsies might rapidly revolutionize oncology practice in allowing administration of more effective treatments. Liquid biopsies also provide an approach towards short-term monitoring of metastatic cancer patients to evaluate efficacy of treatment and/or early detection of secondary mutations responsible for resistance to treatment. In this context, pathologists, who have already been required in recent years to take interest in the domain of molecular pathology of cancer, now face new challenges. The attitude of pathologists to and level of involvement in the practice of liquid biopsies, including mastering the methods employed in molecular analysis of blood samples, need close attention. Regardless of the level of involvement of pathologists in this new field, it is mandatory that oncologists, biologists, geneticists, and pathologists work together to coordinate the pre-analytical, analytical, and post-analytical phases of molecular assessment of tissue and liquid samples of individual cancer patients. The challenges include (1) implementation of effective and efficient procedures for reception and analysis of liquid and tissue samples for histopathological and molecular evaluation and (2) assuring short turn-around times to facilitate rapid optimization of individual patient treatment. In this paper, we will review the following: (1) recent data concerning the concept of liquid biopsies in oncology and its development for patient care, (2) advantages and limitations of molecular analyses performed on blood samples compared to those performed on tissue samples, and (3) short-term challenges facing pathologists in dealing with liquid biopsies of cancer patients and new strategies to early detect metastatic tumor cell clones.
Collapse
|
17
|
Abstract
Epithelial ovarian cancer represents the most lethal gynecological malignancy in the developed world, and can be divided into five main histological subtypes: high grade serous, endometrioid, clear cell, mucinous and low grade serous. These subtypes represent distinct disease entities, both clinically and at the molecular level. Molecular analysis has revealed significant genetic heterogeneity in ovarian cancer, particularly within the high grade serous subtype. As such, this subtype has been the focus of much research effort to date, revealing molecular subgroups at both the genomic and transcriptomic level that have clinical implications. However, stratification of ovarian cancer patients based on the underlying biology of their disease remains in its infancy. Here, we summarize the molecular changes that characterize the five main ovarian cancer subtypes, highlight potential opportunities for targeted therapeutic intervention and outline priorities for future research.
Collapse
Affiliation(s)
- Robert L Hollis
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Charlie Gourley
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| |
Collapse
|
18
|
Braxton DR, Zhang R, Morrissette JD, Loaiza-Bonilla A, Furth EE. Clinicopathogenomic analysis of mismatch repair proficient colorectal adenocarcinoma uncovers novel prognostic subgroups with differing patterns of genetic evolution. Int J Cancer 2016; 139:1546-56. [DOI: 10.1002/ijc.30196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 04/09/2016] [Accepted: 04/28/2016] [Indexed: 12/23/2022]
Affiliation(s)
- David R. Braxton
- Department of Pathology and Laboratory Medicine; Perelman School of Medicine, University of Pennsylvania; Philadelphia Pennsylvania
| | - Ray Zhang
- Center for Personalized Diagnostics; University of Pennsylvania; Philadelphia Pennsylvania
| | | | - Arturo Loaiza-Bonilla
- Division of Hematology/Oncology; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania; Philadelphia Pennsylvania
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine; Perelman School of Medicine, University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
19
|
Abstract
Therapeutic advances in oncology have not fully translated to the treatment of metastatic disease, which remains largely incurable. Metastatic subclones can emerge both early and late in the life of the primary tumor. A better understanding of the genetic evolution of metastatic disease has the potential to reveal differences in the therapeutic vulnerabilities of primary and metastatic tumors, shed light on the temporal patterns of and routes to metastatic colonization, and provide insight into the biology of the metastatic process. Here we review recent comparative studies of primary and metastatic tumors, including data suggesting that macroevolutionary shifts (the onset of chromosomal instability) contribute to the evolution of metastatic disease. We also discuss the practical challenges associated with these studies and how they might be overcome.
Collapse
Affiliation(s)
- Samra Turajlic
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY2, UK. Renal and Skin Units, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Charles Swanton
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY2, UK. University College London Hospitals and Cancer Institute, Cancer Research UK Lung Cancer Centre of Excellence, Huntley Street, London WC1, UK.
| |
Collapse
|
20
|
Martin P, Shiau CJ, Pasic M, Tsao M, Kamel-Reid S, Lin S, Tudor R, Cheng S, Higgins B, Burkes R, Ng M, Arif S, Ellis PM, Hubay S, Kuruvilla S, Laurie SA, Li J, Hwang D, Lau A, Shepherd FA, Le LW, Leighl NB. Clinical impact of mutation fraction in epidermal growth factor receptor mutation positive NSCLC patients. Br J Cancer 2016; 114:616-22. [PMID: 26889973 PMCID: PMC4800294 DOI: 10.1038/bjc.2016.22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 01/04/2016] [Accepted: 01/10/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We examined clinical outcomes in a population-based cohort of EGFR mutant advanced NSCLC patients, exploring the potential role of factors including tumour EGFR mutation fraction and cellularity in predicting outcomes. METHODS A cohort of patients with EGFR mutant advanced NSCLC was identified (N =2 93); clinical outcomes, pathologic and treatment details were collected. Tumour response was determined from radiology and clinical notes. Association between demographic and pathologic variables EGFR TKI response, time to treatment failure (TTF) and overall survival (OS) was examined using logistic regression and proportional hazards regression. EGFR TKI response rates were summarised by percent mutation fraction to explore their association. RESULTS Higher mutation fraction was associated with greater EGFR TKI response rate (odds ratio 1.58, 95% CI = 1.21-2.07, P = 0.0008), longer TTF (hazard ratio 0.80, 95% CI = 0.68-0.92, P = 0.003) and better OS (hazard ratio 0.81, 95% CI = 0.67-0.99, P = 0.04). However, even in patients with ⩽ 5% mutation fraction, response rate was 34%. Females had longer TTF (P = 0.02). CONCLUSIONS EGFR mutation fraction in tumour samples was significantly associated with response, TTF and OS. Despite this, no lower level of mutation fraction was detected for which EGFR TKI should be withheld in those with activating EGFR mutations.
