1
|
Zhang X, Yu W, Sun Y, Ye X, He Y, Huang X, Wang F, Lu Y, Zhang J. Anti-Inflammatory Resveratrol Protects Mice From Early Mortality After Haematopoietic Stem Cell Transplantation. J Cell Mol Med 2025; 29:e70395. [PMID: 39900564 PMCID: PMC11790355 DOI: 10.1111/jcmm.70395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
The occurrence of inflammation subsequent to haematopoietic stem cell transplantation is associated with an elevated risk of transplant-related mortality (TRM). However, the duration of inflammation and the potential efficacy of anti-inflammatory agents in reducing TRM remain uncertain. We performed a comprehensive investigation to examine the post-transplantation alterations of inflammatory mediators and to ascertain the correlation between inflammation level and TRM through the neutrophil-lymphocyte ratio, ELISAs and cytometric bead array. The findings revealed that the 30-day interval following transplantation is characterised by the most pronounced inflammatory response in both human and murine subjects, thereby elevating the risk of TRM. The inflammation is primarily caused by myeloid bias during haematopoietic reconstitution, which is a commonly overlooked aspect in clinical transplantation, additionally, a lesser extent of irradiation-induced injury. The administration of the anti-inflammatory agent resveratrol has the potential to reduce systemic inflammation and TRM by suppressing the NOD-like receptor signalling pathway and slowing down granulocyte implantation in HSCT mice. This approach did not impair the differentiation potential of haematopoietic stem cells. These findings demonstrate that the 30-day post-transplant period represents an opportunity to facilitate HSCT colonisation, mitigate transplant-related adverse effects, and potentially reap the benefits of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Xiao Zhang
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and Diseases, School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Wei Yu
- Department of Anesthesiology, the First Affiliated HospitalJinan UniversityGuangzhouGuangdongChina
| | - Yimeng Sun
- School of Clinical MedicineWeifang Medical UniversityWeifangShandongChina
| | - Xinyu Ye
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Yu He
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Xin Huang
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Fuhao Wang
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Yi Lu
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and Diseases, School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Jian Zhang
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and Diseases, School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| |
Collapse
|
2
|
Odabas GP, Aslan K, Suna PA, Kendirli PK, Erdem Ş, Çakır M, Özcan A, Yılmaz E, Karakukcu M, Donmez-Altuntas H, Yay AH, Deniz K, Altay D, Arslan D, Canatan H, Eken A, Unal E. Alantolactone ameliorates graft versus host disease in mice. Int Immunopharmacol 2024; 128:111560. [PMID: 38246003 DOI: 10.1016/j.intimp.2024.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/17/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
The anti-inflammatory and immunosuppressive drugs which are used in the treatment of Graft-versus-Host Disease (GVHD) have limited effects in controlling the severity of the disease. In this study, we aimed to investigate the prophylactic effect of Alantolactone (ALT) in a murine model of experimental GVHD. The study included 4 BALB/c groups as hosts: Naïve (n = 7), Control GVHD (n = 16), ALT-GVHD (n = 16), and Syngeneic transplantation (n = 10). Busulfan (20 mg/kg/day) for 4 days followed by cyclophosphamide (100 mg/kg/day) were administered for conditioning. Allogeneic transplantation was performed with cells collected from mismatched female C57BL/6, and GVHD development was monitored by histological and flow cytometric assays. Additionally, liver biopsies were taken from GVHD patient volunteers between ages 2-18 (n = 4) and non-GVHD patients between ages 2-50 (n = 5) and cultured ex vivo with ALT, and the supernatants were used for ELISA. ALT significantly ameliorated histopathological scores of the GVHD and improved GVHD clinical scores. CD8+ T cells were shown to be reduced after ALT treatment. More importantly, ALT treatment skewed T cells to a more naïve phenotype (CD62L+ CD44-). ALT did not alter Treg cell number or frequency. ALT treatment appears to suppress myeloid cell lineage (CD11c+). Consistent with reduced myeloid lineage, liver and small intestine levels of GM-CSF were reduced in ALT-treated mice. IL-6 gene expression was significantly reduced in the intestinal tissue. Ex vivo ALT-treated liver biopsy samples from GVHD patients showed a trend of decrease in pro-inflammatory cytokines but there was no statistical significance. Collectively, the data indicated that ALT may have immunomodulatory actions in a preclinical murine GVHD model.
Collapse
Affiliation(s)
- Gul Pelin Odabas
- Erciyes University School of Medicine, Department of Pediatrics, Division of Pediatric Hematology and Oncology, Kayseri, Turkiye
| | - Kubra Aslan
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkiye; Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkiye
| | - Pinar Alisan Suna
- Erciyes University School of Medicine, Department of Histology and Embryology, Kayseri, Turkiye
| | - Perihan Kader Kendirli
- Abdullah Gül University, School of Life and Natural Sciences, Department of Bioengineering, Kayseri, Turkiye
| | - Şerife Erdem
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkiye; Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkiye
| | - Mustafa Çakır
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkiye; Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkiye; Van Yuzuncu Yıl University, School of Medicine, Department of Medical Biology, Van, Turkiye
| | - Alper Özcan
- Erciyes University School of Medicine, Department of Pediatrics, Division of Pediatric Hematology and Oncology, Kayseri, Turkiye
| | - Ebru Yılmaz
- Erciyes University School of Medicine, Department of Pediatrics, Division of Pediatric Hematology and Oncology, Kayseri, Turkiye; Erciyes University, Institute of Health Sciences, Department of Blood Banking and Transfusion Medicine, Kayseri, Turkey
| | - Musa Karakukcu
- Erciyes University School of Medicine, Department of Pediatrics, Division of Pediatric Hematology and Oncology, Kayseri, Turkiye
| | - Hamiyet Donmez-Altuntas
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkiye; Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkiye
| | - Arzu Hanim Yay
- Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkiye; Erciyes University School of Medicine, Department of Histology and Embryology, Kayseri, Turkiye
| | - Kemal Deniz
- Erciyes University School of Medicine, Department of Pathology, Kayseri, Turkiye
| | - Derya Altay
- Erciyes University School of Medicine, Department of Pediatric Gastroenterology, Kayseri, Turkiye
| | - Duran Arslan
- Erciyes University School of Medicine, Department of Pediatric Gastroenterology, Kayseri, Turkiye
| | - Halit Canatan
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkiye; Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkiye
| | - Ahmet Eken
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkiye; Betul-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkiye.
| | - Ekrem Unal
- Erciyes University School of Medicine, Department of Pediatrics, Division of Pediatric Hematology and Oncology, Kayseri, Turkiye; Erciyes University, Institute of Health Sciences, Department of Blood Banking and Transfusion Medicine, Kayseri, Turkey; Hasan Kalyoncu University School of Health Sciences, Department of Nursing, Gaziantep, Turkiye; Medical Point Hospital Hematology and Oncology Clinic, Gaziantep, Turkiye.
