1
|
Zhu Y, Xu G. Advances in Focal Segmental Glomerulosclerosis Treatment From the Perspective of the Newest Mechanisms of Podocyte Injury. Drug Des Devel Ther 2025; 19:857-875. [PMID: 39935575 PMCID: PMC11812565 DOI: 10.2147/dddt.s498457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025] Open
Abstract
Podocyte injury was widely recognized as a fundamental mechanism driving the progression of focal segmental glomerulosclerosis (FSGS). Recent research has therefore focused on the development of targeted therapies aimed at disrupting specific pathogenic signaling cascades within podocytes, resulting in noteworthy advancements. The role of mechanisms such as alterations in the actin cytoskeleton, oxidative stress, mitochondrial dysfunction, and inadequate autophagy within the microenvironment of podocyte injury have garnered increasing attention. Corresponding targeted medications such as Abatacept, chemokine receptor (CCR) inhibitors, CDDO-Im (2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide), adenosine monophosphate-activated protein kinase (AMPK) activators, and Adalimumab are currently under investigation. Notably, some medications such as Rituximab and Sparsentan, may simultaneously target multiple downstream mechanisms, Furthermore, exploring molecular strategies for established medications and developing novel treatments guided by biomarkers such as Anti-CD40 antibody, blood microRNA, urinary microRNA, and tumor necrosis factor-alpha (TNF-α) may provide additional therapeutic avenues for patients with FSGS.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
| |
Collapse
|
2
|
Bao J, Li Z, Yao H, Wu B, Gu L, Pan Y, Wang L. METTL10 attenuates adriamycin-induced podocyte injury by targeting cell dedifferentiation. Sci Rep 2025; 15:1218. [PMID: 39774961 PMCID: PMC11707283 DOI: 10.1038/s41598-024-80526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic kidney disease (CKD) is a worldwide public health problem. Podocyte damage is a hallmark of glomerular diseases including focal segmental glomerulosclerosis (FSGS) and one of the leading causes of CKD. Lysine methylation is a crucial post-translational modification. Beyond epidemic regulation, various lysine methyltransferases have been recently reported to participate in disease progression, including cancers and kidney diseases. Among them, Methyltransferase-like 10 (METTL10), is recognized as a gene associated with estimated glomerular filtration rate (eGFR) and CKD risk. However, its role in podocyte damage remains unclear. We identified the differentially expressed genes(DEGs)in podocyte injury by bioinformatics analysis. Patients diagnosed as idiopathic FSGS by renal biopsy were enrolled. Mouse model was established by Adriamycin(ADR) and urinary albumin/ creatinine ratio(UACR) was detected. Murine podocyte cell line was stimulated with ADR. We determined METTL10 was one of the significantly downregulated genes in damaged podocytes, confirmed the decreased glomerular expression of METTL10 in patients with idiopathic FSGS and in mice with ADR-induced nephrosis, respectively. Moreover, we found a negative correlation between glomerular METTL10 levels and UACR in mice. METTL10 was reduced in ADR-treated podocytes, accompanied by podocyte dedifferentiation (loss of synaptopodin, podocin, nephrin, WT-1) and acquisition of mesenchymal cell markers (snail, desmin, pax2). Knockdown of METTL10 promoted their dedifferentiation. METTL10 regulates podocyte dedifferentiation under damaging stimuli and protects podocytes.
Collapse
Affiliation(s)
- Jiwen Bao
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Ziyang Li
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanzhen Yao
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Wu
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leyi Gu
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangbin Pan
- Department of Nephrology, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Ling Wang
- Department of Nephrology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Li J, Yang Y, Li L, Zheng S, Zhang H, Li C, Cai Y, Chen Y, Shi Q, Wang W, Luo J, Zhao X, Li R, Liang H, Chen Y, Zhang L, Liang X. Autophagic inhibitor ROC-325 ameliorates glomerulosclerosis and podocyte injury via inhibiting autophagic flux in experimental FSGS mice. Eur J Pharmacol 2024; 983:177007. [PMID: 39307335 DOI: 10.1016/j.ejphar.2024.177007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Autophagy plays an important role in the pathogenesis of focal segmental glomerulosclerosis (FSGS). Podocyte-specific Yes-associated protein (YAP) deletion mice, referred to as YAP-KO mice, is considered a new animal model to study the underlying mechanism of FSGS. ROC-325 is a novel small-molecule lysosomal autophagy inhibitor that is more effective than chloroquine (CQ) and hydroxychloroquine (HCQ) in suppressing autophagy. In this study, we sought to determine the therapeutic benefit and mechanism of action of ROC-325 in YAP-KO mice, an experimental FSGS model. METHODS AND RESULTS YAP-KO mice were treated with ROC-325 (50 mg/kg, p.o.) daily for one month. Our results revealed that albuminuria, mesangial matrix expension, and focal segmental glomerulosclerosis in YAP-KO mice were significantly attenuated by ROC-325 administration. Transmission electron microscopy and immunofluorescence staining showed that ROC-325 treatment significantly inhibited YAP-KO-induced autophagy activation by decreasing autophagosome-lysosome fusion and increasing LC3A/B and p62/SQSTM. Meanwhile, Immunofluorescence staining revealed that preapplication of ROC-325 in podocyte with YAP-targeted siRNA and mRFP-GFP-LC3 adenovirus markedly suppressed autophagic flux in vitro, suggesting that autophagy intervention may serve as a target for FSGS. CONCLUSIONS These results showed that the role of autophagic activity in FSGS mice model and ROC-325 could be a novel and promising agent for the treatment of FSGS.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yan Yang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of nephropathy, Peking university Shenzhen Hospital, Guangdong, China
| | - Luan Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Siqi Zheng
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hong Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Cuili Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yating Cai
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yingwen Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qingying Shi
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weiteng Wang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jieyi Luo
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xingchen Zhao
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Huaban Liang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Zheng Q, Zhao J, Yuan J, Qin Y, Zhu Z, Liu J, Sun S. Delaying Renal Aging: Metformin Holds Promise as a Potential Treatment. Aging Dis 2024; 16:1397-1413. [PMID: 39012670 PMCID: PMC12096913 DOI: 10.14336/ad.2024.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/06/2024] [Indexed: 07/17/2024] Open
Abstract
Given the rapid aging of the population, age-related diseases have become an excessive burden on global health care. The kidney, a crucial metabolic organ, ages relatively quickly. While the aging process itself does not directly cause kidney damage, the physiological changes that accompany it can impair the kidney's capacity for self-repair. This makes aging kidneys more susceptible to diseases, including increased risks of chronic kidney disease and end-stage renal disease. Therefore, delaying the progression of renal aging and preserving the youthful vitality of the kidney are crucial for preventing kidney diseases. However, effective strategies against renal aging are still lacking due to the underlying mechanisms of renal aging, which have not been fully elucidated. Accumulating evidence suggests that metformin has beneficial effects in mitigating renal aging. Metformin has shown promising anti-aging results in animal models but has not been tested for this purpose yet in clinical trials. These findings indicate the potential of metformin as an anti-renal aging drug. In this review, we primarily discuss the characteristics and mechanisms of kidney aging and the potential effects of metformin against renal aging.
Collapse
Affiliation(s)
- Qiao Zheng
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhanxin Zhu
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jie Liu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
5
|
Njeim R, Merscher S, Fornoni A. Mechanisms and implications of podocyte autophagy in chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F877-F893. [PMID: 38601984 PMCID: PMC11386983 DOI: 10.1152/ajprenal.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Autophagy is a protective mechanism through which cells degrade and recycle proteins and organelles to maintain cellular homeostasis and integrity. An accumulating body of evidence underscores the significant impact of dysregulated autophagy on podocyte injury in chronic kidney disease (CKD). In this review, we provide a comprehensive overview of the diverse types of autophagy and their regulation in cellular homeostasis, with a specific emphasis on podocytes. Furthermore, we discuss recent findings that focus on the functional role of different types of autophagy during podocyte injury in chronic kidney disease. The intricate interplay between different types of autophagy and podocyte health requires further research, which is critical for understanding the pathogenesis of CKD and developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
6
|
Jia X, Zhu L, Zhu Q, Zhang J. The role of mitochondrial dysfunction in kidney injury and disease. Autoimmun Rev 2024; 23:103576. [PMID: 38909720 DOI: 10.1016/j.autrev.2024.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Mitochondria are the main sites of aerobic respiration in the cell and mainly provide energy for the organism, and play key roles in adenosine triphosphate (ATP) synthesis, metabolic regulation, and cell differentiation and death. Mitochondrial dysfunction has been identified as a contributing factor to a variety of diseases. The kidney is rich in mitochondria to meet energy needs, and stable mitochondrial structure and function are essential for normal kidney function. Recently, many studies have shown a link between mitochondrial dysfunction and kidney disease, maintaining mitochondrial homeostasis has become an important target for kidney therapy. In this review, we integrate the role of mitochondrial dysfunction in different kidney diseases, and specifically elaborate the mechanism of mitochondrial reactive oxygen species (mtROS), autophagy and ferroptosis involved in the occurrence and development of kidney diseases, providing insights for improved treatment of kidney diseases.
Collapse
Affiliation(s)
- Xueqian Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Lifu Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Qixing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China.
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, PR China; Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; The Center for Scientific Research, Anhui Medical University, Hefei, PR China.
| |
Collapse
|
7
|
Nakashima M, Suga N, Ikeda Y, Yoshikawa S, Matsuda S. Inspiring Tactics with the Improvement of Mitophagy and Redox Balance for the Development of Innovative Treatment against Polycystic Kidney Disease. Biomolecules 2024; 14:207. [PMID: 38397444 PMCID: PMC10886467 DOI: 10.3390/biom14020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Polycystic kidney disease (PKD) is the most common genetic form of chronic kidney disease (CKD), and it involves the development of multiple kidney cysts. Not enough medical breakthroughs have been made against PKD, a condition which features regional hypoxia and activation of the hypoxia-inducible factor (HIF) pathway. The following pathology of CKD can severely instigate kidney damage and/or renal failure. Significant evidence verifies an imperative role for mitophagy in normal kidney physiology and the pathology of CKD and/or PKD. Mitophagy serves as important component of mitochondrial quality control by removing impaired/dysfunctional mitochondria from the cell to warrant redox homeostasis and sustain cell viability. Interestingly, treatment with the peroxisome proliferator-activated receptor-α (PPAR-α) agonist could reduce the pathology of PDK and might improve the renal function of the disease via the modulation of mitophagy, as well as the condition of gut microbiome. Suitable modulation of mitophagy might be a favorable tactic for the prevention and/or treatment of kidney diseases such as PKD and CKD.