Collapse
Affiliation(s)
- Petra Martin
- Division of Medical Oncology, Princess Margaret Cancer Centre/University Health Network, 5-105 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | - Carolyn J Shiau
- Division of Medical Oncology, Princess Margaret Cancer Centre/University Health Network, 5-105 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | - Maria Pasic
- Division of Medical Oncology, Princess Margaret Cancer Centre/University Health Network, 5-105 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | - Ming Tsao
- Division of Medical Oncology, Princess Margaret Cancer Centre/University Health Network, 5-105 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | - Suzanne Kamel-Reid
- Division of Medical Oncology, Princess Margaret Cancer Centre/University Health Network, 5-105 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | - Stephanie Lin
- Division of Medical Oncology, Princess Margaret Cancer Centre/University Health Network, 5-105 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | - Roxana Tudor
- Division of Medical Oncology, Princess Margaret Cancer Centre/University Health Network, 5-105 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | | | - Brian Higgins
- Credit Valley Hospital, Mississauga, Ontario, Canada
| | | | - Matilda Ng
- Mackenzie Health Centre, Richmond Hill, Ontario, Canada
| | | | | | - Stacy Hubay
- Grand River Regional Cancer Centre, Kitchener, Ontario, Canada
| | | | - Scott A Laurie
- The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada
| | - Jing Li
- Toronto East General Hospital, Toronto, Ontario, Canada
| | - David Hwang
- Toronto General Hospital, Toronto, Ontario, Canada
| | - Anthea Lau
- Division of Medical Oncology, Princess Margaret Cancer Centre/University Health Network, 5-105 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | - Frances A Shepherd
- Division of Medical Oncology, Princess Margaret Cancer Centre/University Health Network, 5-105 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | - Lisa W Le
- Division of Medical Oncology, Princess Margaret Cancer Centre/University Health Network, 5-105 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | - Natasha B Leighl
- Division of Medical Oncology, Princess Margaret Cancer Centre/University Health Network, 5-105 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| |
Collapse
|
21
|
Hardiman KM, Ulintz PJ, Kuick RD, Hovelson DH, Gates CM, Bhasi A, Rodrigues Grant A, Liu J, Cani AK, Greenson JK, Tomlins SA, Fearon ER. Intra-tumor genetic heterogeneity in rectal cancer. J Transl Med 2016; 96:4-15. [PMID: 26568296 PMCID: PMC4695247 DOI: 10.1038/labinvest.2015.131] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer arises in part from the cumulative effects of multiple gene lesions. Recent studies in selected cancer types have revealed significant intra-tumor genetic heterogeneity and highlighted its potential role in disease progression and resistance to therapy. We hypothesized the existence of significant intra-tumor genetic heterogeneity in rectal cancers involving variations in localized somatic mutations and copy number abnormalities. Two or three spatially disparate regions from each of six rectal tumors were dissected and subjected to the next-generation whole-exome DNA sequencing, Oncoscan SNP arrays, and targeted confirmatory sequencing and analysis. The resulting data were integrated to define subclones using SciClone. Mutant-allele tumor heterogeneity (MATH) scores, mutant allele frequency correlation, and mutation percent concordance were calculated, and copy number analysis including measurement of correlation between samples was performed. Somatic mutations profiles in individual cancers were similar to prior studies, with some variants found in previously reported significantly mutated genes and many patient-specific mutations in each tumor. Significant intra-tumor heterogeneity was identified in the spatially disparate regions of individual cancers. All tumors had some heterogeneity but the degree of heterogeneity was quite variable in the samples studied. We found that 67-97% of exonic somatic mutations were shared among all regions of an individual's tumor. The SciClone computational method identified 2-8 shared and unshared subclones in the spatially disparate areas in each tumor. MATH scores ranged from 7 to 41. Allele frequency correlation scores ranged from R(2)=0.69-0.96. Measurements of correlation between samples for copy number changes varied from R(2)=0.74-0.93. All tumors had some heterogeneity, but the degree was highly variable in the samples studied. The occurrence of significant intra-tumor heterogeneity may allow selected tumors to have a genetic reservoir to draw from in their evolutionary response to therapy and other challenges.
