1
|
Huang H, Chen B, Feng C, Chen W, Wu D. Exploring the causal role of pathogen-derived antibodies in major urinary and kidney diseases: Insights from generalized summary data-based Mendelian randomization. Virulence 2025; 16:2473631. [PMID: 40033947 PMCID: PMC11906112 DOI: 10.1080/21505594.2025.2473631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
Chronic kidney and urinary tract diseases, including glomerulonephritis, nephrotic syndrome, and chronic kidney disease (CKD), present significant global health challenges. Recent studies suggest a complex interplay between infectious pathogens and immune-mediated kidney damage. This study employs Generalized Summary data-based Mendelian Randomization (GSMR) to explore causal relationships between pathogen-derived antibodies and major urinary and kidney diseases.We conducted a two-sample MR analysis using summary statistics from large-scale Genome-Wide Association Studies (GWAS) to assess associations between 46 pathogen-specific antibodies and seven urinary system diseases. We utilized robust statistical methods, including inverse variance weighting, to ascertain causal effects while controlling for potential confounders.Significant associations were identified between several pathogen-specific antibodies and disease risk. Notably, Epstein-Barr virus (EBNA-1) antibody levels were inversely associated with glomerulonephritis and nephrotic syndrome, indicating a potential protective effect. Conversely, Anti-Merkel cell polyomavirus IgG seropositivity was linked to increased risks of CKD and glomerulonephritis. Additionally, immune-mediated mechanisms were highlighted, with certain antibodies exhibiting dual roles as risk factors or protective agents.This study underscores the complex role of pathogen antibodies in the pathogenesis of kidney and urinary tract diseases, revealing significant implications for future research and potential therapeutic strategies. The findings advocate for further investigation into specific pathogen interactions with the immune system, aiming to inform targeted interventions.
Collapse
Affiliation(s)
- Haoxiang Huang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bohong Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cong Feng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dapeng Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Liao Y, Wen L, Zheng R, Shen Y, Ha TA, Lin M, Cheng R, Gao Y, Shang P. Novel Perspectives Focused on the Relationship Between Herpesvirus Encephalitis and Anti-GFAP-Antibody-Positive Astrocytopathy. Mol Neurobiol 2025; 62:6179-6194. [PMID: 39731639 DOI: 10.1007/s12035-024-04660-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024]
Abstract
Virus encephalitis (VE), recognized as one of the common kinds of central nervous system (CNS) diseases after virus infection, has a surprising correlation with autoimmune encephalitis (AE) when autoimmune antibodies emerge in cerebrospinal fluid (CSF) or serum. Herpes simplex virus and Epstein-Barr virus are the most critical agents worldwide. By molecular mimicry, herpes viruses can invade the brain directly or indirectly. As a type-III intermediate filament, glial fibrillary acidic protein (GFAP) can be seen in both the central and peripheral nervous system and is regarded as a marker of astrocyte activation. Autoimmune glial fibrillary acidic protein astrocytopathy (GFAP-A), an autoimmune inflammatory CNS disorder with unearthed pathogenic mechanism yet, is correlated with CD8 + T cells and AQP4 astrocytopathy in TNF signaling. It brings a new concept of VE and GFAP coexisting, which has been documented in several case reports. Considering the infectious role of herpes viruses in CNS, EBV contributes to GFAP-IgG significantly and may result in GFAP-A. Coincidently, the existence of GFAP-IgG in patients with infection of herpes viruses has been documented as well. There exist multiple diagnoses of VE, ranging from traditional diagnostic criteria, such as CSF examination and electronic techniques, to a novel approach, according to case reports, the detection of GFAP-lgG. In terms of treatment, except for (IVIG), the explorations for new curative targets and optimal diagnostic time are of great necessity. In conclusion, emphasis given to the CNS autoimmune effect brought by the virus infection is highly worthy.
Collapse
Affiliation(s)
- Yuqiao Liao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linxin Wen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoyi Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinan Shen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Teng-Ai Ha
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingkai Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ruogu Cheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Gao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pei Shang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
3
|
Wang Y, Yu J, Pei Y. Identifying the key regulators orchestrating Epstein-Barr virus reactivation. Front Microbiol 2024; 15:1505191. [PMID: 39703703 PMCID: PMC11655498 DOI: 10.3389/fmicb.2024.1505191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024] Open
Abstract
Epstein-Barr virus (EBV) infects more than 90% of the human population worldwide and establishes lifelong infection in hosts by switching between latent and lytic infection. EBV latency can be reactivated under appropriate conditions, leading to expression of the viral lytic genes and production of infectious progeny viruses. EBV reactivation involves crosstalk between various factors and signaling pathways, and the subsequent complicated virus-host interplays determine whether EBV continues to propagate. However, the detailed mechanisms underlying these processes remain unclear. In this review, we summarize the critical factors regulating EBV reactivation and the associated mechanisms. This encompasses the transcription and post-transcriptional regulation of immediate-early (IE) genes, the functions of viral factors on viral DNA replication and progeny virus production, the mechanisms through which viral proteins disrupt and inhibit the host's innate immune response, and the host factors that modulate EBV reactivation. Finally, we explore the potential applications of novel technologies in studying EBV reactivation, providing novel insights into the investigation of mechanisms governing EBV reactivation and the development of anti-EBV therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Ibrahim MAA, Hassan AMA, Mohamed EAR, Mekhemer GAH, Sidhom PA, El-Tayeb MA, Khan S, Shoeib T, Soliman MES, Abdelrahman AHM. Repurposing of drug candidates against Epstein-Barr virus: Virtual screening, docking computations, molecular dynamics, and quantum mechanical study. PLoS One 2024; 19:e0312100. [PMID: 39546470 PMCID: PMC11567563 DOI: 10.1371/journal.pone.0312100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/01/2024] [Indexed: 11/17/2024] Open
Abstract
