1
|
Guo X, Du X, Zhao G, Liu C, Gao J, Huang Z, Dong W. OSR1 suppresses oral squamous cell carcinoma proliferation and migration via the AXIN2/β-catenin pathway. Oral Dis 2025; 31:741-755. [PMID: 39286942 DOI: 10.1111/odi.15135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES The odd-skipped related transcription factor 1 (OSR1) gene exerts distinct regulatory effects on tumorigenesis and development in various cancer types. However, the precise role of OSR1 in oral squamous cell carcinoma (OSCC) remains to be elucidated. METHODS GEPIA 2 and TCGA databases were utilized to analyze the OSR1 expression in head and neck squamous cell carcinoma (HNSC) patients and its impact on prognosis. Hematoxylin-eosin staining, immunohistochemistry, immunofluorescence, western blotting, and RT-qPCR were employed to detect the OSR1 expression in OSCC tissues and cells. Lentivirus transfection was utilized for overexpression and downexpression of OSR1 in OSCC. CCK8 cell proliferation assay, colony formation and cell scratch assay were conducted to investigate the effects of OSR1 on biological behavior of OSCC cells. Western blotting and RT-qPCR were applied to investigate the regulatory mechanism of OSR1 on AXIN2/β-catenin signaling pathway. RESULTS OSR1 expression was significantly decreased in HNSC patients, OSCC tissues and cells, leading to a decrease in 5-year survival rate. OSR1 overexpression inhibited the proliferation and migration of OSCC cells, and the AXIN2/β-catenin signaling pathway was inhibited. Silencing OSR1 had the opposite effect. CONCLUSIONS OSR1 functioned as a tumor suppressor gene in OSCC proliferation and migration by regulating the AXIN2/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xintong Guo
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinyi Du
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Gaoye Zhao
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chongshen Liu
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Gao
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zunzhi Huang
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wei Dong
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
2
|
Yu Z, Ouyang L. OSR1 downregulation indicates an unfavorable prognosis and activates the NF-κB pathway in ovarian cancer. Discov Oncol 2023; 14:159. [PMID: 37642735 PMCID: PMC10465422 DOI: 10.1007/s12672-023-00778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Odd-skipped related 1 (OSR1) has been reported as a tumor suppressor gene in various malignant tumors. The mechanism through which OSR1 regulates ovarian cancer (OC) progression remains unclear. MATERIALS AND METHODS Immunohistochemistry was utilized to evaluate OSR1 expression in patients with ovarian cancer. We investigated the association between clinicopathological parameters and OSR1 expression in OC patients and the influence of OSR1 expression on patient survival and prognosis. OC cells with OSR1 overexpression or knockdown were established and validated using Western blot and Quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The influence of OSR1 on the NF-κB pathway was examined by analyzing the p-IκBα, IκBα, p65, and p-p65 protein expression. In vitro assays, such as cell cycle assay, Cell Counting Kit-8 (CCK-8), transwell invasion assay, wound healing migration assay, enzyme-linked immunoassay (ELISA), and Annexin V/PI flow cytometry apoptosis assay, were conducted to explore the effect of OSR1 knockdown or dual inhibition of OSR1 and the NF-κB pathway on OC malignant biological behavior. RESULTS OSR1 expression was downregulated in OC tissues, with significant associations observed between its expression and The International Federation of Gynecology and Obstetrics (FIGO) stage and tissue differentiation. Low OSR1 expression in OC patients correlated with reduced overall survival (OS) rates and poor prognosis. In vitro, experiments confirmed a negative correlation between OSR1 expression and NF-κB pathway activity. OSR1 knockdown facilitated OC cell malignant biological behavior, while the NF-κB pathway inhibitor (Bay 11-0782) reversed the impacts of OSR1 knockdown on cell proliferation, migration, invasion, and apoptosis. CONCLUSION Our findings indicate that OSR1 is downregulated and associated with OC prognosis. OSR1 suppresses NF-κB pathway activity and inhibits OC progression by targeting the NF-κB pathway.
Collapse
Affiliation(s)
- Zhong Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Ling Ouyang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
3
|
Matai L, Stathis T, Lee JD, Parsons C, Saxena T, Shlomchik K, Slack FJ. The conserved microRNA-229 family controls low-insulin signaling and dietary restriction induced longevity through interactions with SKN-1/NRF2. Aging Cell 2023; 22:e13785. [PMID: 36748780 PMCID: PMC10086521 DOI: 10.1111/acel.13785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023] Open
Abstract
Several microRNAs have emerged as regulators of pathways that control aging. For example, miR-228 is required for normal lifespan and dietary restriction (DR) mediated longevity through interaction with PHA-4 and SKN-1 transcription factors in Caenorhabditis elegans. miR-229,64,65, and 66, a cluster of microRNAs located adjacent to each other on chromosome III, are in the same family as miR-228, albeit with slight differences in the miR-228 seed sequence. We demonstrate that, in contrast to the anti-longevity role of miR-228, the miR-229-66 cluster is required for normal C. elegans lifespan and for the longevity observed in mir-228 mutants. miR-229-66 is also critical for lifespan extension observed under DR and reduced insulin signaling (IIS) and by constitutive nuclear SKN-1. Both DR and low-IIS upregulate the expression of the miRNA cluster, which is dependent on transcription factors PHA-4, SKN-1, and DAF-16. In turn, the expression of SKN-1 and DAF-16 requires mir-229,64,65,66. miR-229-66 targets the odd-skipped-related transcription factor, odd-2 to regulate lifespan. Knockdown of odd-2 increases lifespan, suppresses the short lifespan of mir-229,64,65,66(nDf63) III mutants, and alters levels of SKN-1 in the ASI neurons. Together with SKN-1, the miRNA cluster also indirectly regulates several genes in the xenobiotic detoxification pathway which increases wild-type lifespan and significantly rescues the short lifespan of mir-229,64,65,66(nDf63) III mutants. Thus, by interacting with SKN-1, miR-229-66 transduces the effects of DR and low-IIS in lifespan extension in C. elegans. Given that this pathway is conserved, it is possible that a similar mechanism regulates aging in more complex organisms.