| |
Collapse
|
3
|
Arnhold V, Chang WY, Jansen SA, Thangavelu G, Calafiore M, Vinci P, Fu YY, Ito T, Takashima S, Egorova A, Kuttiyara J, Perlstein A, van Hoesel M, Liu C, Blazar BR, Lindemans CA, Hanash AM. Corticosteroids impair epithelial regeneration in immune-mediated intestinal damage. J Clin Invest 2024; 134:e155880. [PMID: 38349762 PMCID: PMC10977993 DOI: 10.1172/jci155880] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Corticosteroid treatment (CST) failure is associated with poor outcomes for patients with gastrointestinal (GI) graft-versus-host disease (GVHD). CST is intended to target the immune system, but the glucocorticoid receptor (GR) is widely expressed, including within the intestines, where its effects are poorly understood. Here, we report that corticosteroids (CS) directly targeted intestinal epithelium, potentially worsening immune-mediated GI damage. CS administered to mice in vivo and intestinal organoid cultures ex vivo reduced epithelial proliferation. Following irradiation, immediate CST mitigated GI damage but delayed treatment attenuated regeneration and exacerbated damage. In a murine steroid-refractory (SR) GVHD model, CST impaired epithelial regeneration, worsened crypt loss, and reduced intestinal stem cell (ISC) frequencies. CST also exacerbated immune-mediated damage in organoid cultures with SR, GR-deficient T cells or IFN-γ. These findings correlated with CS-dependent changes in apoptosis-related gene expression and STAT3-related epithelial proliferation. Conversely, IL-22 administration enhanced STAT3 activity and overcame CS-mediated attenuation of regeneration, reducing crypt loss and promoting ISC expansion in steroid-treated mice with GVHD. Therefore, CST has the potential to exacerbate GI damage if it fails to control the damage-inducing immune response, but this risk may be countered by strategies augmenting epithelial regeneration, thus providing a rationale for clinical approaches combining such tissue-targeted therapies with immunosuppression.
Collapse
Affiliation(s)
- Viktor Arnhold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Winston Y. Chang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medical College, New York, New York, USA
| | - Suze A. Jansen
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Stem Cell Transplantation, Princess Maximá Center for Pediatric Oncology, Utrecht, Netherlands
| | - Govindarajan Thangavelu
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marco Calafiore
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Paola Vinci
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ya-Yuan Fu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Takahiro Ito
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shuichiro Takashima
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Hematology, NHO Kyushu Medical Center, Fukuoka, Fukuoka, Japan
| | - Anastasiya Egorova
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jason Kuttiyara
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Adam Perlstein
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marliek van Hoesel
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Stem Cell Transplantation, Princess Maximá Center for Pediatric Oncology, Utrecht, Netherlands
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Caroline A. Lindemans
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center (UMC) Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Stem Cell Transplantation, Princess Maximá Center for Pediatric Oncology, Utrecht, Netherlands
| | - Alan M. Hanash
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medical College, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, and Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
4
|
T Cell Energy Metabolism Is a Target of Glucocorticoids in Mice, Healthy Humans, and MS Patients. Cells 2023; 12:cells12030450. [PMID: 36766792 PMCID: PMC9914408 DOI: 10.3390/cells12030450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Glucocorticoids (GCs) are used to treat inflammatory disorders such as multiple sclerosis (MS) by exerting prominent activities in T cells including apoptosis induction and suppression of cytokine production. However, little is known about their impact on energy metabolism, although it is widely accepted that this process is a critical rheostat of T cell activity. We thus tested the hypothesis that GCs control genes and processes involved in nutrient transport and glycolysis. Our experiments revealed that escalating doses of dexamethasone (Dex) repressed energy metabolism in murine and human primary T cells. This effect was mediated by the GC receptor and unrelated to both apoptosis induction and Stat1 activity. In contrast, treatment of human T cells with rapamycin abolished the repression of metabolic gene expression by Dex, unveiling mTOR as a critical target of GC action. A similar phenomenon was observed in MS patients after intravenous methylprednisolon (IVMP) pulse therapy. The expression of metabolic genes was reduced in the peripheral blood T cells of most patients 24 h after GC treatment, an effect that correlated with disease activity. Collectively, our results establish the regulation of T cell energy metabolism by GCs as a new immunomodulatory principle.
Collapse
|
5
|
Rocamora-Reverte L, Villunger A, Wiegers GJ. Cell-Specific Immune Regulation by Glucocorticoids in Murine Models of Infection and Inflammation. Cells 2022; 11:cells11142126. [PMID: 35883569 PMCID: PMC9324070 DOI: 10.3390/cells11142126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids (GC) are highly potent negative regulators of immune and inflammatory responses. Effects of GC are primarily mediated by the glucocorticoid receptor (GR) which is expressed by all cell types of the immune system. It is, therefore, difficult to elucidate how endogenous GC mediate their effects on immune responses that involve multiple cellular interactions between various immune cell subsets. This review focuses on endogenous GC targeting specific cells of the immune system in various animal models of infection and inflammation. Without the timed release of these hormones, animals infected with various microbes or challenged in inflammatory disease models succumb as a consequence of overshooting immune and inflammatory responses. A clearer picture is emerging that endogenous GC thereby act in a cell-specific and disease model-dependent manner, justifying the need to develop techniques that target GC to individual immune cell types for improved clinical application.
Collapse
Affiliation(s)
- Lourdes Rocamora-Reverte
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - G. Jan Wiegers
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
- Correspondence:
| |
Collapse
|
6
|
Dacic M, Shibu G, Rogatsky I. Physiological Convergence and Antagonism Between GR and PPARγ in Inflammation and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:123-141. [PMID: 36107316 DOI: 10.1007/978-3-031-11836-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nuclear receptors (NRs) are transcription factors that modulate gene expression in a ligand-dependent manner. The ubiquitously expressed glucocorticoid receptor (GR) and peroxisome proliferator-activated receptor gamma (PPARγ) represent steroid (type I) and non-steroid (type II) classes of NRs, respectively. The diverse transcriptional and physiological outcomes of their activation are highly tissue-specific. For example, in subsets of immune cells, such as macrophages, the signaling of GR and PPARγ converges to elicit an anti-inflammatory phenotype; in contrast, in the adipose tissue, their signaling can lead to reciprocal metabolic outcomes. This review explores the cooperative and divergent outcomes of GR and PPARγ functions in different cell types and tissues, including immune cells, adipose tissue and the liver. Understanding the coordinated control of these NR pathways should advance studies in the field and potentially pave the way for developing new therapeutic approaches to exploit the GR:PPARγ crosstalk.
Collapse
Affiliation(s)
- Marija Dacic
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Gayathri Shibu
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA.