Epstein-Barr virus (EBV) was the first tumor virus identified in humans, and it is mostly linked to lymphomas and cancers of epithelial cells. Nevertheless, there is no FDA-licensed drug feasible for this ubiquitous EBV viral contagion. EBNA1 (Epstein-Barr nuclear antigen 1) plays several roles in the replication and transcriptional of latent gene expression of the EBV, making it an attractive druggable target for the treatment of EBV-related malignancies. The present study targets EBV viral reactivation and upkeep by inhibiting EBNA1 utilizing a drug-repurposing strategy. To hunt novel EBNA1 inhibitors, a SuperDRUG2 database (> 4,600 pharmaceutical ingredients) was virtually screened utilizing docking computations. In accordance with the estimated docking scores, the most promising drug candidates then underwent MDS (molecular dynamics simulations). Besides, the MM-GBSA approach was applied to estimate the binding affinities between the identified drug candidates and EBNA1. On the basis of MM-GBSA//200 ns MDS, bezitramide (SD000308), glyburide (SD001170), glisentide (SD001159), and glimepiride (SD001156) unveiled greater binding affinities towards EBNA1 compared to KWG, a reference inhibitor, with ΔGbinding values of -44.3, -44.0, -41.7, -40.2, and -32.4 kcal/mol, respectively. Per-residue decomposition analysis demonstrated that LYS477, ASN519, and LYS586 significantly interacted with the identified drug candidates within the EBNA1 binding pocket. Post-dynamic analyses also demonstrated high constancy of the identified drug candidates in complex with EBNA1 throughout 200 ns MDS. Ultimately, electrostatic potential and frontier molecular orbitals analyses were performed to estimate the chemical reactivity of the identified EBNA1 inhibitors. Considering the current outcomes, this study would be an adequate linchpin for forthcoming research associated with the inhibition of EBNA1; however, experimental assays are required to inspect the efficiency of these candidates.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Alaa M. A. Hassan
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Eslam A. R. Mohamed
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Gamal A. H. Mekhemer
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Peter A. Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed A. El-Tayeb
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shahzeb Khan
- Centre for Pharmaceutical Engineering Science, Faculty of Life Science, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo, Egypt
| | - Mahmoud E. S. Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Alaa H. M. Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| |
Collapse
|
5
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
6
|
Zareie AR, Verma SC. Nucleolin Regulates the Expression of Kaposi's Sarcoma-Associated Herpesvirus' Latency-Associated Nuclear Antigen through G-Quadruplexes in the mRNA. Viruses 2023; 15:2438. [PMID: 38140679 PMCID: PMC10747643 DOI: 10.3390/v15122438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes life-long latent infection and is linked to several human malignancies. Latency-associated nuclear antigen (LANA) is highly expressed during latency, and is responsible for the replication and maintenance of the viral genome. The expression of LANA is regulated at transcriptional/translational levels through multiple mechanisms, including the secondary structures in the mRNA sequence. LANA mRNA has multiple G-quadruplexes (G4s) that are bound by multiple proteins to stabilize/destabilize these secondary structures for regulating LANA. In this manuscript, we demonstrate the role of Nucleolin (NCL) in regulating LANA expression through its interaction with G-quadruplexes of LANA mRNA. This interaction reduced LANA's protein expression through the sequestration of mRNA into the nucleus, demonstrated by the colocalization of G4-carrying mRNA with NCL. Furthermore, the downregulation of NCL, by way of a short hairpin, showed an increase in LANA translation following an alteration in the levels of LANA mRNA in the cytoplasm. Overall, the data presented in this manuscript showed that G-quadruplexes-mediated translational control could be regulated by NCL, which can be exploited for controlling KSHV latency.
Collapse
Affiliation(s)
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, NV 89557, USA;
| |
Collapse
|
7
|
Dinh VT, Loaëc N, Quillévéré A, Le Sénéchal R, Keruzoré M, Martins RP, Granzhan A, Blondel M. The hide-and-seek game of the oncogenic Epstein-Barr virus-encoded EBNA1 protein with the immune system: An RNA G-quadruplex tale. Biochimie 2023; 214:57-68. [PMID: 37473831 DOI: 10.1016/j.biochi.2023.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The Epstein-Barr virus (EBV) is the first oncogenic virus described in human. EBV infects more than 90% of the human population worldwide, but most EBV infections are asymptomatic. After the primary infection, the virus persists lifelong in the memory B cells of the infected individuals. Under certain conditions the virus can cause several human cancers, that include lymphoproliferative disorders such as Burkitt and Hodgkin lymphomas and non-lymphoid malignancies such as 100% of nasopharyngeal carcinoma and 10% of gastric cancers. Each year, about 200,000 EBV-related cancers emerge, hence accounting for at least 1% of worldwide cancers. Like all gammaherpesviruses, EBV has evolved a strategy to escape the host immune system. This strategy is mainly based on the tight control of the expression of its Epstein-Barr nuclear antigen-1 (EBNA1) protein, the EBV-encoded genome maintenance protein. Indeed, EBNA1 is essential for viral genome replication and maintenance but, at the same time, is also highly antigenic and T cells raised against EBNA1 exist in infected individuals. For this reason, EBNA1 is considered as the Achilles heel of EBV and the virus has seemingly evolved a strategy that employs the binding of nucleolin, a host cell factor, to RNA G-quadruplex (rG4) within EBNA1 mRNA to limit its expression to the minimal level required for function while minimizing immune recognition. This review recapitulates in a historical way the knowledge accumulated on EBNA1 immune evasion and discusses how this rG4-dependent mechanism can be exploited as an intervention point to unveil EBV-related cancers to the immune system.
Collapse
Affiliation(s)
- Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | | | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| |
Collapse
|
8
|
Angrand G, Quillévéré A, Loaëc N, Dinh VT, Le Sénéchal R, Chennoufi R, Duchambon P, Keruzoré M, Martins R, Teulade-Fichou MP, Fåhraeus R, Blondel M. Type I arginine methyltransferases are intervention points to unveil the oncogenic Epstein-Barr virus to the immune system. Nucleic Acids Res 2022; 50:11799-11819. [PMID: 36350639 PMCID: PMC9723642 DOI: 10.1093/nar/gkac915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1. Indeed, EBNA1 is essential for viral genome maintenance but is also highly antigenic. Hence, EBV seemingly evolved a system in which the glycine-alanine repeat (GAr) of EBNA1 limits the translation of its own mRNA to the minimal level to ensure its essential function, thereby, at the same time, minimizing immune recognition. Therefore, defining intervention points at which to interfere with GAr-based inhibition of translation is an important step to trigger an immune response against EBV-carrying cancers. The host protein nucleolin (NCL) plays a critical role in this process via a direct interaction with G-quadruplexes (G4) formed in the GAr-encoding sequence of the viral EBNA1 mRNA. Here we show that the C-terminal arginine-glycine-rich (RGG) motif of NCL is crucial for its role in GAr-based inhibition of translation by mediating interaction of NCL with G4 of EBNA1 mRNA. We also show that this interaction depends on the type I arginine methyltransferase family, notably PRMT1 and PRMT3: drugs or small interfering RNA that target these enzymes prevent efficient binding of NCL on G4 of EBNA1 mRNA and relieve GAr-based inhibition of translation and of antigen presentation. Hence, this work defines type I arginine methyltransferases as therapeutic targets to interfere with EBNA1 and EBV immune evasion.