Collapse
Affiliation(s)
| | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
8
|
Salemkour Y, Yildiz D, Dionet L, ‘t Hart DC, Verheijden KA, Saito R, Mahtal N, Delbet JD, Letavernier E, Rabant M, Karras A, van der Vlag J, Nijenhuis T, Tharaux PL, Lenoir O. Podocyte Injury in Diabetic Kidney Disease in Mouse Models Involves TRPC6-mediated Calpain Activation Impairing Autophagy. J Am Soc Nephrol 2023; 34:1823-1842. [PMID: 37678257 PMCID: PMC10631601 DOI: 10.1681/asn.0000000000000212] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
SIGNIFICANCE STATEMENT Autophagy protects podocytes from injury in diabetic kidney disease (DKD). Restoring glomerular autophagy is a promising approach to limit DKD. This study demonstrates a novel regulatory mechanism of autophagy that blocks this critical protection of the glomerular filtration barrier. We demonstrated that TRPC6 induced in podocytes in mouse models of diabetes mediates calpain activation, thereby impairing podocyte autophagy, causing injury and accelerating DKD. Furthermore, this study provides proof of principle for druggable targets for DKD because restoration of podocyte autophagy by calpain inhibitors effectively limits glomerular destruction. BACKGROUND Diabetic kidney disease is associated with impaired podocyte autophagy and subsequent podocyte injury. The regulation of podocyte autophagy is unique because it minimally uses the mTOR and AMPK pathways. Thus, the molecular mechanisms underlying the impaired autophagy in podocytes in diabetic kidney disease remain largely elusive. METHODS This study investigated how the calcium channel TRPC6 and the cysteine protease calpains deleteriously affect podocyte autophagy in diabetic kidney disease in mice. We demonstrated that TRPC6 knockdown in podocytes increased the autophagic flux because of decreased cysteine protease calpain activity. Diabetic kidney disease was induced in vivo using streptozotocin with unilateral nephrectomy and the BTBR ob/ob mouse models. RESULTS Diabetes increased TRPC6 expression in podocytes in vivo with decreased podocyte autophagic flux. Transgenic overexpression of the endogenous calpain inhibitor calpastatin, as well as pharmacologic inhibition of calpain activity, normalized podocyte autophagic flux, reduced nephrin loss, and prevented the development of albuminuria in diabetic mice. In kidney biopsies from patients with diabetes, we further confirmed that TRPC6 overexpression in podocytes correlates with decreased calpastatin expression, autophagy blockade, and podocyte injury. CONCLUSIONS Overall, we discovered a new mechanism that connects TRPC6 and calpain activity to impaired podocyte autophagy, increased podocyte injury, and development of proteinuria in the context of diabetic kidney disease. Therefore, targeting TRPC6 and/or calpain to restore podocyte autophagy might be a promising therapeutic strategy for diabetic kidney disease.
Collapse
Affiliation(s)
| | - Dilemin Yildiz
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Léa Dionet
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Daan C. ‘t Hart
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kim A.T. Verheijden
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ryuta Saito
- Discovery Technology Laboratories, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | | | - Jean-Daniel Delbet
- Université Paris Cité, Inserm, PARCC, Paris, France
- Pediatric Nephrology Department, Armand Trousseau Hospital, DMU Origyne, APHP, Paris and French Reference Center for Rare Diseases MARHEA, Paris, France
| | - Emmanuel Letavernier
- Sorbonne Université, Hôpital Tenon, Paris, France
- INSERM UMR S 1155, Hôpital Tenon, Paris, France
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, Paris, France
| | - Marion Rabant
- Pathology Department, Necker-Enfants Malades Hospital - Paris, Paris, France
| | - Alexandre Karras
- Université Paris Cité, Inserm, PARCC, Paris, France
- Nephrology Unit, Georges Pompidou European Hospital - Paris, Paris, France
| | - Johan van der Vlag
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
9
|
He X, Yang L, Wang M, Zhang P, Wang R, Ji D, Gao C, Xia Z. Targeting ferroptosis attenuates podocytes injury and delays tubulointerstitial fibrosis in focal segmental glomerulosclerosis. Biochem Biophys Res Commun 2023; 678:11-16. [PMID: 37603968 DOI: 10.1016/j.bbrc.2023.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Ferroptosis is a non-apoptotic form of cell death, involved in chronic kidney diseases (CKD) and acute kidney injury (AKI), so far, the role of ferroptosis in focal segmental glomerulosclerosis (FSGS) remains largely unknown. We aimed to investigate the role of ferroptosis in FSGS, in this study, we found the reduced expression of GPX4 in podocytes, as well as tubular epithelial cells (TECs), from patients with FSGS. Treatment with ferrostatin-1 (Fer-1), a potent and selective ferroptosis inhibitor, significantly reduced proteinuria, prevented glomerulosclerosis, attenuated podocyte injury in ADR-induced FSGS murine model. As expected, ADR treatment caused downregulation of GPX4 in human podocytes, treatment with Fer-1 greatly blocked the downregulation of GPX4, restored the GSH level and attenuated cell death. Furthermore, Fer-1 treatment greatly delayed the development of tubulointerstitial fibrosis in ADR-induced FSGS murine model. Taken together, ferroptosis is involved in the pathogenesis of FSGS, targeting ferroptosis is a promising therapeutic option for patients with FSGS.
Collapse
Affiliation(s)
- Xu He
- Department of Nephrology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Department of Pediatrics, Affiliated Jinling Hospital, Medical School of Nanjing University, China
| | - Lingling Yang
- Department of Pediatrics, Suzhou TC Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Meiqiu Wang
- Department of Pediatrics, Affiliated Jinling Hospital, Medical School of Nanjing University, China
| | - Pei Zhang
- Department of Pediatrics, Affiliated Jinling Hospital, Medical School of Nanjing University, China
| | - Ren Wang
- Department of Pediatrics, Affiliated Jinling Hospital, Medical School of Nanjing University, China
| | - Daxi Ji
- Department of Nephrology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Chunlin Gao
- Department of Pediatrics, Affiliated Jinling Hospital, Medical School of Nanjing University, China.
| | - Zhengkun Xia
- Department of Pediatrics, Affiliated Jinling Hospital, Medical School of Nanjing University, China.
| |
Collapse
|
10
|
Li Y, Fan J, Zhu W, Niu Y, Wu M, Zhang A. Therapeutic Potential Targeting Podocyte Mitochondrial Dysfunction in Focal Segmental Glomerulosclerosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:254-264. [PMID: 37900001 PMCID: PMC10601935 DOI: 10.1159/000530344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/18/2023] [Indexed: 10/31/2023]
Abstract
Background Podocytes are essential components of the glomerular filtration barrier and essential for the proper filtration function of the glomerulus. Podocyte injury under various stress conditions is the primary pathogenesis and key determinant of focal segmental glomerulosclerosis (FSGS) with prominent clinical manifestations of proteinuria or nephrotic syndrome. Summary Under physiological conditions, a highly coordinated mitochondrial quality control system, including antioxidant defenses, mitochondrial dynamics (fusion, fission, and mitophagy), and mitochondrial biogenesis, guarantees the sophisticated structure and various functions of podocytes. However, under FSGS pathological conditions, mitochondria encounter oxidative stress, dynamics disturbances, and defective mitochondrial biogenesis. Moreover, mutations in mitochondrial DNA and mitochondria-related genes are also strongly associated with FSGS. Based on these pieces of evidence, bioactive agents that function to relieve mitochondrial oxidative stress and promote mitochondrial biogenesis have been proven effective in preclinical FSGS models. Targeting the mitochondrial network is expected to provide new therapeutic strategies for the treatment of FSGS and delay its progression to end-stage renal disease. Key Messages Mitochondrial dysfunction plays a key role in podocyte injury and FSGS progression. This review summarized recent advances in the study of mitochondrial homeostatic imbalance and dysfunction in FSGS and discussed the potential of mitochondria-targeted therapeutics in improving FSGS and retarding its progression to end-stage renal disease.
Collapse
Affiliation(s)
- Yuting Li
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaojiao Fan
- School of Medicine, Southeast University, Nanjing, China
| | - Wenping Zhu
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yujia Niu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Bhatia D, Choi ME. Autophagy and mitophagy: physiological implications in kidney inflammation and diseases. Am J Physiol Renal Physiol 2023; 325:F1-F21. [PMID: 37167272 PMCID: PMC10292977 DOI: 10.1152/ajprenal.00012.2023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Autophagy is a ubiquitous intracellular cytoprotective quality control program that maintains cellular homeostasis by recycling superfluous cytoplasmic components (lipid droplets, protein, or glycogen aggregates) and invading pathogens. Mitophagy is a selective form of autophagy that by recycling damaged mitochondrial material, which can extracellularly act as damage-associated molecular patterns, prevents their release. Autophagy and mitophagy are indispensable for the maintenance of kidney homeostasis and exert crucial functions during both physiological and disease conditions. Impaired autophagy and mitophagy can negatively impact the pathophysiological state and promote its progression. Autophagy helps in maintaining structural integrity of the kidney. Mitophagy-mediated mitochondrial quality control is explicitly critical for regulating cellular homeostasis in the kidney. Both autophagy and mitophagy attenuate inflammatory responses in the kidney. An accumulating body of evidence highlights that persistent kidney injury-induced oxidative stress can contribute to dysregulated autophagic and mitophagic responses and cell death. Autophagy and mitophagy also communicate with programmed cell death pathways (apoptosis and necroptosis) and play important roles in cell survival by preventing nutrient deprivation and regulating oxidative stress. Autophagy and mitophagy are activated in the kidney after acute injury. However, their aberrant hyperactivation can be deleterious and cause tissue damage. The findings on the functions of autophagy and mitophagy in various models of chronic kidney disease are heterogeneous and cell type- and context-specific dependent. In this review, we discuss the roles of autophagy and mitophagy in the kidney in regulating inflammatory responses and during various pathological manifestations.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
12
|
Sehrawat A, Mishra J, Mastana SS, Navik U, Bhatti GK, Reddy PH, Bhatti JS. Dysregulated autophagy: A key player in the pathophysiology of type 2 diabetes and its complications. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166666. [DOI: https:/doi.org/10.1016/j.bbadis.2023.166666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
13
|
Sehrawat A, Mishra J, Mastana SS, Navik U, Bhatti GK, Reddy PH, Bhatti JS. Dysregulated autophagy: A key player in the pathophysiology of type 2 diabetes and its complications. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166666. [PMID: 36791919 DOI: 10.1016/j.bbadis.2023.166666] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Autophagy is essential in regulating the turnover of macromolecules via removing damaged organelles, misfolded proteins in various tissues, including liver, skeletal muscles, and adipose tissue to maintain the cellular homeostasis. In these tissues, a specific type of autophagy maintains the accumulation of lipid droplets which is directly related to obesity and the development of insulin resistance. It appears to play a protective role in a normal physiological environment by eliminating the invading pathogens, protein aggregates, and damaged organelles and generating energy and new building blocks by recycling the cellular components. Ageing is also a crucial modulator of autophagy process. During stress conditions involving nutrient deficiency, lipids excess, hypoxia etc., autophagy serves as a pro-survival mechanism by recycling the free amino acids to maintain the synthesis of proteins. The dysregulated autophagy has been found in several ageing associated diseases including type 2 diabetes (T2DM), cancer, and neurodegenerative disorders. So, targeting autophagy can be a promising therapeutic strategy against the progression to diabetes related complications. Our article provides a comprehensive outline of understanding of the autophagy process, including its types, mechanisms, regulation, and role in the pathophysiology of T2DM and related complications. We also explored the significance of autophagy in the homeostasis of β-cells, insulin resistance (IR), clearance of protein aggregates such as islet amyloid polypeptide, and various insulin-sensitive tissues. This will further pave the way for developing novel therapeutic strategies for diabetes-related complications.