Collapse
Affiliation(s)
- Latika Matai
- HMS Initiative for RNA Medicine, Department of PathologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| | - Thalyana Stathis
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenConnecticutUSA
| | - Jonathan D. Lee
- HMS Initiative for RNA Medicine, Department of PathologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| | - Christine Parsons
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenConnecticutUSA
| | - Tanvi Saxena
- HMS Initiative for RNA Medicine, Department of PathologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| | - Kovi Shlomchik
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenConnecticutUSA
| | - Frank J. Slack
- HMS Initiative for RNA Medicine, Department of PathologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Shi X, Yu L, Huang R, Bao W, Wu S, Wu Z. Identification of a 5-Methylcytosine Site (mC-7) That May Inhibit CXCL11 Expression and Regulate E. coli F18 Susceptibility in IPEC-J2 Cells. Vet Sci 2022; 9:vetsci9110600. [PMID: 36356076 PMCID: PMC9698616 DOI: 10.3390/vetsci9110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
The primary pathogen causing post-weaning diarrhea in piglets is Escherichia coli F18 (E. coli F18), hence it is essential to investigate the mechanism governing E. coli F18 resistance in native pig breeds. Based on the previous RNA-seq results of the duodenum from E. coli F18-resistant and -susceptible Meishan piglets, CXCL11, an important functional gene, was preliminarily screened. In this investigation, in order to further examine the expression regulation mechanism of E. coli F18 in intestinal porcine epithelial cells (IPEC-J2) against E. coli F18 infection, CXCL11 gene expression on IPEC-J2 cells infected by E. coli F18 was detected, which was significantly downregulated (p < 0.01). Secondly, the overexpression on the IPEC-J2 cell line was successfully structured, and a relative quantification method of the PILIN, bacteria enumeration, and immunofluorescence assay indicated that the CXCL11 overexpression significantly reduced the ability of E. coli F18 to interact with IPEC-J2 in vitro. The promoter region of the CXCL11 gene was predicted to contain a CpG island (−619 ~ −380 bp) of which 13 CpG sites in the sequencing region were methylated to varying degrees, and the methylation level of one CPG site (mC-7) positively linked negatively with the expression of the CXCL11 gene (p < 0.05). Meanwhile, a dual luciferase assay detected the mutation of the mC-7 site that significantly inhibited the luciferase activity of the CXCL11 gene promoter (p < 0.01). Transcription factor prediction and expression verification indicated that mC-7 is located in the OSR1-binding domain, and that its expression level is related to E. coli F18 susceptibility. We speculated that methylation modification of the mC-7 site of the CpG island in the promoter region of the CXCL11 gene might inhibit the binding of transcription factor OSR1 with the mC-7 site, and then affect its expression level to regulate the susceptibility to E. coli F18.
Collapse
Affiliation(s)
- Xiaoru Shi
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Luchen Yu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Rufeng Huang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: (S.W.); (Z.W.)
| | - Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (S.W.); (Z.W.)
| |
Collapse
|
5
|
Yeh SJ, Chen BS. Systems Medicine Design based on Systems Biology Approaches and Deep Neural Network for Gastric Cancer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3019-3031. [PMID: 34232888 DOI: 10.1109/tcbb.2021.3095369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gastric cancer (GC) is the third leading cause of cancer death in the world. It is associated with the stimulation of microenvironment, aberrant epigenetic modification, and chronic inflammation. However, few researches discuss the GC molecular progression mechanisms from the perspective of the system level. In this study, we proposed a systems medicine design procedure to identify essential biomarkers and find corresponding drugs for GC. At first, we did big database mining to construct candidate protein-protein interaction network (PPIN) and candidate gene regulation network (GRN). Second, by leveraging the next-generation sequencing (NGS) data, we performed system modeling and applied system identification and model selection to obtain real genome-wide genetic and epigenetic networks (GWGENs). To make the real GWGENs easy to analyze, the principal network projection method was used to extract the core signaling pathways denoted by KEGG pathways. Subsequently, based on the identified biomarkers, we trained a deep neural network of drug-target interaction (DeepDTI) with supervised learning and filtered our candidate drugs considering drug regulation ability and drug sensitivity. With the proposed systematic strategy, we not only shed the light on the progression of GC but also suggested potential multiple-molecule drugs efficiently.
Collapse
|
6
|
Yu Z, Ouyang L. Odd-skipped related 1 plays a tumor suppressor role in ovarian cancer via promoting follistatin-like protein 1 transcription. Hum Cell 2022; 35:1824-1837. [DOI: 10.1007/s13577-022-00767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022]
|
7
|
Zhang M, Jin M, Gao Z, Yu W, Zhang W. High COL10A1 expression potentially contributes to poor outcomes in gastric cancer with the help of LEF1 and Wnt2. J Clin Lab Anal 2022; 36:e24612. [PMID: 35929139 PMCID: PMC9459277 DOI: 10.1002/jcla.24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/15/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
Background COL10A1 is a secreted, short‐chain collagen found in several types of cancer. Studies have shown that COL10A1 aberrant expression is considered an oncogenic factor. However, its underlying mechanisms and regulation of gastric cancer remain undefined. Methods The data on the expression of COL10A1, clinicopathological characteristics, and outcome of patients with GC were obtained from The Cancer Genome Atlas. The ALGGEN‐PROMO database defined the related transcription factors. Quantitative real‐time reverse transcription‐polymerase chain reaction and western blotting analysis were used to identify the differential expression levels of COL10A1 and related transcription factors. Results We found that high COL10A1 expression is an independent risk factor for gastric cancer. Upregulation of LEF1 and Wnt2 was also observed in gastric cancer, suggesting a potential correlation between LEF1/COL10A1 regulation in the Wnt2 signaling pathway. Conclusion High COL10A1 expression may contribute to poor outcomes via upregulation of LEF1 and Wnt2 in gastric cancer.
Collapse
Affiliation(s)
- Miaozun Zhang
- Department of Gastrointestinal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ming Jin
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhiqiang Gao
- Department of Gastroenterology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Weiming Yu
- Department of Gastrointestinal Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Wei Zhang
- Department of Gastroenterology, The HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
8
|
Zong L, Sun Y. OSR1 suppresses acute myeloid leukaemia cell proliferation by inhibiting LGR5-mediated JNK signalling. Autoimmunity 2021; 54:561-568. [PMID: 34519588 DOI: 10.1080/08916934.2021.1975274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Odd-skipped related transcription factor 1 (OSR1) is implicated in various pathophysiologic processes, such as embryonic heart and urogenital formation, and functions as a tumour suppressor in diverse tumours. Regardless, the regulatory role and mechanism of OSR1 in acute myeloid leukaemia are scarce. Firstly, the CD34-positive blasts or the normal blasts were isolated from the plasma samples of acute myeloid leukaemia patients or healthy donors, respectively. Expression of OSR1 analysis by western blot and qRT-PCR showed that OSR1 was reduced in CD34-positive blasts and acute myeloid leukaemia cell lines. Secondly, acute myeloid leukaemia cell lines were transfected with pcDNA vector or shRNA for the over-expression or silence of OSR1, respectively. Functional assays demonstrated that ectopic expression of OSR1 decreased cell viability and repressed the proliferation of acute myeloid leukaemia cells, while promoted the cell apoptosis. Silence of OSR1 contributed to the proliferation of acute myeloid leukaemia cells and suppressed the cell apoptosis. Thirdly, over-expression of OSR1 decreased protein expression of leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) and JNK phosphorylation in the acute myeloid leukaemia cells. Ectopic expression of LGR5 attenuated OSR1 over-expression-induced decrease of LGR5 and JNK phosphorylation. Lastly, ectopic expression of LGR5 attenuated OSR1 over-expression-induced decrease of cell viability and proliferation in acute myeloid leukaemia cells. In conclusion, OSR1 functioned as a tumour suppressor in acute myeloid leukaemia cells by inhibiting LGR5-mediated activation of JNK signalling.