Collapse
Affiliation(s)
| | | | | | - Van-Trang Dinh
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Ronan Le Sénéchal
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Rahima Chennoufi
- Chemistry and Modelling for the Biology of Cancer, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Saclay, Orsay, Campus universitaire, Bat. 110, F-91405, France
| | - Patricia Duchambon
- Chemistry and Modelling for the Biology of Cancer, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Saclay, Orsay, Campus universitaire, Bat. 110, F-91405, France
| | - Marc Keruzoré
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | | | - Marie-Paule Teulade-Fichou
- Chemistry and Modelling for the Biology of Cancer, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Saclay, Orsay, Campus universitaire, Bat. 110, F-91405, France
| | - Robin Fåhraeus
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 27 rue Juliette Dodu, F-75010 Paris, France,RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Marc Blondel
- To whom correspondence should be addressed. Tel: +33 2 98 01 83 88;
| |
Collapse
|
9
|
Hu J, Zhang X, Tao H, Jia Y. The prognostic value of Epstein-Barr virus infection in Hodgkin lymphoma: A systematic review and meta-analysis. Front Oncol 2022; 12:1034398. [PMID: 36387159 PMCID: PMC9648611 DOI: 10.3389/fonc.2022.1034398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Epstein-Barr virus (EBV) contributes significantly to the development and occurrence of B-cell lymphomas. However, the association between EBV infection status and clinical outcomes in Hodgkin lymphoma (HL) patients has long been controversial. Therefore, we aimed to estimate the prognostic significance of EBV infection in HL survival. METHODS We searched PubMed, Embase, Web of Science, and the Cochrane Library for relevant cohort studies from the date of their inception to February 20, 2022. Hazard ratios (HRs) and 95% confidence intervals (CIs) for overall survival (OS), Failure-free survival (FFS), Progression-free survival (PFS), Event-free survival (EFS) and disease-specific survival (DSS) were extracted from the studies or calculated. Subgroup analyses were conducted independently on the five survival outcomes to investigate the source of heterogeneity. RESULTS A total of 42 qualified studies involving 9570 patients were identified in our meta-analysis. There was an association between EBV positivity and significantly poorer OS (HR=1.443, 95% CI: 1.250-1.666) and DSS (HR=2.312, 95% CI: 1.799-2.972). However, the presence of EBV in HL showed no effect on FFS, PFS or EFS. In subgroup analyses of OS, DSS and FFS stratified by age groups, EBV positivity was associated with poorer prognosis in elderly patients. Meanwhile, in children and adolescents with EBV-positive HL, we also observed a trend toward a better prognosis, though the results were not statistically significant. CONCLUSIONS EBV-positive status is associated with poor OS and DSS in HL patients. EBV infection should therefore be considered a valuable prognostic marker and risk-stratifying factor in HL, especially in older patients. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022328708.
Collapse
Affiliation(s)
| | | | | | - Yongqian Jia
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Abstract
The complex interplay between host and EBV has made it difficult to elaborate useful vaccines protecting against EBV diseases. It is encouraging to see that EBV vaccine programs have started to incorporate different arms of the immune system. An array of argument calls for a realistic goal for vaccine strategies which should be preventing EBV diseases, rather than EBV infection. EBV is the primary cause of infectious mononucleosis and is associated with epithelial cell carcinomas, as well as lymphoid malignancies. Parallel to this need, one could propose priorities for future research: (i) identification of surrogate predictive markers for the development of EBV diseases (ii) determination of immune correlates of protection in animal models and humans.
Collapse
|
11
|
Savoret J, Mesnard JM, Gross A, Chazal N. Antisense Transcripts and Antisense Protein: A New Perspective on Human Immunodeficiency Virus Type 1. Front Microbiol 2021; 11:625941. [PMID: 33510738 PMCID: PMC7835632 DOI: 10.3389/fmicb.2020.625941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
It was first predicted in 1988 that there may be an Open Reading Frame (ORF) on the negative strand of the Human Immunodeficiency Virus type 1 (HIV-1) genome that could encode a protein named AntiSense Protein (ASP). In spite of some controversy, reports began to emerge some years later describing the detection of HIV-1 antisense transcripts, the presence of ASP in transfected and infected cells, and the existence of an immune response targeting ASP. Recently, it was established that the asp gene is exclusively conserved within the pandemic group M of HIV-1. In this review, we summarize the latest findings on HIV-1 antisense transcripts and ASP, and we discuss their potential functions in HIV-1 infection together with the role played by antisense transcripts and ASPs in some other viruses. Finally, we suggest pathways raised by the study of antisense transcripts and ASPs that may warrant exploration in the future.
Collapse
Affiliation(s)
- Juliette Savoret
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Antoine Gross
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| | - Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Houen G, Trier NH. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front Immunol 2021; 11:587380. [PMID: 33488588 PMCID: PMC7817975 DOI: 10.3389/fimmu.2020.587380] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr Virus (EBV) is an extremely successful human herpes virus, which infects essentially all human beings at some time during their life span. EBV infection and the associated immune response results in production of antibodies (seroconversion), which occurs mainly during the first years of life, but may also happen during adolescence or later in life. Infection of adolescents can result in infectious mononucleosis, an acute serious condition characterized by massive lymphocytosis. Transmission of EBV mainly occurs through saliva but can rarely be spread through semen or blood, e.g. through organ transplantations and blood transfusions. EBV transmission through oral secretions results in infection of epithelial cells of the oropharynx. From the epithelial cells EBV can infect B cells, which are the major reservoir for the virus, but other cell types may also become infected. As a result, EBV can shuttle between different cell types, mainly B cells and epithelial cells. Moreover, since the virus can switch between a latent and a lytic life cycle, EBV has the ability to cause chronic relapsing/reactivating infections. Chronic or recurrent EBV infection of epithelial cells has been linked to systemic lupus erythematosus and Sjögren’s syndrome, whereas chronic/recurrent infection of B cells has been associated with rheumatoid arthritis, multiple sclerosis and other diseases. Accordingly, since EBV can shuttle between epithelial cells and B cells, the systemic autoimmune diseases often occur as overlapping syndromes with symptoms and characteristic autoantibodies (e.g. antinuclear antibodies and rheumatoid factors) reflecting epithelial and/or B cell infection.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | | |
Collapse
|
13
|
Sun K, Jia K, Lv H, Wang SQ, Wu Y, Lei H, Chen X. EBV-Positive Gastric Cancer: Current Knowledge and Future Perspectives. Front Oncol 2020; 10:583463. [PMID: 33381453 PMCID: PMC7769310 DOI: 10.3389/fonc.2020.583463] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is the fifth most common malignant tumor and second leading cause of cancer-related deaths worldwide. With the improved understanding of gastric cancer, a subset of gastric cancer patients infected with Epstein–Barr virus (EBV) has been identified. EBV-positive gastric cancer is a type of tumor with unique genomic aberrations, significant clinicopathological features, and a good prognosis. After EBV infects the human body, it first enters an incubation period in which the virus integrates its DNA into the host and expresses the latent protein and then affects DNA methylation through miRNA under the action of the latent protein, which leads to the occurrence of EBV-positive gastric cancer. With recent developments in immunotherapy, better treatment of EBV-positive gastric cancer patients appears achievable. Moreover, studies show that treatment with immunotherapy has a high effective rate in patients with EBV-positive gastric cancer. This review summarizes the research status of EBV-positive gastric cancer in recent years and indicates areas for improvement of clinical practice.
Collapse
Affiliation(s)
- Keran Sun
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Keqi Jia
- Department of Pathology, Pathology Department of Hebei Medical University, Shijiazhuang, China
| | - Huifang Lv
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yan Wu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huijun Lei
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaobing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
14
|
Germini D, Sall FB, Shmakova A, Wiels J, Dokudovskaya S, Drouet E, Vassetzky Y. Oncogenic Properties of the EBV ZEBRA Protein. Cancers (Basel) 2020; 12:E1479. [PMID: 32517128 PMCID: PMC7352903 DOI: 10.3390/cancers12061479] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Epstein Barr Virus (EBV) is one of the most common human herpesviruses. After primary infection, it can persist in the host throughout their lifetime in a latent form, from which it can reactivate following specific stimuli. EBV reactivation is triggered by transcriptional transactivator proteins ZEBRA (also known as Z, EB-1, Zta or BZLF1) and RTA (also known as BRLF1). Here we discuss the structural and functional features of ZEBRA, its role in oncogenesis and its possible implication as a prognostic or diagnostic marker. Modulation of host gene expression by ZEBRA can deregulate the immune surveillance, allow the immune escape, and favor tumor progression. It also interacts with host proteins, thereby modifying their functions. ZEBRA is released into the bloodstream by infected cells and can potentially penetrate any cell through its cell-penetrating domain; therefore, it can also change the fate of non-infected cells. The features of ZEBRA described in this review outline its importance in EBV-related malignancies.