Collapse
Affiliation(s)
- Karin M Hardiman
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Peter J Ulintz
- Department of Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Rork D Kuick
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Daniel H Hovelson
- Department of Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Ashwini Bhasi
- Department of Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Jianhua Liu
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Andi K Cani
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Joel K Greenson
- Department of Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Scott A Tomlins
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Eric R Fearon
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Moorcraft SY, Gonzalez D, Walker BA. Understanding next generation sequencing in oncology: A guide for oncologists. Crit Rev Oncol Hematol 2015; 96:463-74. [DOI: 10.1016/j.critrevonc.2015.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 05/21/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022] Open
|
23
|
|
24
|
Liu X, George GC, Tsimberidou AM, Naing A, Wheler JJ, Kopetz S, Fu S, Piha-Paul SA, Eng C, Falchook GS, Janku F, Garrett C, Karp D, Kurzrock R, Zinner R, Raghav K, Subbiah V, Hess K, Meric-Bernstam F, Hong DS, Overman MJ. Retreatment with anti-EGFR based therapies in metastatic colorectal cancer: impact of intervening time interval and prior anti-EGFR response. BMC Cancer 2015; 15:713. [PMID: 26474549 PMCID: PMC4609167 DOI: 10.1186/s12885-015-1701-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/07/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND This retrospective study aims to investigate the activity of retreatment with anti-EGFR-based therapies in order to explore the concept of clonal evolution by evaluating the impact of prior activity and intervening time interval. METHODS Eighty-nine KRAS exon 2-wild-type metastatic colorectal patients were retreated on phase I/II clinical trials containing anti-EGFR therapies after progressing on prior cetuximab or panitumumab. Response on prior anti-EGFR therapy was defined retrospectively per physician-records as response or stable disease ≥6 months. Multivariable statistical methods included a multiple logistic regression model for response, and Cox proportional hazards model for progression-free survival. RESULTS Retreatment anti-EGFR agents were cetuximab (n = 76) or cetuximab plus erlotinib (n = 13). The median interval time between prior and retreatment regimens was 4.57 months (range: 0.46-58.7). Patients who responded to the prior cetuximab or panitumumab were more likely to obtain clinical benefit to the retreatment compared to the non-responders in both univariate (p = 0.007) and multivariate analyses (OR: 3.38, 95 % CI: 1.27, 9.31, p = 0.019). The clinical benefit rate on retreatment also showed a marginally significant association with interval time between the two anti-EGFR based therapies (p = 0.053). Median progression-free survival on retreatment was increased in prior responders (4.9 months, 95 % CI: 3.6, 6.2) compared to prior non-responders (2.5 months, 95 % CI, 1.58, 3.42) in univariate (p = 0.064) and multivariate analysis (HR: 0.70, 95 % CI: 0.43-1.15, p = 0.156). CONCLUSION Our data lends support to the concept of clonal evolution, though the clinical impact appears less robust than previously reported. Further work to determine which patients benefit from retreatment post progression is needed.
Collapse
Affiliation(s)
- X Liu
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - G C George
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - A M Tsimberidou
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - A Naing
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - J J Wheler
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - S Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit # 426, Houston, TX, 77030, USA.
| | - S Fu
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - S A Piha-Paul
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - C Eng
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit # 426, Houston, TX, 77030, USA.
| | - G S Falchook
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - F Janku
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - C Garrett
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit # 426, Houston, TX, 77030, USA.
| | - D Karp
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - R Kurzrock
- Division of Hematology and Oncology, University of California San Diego Moores Cancer Center, San Diego, CA, USA.
| | - R Zinner
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - K Raghav
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit # 426, Houston, TX, 77030, USA.
| | - V Subbiah
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - K Hess
- Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - F Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - D S Hong
- Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - M J Overman
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit # 426, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW To describe recent advances in the application of advanced genomic technologies towards the identification of biomarkers of prognosis and treatment response in breast cancer. RECENT FINDINGS Advances in high-throughput genomic profiling such as massively parallel sequencing have enabled researchers to catalogue the spectrum of somatic alterations in breast cancers. These tools also hold promise for precision medicine through accurate patient prognostication, stratification, and the dynamic monitoring of treatment response. For example, recent efforts have defined robust molecular subgroups of breast cancer and novel subtype-specific oncogenes. In addition, previously unappreciated activating mutations in human epidermal growth factor receptor 2 have been reported, suggesting new therapeutic opportunities. Genomic profiling of cell-free tumor DNA and circulating tumor cells has been used to monitor disease burden and the emergence of resistance, and such 'liquid biopsy' approaches may facilitate the early, noninvasive detection of aggressive disease. Finally, single-cell genomics is coming of age and will contribute to an understanding of breast cancer evolutionary dynamics. SUMMARY Here, we highlight recent studies that employ high-throughput genomic technologies in an effort to elucidate breast cancer biology, discover new therapeutic targets, improve prognostication and stratification, and discuss the implications for precision cancer medicine.
Collapse
|
26
|
The 18-kDa mitochondrial translocator protein in gliomas: from the bench to bedside. Biochem Soc Trans 2015; 43:579-85. [DOI: 10.1042/bst20150064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 11/17/2022]
Abstract
The 18-kDa mitochondrial translocator protein (TSPO) is known to be highly expressed in several types of cancer, including gliomas, whereas expression in normal brain is low. TSPO functions in glioma are still incompletely understood. The TSPO can be quantified pre-operatively with molecular imaging making it an ideal candidate for personalized treatment of patient with glioma. Studies have proposed to exploit the TSPO as a transporter of chemotherapics to selectively target tumour cells in the brain. Our studies proved that positron emission tomography (PET)-imaging can contribute to predict progression of patients with glioma and that molecular imaging with TSPO-specific ligands is suitable to stratify patients in view of TSPO-targeted treatment. Finally, we proved that TSPO in gliomas is predominantly expressed by tumour cells.