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
7
|
Lasagni Vitar RM, Bonelli F, Atay A, Triani F, Fonteyne P, Di Simone E, Rama P, Mondino A, Ferrari G. Topical neurokinin-1 receptor antagonist Fosaprepitant ameliorates ocular graft-versus-host disease in a preclinical mouse model. Exp Eye Res 2021; 212:108825. [PMID: 34740637 DOI: 10.1016/j.exer.2021.108825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 11/15/2022]
Abstract
PURPOSE to assess the effect of topical administration of the Neurokin-1 receptor (NK1R) antagonist Fosaprepitant in a pre-clinical model of ocular Graft-versus-Host disease (GVHD). METHODS BALB/c mice were pre-conditioned by myeloablative total body irradiation and subjected to allogeneic bone marrow transplantation and mature T cell infusion (BM + T). BM-transplanted mice (BM) were used as controls. Ocular GVHD was specifically assessed by quantifying corneal epithelial damage, tear secretion, blepharitis and phimosis, 3 times/week for 28 days post-transplantation. A group of BM + T mice received Fosaprepitant 10 mg/mL, 6 times/day, topically, from day 7-29 after transplantation. After sacrifice, the expression of NK1R, CD45, CD3, and CXCL10 was quantified in the cornea, conjunctiva, and lacrimal gland by immunohistochemistry. RESULTS BM + T mice developed corneal epithelial damage (day 0-29, p < 0.001), blepharitis (day 0-29, p < 0.001), and phimosis (day 0-29, p < 0.01), and experienced decreased tear secretion (day 21, p < 0.01) compared to controls. NK1R was found upregulated in corneal epithelium (p < 0.01) and lacrimal gland (p < 0.01) of BM + T mice. Fosaprepitant administration significantly reduced corneal epithelial damage (p < 0.05), CD45+ (p < 0.05) and CD3+ (p < 0.01) immune cell infiltration in the cornea and conjunctiva (p < 0.001 and p < 0.001, respectively). In addition, Fosaprepitant reduced the expression of CXCL10 in the cornea (p < 0.05) and in the lacrimal gland (p < 0.05). CONCLUSIONS Our results suggest that NK1R represents a novel druggable pathway for the therapy of ocular GVHD.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Bonelli
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ayça Atay
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Triani
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Fonteyne
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Di Simone
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Karl F, Hudecek M, Berberich-Siebelt F, Mackensen A, Mougiakakos D. T-Cell Metabolism in Graft Versus Host Disease. Front Immunol 2021; 12:760008. [PMID: 34777373 PMCID: PMC8586445 DOI: 10.3389/fimmu.2021.760008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 01/23/2023] Open
Abstract
Allogeneic-hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment option for numerous hematological malignancies. Elimination of malignant cells depends on the T-cells' Graft-versus-Tumor (GvT) effect. However, Graft-versus-Host-Disease (GvHD), often co-occurring with GvT, remains an obstacle for therapeutic efficacy. Hence, approaches, which selectively alleviate GvHD without compromising GvT activity, are needed. As already explored for autoimmune and inflammatory disorders, immuno-metabolic interventions pose a promising option to address this unmet challenge. Being embedded in a complex regulatory framework, immunological and metabolic pathways are closely intertwined, which is demonstrated by metabolic reprograming of T-cells upon activation or differentiation. In this review, current knowledge on the immuno-metabolic signature of GvHD-driving T-cells is summarized and approaches to metabolically interfere are outlined. Furthermore, we address the metabolic impact of standard medications for GvHD treatment and prophylaxis, which, in conjunction with the immuno-metabolic profile of alloreactive T-cells, could allow more targeted interventions in the future.
Collapse
Affiliation(s)
- Franziska Karl
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | | | - Andreas Mackensen
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
9
|
Reichardt SD, Amouret A, Muzzi C, Vettorazzi S, Tuckermann JP, Lühder F, Reichardt HM. The Role of Glucocorticoids in Inflammatory Diseases. Cells 2021; 10:cells10112921. [PMID: 34831143 PMCID: PMC8616489 DOI: 10.3390/cells10112921] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
For more than 70 years, glucocorticoids (GCs) have been a powerful and affordable treatment option for inflammatory diseases. However, their benefits do not come without a cost, since GCs also cause side effects. Therefore, strong efforts are being made to improve their therapeutic index. In this review, we illustrate the mechanisms and target cells of GCs in the pathogenesis and treatment of some of the most frequent inflammatory disorders affecting the central nervous system, the gastrointestinal tract, the lung, and the joints, as well as graft-versus-host disease, which often develops after hematopoietic stem cell transplantation. In addition, an overview is provided of novel approaches aimed at improving GC therapy based on chemical modifications or GC delivery using nanoformulations. GCs remain a topic of highly active scientific research despite being one of the oldest class of drugs in medical use.
Collapse
Affiliation(s)
- Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Agathe Amouret
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
- Correspondence: ; Tel.: +49-551-3963365
| |
Collapse
|
10
|
A flow cytometric approach to study glucocorticoid receptor expression in immune cell subpopulations of genetically engineered mice. Immunol Lett 2021; 233:68-79. [PMID: 33753134 DOI: 10.1016/j.imlet.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022]
Abstract
Glucocorticoids (GCs) constitute one of the most powerful classes of anti-inflammatory agents and are used for the treatment of a plethora of diseases related to autoimmunity, allergy, cancer, and infection. In the last two decades, multiple studies using genetically engineered mice with targeted deletions of the GC receptor (GR) in individual cell types have provided insights into the mechanisms of GCs in the control of the immune system. The characterization of GR expression in these mouse models, however, mostly relied on the analysis of mRNA expression or reporter gene activity. In contrast, approaches directly detecting the GR protein on a cellular level are scarce. Thus, we here used a flow cytometric method to analyze mice in which the GR gene locus was disrupted with the help of a Cre recombinase expressed under the control of either the lck or the lysM promoter. Measuring GR protein expression in immune cell subpopulations unveiled an efficient and highly selective depletion in both strains of knock-out mice in accordance with the expected cellular specificity of the employed promoters for T cells or myeloid cells, respectively. The flow cytometric data were well in line with those from the analysis of GR mRNA expression in magnetically sorted immune cell subpopulations but they could be obtained much more quickly. In summary, our data indicate that flow cytometry is a powerful tool with which to define GR protein content at a single cell level when studying the function of GCs in the immune system.