Collapse
Affiliation(s)
- Diego Germini
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Fatimata Bintou Sall
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Laboratory of Hematology, Aristide Le Dantec Hospital, Cheikh Anta Diop University, Dakar 12900, Senegal
| | - Anna Shmakova
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Joëlle Wiels
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Svetlana Dokudovskaya
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
| | - Emmanuel Drouet
- CIBB-IBS UMR 5075 Université Grenoble Alpes, 38044 Grenoble, France;
| | - Yegor Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805 Villejuif, France; (D.G.); (F.B.S.); (A.S.); (J.W.); (S.D.)
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
15
|
STUB1 is targeted by the SUMO-interacting motif of EBNA1 to maintain Epstein-Barr Virus latency. PLoS Pathog 2020; 16:e1008447. [PMID: 32176739 PMCID: PMC7105294 DOI: 10.1371/journal.ppat.1008447] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/30/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Latent Epstein-Barr virus (EBV) infection is strongly associated with several malignancies, including B-cell lymphomas and epithelial tumors. EBNA1 is a key antigen expressed in all EBV-associated tumors during latency that is required for maintenance of the EBV episome DNA and the regulation of viral gene transcription. However, the mechanism utilized by EBV to maintain latent infection at the levels of posttranslational regulation remains largely unclear. Here, we report that EBNA1 contains two SUMO-interacting motifs (SIM2 and SIM3), and mutation of SIM2, but not SIM3, dramatically disrupts the EBNA1 dimerization, while SIM3 contributes to the polySUMO2 modification of EBNA1 at lysine 477 in vitro. Proteomic and immunoprecipitation analyses further reveal that the SIM3 motif is required for the EBNA1-mediated inhibitory effects on SUMO2-modified STUB1, SUMO2-mediated degradation of USP7, and SUMO1-modified KAP1. Deletion of the EBNASIM motif leads to functional loss of both EBNA1-mediated viral episome maintenance and lytic gene silencing. Importantly, hypoxic stress induces the SUMO2 modification of EBNA1, and in turn the dissociation of EBNA1 with STUB1, KAP1 and USP7 to increase the SUMO1 modification of both STUB1 and KAP1 for reactivation of lytic replication. Therefore, the EBNA1SIM motif plays an essential role in EBV latency and is a potential therapeutic target against EBV-associated cancers. The Small Ubiquitin-related modifier (SUMO) modification of proteins is a reversible post-translational regulation involved in control of gene transcription, among other functions. Epstein-Barr virus (EBV) infects most people worldwide and contributes to the development of several types of cancers due to its ability to induce cell proliferation and survival. EBNA1 is expressed in all forms of EBV-associated tumors. In this study, we found that EBNA1 contains a SUMO-interacting motif (SIM) named EBNA1SIM, which is required for EBNA1 to exert inhibitory effects on a SUMO2-modified complex (SC2) including STUB1, KAP1 and USP7. Disruption of EBNA1SIM leads to loss of both EBNA1-mediated viral episome maintenance and lytic gene silencing. Importantly, hypoxia-mediated reactivation of viral lytic replication induces the EBNA1 dissociation from STUB1 in the SC2 complex. This discovery not only opens a new insight on the interplay between host and virus, but it also provides a therapeutic target specific against EBV-associated cancers.
Collapse
|
16
|
Sneaking Out for Happy Hour: Yeast-Based Approaches to Explore and Modulate Immune Response and Immune Evasion. Genes (Basel) 2019; 10:genes10090667. [PMID: 31480411 PMCID: PMC6770942 DOI: 10.3390/genes10090667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
Many pathogens (virus, bacteria, fungi, or parasites) have developed a wide variety of mechanisms to evade their host immune system. The budding yeast Saccharomyces cerevisiae has successfully been used to decipher some of these immune evasion strategies. This includes the cis-acting mechanism that limits the expression of the oncogenic Epstein–Barr virus (EBV)-encoded EBNA1 and thus of antigenic peptides derived from this essential but highly antigenic viral protein. Studies based on budding yeast have also revealed the molecular bases of epigenetic switching or recombination underlying the silencing of all except one members of extended families of genes that encode closely related and highly antigenic surface proteins. This mechanism is exploited by several parasites (that include pathogens such as Plasmodium, Trypanosoma, Candida, or Pneumocystis) to alternate their surface antigens, thereby evading the immune system. Yeast can itself be a pathogen, and pathogenic fungi such as Candida albicans, which is phylogenetically very close to S. cerevisiae, have developed stealthiness strategies that include changes in their cell wall composition, or epitope-masking, to control production or exposure of highly antigenic but essential polysaccharides in their cell wall. Finally, due to the high antigenicity of its cell wall, yeast has been opportunistically exploited to create adjuvants and vectors for vaccination.
Collapse
|
17
|
Wang J, Liang C, Meng F, Xu X, Wu Y, Lu L. Lentivirus-mediated RNA interference targeting EBNA1 gene inhibits the growth of GT-38 cells in vitro and in vivo. Oncol Lett 2019; 18:2286-2291. [PMID: 31402935 PMCID: PMC6676715 DOI: 10.3892/ol.2019.10543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus nuclear antigen 1 (EBNA1) is associated with the pathogenesis of Epstein-Barr virus-associated gastric carcinoma (EBVaGC). However, the function of EBNA1 in the growth of EBVaGC cells remains unclear. In the present study, the effects of silencing EBNA1, by RNA interference (RNAi), on the growth of EBVaGC cells were investigated in vitro and in vivo. A lentivirus-mediated RNAi targeting EBNA1 was transfected into the EBVaGC cell line GT-38. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot analysis, MTT, colony formation and flow cytometry were performed to evaluate the biological behavior of GT-38 cells that were transfected with EBNA1 small interfering RNA (siRNA) in vitro. The effects of silencing EBNA1 on tumor growth were assessed in a tumor xenograft model using BALB/c nude mice. The results demonstrated that the proliferative and clonogenic abilities of GT-38 cells were significantly downregulated in response to EBNA1 siRNA (P<0.01). Furthermore, EBNA1 siRNA induced cell cycle arrest in the G0/G1 phase and promoted apoptosis of GT-38 cells (P<0.01). The tumorigenicity of GT-38 cells was significantly inhibited in the EBNA1 siRNA group. The results revealed that lentivirus-mediated RNAi of EBNA1 inhibited the growth of the EBVaGC cell line GT-38 in vitro and in vivo. Therefore, EBNA1 may be a potential target for gene therapy in EBVaGC.