Collapse
|
27
|
Distinctive Spatiotemporal Stability of Somatic Mutations in Metastasized Microsatellite-stable Colorectal Cancer. Am J Surg Pathol 2015; 39:1140-7. [DOI: 10.1097/pas.0000000000000423] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Deep Sequencing Reveals Occurrence of Subclonal ALK Mutations in Neuroblastoma at Diagnosis. Clin Cancer Res 2015; 21:4913-21. [DOI: 10.1158/1078-0432.ccr-15-0423] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/25/2015] [Indexed: 11/16/2022]
|
29
|
Vallo S, Michaelis M, Rothweiler F, Bartsch G, Gust KM, Limbart DM, Rödel F, Wezel F, Haferkamp A, Cinatl J. Drug-Resistant Urothelial Cancer Cell Lines Display Diverse Sensitivity Profiles to Potential Second-Line Therapeutics. Transl Oncol 2015; 8:210-6. [PMID: 26055179 PMCID: PMC4487788 DOI: 10.1016/j.tranon.2015.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/04/2015] [Accepted: 04/09/2015] [Indexed: 01/01/2023] Open
Abstract
Combination chemotherapy with gemcitabine and cisplatin in patients with metastatic urothelial cancer of the bladder frequently results in the development of acquired drug resistance. Availability of cell culture models with acquired resistance could help to identify candidate treatments for an efficient second-line therapy. Six cisplatin- and six gemcitabine-resistant cell lines were established. Cell viability assays were performed to evaluate the sensitivity to 16 different chemotherapeutic substances. The activity of the drug transporter ATP-binding cassette transporter, subfamily B, member 1 (ABCB1, a critical mediator of multidrug resistance in cancer) was evaluated using fluorescent ABCB1 substrates. For functional assessment, cells overexpressing ABCB1 were generated by transduction with a lentiviral vector encoding for ABCB1, while zosuquidar was used for selective inhibition. In this study, 8 of 12 gemcitabine- or cisplatin-resistant cell lines were cross-resistant to carboplatin, 5 to pemetrexed, 4 to methotrexate, 3 to oxaliplatin, 5-fluorouracil, and paclitaxel, and 2 to cabazitaxel, larotaxel, docetaxel, topotecan, doxorubicin, and mitomycin c, and 1 of 12 cell lines was cross-resistant to vinflunine and vinblastine. In one cell line with acquired resistance to gemcitabine (TCC-SUPrGEMCI20), cross-resistance seemed to be mediated by ABCB1 expression. Our model identified the vinca alkaloids vinblastine and vinflunine, in Europe an already approved second-line therapeutic for metastatic bladder cancer, as the most effective compounds in urothelial cancer cells with acquired resistance to gemcitabine or cisplatin. These results demonstrate that this in vitro model can reproduce clinically relevant results and may be suitable to identify novel substances for the treatment of metastatic bladder cancer.
Collapse
Affiliation(s)
- Stefan Vallo
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany; Department of Urology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Martin Michaelis
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Florian Rothweiler
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Georg Bartsch
- Department of Urology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Kilian M Gust
- Department of Urology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Dominik M Limbart
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Franz Rödel
- Department of Radiation Therapy and Oncology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Felix Wezel
- Department of Urology, University Hospital Mannheim, Mannheim, Germany
| | - Axel Haferkamp
- Department of Urology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Werner SL, Graf RP, Landers M, Valenta DT, Schroeder M, Greene SB, Bales N, Dittamore R, Marrinucci D. Analytical Validation and Capabilities of the Epic CTC Platform: Enrichment-Free Circulating Tumour Cell Detection and Characterization. J Circ Biomark 2015; 4:3. [PMID: 28936239 PMCID: PMC5572988 DOI: 10.5772/60725] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022] Open
Abstract
The Epic Platform was developed for the unbiased detection and molecular characterization of circulating tumour cells (CTCs). Here, we report assay performance data, including accuracy, linearity, specificity and intra/inter-assay precision of CTC enumeration in healthy donor (HD) blood samples spiked with varying concentrations of cancer cell line controls (CLCs). Additionally, we demonstrate clinical feasibility for CTC detection in a small cohort of metastatic castrate-resistant prostate cancer (mCRPC) patients. The Epic Platform demonstrated accuracy, linearity and sensitivity for the enumeration of all CLC concentrations tested. Furthermore, we established the precision between multiple operators and slide staining batches and assay specificity showing zero CTCs detected in 18 healthy donor samples. In a clinical feasibility study, at least one traditional CTC/mL (CK+, CD45-, and intact nuclei) was detected in 89 % of 44 mCRPC samples, whereas 100 % of samples had CTCs enumerated if additional CTC subpopulations (CK-/CD45- and CK+ apoptotic CTCs) were included in the analysis. In addition to presenting Epic Platform's performance with respect to CTC enumeration, we provide examples of its integrated downstream capabilities, including protein biomarker expression and downstream genomic analyses at single cell resolution.
Collapse
|
31
|
Zhao Q, Wang ZT, Sun JL, Han D, An DZ, Zhang DK, Li BS. Intratumoral Heterogeneity of Subcutaneous Nodules in a Never-Smoker Woman of Lung Squamous Cell Carcinoma Detected on 18F-Fluorodeoxyglucose Positron Emission Tomography and Computed Tomography: A Case Report. Medicine (Baltimore) 2015; 94:e851. [PMID: 26020390 PMCID: PMC4616428 DOI: 10.1097/md.0000000000000851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Subcutaneous tissue is a rare site of metastasis, accounting for only 1-2% of all lung neoplasms. Positron emission tomography (PET) using ¹⁸F-fluorodeoxyglucose (FDG) has been reported to increase the diagnostic accuracy of subcutaneous metastasis. A 58-year-old woman presented with complaints of dry coughing, in which three positive subcutaneous nodules were found on ¹⁸F-FDG positron emission tomography and computed tomography (PET/CT). Pathologic examination confirmed that each of the nodules contained 1) necrotic fat, 2) small amounts of blood cells and glandular epithelium, and 3) subcutaneous metastasis of moderately differentiated lung squamous cell carcinoma, respectively. Although PET/CT is useful for the detection of subcutaneous metastasis of primary lung cancer, we noted heterogeneous accumulation of ¹⁸F-FDG in subcutaneous tumors. This case highlights the importance of obtaining histological confirmation of malignant diseases whenever possible.