Collapse
Affiliation(s)
- Lingyan Zong
- Department of Clinical Laboratory, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yingxin Sun
- Department of Clinical Laboratory, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
9
|
Zinghirino F, Pappalardo XG, Messina A, Nicosia G, De Pinto V, Guarino F. VDAC Genes Expression and Regulation in Mammals. Front Physiol 2021; 12:708695. [PMID: 34421651 PMCID: PMC8374620 DOI: 10.3389/fphys.2021.708695] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
VDACs are pore-forming proteins, coating the mitochondrial outer membrane, and playing the role of main regulators for metabolites exchange between cytosol and mitochondria. In mammals, three isoforms have evolutionary originated, VDAC1, VDAC2, and VDAC3. Despite similarity in sequence and structure, evidence suggests different biological roles in normal and pathological conditions for each isoform. We compared Homo sapiens and Mus musculus VDAC genes and their regulatory elements. RNA-seq transcriptome analysis shows that VDAC isoforms are expressed in human and mouse tissues at different levels with a predominance of VDAC1 and VDAC2 over VDAC3, with the exception of reproductive system. Numerous transcript variants for each isoform suggest specific context-dependent regulatory mechanisms. Analysis of VDAC core promoters has highlighted that, both in a human and a mouse, VDAC genes show features of TATA-less ones. The level of CG methylation of the human VDAC genes revealed that VDAC1 promoter is less methylated than other two isoforms. We found that expression of VDAC genes is mainly regulated by transcription factors involved in controlling cell growth, proliferation and differentiation, apoptosis, and bioenergetic metabolism. A non-canonical initiation site termed "the TCT/TOP motif," the target for translation regulation by the mTOR pathway, was identified in human VDAC2 and VDAC3 and in every murine VDACs promoter. In addition, specific TFBSs have been identified in each VDAC promoter, supporting the hypothesis that there is a partial functional divergence. These data corroborate our experimental results and reinforce the idea that gene regulation could be the key to understanding the evolutionary specialization of VDAC isoforms.
Collapse
Affiliation(s)
- Federica Zinghirino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Xena Giada Pappalardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Messina
- Section of Molecular Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
- we.MitoBiotech.srl, Catania, Italy
| | - Giuseppe Nicosia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- we.MitoBiotech.srl, Catania, Italy
- Section of Catania, National Institute of Biostructures and Biosystems, Catania, Italy
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- we.MitoBiotech.srl, Catania, Italy
- Section of Catania, National Institute of Biostructures and Biosystems, Catania, Italy
| |
Collapse
|
10
|
Zhou Y, Liu Z, Lynch EC, He L, Cheng H, Liu L, Li Z, Li J, Lawless L, Zhang KK, Xie L. Osr1 regulates hepatic inflammation and cell survival in the progression of non-alcoholic fatty liver disease. J Transl Med 2021; 101:477-489. [PMID: 33005011 PMCID: PMC7987871 DOI: 10.1038/s41374-020-00493-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Odd-skipped related 1 (Osr1) is a novel tumor suppressor gene in several cancer cell lines. Non-alcoholic steatohepatitis (NASH) is considered as a high-risk factor for hepatocellular carcinoma (HCC). This study is aimed to investigate the novel role of Osr1 in promoting the progression of hepatic steatosis to NASH. Following 12 weeks of diethylnitrosamine (DEN) and high-fat diet (HFD), wildtype (WT) and Osr1 heterozygous (Osr1+/-) male mice were examined for liver injuries. Osr1+/- mice displayed worsen liver injury with higher serum alanine aminotransferase levels than the WT mice. The Osr1+/- mice also revealed early signs of collagen deposition with increased hepatic Tgfb and Fn1 expression. There was overactivation of both JNK and NF-κB signaling in the Osr1+/- liver, along with accumulation of F4/80+ cells and enhanced hepatic expression of Il-1b and Il-6. Moreover, the Osr1+/- liver displayed hyperphosphorylation of AKT/mTOR signaling, associated with overexpression of Bcl-2. In addition, Osr1+/- and WT mice displayed differences in the DNA methylome of the liver cells. Specifically, Osr1-responsible CpG islands of Ccl3 and Pcgf2, genes for inflammation and macrophage infiltration, were further identified. Taken together, Osr1 plays an important role in regulating cell inflammation and survival through multiple signaling pathways and DNA methylation modification for NAFLD progression.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhimin Liu
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University (Gastrointestinal and Anal Hospital of Sun Yat-sen Unversity), Guangzhou, 510655, China
| | - Ernest C Lynch
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Leya He
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Henghui Cheng
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lin Liu
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Zhen Li
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Jiangyuan Li
- Department of Statistics, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren Lawless
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Ke K Zhang
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
11
|
Ajit K, Murphy BD, Banerjee A. Elucidating evolutionarily conserved mechanisms of diapause regulation using an in silico approach. FEBS Lett 2021; 595:1350-1374. [PMID: 33650678 DOI: 10.1002/1873-3468.14064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Embryonic diapause is an enigmatic phenomenon that appears in diverse species. Although regulatory mechanisms have been established, there is much to be discovered. Herein, we have made the first comprehensive attempt to elucidate diapause regulatory mechanisms using a computational approach. We found transcription factors unique to promoters of genes in diapause species. From pathway analysis and STRING PPI networks, the signaling pathways regulated by these unique transcription factors were identified. The pathways were then consolidated into a model to combine various known mechanisms of diapause regulation. This work also highlighted certain transcription factors that may act as 'master transcription factors' to regulate the phenomenon. Promoter analysis further suggested evidence for independent evolution for some of regulatory elements involved in diapause.