Collapse
Affiliation(s)
- Jian Wang
- Department of Gastroenterology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Cunfu Liang
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Fansheng Meng
- Department of Gastroenterology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Xiangwen Xu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Yan Wu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Lin Lu
- Department of Gastroenterology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
18
|
Prado Martins R, Findakly S, Daskalogianni C, Teulade-Fichou MP, Blondel M, Fåhraeus R. In Cellulo Protein-mRNA Interaction Assay to Determine the Action of G-Quadruplex-Binding Molecules. Molecules 2018; 23:E3124. [PMID: 30501034 PMCID: PMC6321085 DOI: 10.3390/molecules23123124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 11/16/2022] Open
Abstract
Protein-RNA interactions (PRIs) control pivotal steps in RNA biogenesis, regulate multiple physiological and pathological cellular networks, and are emerging as important drug targets. However, targeting of specific protein-RNA interactions for therapeutic developments is still poorly advanced. Studies and manipulation of these interactions are technically challenging and in vitro drug screening assays are often hampered due to the complexity of RNA structures. The binding of nucleolin (NCL) to a G-quadruplex (G4) structure in the messenger RNA (mRNA) of the Epstein-Barr virus (EBV)-encoded EBNA1 has emerged as an interesting therapeutic target to interfere with immune evasion of EBV-associated cancers. Using the NCL-EBNA1 mRNA interaction as a model, we describe a quantitative proximity ligation assay (PLA)-based in cellulo approach to determine the structure activity relationship of small chemical G4 ligands. Our results show how different G4 ligands have different effects on NCL binding to G4 of the EBNA1 mRNA and highlight the importance of in-cellulo screening assays for targeting RNA structure-dependent interactions.
Collapse
Affiliation(s)
| | - Sarah Findakly
- Université Paris 7, Inserm, UMR 1162, 75013 Paris, France.
| | - Chrysoula Daskalogianni
- Université Paris 7, Inserm, UMR 1162, 75013 Paris, France.
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Marie-Paule Teulade-Fichou
- Chemistry, Modelling and Imaging for Biology, CNRS UMR9187-Inserm U1196, Institut Curie, Université Paris-Sud, F-91405, Orsay, France.
| | - Marc Blondel
- GGB, Université de Brest, Inserm, CHRU Brest, EFS, UMR 1078, F-29200 Brest, France.
| | - Robin Fåhraeus
- Université Paris 7, Inserm, UMR 1162, 75013 Paris, France.
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
- Department of Medical Biosciences, Umeå University, 90187 Umeå, Sweden.
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic.
| |
Collapse
|
19
|
Gao X, Li J, Wang Y, Liu S, Yue B. Clinical characteristics and prognostic significance of EBER positivity in diffuse large B-cell lymphoma: A meta-analysis. PLoS One 2018; 13:e0199398. [PMID: 29920566 PMCID: PMC6007832 DOI: 10.1371/journal.pone.0199398] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Recent studies show that Epstein-Barr virus (EBV) positivity might be related to adverse prognosis in patients with diffuse large B-cell lymphoma (DLBCL), but the results are still inconclusive. We conducted this meta-analysis to define the clinical value of EBV infection in DLBCL. All potential articles in PubMed, Web of Science, Medline, and Embase were retrieved. Using the random-effects or fixed-effect model, pooled hazard ratios (HRs) or relative risk (RR) with 95% confidence intervals (CIs) were used to calculate the correlation between EBER and prognosis and clinical features in DLBCL. A total of 13 qualified studies with 4111 patients were identified in our meta-analysis based on the inclusion and exclusion criteria. The overall estimates revealed that EBV-encoded small RNAs (EBER) positivity was significantly correlated with worse overall survival (HR = 2.43, 95% CI: 1.73–3.36) and progression-free survival (HR = 3.60, 95% CI: 2.07–6.26). In addition, EBER positivity was associated with age older than 60 years (RR = 1.51, 95% CI: 1.02–2.24), male sex (RR = 1.34, 95% CI: 1.05–1.71), more advanced stage (RR = 2.25, 95% CI: 1.72–2.96), high international prognostic index (RR = 2.20, 95% CI: 1.71–2.82), more than one extranodal involvement (RR = 1.69, 95% CI: 1.27–2.26), presence of B symptom (RR = 1.75, 95% CI: 1.30–2.35), non-germinal center B-cell subtype (RR = 1.35, 95% CI: 1.03–1.78), and elevated lactate dehydrogenase levels (RR = 1.30, 95% CI: 0.98–1.72). EBER positivity was correlated with worse outcomes, worse clinical course, and adverse clinicopathologic features among patients with DLBCL.
Collapse
MESH Headings
- Disease-Free Survival
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Herpesvirus 4, Human/pathogenicity
- Humans
- Lymphoma, Large B-Cell, Diffuse/epidemiology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/virology
- Prognosis
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
Collapse
Affiliation(s)
- Xiaojuan Gao
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, P. R. China
| | - Jia Li
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, P. R. China
| | - Yaqi Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, P. R. China
| | - Shuai Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, P. R. China
- Key Laboratory Medicine of Henan Province, Faculty of Laboratory Medicine of Zhengzhou University, Zhengzhou, P. R. China
| | - Baohong Yue
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Faculty of Laboratory Medicine, Zhengzhou University, Zhengzhou, P. R. China
- Key Laboratory Medicine of Henan Province, Faculty of Laboratory Medicine of Zhengzhou University, Zhengzhou, P. R. China
- Open Laboratory, Henan Province Key Subject of Clinical Medicine, Zhengzhou, P. R. China
- * E-mail:
| |
Collapse
|
20
|
EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers (Basel) 2018; 10:cancers10040109. [PMID: 29642420 PMCID: PMC5923364 DOI: 10.3390/cancers10040109] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
The presence of the Epstein-Barr virus (EBV)-encoded nuclear antigen-1 (EBNA1) protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC) class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another means to cripple the virus.
Collapse
|
21
|
Moon JW, Kong SK, Kim BS, Kim HJ, Lim H, Noh K, Kim Y, Choi JW, Lee JH, Kim YS. IFNγ induces PD-L1 overexpression by JAK2/STAT1/IRF-1 signaling in EBV-positive gastric carcinoma. Sci Rep 2017; 7:17810. [PMID: 29259270 PMCID: PMC5736657 DOI: 10.1038/s41598-017-18132-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) acts as an immune checkpoint inhibitor in various cancers. PD-L1 is known to be more frequently expressed in EBV (+) gastric cancer (GC). However, the mechanisms underlying the regulation of PD-L1 expression in EBV (+) GC remain unclear. We investigated the basal and inducible PD-L1 expressions in GC cells. PD-L1 expression was upregulated upon treatment with IFNγ in both EBV (-) and EBV (+) GC cells. Upon stimulation with the same concentration of IFNγ for 24 h, EBV (+) SNU-719 cells showed dramatically higher PD-L1 expression levels by activating JAK2/STAT1/IRF-1 signaling than those of EBV (-) AGS cells. PD-L1 promoter assays, chromatin immunoprecipitation, and electrophoretic mobility shift assays revealed that IFNγ-inducible PD-L1 overexpression is primarily mediated by the putative IRF-1α site of the PD-L1 promoter in EBV (+) SNU-719 cells. Moreover, EBNA1 knockdown reduced both constitutive and IFNγ-inducible PD-L1 promoter activity by decreasing the transcript and protein levels of JAK2 and subsequently STAT1/IRF-1/PD-L1 signaling. EBNA1 is suggested to be moderately enhance both constitutive and IFNγ-inducible PD-L1 expression in EBV (+) GC cells. Thus, the signaling proteins and EBNA1 that regulate PD-L1 expression are potential therapeutic targets in EBV (+) GC.