Collapse
|
11
|
Wood M, Whirledge S. Mechanism of glucocorticoid action in immunology—Basic concepts. REPRODUCTIVE IMMUNOLOGY 2021:147-170. [DOI: 10.1016/b978-0-12-818508-7.00020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Kaiser TK, Li H, Roßmann L, Reichardt SD, Bohnenberger H, Feldmann C, Reichardt HM. Glucocorticoids delivered by inorganic-organic hybrid nanoparticles mitigate acute graft-versus-host disease and sustain graft-versus-leukemia activity. Eur J Immunol 2020; 50:1220-1233. [PMID: 32133644 DOI: 10.1002/eji.201948464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/29/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Abstract
Glucocorticoids (GCs) are widely used to treat acute graft-versus-host disease (aGvHD) due to their immunosuppressive activity, but they also reduce the beneficial graft-versus-leukemia (GvL) effect of the allogeneic T cells contained in the graft. Here, we tested whether aGvHD therapy could be improved by delivering GCs with the help of inorganic-organic hybrid nanoparticles (IOH-NPs) that preferentially target myeloid cells. IOH-NPs containing the GC betamethasone (BMP-NPs) efficiently reduced morbidity, mortality, and tissue damage in a totally MHC mismatched mouse model of aGvHD. Therapeutic activity was lost in mice lacking the GC receptor (GR) in myeloid cells, confirming the cell type specificity of our approach. BMP-NPs had no relevant systemic activity but suppressed cytokine and chemokine gene expression locally in the small intestine, which presumably explains their mode of action. Most importantly, BMP-NPs delayed the development of an adoptively transferred B cell lymphoma better than the free drug, although the overall incidence was unaffected. Our findings thus suggest that employing IOH-NPs could diminish the risk of relapse associated with GC therapy of aGvHD patients while still allowing to efficiently ameliorate the disease.
Collapse
Affiliation(s)
- Tina K Kaiser
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Hu Li
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Laura Roßmann
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Sybille D Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Claus Feldmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Magnusson L, Barcenilla H, Pihl M, Bensing S, Espes D, Carlsson PO, Casas R. Mass Cytometry Studies of Patients With Autoimmune Endocrine Diseases Reveal Distinct Disease-Specific Alterations in Immune Cell Subsets. Front Immunol 2020; 11:288. [PMID: 32153591 PMCID: PMC7047233 DOI: 10.3389/fimmu.2020.00288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 01/10/2023] Open
Abstract
Although there is evidence that autoimmune diseases share similar immunogenetic mechanisms, studies comparing peripheral CD45+ cells from patients with autoimmune endocrine diseases in parallel are limited. In this study, we applied high-dimensional single-cell mass cytometry to phenotypically characterize PBMC from patients with new-onset (N-T1D) and long-standing type 1 diabetes, Hashimoto's thyroiditis (HT), Graves' disease and autoimmune Addison's disease (AD), as well as healthy controls. The frequency of CD20loCD27hiCD38hiHLA-DRint plasmablasts, CD86+CD14loCD16+ non-classical monocytes and two subsets of CD56dimHLA-DR+IFN-γ+ NK cells were increased in patients with HT. Subsets of CD56dimCD69+HLA-DR- NK cells and CD8+ TEMRA cells, both expressing IFN-γ, were expanded and reduced, respectively, in the N-T1D group. In addition, patients with AD were characterized by an increased percentage of central memory CD8+ T cells that expressed CCR4, GATA3, and IL-2. We demonstrate that patients with N-T1D, HT, and AD had altered frequencies of distinct subsets within antigen-presenting and cytotoxic cell lineages. Previously unreported alterations of specific cell subsets were identified in samples from patients with HT and AD. Our study might contribute to a better understanding of shared and diverging immunological features between autoimmune endocrine diseases.
Collapse
Affiliation(s)
- Louise Magnusson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Division of Children and Women Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hugo Barcenilla
- Division of Children and Women Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mikael Pihl
- Core Facility Flow Cytometry Unit, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Sophie Bensing
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Espes
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Rosaura Casas
- Division of Children and Women Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Li H, Kaiser TK, Borschiwer M, Bohnenberger H, Reichardt SD, Lühder F, Walter L, Dressel R, Meijsing SH, Reichardt HM. Glucocorticoid resistance of allogeneic T cells alters the gene expression profile in the inflamed small intestine of mice suffering from acute graft-versus-host disease. J Steroid Biochem Mol Biol 2019; 195:105485. [PMID: 31561002 DOI: 10.1016/j.jsbmb.2019.105485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/20/2019] [Accepted: 09/21/2019] [Indexed: 01/20/2023]
Abstract
Glucocorticoids (GCs) play an important role in controlling acute graft-versus-host disease (aGvHD), a frequent complication of allogeneic hematopoietic stem cell transplantation. The anti-inflammatory activity of GCs is mainly ascribed to the modulation of T cells and macrophages, for which reason a genetically induced GC resistance of either of these cell types causes aggravated aGvHD. Since only a few genes are currently known that are differentially regulated under these conditions, we analyzed the expression of 54 candidate genes in the inflamed small intestine of mice suffering from aGvHD when either allogeneic T cells or host myeloid cells were GC resistant using a microfluidic dynamic array platform for high-throughput quantitative PCR. The majority of genes categorized as cytokines (e.g. Il2, Il6), chemokines (e.g. Ccl2, Cxcl1), cell surface receptors (e.g. Fasl, Ctla4) and intracellular molecules (e.g. Dusp1, Arg1) were upregulated in mice transplanted with GC resistant allogeneic T cells. Moreover, the expression of several genes linked to energy metabolism (e.g. Glut1) was altered. Surprisingly, mice harboring GC resistant myeloid cells showed almost no changes in gene expression despite their fatal disease course after aGvHD induction. To identify additional genes in the inflamed small intestine that were affected by a GC resistance of allogeneic T cells, we performed an RNAseq analysis, which uncovered more than 500 differentially expressed transcripts (e.g. Cxcr6, Glut3, Otc, Aoc1, Il1r1, Sphk1) that were enriched for biological processes associated with inflammation and tissue disassembly. The changes in gene expression could be confirmed during full-blown disease but hardly any of them in the preclinical phase using high-throughput quantitative PCR. Further analysis of some of these genes revealed a highly selective expression pattern in T cells, intestinal epithelial cells and macrophages, which correlated with their regulation during disease progression. Collectively, we identified an altered gene expression profile caused by GC resistance of transplanted allogeneic T cells, which could help to define new targets for aGvHD therapy.