Collapse
Affiliation(s)
- Kamal Ajit
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médicine Vétérinaire, Université Montréal, St-Hyacinthe, QC, Canada
| | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| |
Collapse
|
12
|
Isoforms of the p53 Family and Gastric Cancer: A Ménage à Trois for an Unfinished Affair. Cancers (Basel) 2021; 13:cancers13040916. [PMID: 33671606 PMCID: PMC7926742 DOI: 10.3390/cancers13040916] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The p53 family is a complex family of transcription factors with different cellular functions that are involved in several physiological processes. A massive amount of data has been accumulated on their critical role in the tumorigenesis and the aggressiveness of cancers of different origins. If common features are observed, there are numerous specificities that may reflect particularities of the tissues from which the cancers originated. In this regard, gastric cancer tumorigenesis is rather remarkable, as it is induced by bacterial and viral infections, various chemical carcinogens, and familial genetic alterations, which provide an example of the variety of molecular mechanisms responsible for cell transformation and how they impact the p53 family. This review summarizes the knowledge gathered from over 40 years of research on the role of the p53 family in gastric cancer, which still displays one of the most elevated mortality rates amongst all types of cancers. Abstract Gastric cancer is one of the most aggressive cancers, with a median survival of 12 months. This illustrates its complexity and the lack of therapeutic options, such as personalized therapy, because predictive markers do not exist. Thus, gastric cancer remains mostly treated with cytotoxic chemotherapies. In addition, less than 20% of patients respond to immunotherapy. TP53 mutations are particularly frequent in gastric cancer (±50% and up to 70% in metastatic) and are considered an early event in the tumorigenic process. Alterations in the expression of other members of the p53 family, i.e., p63 and p73, have also been described. In this context, the role of the members of the p53 family and their isoforms have been investigated over the years, resulting in conflicting data. For instance, whether mutations of TP53 or the dysregulation of its homologs may represent biomarkers for aggressivity or response to therapy still remains a matter of debate. This uncertainty illustrates the lack of information on the molecular pathways involving the p53 family in gastric cancer. In this review, we summarize and discuss the most relevant molecular and clinical data on the role of the p53 family in gastric cancer and enumerate potential therapeutic innovative strategies.
Collapse
|
13
|
Sieh W, Rothstein JH, Klein RJ, Alexeeff SE, Sakoda LC, Jorgenson E, McBride RB, Graff RE, McGuire V, Achacoso N, Acton L, Liang RY, Lipson JA, Rubin DL, Yaffe MJ, Easton DF, Schaefer C, Risch N, Whittemore AS, Habel LA. Identification of 31 loci for mammographic density phenotypes and their associations with breast cancer risk. Nat Commun 2020; 11:5116. [PMID: 33037222 PMCID: PMC7547012 DOI: 10.1038/s41467-020-18883-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/17/2020] [Indexed: 11/09/2022] Open
Abstract
Mammographic density (MD) phenotypes are strongly associated with breast cancer risk and highly heritable. In this GWAS meta-analysis of 24,192 women, we identify 31 MD loci at P < 5 × 10-8, tripling the number known to 46. Seventeen identified MD loci also are associated with breast cancer risk in an independent meta-analysis (P < 0.05). Mendelian randomization analyses show that genetic estimates of dense area (DA), nondense area (NDA), and percent density (PD) are all significantly associated with breast cancer risk (P < 0.05). Pathway analyses reveal distinct biological processes involving DA, NDA and PD loci. These findings provide additional insights into the genetic basis of MD phenotypes and their associations with breast cancer risk.
Collapse
Affiliation(s)
- Weiva Sieh
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Joseph H Rothstein
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Russell B McBride
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Valerie McGuire
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Ninah Achacoso
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Luana Acton
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Rhea Y Liang
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jafi A Lipson
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel L Rubin
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin J Yaffe
- Departments of Medical Biophysics and Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care and Department of Oncology, University of Cambridge, Cambridge, UK
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Neil Risch
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Alice S Whittemore
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| |
Collapse
|
14
|
Wang Y, Lei L, Xu F, Xu HT. Reduced expression of odd-skipped related transcription factor 1 promotes proliferation and invasion of breast cancer cells and indicates poor patient prognosis. Oncol Lett 2020; 20:2946-2954. [PMID: 32782611 PMCID: PMC7400961 DOI: 10.3892/ol.2020.11820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Odd-skipped related transcription factor 1 (OSR1) serves an important role in the development of the intermediate mesoderm; however, its expression in cancer remains unknown. The present study aimed to explore the expression and role of OSR1 in breast cancer development. Immunohistochemistry was performed to detect OSR1 expression in breast cancer tissue and western blot analysis was used to evaluate the expression of OSR1 and related proteins, including β-catenin, c-Myc and cyclin D1. OSR1 expression was increased following transfection of MCF7 cells with OSR1 overexpression vector (MCF7-OSR1) and reduced by transfecting MDA-MB-231 cells with small interfering (si)RNA targeting OSR1 (MDA-MB-231-siOSR1). Cell proliferation and Matrigel™ invasion assays were used to investigate the effects of OSR1 on the proliferation and invasion of breast cancer cells. OSR1 was downregulated in breast cancer tissue compared with that in normal breast tissue and associated with lymph node metastases and estrogen receptor (ER) expression. Furthermore, reduced expression of OSR1 was associated with poor patient prognosis. Overexpression of OSR1 inhibited the proliferation and invasion of breast cancer cells. Western blot analysis of MCF7-OSR1 cells demonstrated that compared with that in the control cells, the expression of E-cadherin was increased, whereas that of key epithelial-mesenchymal transition (EMT) proteins, N-cadherin and Snail, was decreased. In addition, overexpression of OSR1 significantly decreased the expression level of β-catenin and Wnt target genes, such as c-Myc and cyclin D1, compared with that in the control cells. These expression patterns were reversed in the MDA-MB-231-siOSR1 cells. The results of the present study suggested that OSR1 downregulates the activity of the Wnt signaling pathway and EMT, which inhibits the proliferative and invasive abilities of breast cancer cells.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Pathology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Lei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Fang Xu
- Department of Orthopaedics, Jinzhou Second Hospital, Jinzhou, Liaoning 121000, P.R. China
| | - Hong-Tao Xu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
15
|
Yuan C, Luo X, Zhan X, Zeng H, Duan S. EMT related circular RNA expression profiles identify circSCYL2 as a novel molecule in breast tumor metastasis. Int J Mol Med 2020; 45:1697-1710. [PMID: 32236616 PMCID: PMC7169655 DOI: 10.3892/ijmm.2020.4550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Substantial evidence indicates that circular RNAs (circRNAs) play vital roles in several diseases, especially in cancer development. However, the functions of circRNAs in breast cancer metastasis remain to be investigated. This study aimed to identify the key circRNAs involved in epithelial mesenchymal transition (EMT) of breast cancer and evaluated their molecular function and roles in pathways that may be associated with tumor metastasis. An EMT model was constructed by treating breast cancer cells MCF‑7 and MDA‑MB‑231 with transforming growth factor‑β1. High‑throughput RNA sequencing was used to identify the differentially expressed circRNAs in EMT and blank groups of two cells, and reverse transcription‑quantitative PCR was used to validate the expression of circSCYL2 in human breast cancer tissues and cells. The effects of circSCYL2 on breast cancer cells were explored by transfecting with plasmids and the biological roles were assessed using transwell assays. EMT groups of breast cancer cells exhibited the characteristics of mesenchymal cells. Furthermore, the present study found that 7 circRNAs were significantly upregulated in both the MCF‑7 EMT and MDA‑MB‑231 EMT groups, while 16 circRNAs were significantly downregulated. The current study identified that circSCYL2 was downregulated in breast cancer tissues and cell lines, and that circSCYL2 overexpression inhibited cell migration and invasion. This study provides expression profiles of circRNAs in EMT groups of breast cancer cells. circSCYL2, which is downregulated in breast cancer tissues and cells, may play an important role in breast cancer EMT progression.