Collapse
Affiliation(s)
- Qian Zhao
- From the School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences (QZ, DH, D-KZ); Department of Radiation Oncology VI, Shandong Cancer Hospital and Institute (QZ, Z-TW, DH, D-ZA, D-KZ, B-S); and Department of Rehabilitation, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, ShanDong, China (J-LS)
| | | | | | | | | | | | | |
Collapse
|
32
|
Rocco JW. Mutant allele tumor heterogeneity (MATH) and head and neck squamous cell carcinoma. Head Neck Pathol 2015; 9:1-5. [PMID: 25804377 PMCID: PMC4382477 DOI: 10.1007/s12105-015-0617-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/15/2015] [Indexed: 02/06/2023]
Abstract
Intra-tumor heterogeneity, variation between individual tumor cells within a patient's tumor, is increasingly seen as a critical mechanism underlying treatment resistance and therapeutic failure. Despite this growing awareness, few methods to assess intra-tumor heterogeneity exist outside the research laboratory, especially in the absence of a known marker. Mutant allele tumor heterogeneity (MATH) is a novel, non-biased, quantitative method to assess genetic heterogeneity based on tumor next generation exome sequencing. The quantitative aspect of MATH has allowed it to be verified as an actionable biomarker in a retrospective HNSCC data set with available exome sequencing and clinical data. In addition, it was also capable of stratifying patient outcome after controlling for other high-risk features such as p53 mutation, HPV status, and advanced tumor stage. Future work will explore the predictive power of MATH in larger data sets such as The Cancer Genome Atlas and examine the underlying cellular mechanisms responsible for intra-tumor heterogeneity.
Collapse
Affiliation(s)
- James W. Rocco
- Department of Otolaryngology-Head and Neck Surgery, James Cancer Hospital and Solove Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH USA
| |
Collapse
|
33
|
Theragnostic imaging using radiolabeled antibodies and tyrosine kinase inhibitors. ScientificWorldJournal 2015; 2015:842101. [PMID: 25874259 PMCID: PMC4385703 DOI: 10.1155/2015/842101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/22/2014] [Accepted: 08/22/2014] [Indexed: 01/22/2023] Open
Abstract
During the past decade, the efficacy of new molecular targeted drugs such as tyrosine kinase inhibitors (TKIs) and monoclonal antibodies has been proven worldwide, and molecular targeted therapies have become the mainstream in cancer therapy. However, clinical use of these new drugs presents unexpected adverse effects or poor therapeutic effects. Therefore, we require diagnostic tools to estimate the target molecule status in cancer tissues and predict therapeutic efficacy and adverse effects. Although immunohistochemical, polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH) analyses of biopsy samples are conventional and popular for this diagnostic purpose, molecular imaging modalities such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) are also useful for noninvasive estimation of gene and protein expression and drug pharmacokinetics. In this review, we introduce new radiolabeled TKIs, antibodies, and their clinical application in molecular targeted therapy and discuss the issues of these imaging probes.
Collapse
|
34
|
Abstract
Advances in next-generation sequencing and bioinformatics have led to an unprecedented view of the cancer genome and its evolution. Genomic studies have demonstrated the complex and heterogeneous clonal landscape of tumors of different origins and the potential impact of intratumor heterogeneity on treatment response and resistance, cancer progression, and the risk of disease relapse. However, the significance of subclonal mutations, in particular mutations in driver genes, and their evolution through time and their dynamics in response to cancer therapies, is yet to be determined. The necessary tools are now available to prospectively determine whether clonal heterogeneity can be used as a biomarker of clinical outcome and to what extent subclonal somatic alterations might influence clinical outcome. Studies that use longitudinal tissue sampling, integrating both genomic and clinical data, have the potential to reveal the subclonal composition and track the evolution of tumors to address these questions and to begin to define the breadth of genetic diversity in different tumor types and its relevance to patient outcome. Such studies may provide further evidence for drug-resistance mechanisms informing combinatorial, adaptive, and tumor immune therapies placed within the context of tumor evolution.
Collapse
Affiliation(s)
- Mariam Jamal-Hanjani
- UCL Cancer Institute, Paul O'Gorman Building, London, United Kingdom. Cancer Research UK London Research institute, London, United Kingdom
| | - Sergio A Quezada
- UCL Cancer Institute, Paul O'Gorman Building, London, United Kingdom
| | - James Larkin
- Department of Oncology, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Charles Swanton
- UCL Cancer Institute, Paul O'Gorman Building, London, United Kingdom. Cancer Research UK London Research institute, London, United Kingdom.
| |
Collapse
|
35
|
Gleeson FC, Kipp BR, Kerr SE, Voss JS, Lazaridis KN, Katzka DA, Levy MJ. Characterization of endoscopic ultrasound fine-needle aspiration cytology by targeted next-generation sequencing and theranostic potential. Clin Gastroenterol Hepatol 2015; 13:37-41. [PMID: 25424571 DOI: 10.1016/j.cgh.2014.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
Determination of tumor genetic architecture based on tissue analysis yields important information on signaling pathways involved in cancer pathogenesis and plays a growing role in choosing the optimal medical management of malignancies. Specifically, the advent of next-generation sequencing has led to a rapidly evolving era of relatively inexpensive, high-throughput DNA sequencing of tumors. One such example is multiplexed tumor genotyping (ie, panel testing) of more than 2800 mutations across 50 commonly mutated cancer-associated genes. This resulting mutational landscape shows medically actionable pathogenic alterations to optimize antitumor therapy. We recently assessed the performance and outcome of targeted next-generation sequencing with archived endoscopic ultrasound fine-needle aspirates across a broad range of primary and metastatic sites with encouraging accuracy. As a result, endoscopic ultrasound has the potential to move from a test for diagnosis or confirmation of malignancy, to one in which it could facilitate the personalization of cancer-directed therapy.