Collapse
Affiliation(s)
- Hu Li
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Tina K Kaiser
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Marina Borschiwer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63, 14195 Berlin, Germany
| | - Hanibal Bohnenberger
- University Medical Center Göttingen, Institute for Pathology, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Sybille D Reichardt
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Fred Lühder
- University Medical Center Göttingen, Institute for Neuroimmunology and Multiple Sclerosis Research, von-Siebold-Straße 3a, 37075 Göttingen, Germany
| | - Lutz Walter
- German Primate Center, Leibniz Institute for Primate Research, Primate Genetics Laboratory, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ralf Dressel
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | | | - Holger M Reichardt
- University Medical Center Göttingen, Institute for Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany.
| |
Collapse
|
15
|
Yun HD, Varma A, Hussain MJ, Nathan S, Brunstein C. Clinical Relevance of Immunobiology in Umbilical Cord Blood Transplantation. J Clin Med 2019; 8:1968. [PMID: 31739455 PMCID: PMC6912281 DOI: 10.3390/jcm8111968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
Umbilical cord blood transplantation (UCBT) has been an important donor source for allogeneic hematopoietic stem cell transplantation, especially for patients who lack suitable matched donors. UCBT provides unique practical advantages, such as lower risks of graft-versus-host-disease (GVHD), permissive HLA mismatch, and ease of procurement. However, there are clinical challenges in UCBT, including high infection rates and treatment-related mortality in selected patient groups. These clinical advantages and challenges are tightly linked with cell-type specific immune reconstitution (IR). Here, we will review IR, focusing on T and NK cells, and the impact of IR on clinical outcomes. Better understanding of the immune biology in UCBT will allow us to further advance this field with improved clinical practice.
Collapse
Affiliation(s)
- Hyun Don Yun
- Division of Hematology, Oncology and Cellular Therapy, Department of Medicine, Rush University, Chicago, IL 60091, USA; (H.D.Y.); (A.V.); (M.J.H.); (S.N.)
| | - Ankur Varma
- Division of Hematology, Oncology and Cellular Therapy, Department of Medicine, Rush University, Chicago, IL 60091, USA; (H.D.Y.); (A.V.); (M.J.H.); (S.N.)
| | - Mohammad J. Hussain
- Division of Hematology, Oncology and Cellular Therapy, Department of Medicine, Rush University, Chicago, IL 60091, USA; (H.D.Y.); (A.V.); (M.J.H.); (S.N.)
| | - Sunita Nathan
- Division of Hematology, Oncology and Cellular Therapy, Department of Medicine, Rush University, Chicago, IL 60091, USA; (H.D.Y.); (A.V.); (M.J.H.); (S.N.)
| | - Claudio Brunstein
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 60612, USA
| |
Collapse
|
16
|
Du W, Cao X. Cytotoxic Pathways in Allogeneic Hematopoietic Cell Transplantation. Front Immunol 2018; 9:2979. [PMID: 30631325 PMCID: PMC6315278 DOI: 10.3389/fimmu.2018.02979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic malignancies, and other hematologic and immunologic diseases. Donor-derived immune cells identify and attack cancer cells in the patient producing a unique graft-vs.-tumor (GVT) effect. This beneficial response renders allo-HCT one of the most effective forms of tumor immunotherapy. However, alloreactive donor T cells can damage normal host cells thereby causing graft-vs.-host disease (GVHD), which results in substantial morbidity and mortality. To date, GVHD remains as the major obstacle for more successful application of allo-HCT. Of special significance in this context are a number of cytotoxic pathways that are involved in GVHD and GVT response as well as donor cell engraftment. In this review, we summarize progress in the investigation of these cytotoxic pathways, including Fas/Fas ligand (FasL), perforin/granzyme, and cytokine pathways. Many studies have delineated their distinct operating mechanisms and how they are involved in the complex cellular interactions amongst donor, host, tumor, and infectious pathogens. Driven by progressing elucidation of their contributions in immune reconstitution and regulation, various interventional strategies targeting these pathways have entered translational stages with aims to improve the effectiveness of allo-HCT.
Collapse
Affiliation(s)
- Wei Du
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Xuefang Cao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.,Department of Microbiology and Immunology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
17
|
Bell K, Und Hohenstein-Blaul NVT, Teister J, Grus F. Modulation of the Immune System for the Treatment of Glaucoma. Curr Neuropharmacol 2018; 16:942-958. [PMID: 28730968 PMCID: PMC6120111 DOI: 10.2174/1570159x15666170720094529] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/17/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Background: At present intraocular pressure (IOP) lowering therapies are the only approach to treat glaucoma. Neuroprotective strategies to protect the retinal ganglion cells (RGC) from apoptosis are lacking to date. Substantial amount of research concerning the role of the immune system in glaucoma has been performed in the recent years. This review aims to analyse changes found in the peripheral immune system, as well as selected local changes of retina immune cells in the glaucomatous retina. Methods: By dividing the immune system into the innate and the adaptive immune system, a systematic literature research was performed to find recent approaches concerning the modulation of the immune system in the context of glaucoma. Also ClinicalTrials.gov was assessed to identify studies with a translational context. Results: We found that some aspects of the immune system, such as changes in antibody levels, changes in toll like receptor signalling, T cells and retinal microglial cells, experience more research activity than other areas such as changes in dendritic cells or macrophages. Briefly, results from clinical studies revealed altered immunoreactivities against retinal and optic nerve antigens in sera and aqueous humor of glaucoma patients and point toward an autoimmune involvement in glaucomatous neurodegeneration and RGC death. IgG accumulations along with plasma cells were found localised in human glaucomatous retinae in a pro-inflammatory environment possibly maintained by microglia. Animal studies show that antibodies (e.g. anti- heat shock protein 60 and anti-myelin basic protein) elevated in glaucoma patients provoke autoaggressive RGC loss and are associated with IgG depositions and increased microglial cells. Also, studies addressing changes in T lymphocytes, macrophages but also local immune responses in the retina have been performed and also hold promising results. Conclusions: This recapitulation of recent literature demonstrates that the immune system definitely plays a role in the pathogenesis of glaucoma. Multiple changes in the peripheral innate as well as adaptive immune system have been detected and give room for further research concerning valuable therapeutic targets. We conclude that there still is a great need to bring together the results derived from basic research analysing different aspects of the immune system in glaucoma to understand the immune context of the disease. Furthermore local immune changes in the retina of glaucoma patients still leave room for further therapeutic targets
Collapse
Affiliation(s)
- Katharina Bell
- Experimental and Translational Ophthalmology Mainz, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstrasse 1, 55101 Mainz, Germany
| | - Nadine von Thun Und Hohenstein-Blaul
- Experimental and Translational Ophthalmology Mainz, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstrasse 1, 55101 Mainz, Germany
| | - Julia Teister
- Experimental and Translational Ophthalmology Mainz, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstrasse 1, 55101 Mainz, Germany
| | - Franz Grus
- Experimental and Translational Ophthalmology Mainz, Department of Ophthalmology, Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstrasse 1, 55101 Mainz, Germany
| |
Collapse
|
18
|
Murine Models of Steroid Refractory Graft-versus-Host Disease. Sci Rep 2018; 8:12475. [PMID: 30127532 PMCID: PMC6102256 DOI: 10.1038/s41598-018-30814-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022] Open
Abstract
Corticosteroids are the first line therapy for acute graft-versus-host disease (GVHD). However, the outcome of steroid refractory GVHD (SR-GVHD) is poor due to a lack of effective treatments. The development of therapies for SR-GVHD is limited by an incomplete understanding of its pathophysiology partly because of the absence of clinically relevant animal models of SR-GVHD. Here we addressed the need for a SR-GVHD animal model by developing both MHC matched multiple minor histocompatibility antigens (miHAs) mismatched and MHC mismatched haploidentical murine models of SR-GVHD. We demonstrate that animals can develop SR-GVHD regardless of whether steroids are initiated early or late post allogeneic bone marrow transplantation (allo-BMT). In general, we observed increased GVHD specific histopathological damage of target organs in SR-GVHD animals relative to steroid responsive animals. Interestingly, we found no significant differences in donor T cell characteristics between steroid refractory and responsive animals suggesting that donor T cell independent mechanisms may play more prominent roles in the pathogenesis of SR-GVHD than was considered previously.