Collapse
Affiliation(s)
- Chunlei Yuan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University
| | - Xuliang Luo
- Medical College of Nanchang University, Nanchang, Jiangxi 330000
| | - Xiang Zhan
- Department of General Surgery, The People's Hospital of Le 'An County, Fuzhou, Jiangxi 344000, P.R. China
| | - Huihui Zeng
- Department of General Surgery, The People's Hospital of Le 'An County, Fuzhou, Jiangxi 344000, P.R. China
| | - Sijia Duan
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University
| |
Collapse
|
16
|
Zhang F, Jiang Z. Downregulation of OSR1 Promotes Colon Adenocarcinoma Progression via FAK-Mediated Akt and MAPK Signaling. Onco Targets Ther 2020; 13:3489-3500. [PMID: 32425550 PMCID: PMC7191353 DOI: 10.2147/ott.s242386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction Odd-skipped related transcription factor 1 (OSR1) is a newly identified tumor suppressor in many tumor types. However, the role and mechanism of OSR1 in colon adenocarcinoma (COAD) remain unknown. Methods OSR1 expression was detected in COAD tissues and cells. COAD cells with OSR1 overexpression or knockdown were analyzed by in vitro CCK-8, transwell and flow cytometry assays, and by in vivo xenograft model. Results OSR1 expression was downregulated in COAD and low expression level of OSR1 was positively correlated with tumor stage and lymph node metastasis. Furthermore, low OSR1 expression was significantly associated with poor overall survival (OS) and distant metastasis-free survival (DMFS). Lentivirus-mediated restoration of OSR1 expression-inhibited proliferation, invasion and migration while induced cell cycle arrest and apoptosis in COAD cells in vitro, and inhibited tumor growth in vivo. In contrast, OSR1 knockdown promoted proliferation, invasion and migration in COAD cells in vitro. Mechanistically, OSR1 exerted anticancer effects by inhibiting FAK-mediated activation of Akt and MAPK pathways. Conclusion Our findings suggest that OSR1 functions as a tumor suppressor in COAD by suppressing FAK-mediated activation of Akt and MAPK pathways.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Gastroenterology, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zheng Jiang
- Department of Gastroenterology, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
17
|
Dai Y, Lv Q, Qi T, Qu J, Ni H, Liao Y, Liu P, Qu Q. Identification of hub methylated-CpG sites and associated genes in oral squamous cell carcinoma. Cancer Med 2020; 9:3174-3187. [PMID: 32155325 PMCID: PMC7196066 DOI: 10.1002/cam4.2969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
To improve personalized diagnosis and prognosis for oral squamous cell carcinoma (OSCC) by identification of hub methylated‐CpG sites and associated genes, weighted gene comethylation network analysis (WGCNA) was performed to examine and identify hub modules and CpG sites correlated with OSCC. Here, WGCNA modeling yielded blue and brown comethylation modules that were significantly associated with OSCC status. Following screening of the differentially expressed genes (DEGs) from gene expression microarrays and differentially methylated‐CpG sites (DCGs), integrated multiomics analysis of the DEGs, DCGs, and hub CpG sites from the modules was performed to investigate their correlations. Expression levels of 16 CpG sites‐associated genes were negatively correlated with methylation patterns of promoter. Moreover, Kaplan‐Meier survival analysis of the hub CpG sites and associated genes was carried out using 2 public databases, MethSurv and GEPIA. Only 5 genes, ACTA1, ACTN2, OSR1, SYNGR1, and ZNF677, had significant overall survival using GEPIA. Hypermethylated‐CpG sites ACTN2‐cg21376883 and OSR1‐cg06509239 were found to be associated with poor survival by MethSurv. Methylation status of specific site and expression levels of associated genes were determined using clinical samples by quantitative methylation‐specific PCR and real‐time PCR. Pearson's correlation analysis showed that methylation levels of cg06509239 and cg18335068 were negatively related to OSR1 and ZNF677 expression levels, respectively. Our classification schema using multiomics analysis represents a screening framework for identification of hub CpG sites and associated genes.
Collapse
Affiliation(s)
- Yuxin Dai
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qiaoli Lv
- Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongli Ni
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongkang Liao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Peng Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Gao S, Liu S, Gao ZM, Deng P, Wang DB. Reduced microRNA-451 expression in eutopic endometrium contributes to the pathogenesis of endometriosis. World J Clin Cases 2019; 7:2155-2164. [PMID: 31531311 PMCID: PMC6718782 DOI: 10.12998/wjcc.v7.i16.2155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Endometriosis (EMs) is a chronic and recurrent, but benign, disease in women of reproductive age, and EMs patients have a high risk of developing gynecological tumors and autoimmune disorders. The etiology of EMs is not clear. Certain genetic markers in the eutopic endometrium are key in the pathogenesis of EMs. MicroRNAs (miRNAs) are implicated in several biological processes, such as cell proliferation, differentiation, and apoptosis. MiR-451 is interesting, as it acts as a tumor suppressor and is relevant to the poor prognosis of cancers.
AIM To evaluate the expression levels and role of miR-451 in the eutopic endometrium and predict possible targets of miR-451 and related signaling pathways.