Collapse
Affiliation(s)
- Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Umashanker Navik
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India.
| |
Collapse
|
14
|
Shi X, Chang M, Zhao M, Shi Y, Zhang Y. Traditional Chinese medicine compounds ameliorating glomerular diseases via autophagy: A mechanism review. Biomed Pharmacother 2022; 156:113916. [DOI: 10.1016/j.biopha.2022.113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
|
15
|
Packer M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation 2022; 146:1383-1405. [PMID: 36315602 PMCID: PMC9624240 DOI: 10.1161/circulationaha.122.061732] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
SGLT2 (sodium-glucose cotransporter 2) inhibitors produce a distinctive pattern of benefits on the evolution and progression of cardiomyopathy and nephropathy, which is characterized by a reduction in oxidative and endoplasmic reticulum stress, restoration of mitochondrial health and enhanced mitochondrial biogenesis, a decrease in proinflammatory and profibrotic pathways, and preservation of cellular and organ integrity and viability. A substantial body of evidence indicates that this characteristic pattern of responses can be explained by the action of SGLT2 inhibitors to promote cellular housekeeping by enhancing autophagic flux, an effect that may be related to the action of these drugs to produce simultaneous upregulation of nutrient deprivation signaling and downregulation of nutrient surplus signaling, as manifested by an increase in the expression and activity of AMPK (adenosine monophosphate-activated protein kinase), SIRT1 (sirtuin 1), SIRT3 (sirtuin 3), SIRT6 (sirtuin 6), and PGC1-α (peroxisome proliferator-activated receptor γ coactivator 1-α) and decreased activation of mTOR (mammalian target of rapamycin). The distinctive pattern of cardioprotective and renoprotective effects of SGLT2 inhibitors is abolished by specific inhibition or knockdown of autophagy, AMPK, and sirtuins. In the clinical setting, the pattern of differentially increased proteins identified in proteomics analyses of blood collected in randomized trials is consistent with these findings. Clinical studies have also shown that SGLT2 inhibitors promote gluconeogenesis, ketogenesis, and erythrocytosis and reduce uricemia, the hallmarks of nutrient deprivation signaling and the principal statistical mediators of the ability of SGLT2 inhibitors to reduce the risk of heart failure and serious renal events. The action of SGLT2 inhibitors to augment autophagic flux is seen in isolated cells and tissues that do not express SGLT2 and are not exposed to changes in environmental glucose or ketones and may be related to an ability of these drugs to bind directly to sirtuins or mTOR. Changes in renal or cardiovascular physiology or metabolism cannot explain the benefits of SGLT2 inhibitors either experimentally or clinically. The direct molecular effects of SGLT2 inhibitors in isolated cells are consistent with the concept that SGLT2 acts as a nutrient surplus sensor, and thus, its inhibition causes enhanced nutrient deprivation signaling and its attendant cytoprotective effects, which can be abolished by specific inhibition or knockdown of AMPK, sirtuins, and autophagic flux.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
16
|
Navarro-Betancourt JR, Cybulsky AV. The IRE1α pathway in glomerular diseases: The unfolded protein response and beyond. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:971247. [PMID: 39086958 PMCID: PMC11285563 DOI: 10.3389/fmmed.2022.971247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2022] [Indexed: 08/02/2024]
Abstract
Endoplasmic reticulum (ER) function is vital for protein homeostasis ("proteostasis"). Protein misfolding in the ER of podocytes (glomerular visceral epithelial cells) is an important contributor to the pathogenesis of human glomerular diseases. ER protein misfolding causes ER stress and activates a compensatory signaling network called the unfolded protein response (UPR). Disruption of the UPR, in particular deletion of the UPR transducer, inositol-requiring enzyme 1α (IRE1α) in mouse podocytes leads to podocyte injury and albuminuria in aging, and exacerbates injury in glomerulonephritis. The UPR may interact in a coordinated manner with autophagy to relieve protein misfolding and its consequences. Recent studies have identified novel downstream targets of IRE1α, which provide new mechanistic insights into proteostatic pathways. Novel pathways of IRE1α signaling involve reticulophagy, mitochondria, metabolism, vesicular trafficking, microRNAs, and others. Mechanism-based therapies for glomerulopathies are limited, and development of non-invasive ER stress biomarkers, as well as targeting ER stress with pharmacological compounds may represent a therapeutic opportunity for preventing or attenuating progression of chronic kidney disease.
Collapse
Affiliation(s)
| | - Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Liu T, Jin Q, Ren F, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Potential therapeutic effects of natural compounds targeting autophagy to alleviate podocyte injury in glomerular diseases. Biomed Pharmacother 2022; 155:113670. [PMID: 36116248 DOI: 10.1016/j.biopha.2022.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022] Open
Abstract
Podocyte injury is a common cause of proteinuric kidney diseases. Uncontrollable progressive podocyte loss accelerates glomerulosclerosis and increases the risk of end-stage renal disease. To date, owing to the complex pathological mechanism, effective therapies for podocyte injury have been limited. Accumulating evidence supports the indispensable role of autophagy in the maintenance of podocyte homeostasis. A variety of natural compounds and their derivatives have been found to regulate autophagy through multiple targets, including promotes nuclear transfer of transcription factor EB and lysosomal repair. Here, we reviewed the recent studies on the use of natural compounds and their derivatives as autophagy regulators and discussed their potential applications in ameliorating podocyte injury. Several known natural compounds with autophagy-regulatory properties, such as quercetin, silibinin, kaempferol, and artemisinin, and their medical uses were also discussed. This review will help in improving the understanding of the podocyte protective mechanism of natural compounds and promote their development for clinical use.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feihong Ren
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
18
|
Jansen J, van den Berge BT, van den Broek M, Maas RJ, Daviran D, Willemsen B, Roverts R, van der Kruit M, Kuppe C, Reimer KC, Di Giovanni G, Mooren F, Nlandu Q, Mudde H, Wetzels R, den Braanker D, Parr N, Nagai JS, Drenic V, Costa IG, Steenbergen E, Nijenhuis T, Dijkman H, Endlich N, van de Kar NCAJ, Schneider RK, Wetzels JFM, Akiva A, van der Vlag J, Kramann R, Schreuder MF, Smeets B. Human pluripotent stem cell-derived kidney organoids for personalized congenital and idiopathic nephrotic syndrome modeling. Development 2022; 149:275031. [PMID: 35417019 PMCID: PMC9148570 DOI: 10.1242/dev.200198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/28/2022] [Indexed: 12/21/2022]
Abstract
Nephrotic syndrome (NS) is characterized by severe proteinuria as a consequence of kidney glomerular injury due to podocyte damage. In vitro models mimicking in vivo podocyte characteristics are a prerequisite to resolve NS pathogenesis. The detailed characterization of organoid podocytes resulting from a hybrid culture protocol showed a podocyte population that resembles adult podocytes and was superior compared with 2D counterparts, based on single-cell RNA sequencing, super-resolution imaging and electron microscopy. In this study, these next-generation podocytes in kidney organoids enabled personalized idiopathic nephrotic syndrome modeling, as shown by activated slit diaphragm signaling and podocyte injury following protamine sulfate, puromycin aminonucleoside treatment and exposure to NS plasma containing pathogenic permeability factors. Organoids cultured from cells of a patient with heterozygous NPHS2 mutations showed poor NPHS2 expression and aberrant NPHS1 localization, which was reversible after genetic correction. Repaired organoids displayed increased VEGFA pathway activity and transcription factor activity known to be essential for podocyte physiology, as shown by RNA sequencing. This study shows that organoids are the preferred model of choice to study idiopathic and congenital podocytopathies. Summary: Kidney organoid podocytes generated from human pluripotent stem cells using a hybrid differentiation protocol allow podocyte pathophysiology modeling that leads to congenital as well as idiopathic nephrotic syndrome in patients.
Collapse
Affiliation(s)
- Jitske Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Bartholomeus T van den Berge
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn van den Broek
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rutger J Maas
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Deniz Daviran
- Department of Biochemistry, Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 29, 6525 GA Nijmegen, The Netherlands
| | - Brigith Willemsen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rona Roverts
- Department of Biochemistry, Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 29, 6525 GA Nijmegen, The Netherlands
| | - Marit van der Kruit
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen 52062, Germany
| | - Katharina C Reimer
- Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen 52062, Germany.,Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen 52062, Germany
| | - Gianluca Di Giovanni
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Fieke Mooren
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Quincy Nlandu
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Helmer Mudde
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roy Wetzels
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dirk den Braanker
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Naomi Parr
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - James S Nagai
- Institute for Computational Genomics, University Hospital RWTH Aachen, Achen 52062, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen 52062, Germany
| | | | - Ivan G Costa
- Institute for Computational Genomics, University Hospital RWTH Aachen, Achen 52062, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen 52062, Germany
| | - Eric Steenbergen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Henry Dijkman
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nicole Endlich
- NIPOKA, 17489 Greifswald, Germany.,Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Nicole C A J van de Kar
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rebekka K Schneider
- Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen 52062, Germany.,Department of Developmental Biology, Erasmus Medical Center, Rotterdam 3015 GD, The Netherlands.,Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jack F M Wetzels
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Anat Akiva
- Department of Biochemistry, Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 29, 6525 GA Nijmegen, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen 52062, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Bart Smeets
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
19
|
Purohit S, Piani F, Ordoñez FA, de Lucas-Collantes C, Bauer C, Cara-Fuentes G. Molecular Mechanisms of Proteinuria in Minimal Change Disease. Front Med (Lausanne) 2022; 8:761600. [PMID: 35004732 PMCID: PMC8733331 DOI: 10.3389/fmed.2021.761600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Minimal change disease (MCD) is the most common type of idiopathic nephrotic syndrome in childhood and represents about 15% cases in adults. It is characterized by massive proteinuria, edema, hypoalbuminemia, and podocyte foot process effacement on electron microscopy. Clinical and experimental studies have shown an association between MCD and immune dysregulation. Given the lack of inflammatory changes or immunocomplex deposits in the kidney tissue, MCD has been traditionally thought to be mediated by an unknown circulating factor(s), probably released by T cells that directly target podocytes leading to podocyte ultrastructural changes and proteinuria. Not surprisingly, research efforts have focused on the role of T cells and podocytes in the disease process. Nevertheless, the pathogenesis of the disease remains a mystery. More recently, B cells have been postulated as an important player in the disease either by activating T cells or by releasing circulating autoantibodies against podocyte targets. There are also few reports of endothelial injury in MCD, but whether glomerular endothelial cells play a role in the disease remains unexplored. Genome-wide association studies are providing insights into the genetic susceptibility to develop the disease and found a link between MCD and certain human haplotype antigen variants. Altogether, these findings emphasize the complex interplay between the immune system, glomerular cells, and the genome, raising the possibility of distinct underlying triggers and/or mechanisms of proteinuria among patients with MCD. The heterogeneity of the disease and the lack of good animal models of MCD remain major obstacles in the understanding of MCD. In this study, we will review the most relevant candidate mediators and mechanisms of proteinuria involved in MCD and the current models of MCD-like injury.
Collapse
Affiliation(s)
- Shrey Purohit
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Federica Piani
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Flor A Ordoñez
- Division of Pediatric Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Colin Bauer
- Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
20
|
Teh YM, Mualif SA, Lim SK. A comprehensive insight into autophagy and its potential signaling pathways as a therapeutic target in podocyte injury. Int J Biochem Cell Biol 2021; 143:106153. [PMID: 34974186 DOI: 10.1016/j.biocel.2021.106153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
As part of the glomerular filtration membrane, podocyte is terminally differentiated, structurally unique, and highly specialized in maintaining kidney function. Proteinuria caused by podocyte injury (foot process effacement) is the clinical symptom of various kidney diseases (CKD), including nephrotic syndrome. Podocyte autophagy has become a powerful therapeutic strategy target in ameliorating podocyte injury. Autophagy is known to be associated significantly with sirtuin-1, proteinuria, and podocyte injury. Various key findings in podocyte autophagy were reported in the past ten years, such as the role of endoplasmic reticulum (ER) stress in podocyte autophagy impairment, podocyte autophagy-related gene, essential roles of the signaling pathways: Mammalian Target of Rapamycin (mTOR)/ Phosphoinositide 3-kinase (PI3k)/ serine/threonine kinase 1 (Akt) in podocyte autophagy. These significant factors caused podocyte injury associated with autophagy impairment. Sirtuin-1 was reported to have a vital key role in mTOR signaling, 5'AMP-activated protein kinase (AMPK) regulation, autophagy activation, and various critical pathways associated with podocyte's function and health; it has potential value to podocyte injury pathogenesis investigation. From these findings, podocyte autophagy has become an attractive therapeutic strategy to ameliorate podocyte injury, and this review will provide an in-depth review on therapeutic targets he podocyte autophagy.