Collapse
|
19
|
Concepcion KR, Zhang L. Corticosteroids and perinatal hypoxic-ischemic brain injury. Drug Discov Today 2018; 23:1718-1732. [PMID: 29778695 DOI: 10.1016/j.drudis.2018.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/13/2018] [Accepted: 05/11/2018] [Indexed: 01/15/2023]
Abstract
Perinatal hypoxic-ischemic (HI) brain injury is the major cause of neonatal mortality and severe long-term neurological morbidity. Yet, the effective therapeutic interventions currently available are extremely limited. Corticosteroids act on both mineralocorticoid (MR) and glucocorticoid (GR) receptors and modulate inflammation and apoptosis in the brain. Neuroinflammatory response to acute cerebral HI is a major contributor to the pathophysiology of perinatal brain injury. Here, we give an overview of current knowledge of corticosteroid-mediated modulations of inflammation and apoptosis in the neonatal brain, focusing on key regulatory cells of the innate and adaptive immune response. In addition, we provide new insights into targets of MR and GR in potential therapeutic strategies that could be beneficial for the treatment of infants with HI brain injury.
Collapse
Affiliation(s)
- Katherine R Concepcion
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
20
|
The glucocorticoid receptor in recipient cells keeps cytokine secretion in acute graft-versus-host disease at bay. Oncotarget 2018; 9:15437-15450. [PMID: 29643984 PMCID: PMC5884639 DOI: 10.18632/oncotarget.24602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/24/2018] [Indexed: 11/25/2022] Open
Abstract
Graft-versus-host disease (GvHD) is a life-threatening complication of hematopoietic stem cell transplantation (HSCT), which is caused by allogeneic T cells recognizing molecules of the recipient as foreign. Endogenous glucocorticoids (GC) released from the adrenal gland are crucial in regulating such inflammatory diseases. Here we demonstrate that genetically engineered mice, that are largely unresponsive to GC, suffer from aggravated clinical symptoms and increased mortality after HSCT, effects that could be tempered by neutralization of IL-6. Interestingly, selective ablation of the GC receptor (GR) in recipient myeloid cells resulted in fulminant disease as well. While histopathological analysis of the jejunum failed to reveal any differences between sick mice of both genotypes, systemic IL-6 and TNFα secretion was strongly increased in transplanted mice lacking the GR in myeloid cells briefly before the majority of them succumbed to the disease. Collectively, our findings reveal an important role of the GR in recipient cells in limiting the cytokine storm caused by GvHD induction.
Collapse
|
21
|
Whirledge S, DeFranco DB. Glucocorticoid Signaling in Health and Disease: Insights From Tissue-Specific GR Knockout Mice. Endocrinology 2018; 159:46-64. [PMID: 29029225 PMCID: PMC5761604 DOI: 10.1210/en.2017-00728] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
Glucocorticoids are adrenally produced hormones critically involved in development, general physiology, and control of inflammation. Since their discovery, glucocorticoids have been widely used to treat a variety of inflammatory conditions. However, high doses or prolonged use leads to a number of side effects throughout the body, which preclude their clinical utility. The primary actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), a transcription factor that regulates many complex signaling pathways. Although GR is nearly ubiquitous throughout the body, glucocorticoids exhibit cell- and tissue-specific effects. For example, glucocorticoids stimulate glucose production in the liver, reduce glucose uptake in the skeletal muscle, and decrease insulin secretion from the pancreatic β-cells. Mouse models represent an important approach to understanding the dynamic functions of GR signaling in normal physiology, disease, and resistance. In the absence of a viable GR null model, gene-targeting techniques utilizing promoter-driven recombination have provided an opportunity to characterize the tissue-specific actions of GR. The aim of the present review is to describe the organ systems in which GR has been conditionally deleted and summarize the functions ascribed to glucocorticoid action in those tissues.
Collapse
Affiliation(s)
- Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06520
| | - Donald B. DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
22
|
Klaßen C, Karabinskaya A, Dejager L, Vettorazzi S, Van Moorleghem J, Lühder F, Meijsing SH, Tuckermann JP, Bohnenberger H, Libert C, Reichardt HM. Airway Epithelial Cells Are Crucial Targets of Glucocorticoids in a Mouse Model of Allergic Asthma. THE JOURNAL OF IMMUNOLOGY 2017; 199:48-61. [PMID: 28515280 DOI: 10.4049/jimmunol.1601691] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/25/2017] [Indexed: 11/19/2022]
Abstract
Although glucocorticoids (GCs) are a mainstay in the clinical management of asthma, the target cells that mediate their therapeutic effects are unknown. Contrary to our expectation, we found that GC receptor (GR) expression in immune cells was dispensable for successful therapy of allergic airway inflammation (AAI) with dexamethasone. Instead, GC treatment was compromised in mice expressing a defective GR in the nonhematopoietic compartment or selectively lacking the GR in airway epithelial cells. Further, we found that an intact GR dimerization interface was a prerequisite for the suppression of AAI and airway hyperresponsiveness by GCs. Our observation that the ability of dexamethasone to modulate gene expression in airway epithelial cells coincided with its potency to resolve AAI supports a crucial role for transcriptional regulation by the GR in this cell type. Taken together, we identified an unknown mode of GC action in the treatment of allergic asthma that might help to develop more specific therapies in the future.