METHODS Quantitative real-time polymerase chain reaction was used to evaluate miR-451 expression in cultured cell lines as well as in pathologic tissues from 40 patients with EMs and 20 donors with no history of the disease (controls). Cell Counting Kit-8 and flow cytometric assays were performed to determine cell proliferation and survival rates after transfection with miR-451 mimics and siRNAs. MiR-451 targets were predicted using miRDB and miRcode target-predicting databases.
RESULTS We observed lower miR-451 levels in eutopic endometrial tissues from patients with EMs than in control tissues, and this difference was not related to the American Society for Reproductive Medicine stage. Ectopic overexpression of miR-451 in eutopic cells induced apoptosis and inhibited cell proliferation. SiRNA-mediated miR-451 knockdown reversed these effects. Using miRDB and miRcode, we identified 12 potential miR-451 target genes. We hypothesize that the expression of YWHAZ, OSR1, TTN, and CDKN2D may be regulated by miR-451 and be involved in disease pathogenesis.
CONCLUSION Reduced miR-451 expression in the eutopic endometrium contributes to the pathogenesis of EMs by promoting cell proliferation and reducing apoptosis. Thus, miR-451 is a novel biomarker for EMs. YWHAZ, OSR1, TTN, and CDKN2D are potential target genes of miR-451 and may have key roles in this disease.
Collapse
Affiliation(s)
- Shan Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110042, Liaoning Province, China
| | - Shuang Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110042, Liaoning Province, China
| | - Zi-Ming Gao
- Department of Surgical Oncology and General Surgery, First Affiliated Hospital of China Medical University, Shenyang 110042, Liaoning Province, China
| | - Peng Deng
- Department of Surgical Oncology and General Surgery, First Affiliated Hospital of China Medical University, Shenyang 110042, Liaoning Province, China
| | - Dan-Bo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, Liaoning Province, China
| |
Collapse
|
19
|
Chen W, Wu K, Zhang H, Fu X, Yao F, Yang A. Odd-skipped related transcription factor 1 (OSR1) suppresses tongue squamous cell carcinoma migration and invasion through inhibiting NF-κB pathway. Eur J Pharmacol 2018; 839:33-39. [PMID: 30244004 DOI: 10.1016/j.ejphar.2018.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/09/2018] [Accepted: 09/18/2018] [Indexed: 01/13/2023]
Abstract
Tongue squamous cell carcinoma (TSCC) is the most common cancers of oral, owing to the high invasive and metastatic ability, patients with TSCC have poor prognosis, it's important to explore the regulatory mechanism of TSCC invasion and metastasis. Previous studies suggest OSR1 suppresses the progression of gastric cancer and renal cell carcinoma, but its role in TSCC hasn't been studied. Here, we found OSR1 was downregulated in TSCC cells and specimens, Transwell and 3D spheroid invasion assay suggested OSR1 overexpression inhibited TSCC cell migration and invasion, while its knockdown promoted TSCC cell migration and invasion. Mechanism analysis found OSR1 expression was negatively correlated with NF-κB pathway and its targets. Western blot and NF-κB activity analysis suggested OSR1 inhibited NF-κB activity. Double inhibition of OSR1 and NF-κB significantly inhibited TSCC cell migration and invasion. These findings suggested OSR1 inhibited TSCC cell migration and invasion through inhibiting NF-κB pathway.
Collapse
Affiliation(s)
- Weichao Chen
- Department of Head and Neck, Hospital of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, China
| | | | - Huayong Zhang
- Department of Head and Neck, Hospital of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, China
| | - Xiaoyan Fu
- Department of Head and Neck, Hospital of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, China
| | - Fan Yao
- Department of Head and Neck, Hospital of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, China
| | - Ankui Yang
- Department of Head and Neck, Hospital of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, China.
| |
Collapse
|
20
|
Wang Y, Lei L, Zheng Y, Zhang L, Li Z, Shen H, Jiang G, Zhang X, Wang E, Xu H. Odd-skipped related 1 inhibits lung cancer proliferation and invasion by reducing Wnt signaling through the suppression of SOX9 and β-catenin. Cancer Sci 2018; 109:1799-1810. [PMID: 29660200 PMCID: PMC5989870 DOI: 10.1111/cas.13614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/02/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
The odd-skipped related 1 (OSR1) gene encodes a zinc-finger transcription factor. The expression and significance of OSR1 in human tumors remains unclear. We found that OSR1 was downregulated in lung cancers, and its expression was correlated with poor differentiation. Overexpression of OSR1 by OSR1 gene transfection into H1299 cells (H1299-OSR1) inhibited the proliferation and invasion of lung cancer cells. Knockdown of OSR1 with small interfering (si)RNA against OSR1 in A549 cells (A549-siOSR1) enhanced the proliferation and invasion of lung cancer cells. Western blot analysis showed that the expression level of GSK3β increased, while that of p-GSK3β, nuclear β-catenin, cyclin D1, c-Myc and matrix metallopeptidase 7 significantly decreased in the H1299-OSR1 cells, and this pattern was reversed in the A549-siOSR1 cells compared to that in the control cells. Furthermore, upregulation of sex-determining region Y-box 9 (SOX9) by SOX9 gene transfection increased the expression of β-catenin, which was inhibited by OSR1. The mRNA and protein expression levels of SOX9 and β-catenin were reduced in H1299-OSR1 cells and increased in A549-siOSR1 cells. In conclusion, the expression of OSR1 was more reduced in lung cancer tissues than in normal lung tissues, and was correlated with poor differentiation. OSR1 downregulated the activity of the Wnt signaling pathway by suppressing the expression of SOX9 and β-catenin.