Collapse
Affiliation(s)
- Yoong Mond Teh
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Siti Aisyah Mualif
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia; Medical Device and Technology Centre (MEDiTEC), Universiti Teknologi Malaysia, Malaysia
| | - Soo Kun Lim
- Renal Division, Department of Medicine, Faculty of Medicine, University of Malaya (UM), Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Liu T, Yang L, Mao H, Ma F, Wang Y, Zhan Y. Knowledge Domain and Emerging Trends in Podocyte Injury Research From 1994 to 2021: A Bibliometric and Visualized Analysis. Front Pharmacol 2021; 12:772386. [PMID: 34925030 PMCID: PMC8678497 DOI: 10.3389/fphar.2021.772386] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Podocyte injury has a direct causal relationship with proteinuria and glomerulosclerosis and, on a chronic level, can lead to irreversible disease progression. Podocyte injury plays a critically decisive role in the development of proteinuric kidney disease. In recent years, the research on podocyte injury has developed rapidly all over the world. However, no report has summarized the field of podocyte injury as a whole to date. Using bibliometric analysis, this study aimed to evaluate the current state of worldwide podocyte injury research in the last 30 years and identify important achievements, primary research fields, and emerging trends. Methods: Publications related to podocyte injury were retrieved from Web of Science Core Collection. HistCite, VOSviewer, CiteSpace, and the Bibliometrix Package were used for bibliometric analysis and visualization, including the analysis of the overall distribution of annual outputs, leading countries, active institutions and authors, core journals, co-cited references, and keywords. Total global citation score and total local citation score were used to assess the quality and impact of publications. Results: A total of 2,669 publications related to podocyte injury were identified. Publications related to podocyte injury tended to increase continuously. A total of 10,328 authors from 2,171 institutions in 69 countries published studies related to podocyte injury. China (39.46%) was the most prolific country, and the number of citations of studies in the United States (cited 36,896 times) ranked first. Moin A Saleem, John Cijiang He, and Zhihong Liu were the top three contributing authors, and Journal of the American Society of Nephrology and Kidney International were the most popular journals in the field. “Diabetic nephropathy” is the primary focus area of podocyte injury research, and “autophagy,” “microRNA,” and “inflammation” were the top keywords of emerging research hotspots, and traditional Chinese medicine monomer may be a neglected research gap. Conclusion: Our research found that global publications on podocyte injury have increased dramatically. Diabetic nephropathy is the main research field of podocyte injury, whereas autophagy, microRNA, and inflammation are the top topics getting current attention from scholars and which may become the next focus in podocyte injury research.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Lu Z, Liu H, Song N, Liang Y, Zhu J, Chen J, Ning Y, Hu J, Fang Y, Teng J, Zou J, Dai Y, Ding X. METTL14 aggravates podocyte injury and glomerulopathy progression through N 6-methyladenosine-dependent downregulating of Sirt1. Cell Death Dis 2021; 12:881. [PMID: 34580283 PMCID: PMC8476597 DOI: 10.1038/s41419-021-04156-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023]
Abstract
Podocytes are known to play a determining role in the progression of proteinuric kidney disease. N6-methyladenosine (m6A), as the most abundant chemical modification in eukaryotic mRNA, has been reported to participate in various pathological processes. However, its role in podocyte injury remains unclear. In this study, we observed the elevated m6A RNA levels and the most upregulated METTL14 expression in kidneys of mice with adriamycin (ADR) and diabetic nephropathy. METTL14 was also evidently increased in renal biopsy samples from patients with focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy and in cultured human podocytes with ADR or advanced glycation end product (AGE) treatment in vitro. Functionally, we generated mice with podocyte-specific METTL14 deletion, and identified METTL14 knockout in podocytes improved glomerular function and alleviated podocyte injury, characterized by activation of autophagy and inhibition of apoptosis and inflammation, in mice with ADR nephropathy. Similar to the results in vivo, knockdown of METTL14 facilitated autophagy and alleviated apoptosis and inflammation in podocytes under ADR or AGE condition in vitro. Mechanically, we identified METTL14 knockdown upregulated the level of Sirt1, a well-known protective deacetylase in proteinuric kidney diseases, in podocytes with ADR or AGE treatment. The results of MeRIP-qPCR and dual-luciferase reporter assay indicated METTL14 promoted Sirt1 mRNA m6A modification and degradation in injured podocytes. Our findings suggest METTL14-dependent RNA m6A modification contributes to podocyte injury through posttranscriptional regulation of Sirt1 mRNA, which provide a potential approach for the diagnosis and treatment of podocytopathies.
Collapse
Affiliation(s)
- Zhihui Lu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Hong Liu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Medical Center of Kidney, Shanghai, PR China
- Shanghai Institute of Kidney and Dialysis, Shanghai, PR China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Nana Song
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Medical Center of Kidney, Shanghai, PR China
- Shanghai Institute of Kidney and Dialysis, Shanghai, PR China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yiran Liang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Jiaming Zhu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Medical Center of Kidney, Shanghai, PR China
- Shanghai Institute of Kidney and Dialysis, Shanghai, PR China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jing Chen
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Medical Center of Kidney, Shanghai, PR China
- Shanghai Institute of Kidney and Dialysis, Shanghai, PR China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yichun Ning
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Medical Center of Kidney, Shanghai, PR China
- Shanghai Institute of Kidney and Dialysis, Shanghai, PR China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jiachang Hu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Medical Center of Kidney, Shanghai, PR China
- Shanghai Institute of Kidney and Dialysis, Shanghai, PR China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Medical Center of Kidney, Shanghai, PR China
- Shanghai Institute of Kidney and Dialysis, Shanghai, PR China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jie Teng
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Medical Center of Kidney, Shanghai, PR China
- Shanghai Institute of Kidney and Dialysis, Shanghai, PR China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jianzhou Zou
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Medical Center of Kidney, Shanghai, PR China
- Shanghai Institute of Kidney and Dialysis, Shanghai, PR China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yan Dai
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
- Shanghai Medical Center of Kidney, Shanghai, PR China.
- Shanghai Institute of Kidney and Dialysis, Shanghai, PR China.
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
- Shanghai Medical Center of Kidney, Shanghai, PR China.
- Shanghai Institute of Kidney and Dialysis, Shanghai, PR China.
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China.
| |
Collapse
|
23
|
Gonzalez CD, Carro Negueruela MP, Nicora Santamarina C, Resnik R, Vaccaro MI. Autophagy Dysregulation in Diabetic Kidney Disease: From Pathophysiology to Pharmacological Interventions. Cells 2021; 10:2497. [PMID: 34572148 PMCID: PMC8469825 DOI: 10.3390/cells10092497] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is a frequent, potentially devastating complication of diabetes mellitus. Several factors are involved in its pathophysiology. At a cellular level, diabetic kidney disease is associated with many structural and functional alterations. Autophagy is a cellular mechanism that transports intracytoplasmic components to lysosomes to preserve cellular function and homeostasis. Autophagy integrity is essential for cell homeostasis, its alteration can drive to cell damage or death. Diabetic kidney disease is associated with profound autophagy dysregulation. Autophagy rate and flux alterations were described in several models of diabetic kidney disease. Some of them are closely linked with disease progression and severity. Some antidiabetic agents have shown significant effects on autophagy. A few of them have also demonstrated to modify disease progression and improved outcomes in affected patients. Other drugs also target autophagy and are being explored for clinical use in patients with diabetic kidney disease. The modulation of autophagy could be relevant for the pharmacological treatment and prevention of this disease in the future. Therefore, this is an evolving area that requires further experimental and clinical research. Here we discuss the relationship between autophagy and Diabetic kidney disease and the potential value of autophagy modulation as a target for pharmacological intervention.
Collapse
Affiliation(s)
- Claudio D. Gonzalez
- Instituto de Bioquimica y Medicina Molecular Prof. Alberto Boveris (UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (C.D.G.); (R.R.)
- Instituto Universitario del Centro de Educacion Medica e Investigacion Clinica (IUC-CEMIC-CONICET), Facultad de Medicina, Instituto Universitario CEMIC, Buenos Aires C1430 EFA, Argentina; (M.P.C.N.); (C.N.S.)
| | - María Paula Carro Negueruela
- Instituto Universitario del Centro de Educacion Medica e Investigacion Clinica (IUC-CEMIC-CONICET), Facultad de Medicina, Instituto Universitario CEMIC, Buenos Aires C1430 EFA, Argentina; (M.P.C.N.); (C.N.S.)
| | - Catalina Nicora Santamarina
- Instituto Universitario del Centro de Educacion Medica e Investigacion Clinica (IUC-CEMIC-CONICET), Facultad de Medicina, Instituto Universitario CEMIC, Buenos Aires C1430 EFA, Argentina; (M.P.C.N.); (C.N.S.)
| | - Roxana Resnik
- Instituto de Bioquimica y Medicina Molecular Prof. Alberto Boveris (UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (C.D.G.); (R.R.)
| | - Maria I. Vaccaro
- Instituto de Bioquimica y Medicina Molecular Prof. Alberto Boveris (UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (C.D.G.); (R.R.)
- Instituto Universitario del Centro de Educacion Medica e Investigacion Clinica (IUC-CEMIC-CONICET), Facultad de Medicina, Instituto Universitario CEMIC, Buenos Aires C1430 EFA, Argentina; (M.P.C.N.); (C.N.S.)
| |
Collapse
|
24
|
Nakatani K, Asai O, Konishi N, Iwano M. Role of fibroblast specific protein 1 expression in the progression of adriamycin-induced glomerulosclerosis. Biochem Biophys Res Commun 2021; 567:148-153. [PMID: 34153685 DOI: 10.1016/j.bbrc.2021.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a commonly occurring cause of steroid-resistant nephrotic syndrome and frequently progresses to renal failure. Podocyte epithelial-mesenchymal transition (EMT) is thought to induce podocyte detachment in glomerular diseases, and severe degeneration and shedding of glomerular podocytes plays a major role in the progression of FSGS. We showed that fibroblast specific protein 1 (FSP1), an EMT marker, is strongly expressed in podocytes of FSGS patients, but the significance of podocyte expression of FSP1 to the pathophysiology of FSGS remained unclear. Here, we investigated FSP1 expression in podocytes from mice with adriamycin (ADR)-induced nephropathy, a murine model of FSGS. The number of FSP1-positive (FSP1+) podocytes was increased in ADR-treated mice and positively correlated with the degree of proteinuria and glomerulosclerosis in ADR-treated mice. ADR-induced FSGS and the attendant proteinuria were significantly ameliorated in FSP1 knockout mice as compared to wild type mice. These findings indicate that podocyte expression of FSP1 plays a crucial role in the pathogenesis of FSGS, which makes FSP1 a potential target for treatment of FSGS.
Collapse
Affiliation(s)
- Kimihiko Nakatani
- Department of Nephrology, Yamashiro General Medical Center, Kizugawa, Kyoto, Japan; Department of Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Osamu Asai
- Department of Nephrology, Yamashiro General Medical Center, Kizugawa, Kyoto, Japan; Department of Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Noboru Konishi
- Department of Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan.
| |
Collapse
|
25
|
Racetin A, Filipović N, Lozić M, Ogata M, Gudelj Ensor L, Kelam N, Kovačević P, Watanabe K, Katsuyama Y, Saraga-Babić M, Glavina Durdov M, Vukojević K. A Homozygous Dab1 -/- Is a Potential Novel Cause of Autosomal Recessive Congenital Anomalies of the Mice Kidney and Urinary Tract. Biomolecules 2021; 11:biom11040609. [PMID: 33924028 PMCID: PMC8073787 DOI: 10.3390/biom11040609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023] Open
Abstract
This study aimed to explore morphology changes in the kidneys of Dab1−/− (yotari) mice, as well as expression patterns of reelin, NOTCH2, LC3B, and cleaved caspase3 (CASP3) proteins, as potential determinants of normal kidney formation and function. We assumed that Dab1 functional inactivation may cause disorder in a wide spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). Animals were sacrificed at postnatal days P4, P11, and P14. Paraffin-embedded kidney tissues were sectioned and analyzed by immunohistochemistry using specific antibodies. Kidney specimens were examined by bright-field, fluorescence, and electron microscopy. Data were analyzed by two-way ANOVA and t-tests. We noticed that yotari kidneys were smaller in size with a reduced diameter of nephron segments and thinner cortex. TEM microphotographs revealed foot process effacement in the glomeruli (G) of yotari mice, whereas aberrations in the structure of proximal convoluted tubules (PCT) and distal convoluted tubules (DCT) were not observed. A significant increase in reelin expression, NOTCH2, LC3B and cleaved CASP3 proteins was observed in the glomeruli of yotari mice. Renal hypoplasia in conjunction with foot process effacement and elevation in the expression of examined proteins in the glomeruli revealed CAKUT phenotype and loss of functional kidney tissue of yotari.