Collapse
Affiliation(s)
- Carina Klaßen
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Anna Karabinskaya
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Lien Dejager
- Inflammation Research Center, Flanders Institute for Biotechnology, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, University of Ghent, 9052 Ghent, Belgium
| | - Sabine Vettorazzi
- Institute of Comparative Endocrinology, University of Ulm, 89081 Ulm, Germany
| | | | - Fred Lühder
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | | | - Jan P Tuckermann
- Institute of Comparative Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Claude Libert
- Inflammation Research Center, Flanders Institute for Biotechnology, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, University of Ghent, 9052 Ghent, Belgium
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
23
|
Gam R, Shah P, Crossland RE, Norden J, Dickinson AM, Dressel R. Genetic Association of Hematopoietic Stem Cell Transplantation Outcome beyond Histocompatibility Genes. Front Immunol 2017; 8:380. [PMID: 28421078 PMCID: PMC5377073 DOI: 10.3389/fimmu.2017.00380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
The outcome of hematopoietic stem cell transplantation (HSCT) is controlled by genetic factors among which the leukocyte antigen human leukocyte antigen (HLA) matching is most important. In addition, minor histocompatibility antigens and non-HLA gene polymorphisms in genes controlling immune responses are known to contribute to the risks associated with HSCT. Besides single-nucleotide polymorphisms (SNPs) in protein coding genes, SNPs in regulatory elements such as microRNAs (miRNAs) contribute to these genetic risks. However, genetic risks require for their realization the expression of the respective gene or miRNA. Thus, gene and miRNA expression studies may help to identify genes and SNPs that indeed affect the outcome of HSCT. In this review, we summarize gene expression profiling studies that were performed in recent years in both patients and animal models to identify genes regulated during HSCT. We discuss SNP–mRNA–miRNA regulatory networks and their contribution to the risks associated with HSCT in specific examples, including forkheadbox protein 3 and regulatory T cells, the role of the miR-155 and miR-146a regulatory network for graft-versus-host disease, and the function of MICA and its receptor NKG2D for the outcome of HSCT. These examples demonstrate how SNPs affect expression or function of proteins that modulate the alloimmune response and influence the outcome of HSCT. Specific miRNAs targeting these genes and directly affecting expression of mRNAs are identified. It might be valuable in the future to determine SNPs and to analyze miRNA and mRNA expression in parallel in cohorts of HSCT patients to further elucidate genetic risks of HSCT.
Collapse
Affiliation(s)
- Rihab Gam
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Rachel E Crossland
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jean Norden
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M Dickinson
- Hematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Abstract
Glucocorticoids (GCs; referred to clinically as corticosteroids) are steroid hormones with potent anti-inflammatory and immune modulatory profiles. Depending on the context, these hormones can also mediate pro-inflammatory activities, thereby serving as primers of the immune system. Their target receptor, the GC receptor (GR), is a multi-tasking transcription factor, changing its role and function depending on cellular and organismal needs. To get a clearer idea of how to improve the safety profile of GCs, recent studies have investigated the complex mechanisms underlying GR functions. One of the key findings includes both pro- and anti-inflammatory roles of GR, and a future challenge will be to understand how such paradoxical findings can be reconciled and how GR ultimately shifts the balance to a net anti-inflammatory profile. As such, there is consensus that GR deserves a second life as a drug target, with either refined classic GCs or a novel generation of nonsteroidal GR-targeting molecules, to meet the increasing clinical needs of today to treat inflammation and cancer.
Collapse
|
25
|
Fischer HJ, Sie C, Schumann E, Witte AK, Dressel R, van den Brandt J, Reichardt HM. The Insulin Receptor Plays a Critical Role in T Cell Function and Adaptive Immunity. THE JOURNAL OF IMMUNOLOGY 2017; 198:1910-1920. [PMID: 28115529 DOI: 10.4049/jimmunol.1601011] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/27/2016] [Indexed: 12/25/2022]
Abstract
T cell activation is an energy-demanding process fueled by increased glucose consumption and accompanied by upregulation of the insulin receptor (INSR). In this article, we report that silencing the INSR in inducible knockdown rats impairs selective T cell functions but not thymocyte development. Glucose transport and glycolysis in activated CD4+ T cells were compromised in the absence of the INSR, which was associated with alterations in intracellular signaling pathways. The observed metabolic defects coincided with reduced cytokine production, proliferation, and migration, as well as increased apoptosis of CD4+ T cells. The cytotoxicity of CD8+ T cells in response to alloantigens was also diminished under these conditions, whereas the frequency and suppressive capacity of regulatory T cells were unaffected. The observed impairments proved to be decisive in vivo because silencing of the INSR attenuated clinical symptoms in animal models of acute graft-versus-host disease and multiple sclerosis. Taken together, our results suggest that upregulation of the INSR on T cells following activation is required for efficient adaptive immunity.
Collapse
Affiliation(s)
- Henrike J Fischer
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and.,Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Christopher Sie
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Eric Schumann
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Ann-Kathrin Witte
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Ralf Dressel
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Jens van den Brandt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; and
| |
Collapse
|
26
|
Boieri M, Shah P, Dressel R, Inngjerdingen M. The Role of Animal Models in the Study of Hematopoietic Stem Cell Transplantation and GvHD: A Historical Overview. Front Immunol 2016; 7:333. [PMID: 27625651 PMCID: PMC5003882 DOI: 10.3389/fimmu.2016.00333] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone marrow transplantation (BMT) is the only therapeutic option for many hematological malignancies, but its applicability is limited by life-threatening complications, such as graft-versus-host disease (GvHD). The last decades have seen great advances in the understanding of BMT and its related complications; in particular GvHD. Animal models are beneficial to study complex diseases, as they allow dissecting the contribution of single components in the development of the disease. Most of the current knowledge on the therapeutic mechanisms of BMT derives from studies in animal models. Parallel to BMT, the understanding of the pathophysiology of GvHD, as well as the development of new treatment regimens, has also been supported by studies in animal models. Pre-clinical experimentation is the basis for deep understanding and successful improvements of clinical applications. In this review, we retrace the history of BMT and GvHD by describing how the studies in animal models have paved the way to the many advances in the field. We also describe how animal models contributed to the understanding of GvHD pathophysiology and how they are fundamental for the discovery of new treatments.
Collapse
Affiliation(s)
- Margherita Boieri
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Marit Inngjerdingen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
27
|
Chen P, Urzua CA, Knickelbein JE, Kim JS, Li Z, Hannes S, Kuo D, Chaigne-Delalande B, Armbrust K, Tucker W, Liu B, Agrón E, Sen HN, Nussenblatt RB. Elevated CD1c+ Myeloid Dendritic Cell Proportions Associate With Clinical Activity and Predict Disease Reactivation in Noninfectious Uveitis. Invest Ophthalmol Vis Sci 2016; 57:1765-72. [PMID: 27070110 PMCID: PMC4849533 DOI: 10.1167/iovs.15-18357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To test the association between elevated proportions of CD1c+ myeloid dendritic cells (mDCs) and disease activation/reactivation in noninfectious uveitis. METHODS Noninfectious uveitis patients (n = 89) and healthy controls (n = 111) were recruited. The proportion of CD1c+ mDCs in the total dendritic cell (DC) population of peripheral blood was measured by flow cytometry (CD1c+ mDCs gated on Lineage 1+HLADR+ DCs). Disease activity was assessed per Standardization of Uveitis Nomenclature criteria. Uveitis reactivation was ascribed to clinically quiescent patients who developed reactivation of intraocular inflammation within 6 months. RESULTS The proportions of CD1c+ mDCs were increased in noninfectious uveitis patients, especially in active disease, compared to healthy controls. This CD1c+ mDC elevation was not associated with underlying systemic diseases, anatomic locations of uveitis, medications, or demographic factors. Longitudinal data showed that the dynamics of CD1c+ mDC levels were correlated with disease activity. The average proportion of CD1c+ mDCs in active uveitis patients was 60% so we set this as the cutoff between high and low CD1c+ mDC levels. Although 74% of quiescent patients had low proportions of CD1c+ mDCs, 26% still had high proportions. Quiescent patients with high CD1c+ mDC proportions showed increased risk of disease reactivation, compared to quiescent patients with low CD1c+ mDC proportions. CONCLUSIONS Increased proportions of CD1c+ mDCs were associated with clinical activity, and quiescent patients with elevated CD1c+ mDCs were more likely to undergo reactivation. This suggests that CD1c+ mDC proportion may be a potential biomarker for assessing clinical activation and reactivation in noninfectious uveitis.