Collapse
Affiliation(s)
- Ji Wook Moon
- Department of Pathology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Su-Kang Kong
- Department of Pathology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung Soo Kim
- Department of Pathology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ji Kim
- Department of Pathology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyangsoon Lim
- Department of Pathology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyeonga Noh
- Department of Pathology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Younghye Kim
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Jung-Woo Choi
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Young-Sik Kim
- Department of Pathology, Korea University College of Medicine, Seoul, Republic of Korea. .,Department of Pathology, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
22
|
Ambrosio MR, Mundo L, Gazaneo S, Picciolini M, Vara PS, Sayed S, Ginori A, Lo Bello G, Del Porro L, Navari M, Ascani S, Yonis A, Leoncini L, Piccaluga PP, Lazzi S. MicroRNAs sequencing unveils distinct molecular subgroups of plasmablastic lymphoma. Oncotarget 2017; 8:107356-107373. [PMID: 29296171 PMCID: PMC5746073 DOI: 10.18632/oncotarget.22219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/08/2017] [Indexed: 11/25/2022] Open
Abstract
Plasmablastic lymphoma (PBL) is an aggressive lymphoma, often arising in the context of immunodeficiency and associated with Epstein-Barr virus (EBV) infection. The most frequently detected genetic alteration is the deregulation of MYC gene through the translocation - t(8;14)(q24;q32). The diagnosis of PBL is often challenging because it has an overlap in morphology, immunophenotype, cytogenetics and virus association with other lymphomas and plasma cell neoplasms; further, its molecular basis remains elusive. In the present study we aimed to better define the possible contribution of EBV infection as well as miRNA deregulation in PBL pathogenesis. We studied 23 cases of PBL, 19 Burkitt lymphomas (BL), and 17 extra-medullary plasmacytoma (EMPC). We used qPCR and immunohistochemistry to assess EBV latency patterns, while micro-RNA (miRNA) profiling was performed by next generation sequencing (Illumina) and validated by qPCR. Our analysis revealed a non-canonical EBV latency program with the partial expression of some proteins characterizing latency II and the activation of an abortive lytic cycle. Moreover, we identified miRNA signatures discriminating PBL from BL and EMPC. Interestingly, based on the miRNA profile, PBL appeared constituted by two discrete subgroups more similar to either BL or EMPC, respectively. This pattern was confirmed in an independent set of cases studied by qPCR and corresponded to different clinico-pathological features in the two groups, including HIV infection, MYC rearrangement and disease localization. In conclusion, we uncovered for the first time 1) an atypical EBV latency program in PBL; 2) a miRNA signature distinguishing PBL from the closest malignant counterparts; 3) the molecular basis of PBL heterogeneity.
Collapse
Affiliation(s)
| | - Lucia Mundo
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Sara Gazaneo
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | | | | | | | - Alessandro Ginori
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
- Pathology Unit, Ospedale Civico di Carrara, Carrara, Italy
| | - Giuseppe Lo Bello
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Leonardo Del Porro
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Mohsen Navari
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, Bologna, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Stefano Ascani
- Section of Pathology, Azienda Ospedaliera S. Maria di Terni, University of Perugia, Perugia, Italy
| | | | - Lorenzo Leoncini
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Experimental Medicine, Bologna University School of Medicine, Bologna, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| |
Collapse
|
23
|
Wilms T, Khan G, Coates PJ, Sgaramella N, Fåhraeus R, Hassani A, Philip PS, Norberg Spaak L, Califano L, Colella G, Olofsson K, Loizou C, Franco R, Nylander K. No evidence for the presence of Epstein-Barr virus in squamous cell carcinoma of the mobile tongue. PLoS One 2017; 12:e0184201. [PMID: 28926591 PMCID: PMC5604943 DOI: 10.1371/journal.pone.0184201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) comprises a large group of cancers in the oral cavity and nasopharyngeal area that typically arise in older males in association with alcohol/tobacco usage. Within the oral cavity, the mobile tongue is the most common site for tumour development. The incidence of tongue squamous cell carcinoma (TSCC) is increasing in younger people, which has been suggested to associate with a viral aetiology. Two common human oncogenic viruses, human papilloma virus (HPV) and Epstein-Barr virus (EBV) are known causes of certain types of SCCHN, namely the oropharynx and nasopharynx, respectively. EBV infects most adults worldwide through oral transmission and establishes a latent infection, with sporadic productive viral replication and release of virus in the oral cavity throughout life. In view of the prevalence of EBV in the oral cavity and recent data indicating that it infects tongue epithelial cells and establishes latency, we examined 98 cases of primary squamous cell carcinoma of the mobile tongue and 15 cases of tonsillar squamous cell carcinoma for the presence of EBV-encoded RNAs (EBERs), EBV DNA and an EBV-encoded protein, EBNA-1. A commercially available in situ hybridisation kit targeting EBER transcripts (EBER-ISH) showed a positive signal in the cytoplasm and/or nuclei of tumour cells in 43% of TSCCs. However, application of control probes and RNase A digestion using in-house developed EBER-ISH showed identical EBER staining patterns, indicating non-specific signals. PCR analysis of the BamH1 W repeat sequences did not identify EBV genomes in tumour samples. Immunohistochemistry for EBNA-1 was also negative. These data exclude EBV as a potential player in TSCC in both old and young patients and highlight the importance of appropriate controls for EBER-ISH in investigating EBV in human diseases.
Collapse
Affiliation(s)
- Torben Wilms
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
- * E-mail: (TW); (KN)
| | - Gulfaraz Khan
- United Arab Emirates University, College of Medicine & Health Sciences, Dept. of Medical Microbiology and Immunology, Tawam Hospital Campus, Al Ain, UAE
| | - Philip J. Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, Czech Republic
| | | | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
- University Paris Diderot, INSERM UMRS1162, 27 rue Juliette Dodu, Paris, France
| | - Asma Hassani
- United Arab Emirates University, College of Medicine & Health Sciences, Dept. of Medical Microbiology and Immunology, Tawam Hospital Campus, Al Ain, UAE
| | - Pretty S. Philip
- United Arab Emirates University, College of Medicine & Health Sciences, Dept. of Medical Microbiology and Immunology, Tawam Hospital Campus, Al Ain, UAE
| | | | - Luigi Califano
- Department of Neuroscience Reproductive and Dentistry Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe Colella
- Second University of Naples, Multidisciplinary Department of Medical, Surgical and Dental Specialties, Naples, Italy
| | | | - Christos Loizou
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | - Renato Franco
- Dipartimento Universitario di Anatomia Patologica, Seconda Universita' Degli Studi di Napoli, Piazza Miraglia, Naples, Italy
| | - Karin Nylander
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
- * E-mail: (TW); (KN)
| |
Collapse
|
24
|
Lista MJ, Martins RP, Billant O, Contesse MA, Findakly S, Pochard P, Daskalogianni C, Beauvineau C, Guetta C, Jamin C, Teulade-Fichou MP, Fåhraeus R, Voisset C, Blondel M. Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat Commun 2017; 8:16043. [PMID: 28685753 PMCID: PMC5504353 DOI: 10.1038/ncomms16043] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1, which is essential for viral genome maintenance but highly antigenic. EBV has seemingly evolved a system in which the mRNA sequence encoding the glycine-alanine repeats (GAr) of the EBNA1 protein limits its expression to the minimal level necessary for function while minimizing immune recognition. Here, we identify nucleolin (NCL) as a host factor required for this process via a direct interaction with G-quadruplexes formed in GAr-encoding mRNA sequence. Overexpression of NCL enhances GAr-based inhibition of EBNA1 protein expression, whereas its downregulation relieves the suppression of both expression and antigen presentation. Moreover, the G-quadruplex ligand PhenDC3 prevents NCL binding to EBNA1 mRNA and reverses GAr-mediated repression of EBNA1 expression and antigen presentation. Hence the NCL-EBNA1 mRNA interaction is a relevant therapeutic target to trigger an immune response against EBV-carrying cancers.