Collapse
Affiliation(s)
- Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
| | - Mirela Lozić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
| | - Masaki Ogata
- Division of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan;
| | - Larissa Gudelj Ensor
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
| | - Petra Kovačević
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Koichiro Watanabe
- Department of Anatomy, Shiga University of Medical Science, Ötsu 520-2192, Japan; (K.W.); (Y.K.)
| | - Yu Katsuyama
- Department of Anatomy, Shiga University of Medical Science, Ötsu 520-2192, Japan; (K.W.); (Y.K.)
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
| | | | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (A.R.); (N.F.); (M.L.); (L.G.E.); (N.K.); (M.S.-B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina;
- Correspondence: ; Tel.: +385-21-557-807; Fax: +385-1-557-811
| |
Collapse
|
26
|
Lin Q, Banu K, Ni Z, Leventhal JS, Menon MC. Podocyte Autophagy in Homeostasis and Disease. J Clin Med 2021; 10:jcm10061184. [PMID: 33809036 PMCID: PMC7998595 DOI: 10.3390/jcm10061184] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a protective mechanism that removes dysfunctional components and provides nutrition for cells. Podocytes are terminally differentiated specialized epithelial cells that wrap around the capillaries of the glomerular filtration barrier and show high autophagy level at the baseline. Here, we provide an overview of cellular autophagy and its regulation in homeostasis with specific reference to podocytes. We discuss recent data that have focused on the functional role and regulation of autophagy during podocyte injury in experimental and clinical glomerular diseases. A thorough understanding of podocyte autophagy could shed novel insights into podocyte survival mechanisms with injury and offer potential targets for novel therapeutics for glomerular disease.
Collapse
Affiliation(s)
- Qisheng Lin
- Division of Nephrology, Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (Q.L.); (K.B.); (J.S.L.)
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Khadija Banu
- Division of Nephrology, Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (Q.L.); (K.B.); (J.S.L.)
- Division of Nephrology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Jeremy S. Leventhal
- Division of Nephrology, Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (Q.L.); (K.B.); (J.S.L.)
| | - Madhav C. Menon
- Division of Nephrology, Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (Q.L.); (K.B.); (J.S.L.)
- Division of Nephrology, Yale School of Medicine, New Haven, CT 06510, USA
- Correspondence:
| |
Collapse
|
27
|
Sun B, Zhai S, Zhang L, Sun G. The role of extracellular vesicles in podocyte autophagy in kidney disease. J Cell Commun Signal 2021; 15:299-316. [PMID: 33619681 DOI: 10.1007/s12079-020-00594-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Podocytes are the key cells involved in protein filtration in the glomerulus. Once proteins appear in the urine when podocytes fail, patients will end with renal failure due to the progression of glomerular damage if no proper treatment is applied. The injury and loss of podocytes can be attributed to diverse factors, such as genetic, immunologic, toxic, or metabolic disorders. Recently, autophagy has emerged as a key mechanism to eliminate the unwanted cytoplasmic materials and to prolong the lifespan of podocytes by alleviating cell damage and stress. Typically, the fundamental function of extracellular vesicles (EVs) is to mediate the intercellular communication. Recent studies have suggested that, EVs, especially exosomes, play a certain role in information transfer by communicating proteins, mRNAs, and microRNAs with recipient cells. Under physiological and pathological conditions, EVs assist in the bioinformation interchange between kidneys and other organs. It is suggested that EVs are related to the pathogenesis of acute kidney injury and chronic kidney disease, including glomerular disease, diabetic nephropathy, renal fibrosis and end-stage renal disease. However, the role of EVs in podocyte autophagy remains unclear so far. Here, this study integrated the existing information about the relevancy, diagnostic value and therapeutic potential of EVs in a variety of podocytes-related diseases. The accumulating evidence highlighted that autophagy played a critical role in the homeostasis of podocytes in glomerular disease.
Collapse
Affiliation(s)
- Baichao Sun
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.,Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Shubo Zhai
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Li Zhang
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Guangdong Sun
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
28
|
Yuan H, Zheng C, Zhu L, Song Z, Dai L, Hu Q, Wang L, Chen Y, Xiong J. Contribution of TFEB-mediated autophagy to tubulointerstitial fibrosis in mice with adenine-induced chronic kidney disease. Biomed Pharmacother 2021; 133:110949. [PMID: 33227703 DOI: 10.1016/j.biopha.2020.110949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/29/2022] Open
Abstract
Autophagy has been implicated in the pathogenesis of chronic kidney disease (CKD). Transcription factor EB (TFEB) is a master controller of autophagy. However, the pathophysiological roles of TFEB in modulating autophagy and tubulointerstitial injury in CKD are unknown. This study aimed to determine whether TFEB-mediated autophagy contributed to the tubulointerstitial injury in mice with CKD. After the mice were treated with an adenine diet (0.2 % adenine) for 8 weeks, the development of CKD was observed to be characterised by increased levels of plasma blood urea nitrogen (BUN), creatinine (Cre), tubulointerstitial inflammation and fibrosis. Immunohistochemical and Western blot analysis further revealed that TFEB and autophagy genes were significantly up-regulated in the kidney of the mice with adenine-induced CKD, and this increase was mostly found in the tubular epithelial cells. Interestingly, a similar expression pattern of TFEB-autophagy genes was observed in tubular epithelial cells in the kidney tissue of patients with immunoglobulin A (IgA) nephropathy. Moreover, a pathogenic role of TFEB in adenine-induced CKD was speculated because the pharmacological activation of TFEB by trehalose failed to protect mice from tubulointerstitial injuries. In the epithelioid clone of normal rat kidney cells (NRK-52E), the activation of TFEB by trehalose increased autophagy induction, cell death and inflammatory cytokine (Interleukin-6, IL-6) release. Collectively, these results suggested that the activation of TFEB-mediated autophagy might cause autophagic cell death and inflammation in tubular epithelial cells, contributing to renal fibrosis in adenine-induced CKD. This study provided novel insights into the pathogenic role of TFEB in CKD associated with a high purine diet.
Collapse
Affiliation(s)
- Huiqi Yuan
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaoyang Zheng
- Department of Cardiology, the Second Clinical Medical College and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhu
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziqing Song
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linfeng Dai
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingzong Hu
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Yang XQ, Yu SY, Yu L, Ge L, Zhang Y, Hao ZH, Liu GS. Effects of tacrolimus on autophagy protein LC3 in puromycin-damaged mouse podocytes. J Int Med Res 2020; 48:300060520971422. [PMID: 33322998 PMCID: PMC7745617 DOI: 10.1177/0300060520971422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To investigate the mechanism through which tacrolimus, often used to treat refractory nephropathy, protects against puromycin-induced podocyte injury. METHODS An in vitro model of puromycin-induced podocyte injury was established by dividing podocytes into three groups: controls, puromycin only (PAN group), and puromycin plus tacrolimus (FK506 group). Podocyte morphology, number, apoptosis rate and microtubule associated protein 1 light chain 3 alpha (LC3) expression were compared. RESULTS Puromycin caused podocyte cell body shrinkage and loose intercellular connections, but podocyte morphology in the FK506 group was similar to controls. The apoptosis rate was lower in the FK506 group versus PAN group. The low level of LC3 mRNA observed in untreated podocytes was decreased by puromycin treatment; however, levels of LC3 mRNA were higher in the FK506 group versus PAN group. Although LC3-I and LC3-II protein levels were decreased by puromycin, levels in the FK506 group were higher than the PAN group. Fewer podocyte autophagosomes were observed in the control and FK506 groups versus the PAN group. Cytoplasmic LC3-related fluorescence intensity was stronger in control and FK506 podocytes versus the PAN group. CONCLUSIONS Tacrolimus inhibited puromycin-induced mouse podocyte damage by regulating LC3 expression and enhancing autophagy.
Collapse
Affiliation(s)
- Xiao-qing Yang
- Department of Paediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Paediatrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Sheng-you Yu
- Department of Paediatrics, Guangzhou First People’s Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Li Yu
- Department of Paediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Paediatrics, Guangzhou First People’s Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Lin Ge
- Department of Paediatrics, Guangzhou First People’s Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Yao Zhang
- Department of Paediatrics, Guangzhou First People’s Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Zhi-hong Hao
- Department of Paediatrics, Guangzhou First People’s Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Guo-sheng Liu
- Department of Paediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
30
|
da Silva CA, Monteiro MLGDR, Araújo LS, Urzedo MG, Rocha LB, dos Reis MA, Machado JR. In situ evaluation of podocytes in patients with focal segmental glomerulosclerosis and minimal change disease. PLoS One 2020; 15:e0241745. [PMID: 33147279 PMCID: PMC7641434 DOI: 10.1371/journal.pone.0241745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
Podocyte injury in focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) results from the imbalance between adaptive responses that maintain homeostasis and cellular dysfunction that can culminate in cell death. Therefore, an in situ analysis was performed to detect morphological changes related to cell death and autophagy in renal biopsies from adult patients with podocytopathies. Forty-nine renal biopsies from patients with FSGS (n = 22) and MCD (n = 27) were selected. In situ expression of Wilms Tumor 1 protein (WT1), light chain microtubule 1-associated protein (LC3) and caspase-3 protein were evaluated by immunohistochemistry. The foot process effacement and morphological alterations related to podocyte cell death and autophagy were analyzed with transmission electronic microscopy. Reduction in the density of WT1-labeled podocytes was observed for FSGS and MCD cases as compared to controls. Foot process width (FPW) in control group was lower than in cases of podocytopathies. In FSGS group, FPW was significantly higher than in MCD group and correlated with proteinuria. A density of LC3-labeled podocytes and the number of autophagosomes in podocytes/ pedicels were higher in the MCD group than in the FSGS group. The number of autophagosomes correlated positively with the estimated glomerular filtration rate in cases of MCD. The density of caspase-3-labeled podocytes in FSGS and MCD was higher than control group, and a higher number of podocytes with an evidence of necrosis was detected in FSGS cases than in MCD and control cases. Podocytes from patients diagnosed with FSGS showed more morphological and functional alterations resulting from a larger number of lesions and reduced cell adaptation.
Collapse
Affiliation(s)
- Crislaine Aparecida da Silva
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Maria Luíza Gonçalves dos Reis Monteiro
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Liliane Silvano Araújo
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Monise Gini Urzedo
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Lenaldo Branco Rocha
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marlene Antônia dos Reis
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Department of Pathology, Genetics and Evolution, Discipline of General Pathology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
31
|
Tang C, Livingston MJ, Liu Z, Dong Z. Autophagy in kidney homeostasis and disease. Nat Rev Nephrol 2020; 16:489-508. [PMID: 32704047 PMCID: PMC7868042 DOI: 10.1038/s41581-020-0309-2] [Citation(s) in RCA: 330] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Autophagy is a conserved lysosomal pathway for the degradation of cytoplasmic components. Basal autophagy in kidney cells is essential for the maintenance of kidney homeostasis, structure and function. Under stress conditions, autophagy is altered as part of the adaptive response of kidney cells, in a process that is tightly regulated by signalling pathways that can modulate the cellular autophagic flux - mammalian target of rapamycin, AMP-activated protein kinase and sirtuins are key regulators of autophagy. Dysregulated autophagy contributes to the pathogenesis of acute kidney injury, to incomplete kidney repair after acute kidney injury and to chronic kidney disease of varied aetiologies, including diabetic kidney disease, focal segmental glomerulosclerosis and polycystic kidney disease. Autophagy also has a role in kidney ageing. However, questions remain about whether autophagy has a protective or a pathological role in kidney fibrosis, and about the precise mechanisms and signalling pathways underlying the autophagy response in different types of kidney cells and across the spectrum of kidney diseases. Further research is needed to gain insights into the regulation of autophagy in the kidneys and to enable the discovery of pathway-specific and kidney-selective therapies for kidney diseases and anti-ageing strategies.