Collapse
Affiliation(s)
- Yuan Wang
- Department of PathologyFirst Hospital and College of Basic Medical Sciences of China Medical UniversityShenyangChina
- Department of PathologyJinzhou Medical UniversityJinzhouChina
| | - Lei Lei
- Department of PathologyFirst Hospital and College of Basic Medical Sciences of China Medical UniversityShenyangChina
| | - Yi‐Wen Zheng
- Department of PathologyFirst Hospital and College of Basic Medical Sciences of China Medical UniversityShenyangChina
| | - Li Zhang
- Department of PathologyFirst Hospital and College of Basic Medical Sciences of China Medical UniversityShenyangChina
| | - Zhi‐Han Li
- Department of PathologyFirst Hospital and College of Basic Medical Sciences of China Medical UniversityShenyangChina
| | - Hao‐Yue Shen
- 100K80BClinical Medicine of Seven‐year ProgrammeChina Medical UniversityShenyangChina
| | - Gui‐Yang Jiang
- Department of PathologyFirst Hospital and College of Basic Medical Sciences of China Medical UniversityShenyangChina
| | - Xiu‐Peng Zhang
- Department of PathologyFirst Hospital and College of Basic Medical Sciences of China Medical UniversityShenyangChina
| | - En‐Hua Wang
- Department of PathologyFirst Hospital and College of Basic Medical Sciences of China Medical UniversityShenyangChina
| | - Hong‐Tao Xu
- Department of PathologyFirst Hospital and College of Basic Medical Sciences of China Medical UniversityShenyangChina
| |
Collapse
|
21
|
OSR1 is a novel epigenetic silenced tumor suppressor regulating invasion and proliferation in renal cell carcinoma. Oncotarget 2018; 8:30008-30018. [PMID: 28404905 PMCID: PMC5444721 DOI: 10.18632/oncotarget.15611] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most malignant tumors in human. Here, we found that odd-skipped related transcription factor 1 (OSR1) was downregulated in 769-P and 786-O cells due to promoter CpG methylation. OSR1 expression could be restored by pharmacological demethylation treatment in silenced cell lines. Knockdown of OSR1 in two normal expressed cell lines- A498 and ACHN promoted cell invasion and cellular proliferation. RNA-Sequencing analysis showed that expression profile of genes involved in multiple cancer-related pathways was changed when OSR1 was downregulated. By quantitative real-time PCR, we confirmed that depletion of OSR1 repressed the expression of several tumor suppresor genes involved in p53 pathway, such as p53, p21, p27, p57 and RB in A498 and ACHN. Moreover, knockdown of OSR1 suppressed the transcriptional activity of p53. Of note, OSR1 depletion also led to increased expression of a few oncogenic genes. We further evaluated the clinical significance of OSR1 in primary human RCC specimens by immunohistochemical staining and found that OSR1 expression was downregulated in primary RCC and negatively correlated with histological grade. Thus, our data indicate that OSR1 is a novel tumor suppressor gene in RCC. Downregulation of OSR1 might represent a potentially prognostic marker and therapeutic target for RCC.
Collapse
|
22
|
Higashimori A, Dong Y, Zhang Y, Kang W, Nakatsu G, Ng SSM, Arakawa T, Sung JJY, Chan FKL, Yu J. Forkhead Box F2 Suppresses Gastric Cancer through a Novel FOXF2-IRF2BPL-β-Catenin Signaling Axis. Cancer Res 2018; 78:1643-1656. [PMID: 29374064 DOI: 10.1158/0008-5472.can-17-2403] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/26/2017] [Accepted: 01/22/2018] [Indexed: 12/23/2022]
Abstract
DNA methylation has been identified as a hallmark of gastric cancer (GC). Identifying genes that are repressed by DNA promoter methylation is essential in providing insights into the molecular pathogenesis of gastric cancer. Using genome-wide methylation studies, we identified that transcription factor forkhead box F2 (FOXF2) was preferentially methylated in gastric cancer. We then investigated the functional significance and clinical implication of FOXF2 in gastric cancer. FOXF2 was silenced in gastric cancer cell lines and cancer tissues by promoter methylation, which was negatively associated with mRNA expression. Ectopic expression of FOXF2 inhibited proliferation, colony formation, G1-S cell-cycle transition, induced apoptosis of gastric cancer cell lines, and suppressed growth of xenograft tumors in nude mice; knockdown of FOXF2 elicited opposing effects. FOXF2 inhibited Wnt signaling by inducing β-catenin protein ubiquitination and degradation independently of GSK-3β. FOXF2 directly bound the promoter of E3 ligase interferon regulatory factor 2-binding protein-like (IRF2BPL) and induced its transcriptional expression. IRF2BPL in turn interacted with β-catenin, increasing its ubiquitination and degradation. Multivariate Cox regression analysis identified FOXF2 hypermethylation as an independent prognostic factor of poor survival in early-stage gastric cancer patients. In conclusion, FOXF2 is a critical tumor suppressor in gastric carcinogenesis whose methylation status serves as an independent prognostic factor for gastric cancer patients.Significance: FOXF2-mediated upregulation of the E3 ligase IRF2BPL drives ubiquitylation and degradation of β-catenin in gastric cancer, blunting Wnt signaling and suppressing carcinogenesis. Cancer Res; 78(7); 1643-56. ©2018 AACR.
Collapse
Affiliation(s)
- Akira Higashimori
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease and Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Gastroenterology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Yujuan Dong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease and Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yanquan Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease and Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Geicho Nakatsu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease and Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Simon S M Ng
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tetsuo Arakawa
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Joseph J Y Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease and Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Francis K L Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease and Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease and Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
23
|
Identification and validation of candidate epigenetic biomarkers in lung adenocarcinoma. Sci Rep 2016; 6:35807. [PMID: 27782156 PMCID: PMC5080630 DOI: 10.1038/srep35807] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/23/2016] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is the number one cause of cancer-related deaths worldwide. DNA methylation is an epigenetic mechanism that regulates gene expression, and disease-specific methylation changes can be targeted as biomarkers. We have compared the genome-wide methylation pattern in tumor and tumor-adjacent normal lung tissue from four lung adenocarcinoma (LAC) patients using DNA methylation microarrays and identified 74 differentially methylated regions (DMRs). Eighteen DMRs were selected for validation in a cohort comprising primary tumors from 52 LAC patients and tumor-adjacent normal lung tissue from 32 patients by methylation-sensitive high resolution melting (MS-HRM) analysis. Significant increases in methylation were confirmed for 15 DMRs associated with the genes and genomic regions: OSR1, SIM1, GHSR, OTX2, LOC648987, HIST1H3E, HIST1H3G/HIST1H2BI, HIST1H2AJ/HIST1H2BM, HOXD10, HOXD3, HOXB3/HOXB4, HOXA3, HOXA5, Chr1(q21.1).A, and Chr6(p22.1). In particular the OSR1, SIM1 and HOXB3/HOXB4 regions demonstrated high potential as biomarkers in LAC. For OSR1, hypermethylation was detected in 47/48 LAC cases compared to 1/31 tumor-adjacent normal lung samples. Similarly, 45/49 and 36/48 LAC cases compared to 3/31 and 0/31 tumor-adjacent normal lung samples showed hypermethylation of the SIM1 and HOXB3/HOXB4 regions, respectively. In conclusion, this study has identified and validated 15 DMRs that can be targeted as biomarkers in LAC.