Collapse
Affiliation(s)
- María José Lista
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| | - Rodrigo Prado Martins
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris F-75010, France
| | - Olivier Billant
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| | - Marie-Astrid Contesse
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| | - Sarah Findakly
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris F-75010, France
| | - Pierre Pochard
- Inserm UMR 1227, Lymphocytes B et Autoimmunité; Université de Bretagne Occidentale; CHRU Brest, Hôpital Morvan, Laboratoire d’Immunologie, Brest F-29200, France
| | - Chrysoula Daskalogianni
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris F-75010, France
| | - Claire Beauvineau
- Chemistry, Modelling and Imaging for Biology, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Sud, Campus universitaire, Bat. 110, Orsay F-91405, France
| | - Corinne Guetta
- Chemistry, Modelling and Imaging for Biology, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Sud, Campus universitaire, Bat. 110, Orsay F-91405, France
| | - Christophe Jamin
- Inserm UMR 1227, Lymphocytes B et Autoimmunité; Université de Bretagne Occidentale; CHRU Brest, Hôpital Morvan, Laboratoire d’Immunologie, Brest F-29200, France
| | - Marie-Paule Teulade-Fichou
- Chemistry, Modelling and Imaging for Biology, CNRS UMR9187 - Inserm U1196, Institut Curie, Université Paris-Sud, Campus universitaire, Bat. 110, Orsay F-91405, France
| | - Robin Fåhraeus
- Cibles Thérapeutiques, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, 27 rue Juliette Dodu, Paris F-75010, France
| | - Cécile Voisset
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, Brest F-29200, France
| |
Collapse
|
25
|
Tang Y, Lu S, Gan X, Liu F, Zhang Y, Luo C, Pan Y, Hong L, Gan R. Expression of LMP and EBNA genes in Epstein-Barr virus-associated lymphomas in Hu-PBL/SCID mice. Oncol Rep 2015; 35:905-11. [PMID: 26548532 DOI: 10.3892/or.2015.4401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/26/2015] [Indexed: 11/06/2022] Open
Abstract
Transplantation of peripheral blood lymphocytes (PBLs) from healthy humans with latent Epstein-Barr virus (EBV) infection into severe combined immunodeficiency (SCID) mice results in development of EBV-associated human B-cell lymphoma. However, the expression of EBV genes in relation to lymphoma development has not been reported. We investigated latent membrane protein (LMP) and EBV nuclear antigen (EBNA) gene expression in PBLs from EBV-positive blood donors and induced-lymphoma cells from SCID mice to elucidate the functions and effects of the EBV genome in the occurrence and development of lymphoma. PBLs were isolated from 9 healthy blood donors and transplanted into SCID mice. Gene expression levels of LMP-1, LMP-2A, and LMP-2B and EBNA-1, EBNA-2, EBNA-3A, EBNA-3B, EBNA-3C and EBNA-LP were monitored by real-time quantitative-polymerase chain reaction (qRT-PCR) in cells from nine EBV-induced lymphomas and in matched lymphocytes from healthy subjects. LMP-1, EBNA-1 and EBNA-2 protein levels were detected by western blotting. As a result, LMP-1, LMP-2A and LMP-2B mRNA levels were upregulated 256-, 38- and 331-fold, respectively, in the EBV-induced lymphoma cells compared with the controls, while EBNA-1 and EBNA-3A mRNA levels were upregulated 1157- and 1154-fold, respectively. EBNA-2, EBNA-3B, EBNA-3C and EBNA-LP mRNAs were detected in lymphoma cells, but not in lymphocytes from EBV-positive blood donors. LMP-1 and EBNA-2 proteins were not expressed in lymphocytes from EBV-positive blood donors, according to western blotting. Weak EBNA-1 expression was observed in lymphocytes from blood donors with latent EBV infection, while LMP-1, EBNA-1 and EBNA-2 protein levels were significantly upregulated in EBV-induced lymphoma cells, consistent with mRNA expression levels detected by qRT-PCR. In conclusion, LMP-1, LMP-2A, LMP-2B, EBNA-1 and EBNA-3A were upregulated in EBV-induced lymphoma cells, while EBNA-2, EBNA-3B, EBNA-3C and EBNA-LP were absent in lymphocytes from humans with latent EBV infection, but were positively expressed in EBV-induced lymphoma cells.
Collapse
Affiliation(s)
- Yunlian Tang
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Suli Lu
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoning Gan
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Fang Liu
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yang Zhang
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chunyan Luo
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuxia Pan
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Li Hong
- College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ruliang Gan
- Cancer Research Institute, College of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
26
|
Lista MJ, Voisset C, Contesse M, Friocourt G, Daskalogianni C, Bihel F, Fåhraeus R, Blondel M. The long‐lasting love affair between the budding yeast
Saccharomyces cerevisiae
and the Epstein‐Barr virus. Biotechnol J 2015; 10:1670-81. [DOI: 10.1002/biot.201500161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/03/2015] [Accepted: 07/08/2015] [Indexed: 12/29/2022]
Affiliation(s)
- María José Lista
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Cécile Voisset
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Marie‐Astrid Contesse
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Gaëlle Friocourt
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Chrysoula Daskalogianni
- Institut National de la Santé et de la Recherche Médicale UMR1162, Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, UMR7200, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Illkirch, France
| | - Robin Fåhraeus
- Institut National de la Santé et de la Recherche Médicale UMR1162, Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|
27
|
Apcher S, Daskalogianni C, Fåhraeus R. Pioneer translation products as an alternative source for MHC-I antigenic peptides. Mol Immunol 2015; 68:68-71. [PMID: 25979818 DOI: 10.1016/j.molimm.2015.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022]
Abstract
The notion that alternative peptide substrates can be processed and presented to the MHC class I pathway has opened for new aspects on how the immune system detects infected or damaged cells. Recent works show that antigenic peptides are derived from intron sequences in pre-mRNAs target for the nonsense-mediated degradation pathway. Introns are spliced out co-transcriptionally suggesting that such pioneer translation products (PTPs) are synthesized on the nascent RNAs in the nuclear compartment to ensure that the first peptides to emerge from an mRNA are destined for the class I pathway. This illustrates an independent translation event during mRNA maturation that give rise to specific peptide products with a specific function in the immune system. The characterization of the translation apparatus responsible for PTP synthesis will pave the way for understanding how PTP production is regulated in different tissues under different conditions and will help designing new vaccine strategies.