Collapse
Affiliation(s)
- Chengyuan Tang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Zhiwen Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Second Xiangya Hospital at Central South University, Changsha, China.
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA.
- Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
32
|
Wang Q, Li R, Xiao Z, Hou C. Lycopene attenuates high glucose-mediated apoptosis in MPC5 podocytes by promoting autophagy via the PI3K/AKT signaling pathway. Exp Ther Med 2020; 20:2870-2878. [PMID: 32765784 PMCID: PMC7401945 DOI: 10.3892/etm.2020.8999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Podocyte injury serves an important role during the progression of diabetic nephropathy (DN), and lycopene (Lyc) may display a potential protective effect against DN progression. The effects of Lyc on high glucose (HG)-induced podocyte apoptosis and the underlying mechanisms are not completely understood; therefore, the present study aimed to investigate the effects of Lyc on HG-induced MPC5 podocyte apoptosis and the underlying mechanism. In the present study, MPC5 podocytes were exposed to HG and different doses of Lyc. MPC5 podocyte viability and apoptosis were assessed by performing the MTT assay and flow cytometry, respectively. To explore the effects of Lyc on the PI3K/AKT signaling pathway and autophagy, LY294002 (LY) and 3-methyladenine (3-MA) were used as PI3K and autophagy inhibitors, respectively. The expression levels of nephrin, podocin, apoptosis-related proteins (Bax, Bcl-2 and cleaved caspase-3), autophagy-related proteins [Beclin-1 and microtubule associated protein 1 light chain 3 (LC3)II/LC3I] and certain key proteins involved in the PI3K/AKT signaling pathway were measured via western blotting. The results suggested that Lyc reversed the inhibitory effect of HG on cell viability, and the protein expression levels of nephrin and podocin, as well as the promoting effect of HG on MPC5 podocyte apoptosis. In addition, under HG conditions, Lyc upregulated the phosphorylation levels of PI3K and AKT, and reduced HG- and LY-mediated MPC5 podocyte apoptosis. Moreover, Lyc further increased HG-induced protein expression levels of Beclin-1 and LC3II/LC3I, and attenuated LY-mediated inhibition of HG-induced MPC5 podocyte autophagy. In addition, the effects of Lyc on HG-mediated MPC5 podocyte apoptosis were alleviated by 3-MA. Therefore, the present study suggested that Lyc may protect against HG-induced MPC5 podocyte apoptosis by promoting autophagy activity via activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Qingfen Wang
- Department of Nephrology, Binzhou People's Hospital, Binzhou, Shandong 255610, P.R. China
| | - Rui Li
- Department of Nephrology, Binzhou People's Hospital, Binzhou, Shandong 255610, P.R. China
| | - Zhi Xiao
- Department of Nephrology, Binzhou People's Hospital, Binzhou, Shandong 255610, P.R. China
| | - Cun Hou
- Department of Nephrology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
33
|
Bhatia D, Choi ME. Autophagy in kidney disease: Advances and therapeutic potential. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:107-133. [PMID: 32620239 DOI: 10.1016/bs.pmbts.2020.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is a highly conserved intracellular catabolic process for the degradation of cytoplasmic components that has recently gained increasing attention for its importance in kidney diseases. It is indispensable for the maintenance of kidney homeostasis both in physiological and pathological conditions. Investigations utilizing various kidney cell-specific conditional autophagy-related gene knockouts have facilitated the advancement in understanding of the role of autophagy in the kidney. Recent findings are raising the possibility that defective autophagy exerts a critical role in different pathological conditions of the kidney. An emerging body of evidence reveals that autophagy exhibits cytoprotective functions in both glomerular and tubular compartments of the kidney, suggesting the upregulation of autophagy as an attractive therapeutic strategy. However, there is also accumulating evidence that autophagy could be deleterious, which presents a formidable challenge in developing therapeutic strategies targeting autophagy. Here, we review the recent advances in research on the role of autophagy during different pathological conditions, including acute kidney injury (AKI), focusing on sepsis, ischemia-reperfusion injury, cisplatin, and heavy metal-induced AKI. We also discuss the role of autophagy in chronic kidney disease (CKD) focusing on the pathogenesis of tubulointerstitial fibrosis, podocytopathies including focal segmental glomerulosclerosis, diabetic nephropathy, IgA nephropathy, membranous nephropathy, HIV-associated nephropathy, and polycystic kidney disease.
Collapse
Affiliation(s)
- Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
34
|
Podocyte autophagy is associated with foot process effacement and proteinuria in patients with minimal change nephrotic syndrome. PLoS One 2020; 15:e0228337. [PMID: 31978139 PMCID: PMC6980606 DOI: 10.1371/journal.pone.0228337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a cellular mechanism involved in the bulk degradation of proteins and turnover of organelle. Several studies have shown the significance of autophagy of the renal tubular epithelium in rodent models of tubulointerstitial disorder. However, the role of autophagy in the regulation of human glomerular diseases is largely unknown. The current study aimed to demonstrate morphological evidence of autophagy and its association with the ultrastructural changes of podocytes and clinical data in patients with idiopathic nephrotic syndrome, a disease in which patients exhibit podocyte injury. The study population included 95 patients, including patients with glomerular disease (minimal change nephrotic syndrome [MCNS], n = 41; idiopathic membranous nephropathy [IMN], n = 37) and 17 control subjects who underwent percutaneous renal biopsy. The number of autophagic vacuoles and the grade of foot process effacement (FPE) in podocytes were examined by electron microscopy (EM). The relationships among the expression of autophagic vacuoles, the grade of FPE, and the clinical data were determined. Autophagic vacuoles were mainly detected in podocytes by EM. The microtubule-associated protein 1 light chain 3 (LC3)-positive area was co-localized with the Wilms tumor 1 (WT1)-positive area on immunofluorescence microscopy, which suggested that autophagy occurred in the podocytes of patients with MCNS. The number of autophagic vacuoles in the podocytes was significantly correlated with the podocyte FPE score (r = -0.443, p = 0.004), the amount of proteinuria (r = 0.334, p = 0.033), and the level of serum albumin (r = -0.317, p = 0.043) in patients with MCNS. The FPE score was a significant determinant for autophagy after adjusting for the age in a multiple regression analysis in MCNS patients (p = 0.0456). However, such correlations were not observed in patients with IMN or in control subjects. In conclusion, the results indicated that the autophagy of podocytes is associated with FPE and severe proteinuria in patients with MCNS. The mechanisms underlying the activation of autophagy in association with FPE in podocytes should be further investigated in order to elucidate the pathophysiology of MCNS.
Collapse
|
35
|
Abstract
Autophagy is an important biology process, central to the maintenance of biology process in both physiological and pathological situations. It is regarded as a “double-edged sword”—exerting both protective and/or detrimental effects. These two-way effects are observed in immune cells as well as renal resident cells, including podocytes, mesangial cells, tubular epithelial cells, and endothelial cells of the glomerular capillaries. Mounting evidence suggests that autophagy is implicated in the pathological process of various immune-related renal diseases (IRRDs) as well as the kidney that underwent transplantation. Here, we provide an overview of the pathological role of autophagy in IRRDs, including lupus nephritis, IgA nephropathy, membrane nephropathy, ANCA-associated nephritis, and diabetic nephropathy. The understanding of the pathogenesis and regulatory mechanisms of autophagy in these renal diseases may lead to the identification of new diagnostic targets and refined therapeutic modulation.
Collapse
|
36
|
Abstract
Autophagy is a cellular homeostatic program for the turnover of cellular organelles and proteins, in which double-membraned vesicles (autophagosomes) sequester cytoplasmic cargos, which are subsequently delivered to the lysosome for degradation. Emerging evidence implicates autophagy as an important modulator of human disease. Macroautophagy and selective autophagy (e.g., mitophagy, aggrephagy) can influence cellular processes, including cell death, inflammation, and immune responses, and thereby exert both adaptive and maladaptive roles in disease pathogenesis. Autophagy has been implicated in acute kidney injury, which can arise in response to nephrotoxins, sepsis, and ischemia/reperfusion, and in chronic kidney diseases. The latter includes comorbidities of diabetes and recent evidence for chronic obstructive pulmonary disease-associated kidney injury. Roles of autophagy in polycystic kidney disease and kidney cancer have also been described. Targeting the autophagy pathway may have therapeutic benefit in the treatment of kidney disorders.
Collapse
Affiliation(s)
- Mary E Choi
- Joan and Sanford I. Weill Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY 10065, USA; .,NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY 10065, USA
| |
Collapse
|
37
|
Jin J, Gong J, Zhao L, Zhang H, He Q, Jiang X. Inhibition of high mobility group box 1 (HMGB1) attenuates podocyte apoptosis and epithelial-mesenchymal transition by regulating autophagy flux. J Diabetes 2019; 11:826-836. [PMID: 30864227 DOI: 10.1111/1753-0407.12914] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Podocyte injury, characterized by podocyte hypertrophy, apoptosis, and epithelial-mesenchymal transition (EMT), is the major causative factor of diabetic nephropathy (DN). Autophagy dysfunction is regarded as the major risk factor for podocyte injury including EMT and apoptosis. High mobility group box 1 (HMGB1) is involved in the progression of DN through the induction of autophagy. However, the underlying mechanism remains unknown. METHODS Plasma HMGB1 concentrations were determined in DN patients using ELISA. Apoptosis of DN serum-treated podocytes was evaluated by flow cytometry. Podocyte autophagy flux was measured using immunofluorescence. Western blotting analysis was used to investigate HMGB1 expression, EMT, and autophagy-related signaling pathways. RESULTS Upregulation of HMGB1 was found in DN patients and DN serum-treated podocytes. Removal of HMGB1 inhibited DN serum-mediated podocyte apoptosis by inhibiting autophagy and activating AKT/mammalian target of rapamycin (mTOR) signaling. In addition, HMGB1 depletion repressed the progression of podocyte EMT by inhibiting transforming growth factor (TGF)-β/smad1 signaling in vitro and in vivo. The combination of HMGB1 short interference (si) RNA and the autophagy activator rapamycin protected against podocyte apoptosis and EMT progression by inhibiting the AKT/mTOR and TGF-β/smad signaling pathway, respectively. CONCLUSIONS Although HMGB1 siRNA and rapamycin treatment had opposite effects on autophagy and AKT/mTOR signaling, there was no contradiction about the role of HMGB1 siRNA and rapamycin on AKT/mTOR pathway because autophagy and AKT/mTOR signaling play dual roles in intracellular biological processes. Based on the findings of this study, we may assume that HMGB1-initiated autophagy is harmful, whereas rapamycin is beneficial to podocyte survival. Possibly combined treatment with HMGB1 siRNA and rapamycin improved podocyte damage and EMT by regulating autophagy homeostasis.