Collapse
Affiliation(s)
- Ferga C Gleeson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sarah E Kerr
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jesse S Voss
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Konstantinos N Lazaridis
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - David A Katzka
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Michael J Levy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
36
|
Lindahl KH, Sørensen FB, Jonstrup SP, Olsen KE, Loeschke S. CanEGFRmutation status be reliably determined in pre-operative needle biopsies from adenocarcinomas of the lung? APMIS 2014; 123:289-97. [DOI: 10.1111/apm.12350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/03/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Kim Hein Lindahl
- Department of Pathology; Vejle Hospital, part of Lillebaelt Hospital; Vejle Denmark
- Department of Pathology; Odense University Hospital; Odense Denmark
| | - Flemming Brandt Sørensen
- Department of Pathology; Vejle Hospital, part of Lillebaelt Hospital; Vejle Denmark
- Institute of Regional Health Research; University of Southern Denmark; Odense Denmark
| | - Søren Peter Jonstrup
- Department of Pathology; Vejle Hospital, part of Lillebaelt Hospital; Vejle Denmark
| | - Karen Ege Olsen
- Department of Pathology; Odense University Hospital; Odense Denmark
| | - Siegfried Loeschke
- Department of Pathology; Vejle Hospital, part of Lillebaelt Hospital; Vejle Denmark
- Institute of Regional Health Research; University of Southern Denmark; Odense Denmark
- Department of Pathology; Southern Jutland Hospital; Soenderborg Denmark
| |
Collapse
|
37
|
Zaldumbide L, Erramuzpe A, Guarch R, Cortés JM, López JI. Large (>3.8 cm) clear cell renal cell carcinomas are morphologically and immunohistochemically heterogeneous. Virchows Arch 2014; 466:61-6. [DOI: 10.1007/s00428-014-1673-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 09/10/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022]
|
38
|
Neelakantan D, Drasin DJ, Ford HL. Intratumoral heterogeneity: Clonal cooperation in epithelial-to-mesenchymal transition and metastasis. Cell Adh Migr 2014; 9:265-76. [PMID: 25482627 DOI: 10.4161/19336918.2014.972761] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although phenotypic intratumoral heterogeneity was first described many decades ago, the advent of next-generation sequencing has provided conclusive evidence that in addition to phenotypic diversity, significant genotypic diversity exists within tumors. Tumor heterogeneity likely arises both from clonal expansions, as well as from differentiation hierarchies existent in the tumor, such as that established by cancer stem cells (CSCs) and non-CSCs. These differentiation hierarchies may arise due to genetic mutations, epigenetic alterations, or microenvironmental influences. An additional differentiation hierarchy within epithelial tumors may arise when only a few tumor cells trans-differentiate into mesenchymal-like cells, a process known as epithelial-to-mesenchymal transition (EMT). Again, this process can be influenced by both genetic and non-genetic factors. In this review we discuss the evidence for clonal interaction and cooperation for tumor maintenance and progression, particularly with respect to EMT, and further address the far-reaching effects that tumor heterogeneity may have on cancer therapy.
Collapse
Key Words
- CLL, chronic lymphoblastic leukemia
- CSC, cancer stem cell
- EMP, epithelial-mesenchymal plasticity
- EMT, epithelial-to-mesenchymal transition
- GFP, green fluorescent protein.
- MET, mesenchymal-to-epithelial transition
- MMTV, mouse mammary tumor virus
- NGS, next generation sequencing
- OxR, oxaliplatin resistant
- SCLC, small cell lung cancer
- TGF-β, transforming growth factor-β
- cancer stem cells/CSCs
- clonal evolution
- epithelial-mesenchymal transition (EMT)
- hPDGF human platelet-derived growth factor
- intratumoral heterogeneity
- metastasis
- miRNA, microRNA
- non-cell autonomous
- tumor microenvironment
Collapse
Affiliation(s)
- Deepika Neelakantan
- a Department of Pharmacology ; University of Colorado; School of Medicine ; Aurora, CO USA
| | | | | |
Collapse
|
39
|
Prick J, de Haan G, Green AR, Kent DG. Clonal heterogeneity as a driver of disease variability in the evolution of myeloproliferative neoplasms. Exp Hematol 2014; 42:841-51. [PMID: 25201757 DOI: 10.1016/j.exphem.2014.07.268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/01/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematological diseases in which cells of the myelo-erythroid lineage are overproduced and patients are predisposed to leukemic transformation. Hematopoietic stem cells are the suspected disease-initiating cells, and these cells must acquire a clonal advantage relative to nonmutant hematopoietic stem cells to perpetuate disease. In 2005, several groups identified a single gain-of-function point mutation in JAK2 that associated with the majority of MPNs, and subsequent studies have led to a comprehensive understanding of the mutational landscape in MPNs. However, confusion still exists as to how a single genetic aberration can be associated with multiple distinct disease entities. Many explanations have been proposed, including JAK2V617F homozygosity, individual patient heterogeneity, and the differential regulation of downstream JAK2 signaling pathways. Several groups have made knock-in mouse models expressing JAK2V617F and have observed divergent phenotypes, each recapitulating some aspects of disease. Intriguingly, most of these models do not observe a strong hematopoietic stem cell self-renewal advantage compared with wild-type littermate controls, raising the question of how a clonal advantage is established in patients with MPNs. This review summarizes the current molecular understanding of MPNs and the diversity of disease phenotypes and proposes that the increased proliferation induced by JAK2V617F applies a selection pressure on the mutant clone that results in highly diverse clonal evolution in individuals.