Collapse
Affiliation(s)
- Sebastien Apcher
- Institut Gustave Roussy, Université Paris Sud, Unité 1015 département d'immunologie, 114, rue Edouard Vaillant, 94805 Villejuif, France.
| | - Chrysoula Daskalogianni
- Equipe Labellisée la Ligue Contre le Cancer, Inserm UMR1162, Université Paris 7, Institut de Génétique Moléculaire, 27 rue Juliette Dodu, 75010 Paris, France
| | - Robin Fåhraeus
- Equipe Labellisée la Ligue Contre le Cancer, Inserm UMR1162, Université Paris 7, Institut de Génétique Moléculaire, 27 rue Juliette Dodu, 75010 Paris, France; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
| |
Collapse
|
28
|
Tsao SW, Tsang CM, To KF, Lo KW. The role of Epstein-Barr virus in epithelial malignancies. J Pathol 2015; 235:323-33. [PMID: 25251730 PMCID: PMC4280676 DOI: 10.1002/path.4448] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022]
Abstract
The close association of Epstein–Barr virus (EBV) infection with non-keratinizing nasopharyngeal carcinomas and a subset of gastric carcinomas suggests that EBV infection is a crucial event in these cancers. The difficulties encountered in infecting and transforming primary epithelial cells in experimental systems suggest that the role of EBV in epithelial malignancies is complex and multifactorial in nature. Genetic alterations in the premalignant epithelium may support the establishment of latent EBV infection, which is believed to be an initiation event. Oncogenic properties have been reported in multiple EBV latent genes. The BamH1 A rightwards transcripts (BARTs) and the BART-encoded microRNAs (miR-BARTs) are highly expressed in EBV-associated epithelial malignancies and may induce malignant transformation. However, enhanced proliferation may not be the crucial function of EBV infection in epithelial malignancies, at least in the early stages of cancer development. EBV-encoded gene products may confer anti-apoptotic properties and promote the survival of infected premalignant epithelial cells harbouring genetic alterations. Multiple EBV-encoded microRNAs have been reported to have immune evasion functions. Genetic alterations in host cells, as well as inflammatory stroma, could modulate the expression of EBV genes and alter the growth properties of infected premalignant epithelial cells, encouraging their selection during carcinogenesis.
Collapse
Affiliation(s)
- Sai-Wah Tsao
- Department of Anatomy and Centre for Cancer Research, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR
| | | | | | | |
Collapse
|
29
|
Herrington CS, Coates PJ, Duprex WP. Viruses and disease: emerging concepts for prevention, diagnosis and treatment. J Pathol 2015; 235:149-52. [PMID: 25366544 PMCID: PMC7168080 DOI: 10.1002/path.4476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 12/27/2022]
Abstract
Viruses cause a wide range of human diseases, ranging from acute self‐resolving conditions to acute fatal diseases. Effects that arise long after the primary infection can also increase the propensity for chronic conditions or lead to the development of cancer. Recent advances in the fields of virology and pathology have been fundamental in improving our understanding of viral pathogenesis, in providing improved vaccination strategies and in developing newer, more effective treatments for patients worldwide. The reviews assembled here focus on the interface between virology and pathology and encompass aspects of both the clinical pathology of viral disease and the underlying disease mechanisms. Articles on emerging diseases caused by Ebola virus, Marburg virus, coronaviruses such as SARS and MERS, Nipah virus and noroviruses are followed by reviews of enteroviruses, HIV infection, measles, mumps, human respiratory syncytial virus (RSV), influenza, cytomegalovirus (CMV) and varicella zoster virus (VZV). The issue concludes with a series of articles reviewing the relationship between viruses and cancer, including the role played by Epstein–Barr virus (EBV) in the pathogenesis of lymphoma and carcinoma; how human papillomaviruses (HPVs) are involved in the development of skin cancer; the involvement of hepatitis B virus infection in hepatocellular carcinoma; and the mechanisms by which Kaposi's sarcoma‐associated herpesvirus (KSHV) leads to Kaposi's sarcoma. We hope that this collection of articles will be of interest to a wide range of scientists and clinicians at a time when there is a renaissance in the appreciation of the power of pathology as virologists dissect the processes of disease. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- C S Herrington
- Medical Research Institute, University of Dundee Medical School, Ninewells Hospital, Dundee, UK
| | | | | |
Collapse
|
30
|
Abstract
Persistent infection by EBV is explained by the germinal center model (GCM) which provides a satisfying and currently the only explanation for EBVs disparate biology. Since the GCM touches on every aspect of the virus, this chapter will serve as an introduction to the subsequent chapters. EBV is B lymphotropic, and its biology closely follows that of normal mature B lymphocytes. The virus persists quiescently in resting memory B cells for the lifetime of the host in a non-pathogenic state that is also invisible to the immune response. To access this compartment, the virus infects naïve B cells in the lymphoepithelium of the tonsils and activates these cells using the growth transcription program. These cells migrate to the GC where they switch to a more limited transcription program, the default program, which helps rescue them into the memory compartment where the virus persists. For egress, the infected memory cells return to the lymphoepithelium where they occasionally differentiate into plasma cells activating viral replication. The released virus can either infect more naïve B cells or be amplified in the epithelium for shedding. This cycle of infection and the quiescent state in memory B cells allow for lifetime persistence at a very low level that is remarkably stable over time. Mathematically, this is a stable fixed point where the mechanisms regulating persistence drive the state back to equilibrium when perturbed. This is the GCM of EBV persistence. Other possible sites and mechanisms of persistence will also be discussed.
Collapse
|
31
|
Voisset C, Blondel M. [Chemobiology at happy hour: yeast as a model for pharmacological screening]. Med Sci (Paris) 2014; 30:1161-8. [PMID: 25537047 DOI: 10.1051/medsci/20143012020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Since its discovery and description by Louis Pasteur, the budding yeast Saccharomyces cerevisiae, which was used for thousands of years for alcoholic fermentation and as a leavening agent, has become a popular model system in biology. One of the reasons for this popularity is the strong conservation from yeast to human of most of the pathways controlling cell growth and fate. In addition, at least 30 % of human genes involved in diseases have a functional homolog in yeast. Hence, yeast is now widely used for modelling and deciphering physiopathological mechanisms as well as for developing pharmacological approaches like phenotype-based drug screening. Three examples of such yeast-based chemobiological studies are presented.
Collapse
Affiliation(s)
- Cécile Voisset
- Inserm UMR 1078 ; Université de Bretagne occidentale, Faculté de médecine et des sciences de la santé ; Établissement français du sang (EFS) ; CHRU Brest, hôpital Morvan, laboratoire de génétique moléculaire, 22, avenue Camille Desmoulins 29200 Brest, France
| | - Marc Blondel
- Inserm UMR 1078 ; Université de Bretagne occidentale, Faculté de médecine et des sciences de la santé ; Établissement français du sang (EFS) ; CHRU Brest, hôpital Morvan, laboratoire de génétique moléculaire, 22, avenue Camille Desmoulins 29200 Brest, France
| |
Collapse
|