Collapse
Affiliation(s)
- Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Jianguang Gong
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Li Zhao
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Hongjuan Zhang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang, China
| | - Xinxin Jiang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, China
- Department of Nephrology, People's Hospital of Hangzhou Medical College, Zhejiang, China
| |
Collapse
|
38
|
Hurcombe JA, Lay AC, Ni L, Barrington AF, Woodgett JR, Quaggin SE, Welsh GI, Coward RJ. Podocyte GSK3α is important for autophagy and its loss detrimental for glomerular function. FASEB Bioadv 2019; 1:498-510. [PMID: 31825015 PMCID: PMC6902909 DOI: 10.1096/fba.2019-00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Podocytes are key cells in maintaining the integrity of the glomerular filtration barrier and preventing albuminuria. Glycogen synthase kinase 3 (GSK3) is a multi-functional serine/threonine kinase existing as two distinct but related isoforms (α and β). In the podocyte it has previously been reported that inhibition of the β isoform is beneficial in attenuating a variety of glomerular disease models but loss of both isoforms is catastrophic. However, it is not known what the role of GSK3α is in these cells. We now show that GSK3α is present and dynamically modulated in podocytes. When GSK3α is transgenically knocked down specifically in the podocytes of mice it causes mild but significant albuminuria by 6-weeks of life. Its loss also does not protect in models of diabetic or Adriamycin-induced nephropathy. In vitro deletion of podocyte GSK3α causes cell death and impaired autophagic flux suggesting it is important for this key cellular process. Collectively this work shows that GSK3α is important for podocyte health and that augmenting its function may be beneficial in treating glomerular disease.
Collapse
Affiliation(s)
| | - A C Lay
- Bristol Renal, University of Bristol
| | - L Ni
- Bristol Renal, University of Bristol
| | | | - J R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & University of Toronto, Canada
| | - S E Quaggin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| | - G I Welsh
- Bristol Renal, University of Bristol
| | | |
Collapse
|
39
|
Jin J, Tu Q, Gong J, Zhao L, Liang S, He Q. Autophagy activity and expression pattern of autophagy-related markers in the podocytes of patients with lupus nephritis: association with pathological classification. Ren Fail 2019; 41:294-302. [PMID: 31014158 PMCID: PMC6493218 DOI: 10.1080/0886022x.2019.1598432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To identify the significance of autophagy in lupus nephritis (LN). METHODS The number of autophagosomes in podocytes was counted and the expression of multiple molecular markers associated with autophagy was evaluated in LN specimens: in renal biopsy specimens from 90 patients with LN and 15 healthy controls, autophagosomes in podocytes were counted using transmission electron microscopy and the expression levels of four autophage related proteins including Beclin-1, microtubule-associated protein light chain 3 (LC3), autophagy-related gene 7 (Atg7), and UNC-51-like kinase 1 (ULK1) were measured using immunohistochemistry. RESULTS The number of autophagosomes in patients with LN types III, IV, and combined V-IV type were significantly higher than in controls (p < 0.0001; p < 0.0001; p = 0.009, respectively). However, the autophagosomes numbers in patients with II and V types LN were significantly lower than controls (both p < 0.0001). Various levels of marker expression were identified, and they correlated significantly with LN pathology classifications. Moreover, the percentage of marker expression in LN types III, IV and V-IV were significantly higher than controls (p < 0.05), while that in types II and V were lower than controls, although the difference for LC3 and ULK1 was not statistically significant. CONCLUSIONS Autophagy activity and expression pattern of autophagy-related markers in podocytes were significantly positively correlated with LN of types III, IV, and V-IV, but negatively correlated with II and V types. Therefore autophagy could be a useful predictor of LN pathology type, and be informative and helpful in the development of treatment strategies in clinical settings.
Collapse
Affiliation(s)
- Juan Jin
- a Department of Nephrology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Qiudi Tu
- a Department of Nephrology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Jianguang Gong
- a Department of Nephrology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Li Zhao
- a Department of Nephrology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Shikai Liang
- a Department of Nephrology , Zhejiang Provincial People's Hospital , Hangzhou , China
| | - Qiang He
- a Department of Nephrology , Zhejiang Provincial People's Hospital , Hangzhou , China
| |
Collapse
|
40
|
Chang X, Yang Q, Zhang C, Zhang Y, Liang X, Liu Y, Xu G. Roles for VEGF-C/NRP-2 axis in regulating renal tubular epithelial cell survival and autophagy during serum deprivation. Cell Biochem Funct 2019; 37:290-300. [PMID: 31211440 PMCID: PMC6618243 DOI: 10.1002/cbf.3402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
Vascular endothelial growth factor C (VEGF-C) is an angiogenic and lymphangiogenic growth factor. Recent research has revealed the role for VEGF-C in regulating autophagy by interacting with a nontyrosine kinase receptor, neuropilin-2 (NRP-2). However, whether VEGF-C participates in regulating cell survival and autophagy in renal proximal tubular cells is unknown. To address this question, we employed a cell modal of serum deprivation to verify the role of VEGF-C and its receptor NRP-2 in regulating cell survival and autophagy in NRK52E cell lines. The results show that VEGF-C rescued the loss of cell viability induced by serum deprivation in a concentration-dependent manner. Furthermore, endogenous VEGF-C was knocked down in NRK52E cells by using specific small-interfering RNAs (siRNA), cells were more sensitive to serum deprivation-induced cell death. A similar increase in cell death rate was observed following NRP-2 depletion in serum-starved NRK52E cells. Autophagy activity in serum-starved NRK52E cells was confirmed by western blot analysis of microtubule-associated protein-1 chain 3 (LC3), immunofluorescence staining of endogenous LC3, and the formation of autophagosomes by electron microscopy. VEGF-C or NRP-2 depletion further increased LC3 expression induced by serum deprivation, suggesting that VEGF-C and NRP-2 were involved in controlling autophagy in NRK52E cells. We further performed autophagic flux experiments to identify that VEGF-C promotes the activation of autophagy in serum-starved NRK52E cells. Together, these results suggest for the first time that VEGF-C/NRP-2 axis promotes survival and autophagy in NRK52E cells under serum deprivation condition. SIGNIFICANCE OF THE STUDY: More researchers had focused on the regulation of autophagy in kidney disease. The effect of VEGF-C on cell death and autophagy in renal epithelial cells has not been examined. We first identified the VEGF-C as a regulator of cell survival and autophagy in NRK52E cell lines. And VEGF-C/NRP-2 may mediate autophagy by regulating the phosphorylation of 4EBP1 and P70S6K. VEGF-C treatment may be identified as a therapeutic target in renal injury repair due to its capacity to promote tubular cell survival in the future.
Collapse
Affiliation(s)
- Xiaoyan Chang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qian Yang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Conghui Zhang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ying Zhang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xinjun Liang
- Hubei Cancer Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanyan Liu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gang Xu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
41
|
Shi M, Yang S, Zhu X, Sun D, Sun D, Jiang X, Zhang C, Wang L. The RAGE/STAT5/autophagy axis regulates senescence in mesangial cells. Cell Signal 2019; 62:109334. [PMID: 31158467 DOI: 10.1016/j.cellsig.2019.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
Renal aging and associated functional decline are associated with an increase in cellular senescence. Previous studies show a direct correlation between advanced glycation end products (AGEs) accumulation and renal aging, chronic kidney disease (CKD) and other nephropathies, although the underlying molecular mechanisms remain largely unclear. We found elevated levels of the receptor of advanced glycation end product (RAGE) as well as STAT5 in aged human kidneys, as well as in human mesangial cells aged artificially through AGEs. Furthermore, genetic and pharmacological ablation of STAT5 significantly downregulated p16 levels and the percentage of β-Gal-positive senescent cells in mesangial cells and kidneys of SD rats, indicating that AGEs-induced senescence depends on STAT5 signaling. The aged kidney tissues (both in patients and SD rats) and mesangial cells show low levels of LC3 (both LC3-II and LC3-II/I), and cultured mesangial cells also show fewer autolysosomes, autophagosomes, and autophagic vacuoles, which can be partially restored upon STAT5 inhibition. This indicates that AGEs accumulation also obliterates the protective effects of autophagy against aging via the RAGE/STAT5 axis. Direct inhibition of autophagy via 3-methyladenine (3-MA) increases the phenotype of renal aging without activating RAGE, it is inhibition of autophagy caused by RAGE/STAT5 that leads to mesangial aging. In conclusion, we found AGEs induced inhibition of autophagy and cellular senescence in mesangial cells via the RAGE/STAT5 pathway. Moreover, we found that RAGE/STAT5 acts as a key link between autophagy and senescence in the process of mesangial aging in vivo and in vitro.
Collapse
Affiliation(s)
- Mai Shi
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Shuang Yang
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Da Sun
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Dan Sun
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Xue Jiang
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Congxiao Zhang
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Lining Wang
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China.
| |
Collapse
|
42
|
Li L, Liu Y, Li S, Yang R, Zeng C, Rong W, Liang H, Zhang M, Zhu X, Kidder K, Liu Y, Liu Z, Zen K. Signal regulatory protein α protects podocytes through promoting autophagic activity. JCI Insight 2019; 5:124747. [PMID: 30888336 DOI: 10.1172/jci.insight.124747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
High autophagic activity in podocytes, terminally differentiated cells which serve as main components of the kidney filtration barrier, is essential for podocyte survival under various challenges. How podocytes maintain such a high level of autophagy, however, remains unclear. Here we report that signal regulatory protein α (SIRPα) plays a key role in promoting podocyte autophagy. Unlike other glomerular cells, podocytes strongly express SIRPα, which is, however, downregulated in patients with focal segmental glomerulosclerosis and mice with experimental nephropathy. Podocyte SIRPα levels are inversely correlated with the severity of podocyte injury and proteinuria but positively with autophagy. Compared to wild-type littermates, Sirpa-deficient mice display greater age-related podocyte injury and proteinuria and develop more rapid and severe renal injury in various models of experimental nephropathy. Mechanistically, podocyte SIRPα strongly reduces Akt/GSK-3β/β-catenin signaling, leading to an increase in autophagic activity. Our findings thus demonstrate a critical protective role of SIRPα in podocyte survival via maintaining autophagic activity.
Collapse
Affiliation(s)
- Limin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Ying Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Shan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Rong Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Weiwei Rong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China.,Center for Inflammation, Immunity and Infection, Program of Cell and Molecular Immunology, Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Koby Kidder
- Center for Inflammation, Immunity and Infection, Program of Cell and Molecular Immunology, Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Yuan Liu
- Center for Inflammation, Immunity and Infection, Program of Cell and Molecular Immunology, Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| |
Collapse
|
43
|
Ramesh J, Ronsard L, Gao A, Venugopal B. Autophagy Intertwines with Different Diseases-Recent Strategies for Therapeutic Approaches. Diseases 2019; 7:diseases7010015. [PMID: 30717078 PMCID: PMC6473623 DOI: 10.3390/diseases7010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a regular and substantial “clear-out process” that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson’s disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02140, USA.
| | - Anthony Gao
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
| |
Collapse
|
44
|
Autophagy in Chronic Kidney Diseases. Cells 2019; 8:cells8010061. [PMID: 30654583 PMCID: PMC6357204 DOI: 10.3390/cells8010061] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a cellular recycling process involving self-degradation and reconstruction of damaged organelles and proteins. Current evidence suggests that autophagy is critical in kidney physiology and homeostasis. In clinical studies, autophagy activations and inhibitions are linked to acute kidney injuries, chronic kidney diseases, diabetic nephropathies, and polycystic kidney diseases. Oxidative stress, inflammation, and mitochondrial dysfunction, which are implicated as important mechanisms underlying many kidney diseases, modulate the autophagy activation and inhibition and lead to cellular recycling dysfunction. Abnormal autophagy function can induce loss of podocytes, damage proximal tubular cells, and glomerulosclerosis. After acute kidney injuries, activated autophagy protects tubular cells from apoptosis and enhances cellular regeneration. Patients with chronic kidney diseases have impaired autophagy that cannot be reversed by hemodialysis. Multiple nephrotoxic medications also alter the autophagy signaling, by which the mechanistic insights of the drugs are revealed, thus providing the unique opportunity to manage the nephrotoxicity of these drugs. In this review, we summarize the current concepts of autophagy and its molecular aspects in different kidney cells pathophysiology. We also discuss the current evidence of autophagy in acute kidney injury, chronic kidney disease, toxic effects of drugs, and aging kidneys. In addition, we examine therapeutic possibilities targeting the autophagy system in kidney diseases.