Collapse
Affiliation(s)
- Janine Prick
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anthony R Green
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - David G Kent
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
40
|
Blagg J, Workman P. Chemical biology approaches to target validation in cancer. Curr Opin Pharmacol 2014; 17:87-100. [PMID: 25175311 DOI: 10.1016/j.coph.2014.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023]
Abstract
Target validation is a crucial element of drug discovery. Especially given the wealth of potential targets emerging from cancer genome sequencing and functional genetic screens, and also considering the time and cost of downstream drug discovery efforts, it is essential to build confidence in a proposed target, ideally using different technical approaches. We argue that complementary biological and chemical biology strategies are essential for robust target validation. We discuss recent progress in the discovery and application of high quality chemical tools and other chemical biology approaches to target validation in cancer. Among other topical examples, we highlight the emergence of designed irreversible chemical tools to study potential target proteins and oncogenic pathways that were hitherto regarded as poorly druggable.
Collapse
Affiliation(s)
- Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK.
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK.
| |
Collapse
|
41
|
Navari M, Zare M, Javanmardi M, Asadi-Ghalehni M, Modjtahedi H, Rasaee MJ. Epitope mapping of epidermal growth factor receptor (EGFR) monoclonal antibody and induction of growth-inhibitory polyclonal antibodies by vaccination with EGFR mimotope. Immunopharmacol Immunotoxicol 2014; 36:309-15. [PMID: 25070131 DOI: 10.3109/08923973.2014.945127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the proposed approaches in cancer therapy is to induce and direct the patient's own immune system against cancer cells. In this study, we determined the epitope mapping of the rat anti-human epidermal growth factor receptor (EGFR) monoclonal antibody ICR-62 using a phage display of random peptide library and identified a 12 amino acids peptide, which was recognized as a mimotope. The peptide was synthesized and conjugated to bovine serum albumin (BSA) as carrier protein (P-BSA). We have shown that ICR-62 can react specifically with P-BSA as well as native EGFR. Two rabbits were immunized either by BSA or P-BSA and the rabbits IgGs were purified and examined for binding to the antigens, mimotope and the EGFR protein purified from the EGFR overexpressing A431 cell line. We showed that the rabbit IgG generated against the mimotope is capable of inhibiting the growth of A431 cells by 15%, but does not have any effect on the growth of EGFR-negative MDA-MB-453 cell line in vitro. Our results support the need for further investigations on the potential of vaccination with either mimotope of the EGFR or epitope displayed on the surface of phage particles for use in active immunotherapy of cancer.
Collapse
Affiliation(s)
- Mohsen Navari
- Department of Medical Biotechnology, School of Medical Sciences, Tarbiat Modares University , Tehran , Islamic Republic of Iran and
| | | | | | | | | | | |
Collapse
|
42
|
Caulfield T, Zarzeczny A. Defining 'medical necessity' in an age of personalised medicine: A view from Canada. Bioessays 2014; 36:813-7. [PMID: 25059840 DOI: 10.1002/bies.201400073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The concept of medical necessity plays a central role in many healthcare systems, including Canada's, by helping determine which healthcare services will receive funding. Despite its significance in health policy frameworks, medical necessity has proven to be notoriously difficult to define and operationalise. A shift toward a more personalised and genetically-informed approach to the provision of healthcare seems likely to heighten associated policy challenges. One of the stated goals of personalised medicine is to save healthcare systems money by facilitating the use of less and more effective treatments. However, any cost saving potential may ultimately be thwarted by physicians' legal and ethical obligations, given that physicians will inevitably be required to implement and define the bounds of genetically-informed medical necessity for their patients.
Collapse
Affiliation(s)
- Timothy Caulfield
- Health Law Institute, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
43
|
The pharmacological point of view of resistance to therapy in tumors. Cancer Treat Rev 2014; 40:909-16. [PMID: 24969326 DOI: 10.1016/j.ctrv.2014.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022]
Abstract
Resistance to therapy is a challenging clinical problem, whose solution is far from being reached. Gains in current knowledge have identified key elements at the basis of drug resistance and have suggested possible ways to overcome it. However, some points have always to be kept in mind whatever the type of tumor or drug (cytotoxic or targeted agent) when considering treatment resistance in tumors. In this review we discuss these points and their impact in resistance to cancer therapy: the importance of reaching active tumor drug concentration, reviewing the various micro- and macro-components of the host that can influence their concentrations and activity, the evolving complex heterogeneity of tumors, the intrinsic tumor cell susceptibility to the drug, and the emerging role of the tumor microenvironment. Both the data from the molecular and biological characterization of human tumors allow a better rational and timing use of the available arsenal of anticancer therapy and new strategies to improve the penetration of antitumor drugs in tumors are the new chances to delay and possibly eliminate the emergence of resistance in tumors.
Collapse
|
44
|
Abstract
Ameloblastoma is a locally infiltrative benign odontogenic neoplasm. Tumours may be large, destructive and recurrent, requiring radical surgery with associated facial deformity and morbidity. The molecular pathogenesis of this tumour has been unclear, retarding the development of non-invasive gene-targeted therapies. In a recent paper in this journal, Kurppa et al. [4] showed that EGFR-targeted therapy blocked cell proliferation in an ameloblastoma primary cell culture. That this therapy was not effective in another primary cell culture led to the discovery of the oncogenic BRAF V600E mutation in a high proportion (63%) of ameloblastoma samples. By defining two separate pathways, both of which can be specifically targeted, these findings are an important step towards personalized medicine of ameloblastoma. We discuss the findings in the broader context of ameloblastoma, as well as the effects of tumour microenvironment and molecular heterogeneity that need to be taken into account when considering the use of personalized therapies based on specific genetic mutations in individual patients.