Collapse
|
24
|
Transcriptomic Analysis of Persistent Infection with Foot-and-Mouth Disease Virus in Cattle Suggests Impairment of Apoptosis and Cell-Mediated Immunity in the Nasopharynx. PLoS One 2016; 11:e0162750. [PMID: 27643611 PMCID: PMC5028045 DOI: 10.1371/journal.pone.0162750] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/26/2016] [Indexed: 12/15/2022] Open
Abstract
In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vaccine, 10 non-vaccinated) were challenged with FMDV A24 Cruzeiro, and the gene expression profiles of nasopharyngeal tissues collected between 21 and 35 days after challenge were compared between 11 persistently infected carriers and 7 non-carriers. Carriers and non-carriers were further compared to 2 naïve animals that had been neither vaccinated nor challenged. At a controlled false-discovery rate of 10% and a minimum difference in expression of 50%, 648 genes were differentially expressed between FMDV carriers and non-carriers, and most (467) had higher expression in carriers. Among these, genes associated with cellular proliferation and the immune response-such as chemokines, cytokines and genes regulating T and B cells-were significantly overrepresented. Differential gene expression was significantly correlated between non-vaccinated and vaccinated animals (biological correlation +0.97), indicating a similar transcriptome profile across these groups. Genes related to prostaglandin E2 production and the induction of regulatory T cells were overexpressed in carriers. In contrast, tissues from non-carrier animals expressed higher levels of complement regulators and pro-apoptotic genes that could promote virus clearance. Based on these findings, we propose a working hypothesis for FMDV persistence in nasopharyngeal tissues of cattle, in which the virus may be maintained by an impairment of apoptosis and the local suppression of cell-mediated antiviral immunity by inducible regulatory T cells.
Collapse
|
25
|
Zhang C, Peng Y, Yang F, Qin R, Liu W, Zhang C. PCDH8 is Frequently Inactivated by Promoter Hypermethylation in Liver Cancer: Diagnostic and Clinical Significance. J Cancer 2016; 7:446-52. [PMID: 26918058 PMCID: PMC4749365 DOI: 10.7150/jca.13065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 12/08/2015] [Indexed: 12/16/2022] Open
Abstract
AIM: Protocadherin-8 (PCDH8) plays an important role in signaling pathways of cell adhesin, proliferation, and migration. It has been reported that PCDH8 is mutated or methylated in several human cancers. However, little is known about PCDH8 in liver cancer. The aim of this study was to investigate the protein expression and promoter methylation status of PCDH8 in liver cancer and evaluate the association between PCDH8 methylation and the clinicopathological features. METHODS: The methylation status of PCDH8 in 42 hepatocellular carcinoma (HCC), 8 Cholangiocarcinoma (CC) and 50 normal liver tissues were examined using methylation-specific PCR (MSP) and the protein expression of PCDH8 was detected by immunohistochemistry. The relationships between PCDH8 methylation and clinicopathological features as well as overall survival of patients were evaluated. RESULTS: The PCDH8 methylation was more frequent in liver cancer tissues than that in the normal liver tissues (88% vs. 32%, P < 0.001), and is significantly associated with loss of its protein expression (P = 0.004). Moreover, there is a significant correlation between PCDH8 methylation and the alpha-fetoprotein (AFP) level (P = 0.008). Kaplan-Meier survival analysis revealed that patients with PCDH8 methylation have shorter OS and PFS than those without PCDH8 methylation (P = 0.041 and P = 0.028, respectively). CONCLUSION: PCDH8 is often inactivated by promoter methylation in liver cancer. PCDH8 methylation can serve as a valuable diagnostic biomarker for early detection of liver cancer and might be useful to predict an unfavorable clinical feature.
Collapse
Affiliation(s)
- Cheng Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, P. R. China
| | - Yunfei Peng
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, P. R. China
| | - Fan Yang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, P. R. China
| | - Ruixi Qin
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, P. R. China
| | - Wenjun Liu
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, P. R. China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, P. R. China
| |
Collapse
|
26
|
Kanda M, Kodera Y. Recent advances in the molecular diagnostics of gastric cancer. World J Gastroenterol 2015; 21:9838-9852. [PMID: 26379391 PMCID: PMC4566379 DOI: 10.3748/wjg.v21.i34.9838] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/15/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the third most common cause of cancer-related death in the world, representing a major global health issue. Although the incidence of GC is declining, the outcomes for GC patients remain dismal because of the lack of effective biomarkers to detect early GC and predict both recurrence and chemosensitivity. Current tumor markers for GC, including serum carcinoembryonic antigen and carbohydrate antigen 19-9, are not ideal due to their relatively low sensitivity and specificity. Recent improvements in molecular techniques are better able to identify aberrant expression of GC-related molecules, including oncogenes, tumor suppressor genes, microRNAs and long non-coding RNAs, and DNA methylation, as novel molecular markers, although the molecular pathogenesis of GC is complicated by tumor heterogeneity. Detection of genetic and epigenetic alterations from gastric tissue or blood samples has diagnostic value in the management of GC. There are high expectations for molecular markers that can be used as new screening tools for early detection of GC as well as for patient stratification towards personalized treatment of GC through prediction of prognosis and drug-sensitivity. In this review, the studies of potential molecular biomarkers for GC that have been reported in the publicly available literature between 2012 and 2015 are reviewed and summarized, and certain highlighted papers are examined.
Collapse
|
27
|
Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. World J Exp Med 2015; 5:84-102. [PMID: 25992323 PMCID: PMC4436943 DOI: 10.5493/wjem.v5.i2.84] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/05/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancer-related deaths. Gastric adenocarcinoma is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal carcinomas. The aberrant activation of the Wnt/β-catenin signaling pathway is involved in the development and progression of a significant proportion of gastric cancer cases. This review focuses on the participation of the Wnt/β-catenin pathway in gastric cancer by offering an analysis of the relevant literature published in this field. Indeed, it is discussed the role of key factors in Wnt/β-catenin signaling and their downstream effectors regulating processes involved in tumor initiation, tumor growth, metastasis and resistance to therapy. Available data indicate that constitutive Wnt signalling resulting from Helicobacter pylori infection and inactivation of Wnt inhibitors (mainly by inactivating mutations and promoter hypermethylation) play an important role in gastric cancer. Moreover, a number of recent studies confirmed CTNNB1 and APC as driver genes in gastric cancer. The identification of specific membrane, intracellular, and extracellular components of the Wnt pathway has revealed potential targets for gastric cancer therapy. High-throughput “omics” approaches will help in the search for Wnt pathway antagonist in the near future.
Collapse
|