Collapse
|
45
|
Ryter SW, Bhatia D, Choi ME. Autophagy: A Lysosome-Dependent Process with Implications in Cellular Redox Homeostasis and Human Disease. Antioxid Redox Signal 2019; 30:138-159. [PMID: 29463101 PMCID: PMC6251060 DOI: 10.1089/ars.2018.7518] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/20/2018] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Autophagy, a lysosome-dependent homeostatic process inherent to cells and tissues, has emerging significance in the pathogenesis of human disease. This process enables the degradation and turnover of cytoplasmic substrates via membrane-dependent sequestration in autophagic vesicles (autophagosomes) and subsequent lysosomal delivery of cargo. Recent Advances: Selective forms of autophagy can target specific substrates (e.g., organelles, protein aggregates, and lipids) for processing. Autophagy is highly regulated by oxidative stress, including exposure to altered oxygen tension, by direct and indirect mechanisms, and contributes to inducible defenses against oxidative stress. Mitochondrial autophagy (mitophagy) plays a critical role in the oxidative stress response, through maintenance of mitochondrial integrity. CRITICAL ISSUES Autophagy can impact a number of vital cellular processes including inflammation and adaptive immunity, host defense, lipid metabolism and storage, mitochondrial homeostasis, and clearance of aggregated proteins, all which may be of significance in human disease. Autophagy can exert both maladaptive and adaptive roles in disease pathogenesis, which may also be influenced by autophagy impairment. This review highlights the essential roles of autophagy in human diseases, with a focus on diseases in which oxidative stress or inflammation play key roles, including human lung, liver, kidney and heart diseases, metabolic diseases, and diseases of the cardiovascular and neural systems. FUTURE DIRECTIONS Investigations that further elucidate the complex role of autophagy in the pathogenesis of disease will facilitate targeting this pathway for therapies in specific diseases.
Collapse
Affiliation(s)
- Stefan W. Ryter
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York
| | - Divya Bhatia
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Mary E. Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
- NewYork-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York
| |
Collapse
|
46
|
Zhao XC, Livingston MJ, Liang XL, Dong Z. Cell Apoptosis and Autophagy in Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:557-584. [PMID: 31399985 DOI: 10.1007/978-981-13-8871-2_28] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is the final common pathway of all chronic kidney diseases progressing to end-stage renal diseases. Autophagy, a highly conserved lysosomal degradation pathway, plays important roles in maintaining cellular homeostasis in all major types of kidney cells including renal tubular cells as well as podocytes, mesangial cells and endothelial cells in glomeruli. Autophagy dysfunction is implicated in the pathogenesis of various renal pathologies. Here, we analyze the pathological role and regulation of autophagy in renal fibrosis and related kidney diseases in both glomeruli and tubulointerstitial compartments. Further research is expected to gain significant mechanistic insights and discover pathway-specific and kidney-selective therapies targeting autophagy to prevent renal fibrosis and related kidney diseases.
Collapse
Affiliation(s)
- Xing-Chen Zhao
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Xin-Ling Liang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
| |
Collapse
|
47
|
Chen Y, Zhao X, Li J, Zhang L, Li R, Zhang H, Liao R, Liu S, Shi W, Liang X. Amino acid starvation promotes podocyte autophagy through mammalian target of rapamycin inhibition and transcription factor EB activation. Mol Med Rep 2018; 18:4342-4348. [PMID: 30221708 PMCID: PMC6172392 DOI: 10.3892/mmr.2018.9438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Autophagy is important for maintaining normal physiological functions and podocyte cell homeostasis. Amino acid signaling is an important upstream signaling pathway for autophagy regulation. However, the function and the associated mechanism of amino acid signaling in podocyte autophagy is unclear. The present study used normal culture medium and amino acid deprivation medium to culture podocytes in vitro. Multiple methods were utilized to detect autophagic activity including western blot analysis to measure the levels of microtubule-associated protein 1 light chain 3 (LC3) II and beclin1, reverse transcription-quantitative polymerase chain reaction was performed to evaluate the levels of LC3 mRNA and transmission electron microscopy was conducted to observe autophagosomes. In addition, tandem green fluorescent protein (GFP)-monomeric red fluorescent protein (mRFP)-LC3 adenoviruses were employed to transduce podocytes to observe autophagic flux. Furthermore, the present study examined the effects of amino acid signaling on mammalian target of rapamycin (mTOR) activity and the nuclear translocation of transcription factor EB (TFEB), a core regulator of autophagy, using western blotting and immunofluorescence. The results revealed that amino acid starvation promoted the expression of LC3II and beclin1, and increased the number of autophagosomes and autolysosomes. Amino acid starvation inhibited mTOR activity, and promoted nuclear translocation and TFEB activity. Inhibition of TFEB blocked amino acid starvation-induced autophagy. These results indicated that amino acid starvation stimulated podocyte autophagy, and thus suggested that mTOR suppression and TFEB activation may mediate amino acid starvation-induced autophagy in podocytes.
Collapse
Affiliation(s)
- Yuanhan Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xingchen Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Jiaxin Li
- Cardiac Surgical Intensive Care Unit, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Li Zhang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Ruizhao Li
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Hong Zhang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Ruyi Liao
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Shuangxin Liu
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Shi
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xinling Liang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
48
|
Yu ZK, Yang B, Zhang Y, Li LS, Zhao JN, Hao W. Modified Huangqi Chifeng decoction inhibits excessive autophagy to protect against Doxorubicin-induced nephrotic syndrome in rats via the PI3K/mTOR signaling pathway. Exp Ther Med 2018; 16:2490-2498. [PMID: 30210600 PMCID: PMC6122515 DOI: 10.3892/etm.2018.6492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate whether modified Huangqi Chifeng decoction (MHCD) could be an effective treatment against Doxorubicin-induced nephrosis in rats and whether it regulates autophagy via the phosphoinositide-3 kinase/mammalian target of rapamycin (PI3K/mTOR) signaling pathway. A total of 40 male Sprague-Dawley rats were randomly divided into blank, model, telmisartan and MHCD groups. The rat model of nephrosis was induced by intragastric administration of Doxorubicin for 8 weeks. Rats were housed in metabolic cages and urine was collected once every 2 weeks to measure 24-h protein levels. Blood samples were obtained from the abdominal aorta and levels of albumin (ALB), total cholesterol (TCH), triacylglyceride (TG) and serum creatinine (Scr) were assessed. Renal pathological changes were examined using hematoxylin-eosin, Masson's trichome and periodic acid-Schiff staining. Podocytes and autophagosomes were observed using an electron microscope. The expression and distribution of microtubule-associated proteins 1A/1B light chain 3B (LC3), LC3-I, LC3-II, beclin-1, PI3K and mTOR were determined using immunohistochemistry and western blotting. At weeks 6 and 8, 24-h proteinuria significantly decreased in the MHCD group compared with the model group (P<0.05). Compared with the model group, the MHCD group exhibited significantly reduced levels of TG, TCH and Scr, as well as significantly increased ALB levels (P<0.05). MHCD was demonstrated to prevent glomerular and podocyte injury. The number of autophagosomes was significantly decreased and the expression of beclin-1, LC3, LC3-I and LC3-II was inhibited following MHCD treatment compared with the model group (P<0.05). MHCD treatment significantly increased the expression of PI3K and mTOR in Doxorubicin nephrotic rats compared with the model group (P<0.05). In conclusion, MHCD was demonstrated to ameliorate proteinuria and protect against glomerular and podocyte injury by inhibiting excessive autophagy via the PI3K/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zi-Kai Yu
- Department of Nephropathy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Yu Zhang
- Department of Nephropathy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Liu-Sheng Li
- Department of Nephropathy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Jin-Ning Zhao
- Experimental Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| | - Wei Hao
- Experimental Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P.R. China
| |
Collapse
|
49
|
Zhao X, Chen Y, Tan X, Zhang L, Zhang H, Li Z, Liu S, Li R, Lin T, Liao R, Zhang Q, Dong W, Shi W, Liang X. Advanced glycation end-products suppress autophagic flux in podocytes by activating mammalian target of rapamycin and inhibiting nuclear translocation of transcription factor EB. J Pathol 2018; 245:235-248. [PMID: 29570219 PMCID: PMC5969319 DOI: 10.1002/path.5077] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 12/24/2022]
Abstract
Insufficient autophagy in podocytes is related to podocyte injury in diabetic nephropathy (DN). Advanced glycation end‐products (AGEs) are major factors of podocyte injury in DN. However, the role and mechanism of AGEs in autophagic dysfunction remain unknown. We investigated autophagic flux in AGE‐stimulated cultured podocytes using multiple assays: western blotting, reverse transcription–quantitative PCR, immunofluorescence staining, and electron microscopy. We also utilized chloroquine and a fluorescent probe to monitor the formation and turnover of autophagosomes. Mice of the db/db strain were used to model diabetes mellitus (DM) with high levels of AGEs. To mimic DM with normal levels of AGEs as a control, we treated db/db mice with pyridoxamine to block AGE formation. AGEs impaired autophagic flux in the cultured podocytes. Compared with db/db mice with normal AGEs but high glucose levels, db/db mice with high AGEs and high glucose levels exhibited lower autophagic activity. Aberrant autophagic flux was related to hyperactive mammalian target of rapamycin (mTOR), a major suppressor of autophagy. Pharmacologic inhibition of mTOR activity restored impaired autophagy. AGEs inhibited the nuclear translocation and activity of the pro‐autophagic transcription factor EB (TFEB) and thus suppressed transcription of its several autophagic target genes. Conversely, TFEB overexpression prevented AGE‐induced autophagy insufficiency. Attenuating mTOR activity recovered TFEB nuclear translocation under AGE stimulation. Co‐immunoprecipitation assays further demonstrated the interaction between mTOR and TFEB in AGE‐stimulated podocytes and in glomeruli from db/db mice. In conclusion, AGEs play a crucial part in suppressing podocyte autophagy under DM conditions. AGEs inhibited the formation and turnover of autophagosomes in podocytes by activating mTOR and inhibiting the nuclear translocation of TFEB. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xingchen Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, PR China.,Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China
| | - Yuanhan Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, PR China.,Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China
| | - Xiaofan Tan
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China.,Division of Nephrology, Zhongshan City People's Hospital, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, Guangdong, PR China
| | - Li Zhang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China
| | - Hong Zhang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China
| | - Zhilian Li
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China
| | - Shuangxin Liu
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China
| | - Ruizhao Li
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China
| | - Ting Lin
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China
| | - Ruyi Liao
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China
| | - Qianmei Zhang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China
| | - Wei Dong
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China
| | - Wei Shi
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, PR China.,Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China
| | - Xinling Liang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Institute of Geriatrics, Guangzhou, Guangdong, PR China
| |
Collapse
|
50
|
He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, Dong Z. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int 2017; 92:1071-1083. [PMID: 28890325 DOI: 10.1016/j.kint.2017.06.030] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected. Although AKI-to-CKD transition has been intensively studied, the information of AKI on CKD is very limited. Nonetheless, AKI, when occurring in patients with CKD, is known to be more severe and difficult to recover. CKD is associated with significant changes in cell signaling in kidney tissues, including the activation of transforming growth factor-β, p53, hypoxia-inducible factor, and major developmental pathways. At the cellular level, CKD is characterized by mitochondrial dysfunction, oxidative stress, and aberrant autophagy. At the tissue level, CKD is characterized by chronic inflammation and vascular dysfunction. These pathologic changes may contribute to the heightened sensitivity of, and nonrecovery from, AKI in patients with CKD.
Collapse
Affiliation(s)
- Liyu He
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Jing Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Mixuan Yi
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manjeri A Venkatachalam
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|