Collapse
|
45
|
Sommer L. Open questions: development of tumor cell heterogeneity and its implications for cancer treatment. BMC Biol 2014; 12:15. [PMID: 24597924 PMCID: PMC3942776 DOI: 10.1186/1741-7007-12-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 12/31/2022] Open
Affiliation(s)
- Lukas Sommer
- Cell and Developmental Biology, University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
46
|
Jubb AM, Koeppen H, Reis-Filho JS. Pathology in drug discovery and development. J Pathol 2014; 232:99-102. [PMID: 24122335 DOI: 10.1002/path.4290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 12/19/2022]
Abstract
The rapid pace of drug discovery and drug development in oncology, immunology and ophthalmology brings new challenges; the efficient and effective development of new targeted drugs will require more detailed molecular classifications of histologically homogeneous diseases that show heterogeneous clinical outcomes. To this end, single companion diagnostics for specific drugs will be replaced by multiplex diagnostics for entire therapeutic areas, preserving tissue and enabling rapid molecular taxonomy. The field will move away from the development of new molecular entities as single agents, to which resistance is common. Instead, a detailed understanding of the pathological mechanisms of resistance, in patients and in preclinical models, will be key to the validation of scientifically rational and clinically effective drug combinations. To remain at the heart of disease diagnosis and appropriate management, pathologists must evolve into translational biologists and biomarker scientists. Herein, we provide examples of where this metamorphosis has already taken place, in lung cancer and melanoma, where the transformation has yet to begin, in the use of immunotherapies for ophthalmology and oncology, and where there is fertile soil for a revolution in treatment, in efforts to classify glioblastoma and personalize treatment. The challenges of disease heterogeneity, the regulatory environment and adequate tissue are ever present, but these too are being overcome in dedicated academic centres. In summary, the tools necessary to overcome the 'whens' and 'ifs' of the molecular revolution are in the hands of pathologists today; it is a matter of standardization, training and leadership to bring these into routine practice and translate science into patient benefit. This Annual Review Issue of the Journal of Pathology highlights the central role for pathology in modern drug discovery and development.
Collapse
Affiliation(s)
- Adrian M Jubb
- Department of Product Development - Oncology, Genentech Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|
47
|
Weigelt B, Reis-Filho JS. Epistatic interactions and drug response. J Pathol 2014; 232:255-63. [PMID: 24105606 DOI: 10.1002/path.4265] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 02/06/2023]
Abstract
The advent of massively parallel sequencing has allowed for an unprecedented genetic characterization of cancers, which has revealed not only the complexity of cancer genomes, but also the fact that tumours from the same anatomical site or even of the same histological and/or molecular subtype display distinct constellations of somatic genetic aberrations. Epistatic interactions (ie the interplay between genetic aberrations) are likely to play pivotal roles not only in terms of tumourigenesis and disease progression, but also in response to therapeutic interventions. In this review, we discuss the challenges posed by the complexity of tumour genomes and epistatic interactions, and approaches for harnessing the wealth of genetic information on human cancers for the implementation of precision medicine.
Collapse
Affiliation(s)
- Britta Weigelt
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | | |
Collapse
|
48
|
De Mattos-Arruda L, Bidard FC, Won HH, Cortes J, Ng CKY, Peg V, Nuciforo P, Jungbluth AA, Weigelt B, Berger MF, Seoane J, Reis-Filho JS. Establishing the origin of metastatic deposits in the setting of multiple primary malignancies: the role of massively parallel sequencing. Mol Oncol 2014; 8:150-8. [PMID: 24220311 PMCID: PMC5528499 DOI: 10.1016/j.molonc.2013.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 01/03/2023] Open
Abstract
In this proof-of-principle study, we sought to define whether targeted capture massively parallel sequencing can be employed to determine the origin of metastatic deposits in cases of synchronous primary malignancies and metastases in distinct anatomical sites. DNA samples extracted from synchronous tumor masses in the breast, adnexal, and pelvic-peritoneal regions from a 62-year-old BRCA1 germline mutation carrier were subjected to targeted massively parallel sequencing using a platform comprising 300 cancer genes known to harbor actionable mutations. In addition to BRCA1 germline mutations, all lesions harbored somatic loss of the BRCA1 wild-type allele and TP53 somatic mutations. The primary breast cancer displayed a TP53 frameshift (p.Q317fs) mutation, whereas and the adnexal lesion harbored a TP53 nonsense (p.R213*) mutation, consistent with a diagnosis of two independent primary tumors (i.e. breast and ovarian cancer). The adnexal tumor and all pelvic-peritoneal implants harbored identical TP53 (p.R213*) and NCOA2 (p.G952R) somatic mutations. Evidence of genetic heterogeneity within and between lesions was observed, both in terms of somatic mutations and copy number aberrations. The repertoires of somatic genetic aberrations found in the breast, ovarian, and pelvic-peritoneal lesions provided direct evidence in support of the distinct origin of the breast and ovarian cancers, and established that the pelvic-peritoneal implants were clonally related to the ovarian lesion. These observations were consistent with those obtained with immunohistochemical analyses employing markers to differentiate between carcinomas of the breast and ovary, including WT1 and PAX8. Our results on this case of a patient with BRCA1-mutant breast and ovarian cancer demonstrate that massively parallel sequencing may constitute a useful tool to define the relationship, clonality and intra-tumor genetic heterogeneity between primary tumor masses and their metastatic deposits in patients with multiple primary malignancies and synchronous metastases.
Collapse
Affiliation(s)
- Leticia De Mattos-Arruda
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francois-Clement Bidard
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Department of Medical Oncology, Institut Curie, Paris, France
| | - Helen H Won
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Javier Cortes
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Medica Scientia Innovation Research (MedSIR), Barcelona, Spain
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Vicente Peg
- Universitat Autònoma de Barcelona, Barcelona, Spain; Pathology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|