Collapse
Affiliation(s)
- Ping Chen
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Cristhian A Urzua
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 2Department of Ophthalmology, Universidad de Chile, Santiago, Chile
| | - Jared E Knickelbein
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jane S Kim
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 3School of Medicine, University of California San Diego, La Jolla, California, United States
| | - Zhiyu Li
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Susan Hannes
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - David Kuo
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States 3School of Medicine, University of California San Diego, La Jolla, California, United States
| | - Benjamin Chaigne-Delalande
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Karen Armbrust
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - William Tucker
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Baoying Liu
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Elvira Agrón
- Division of Epidemiology and Clinical Application, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - H Nida Sen
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert B Nussenblatt
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
28
|
Drummond D, Thumerelle C, Reix P, Fayon M, Epaud R, Clement A, Mahloul M, Habouria D, Delacourt C, Hadchouel A. Effectiveness of palivizumab in children with childhood interstitial lung disease: The French experience. Pediatr Pulmonol 2016; 51:688-95. [PMID: 26636747 DOI: 10.1002/ppul.23354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/03/2015] [Accepted: 11/21/2015] [Indexed: 11/06/2022]
Abstract
INTRODUCTION There is a lack of evidence concerning the effectiveness of immunoprophylaxis with palivizumab in children with childhood interstitial lung disease (chILD). In this retrospective study, we evaluated the effectiveness of palivizumab for decreasing the rate of RSV-related hospitalizations in children under the age of 24 months with chILD treated with corticosteroids. METHODS A retrospective national study was conducted in France. Patients born between 2007 and 2013, diagnosed with chILD and on corticosteroid treatment were identified through the French online database for pediatric interstitial lung disease (Respirare(®) ). Data were collected for the etiology and severity of chILD, risk factors and preventive measures for bronchiolitis, palivizumab immunoprophylaxis, and hospitalizations for bronchiolitis and RSV-bronchiolitis. RESULTS We included and evaluated 24 children during their first two RSV seasons, corresponding to 36 patient-seasons. The observed rate of RSV-related hospitalization (305/1000 patient-seasons), and the median length of stay (7 days), were higher than those for the general population. RSV-related hospitalization rates did not differ significantly between children with and without palivizumab prophylaxis (5/16 vs. 4/18, respectively, P = 0.70). CONCLUSION Children with chILD on corticosteroid treatment are at high risk of hospitalization for RSV-bronchiolitis, which tends to be more severe in these children than in the general population. The effectiveness of palivizumab prophylaxis in this population remains to be demonstrated. Pediatr Pulmonol. 2016;51:688-695. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Drummond
- Service de Pneumologie et d'Allergologie Pédiatriques, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France.,Université Paris-Descartes, Paris, France
| | - Caroline Thumerelle
- Unité de pneumologie pédiatrique, hôpital Jeanne-de-Flandre, CHRU de Lille, Lille, France
| | - Philippe Reix
- Centre de Référence de la Mucoviscidose, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| | - Michael Fayon
- Université de Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Hôpital Pellegrin-Enfants, Pneumologie Pédiatrique, Centre d'Investigation Clinique (CIC 1401), Bordeaux, France
| | - Ralph Epaud
- Centre Intercommunal de Créteil, Service de Pédiatrie, Créteil, France.,Inserm, U955, Equipe 5, Créteil, France.,Université Paris-Est, Faculté de Médecine, Créteil, France
| | - Annick Clement
- PediatricPulmonary Department AP-HP Hôpital Trousseau Paris, France Université Pierre et Marie Curie-Paris, Paris, France
| | - Malika Mahloul
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,AP-HP, Hôpital Armand Trousseau, Centre de Référence des Maladies Respiratoires Rares, Paris, France
| | - Delphine Habouria
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France.,AP-HP, Hôpital Armand Trousseau, Centre de Référence des Maladies Respiratoires Rares, Paris, France
| | - Christophe Delacourt
- Service de Pneumologie et d'Allergologie Pédiatriques, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France.,Université Paris-Descartes, Paris, France.,INSERM U-955, équipe 4, Créteil, France
| | - Alice Hadchouel
- Service de Pneumologie et d'Allergologie Pédiatriques, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015, Paris, France.,Université Paris-Descartes, Paris, France.,INSERM U-955, équipe 4, Créteil, France
| |
Collapse
|
29
|
Chang YJ, Xu LP, Wang Y, Zhang XH, Chen H, Chen YH, Wang FR, Han W, Sun YQ, Yan CH, Tang FF, Mo XD, Liu KY, Huang XJ. Controlled, Randomized, Open-Label Trial of Risk-Stratified Corticosteroid Prevention of Acute Graft-Versus-Host Disease After Haploidentical Transplantation. J Clin Oncol 2016; 34:1855-63. [PMID: 27091717 DOI: 10.1200/jco.2015.63.8817] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE This study evaluated whether a prophylaxis strategy directed by the graft-versus-host disease (GVHD) biomarker might reduce the 100-day incidence of acute GVHD grades II to IV. PATIENTS AND METHODS This controlled, open-label, randomized trial included 228 patients who underwent haploidentical transplantation. On the basis of bone marrow allogeneic graft CD4:CD8 ratios, patients were categorized as low risk (n = 83; group A) or high risk (n = 145). Patients at high risk were randomly assigned to either receive (n = 72; group B) or not receive (n = 73; group C) low-dose corticosteroid prophylaxis. RESULTS The incidence in group B was 21% (95% CI, 11% to 31%) compared with 26% (95% CI, 16%to 36%; P = .43) in group A and 48% (95% CI, 32% to 60%; P < .001) in group C. Low-dose corticosteroid prophylaxis was significantly associated with a relatively low risk of acute GVHD grades II to IV (hazard ratio, 0.66; 95% CI, 0.49 to 0.89; P = .007) and rapid platelet recovery (hazard ratio, 0.30; 95% CI, 0.23 to 0.47; P < .001). The incidence of moderate-to-severe chronic GVHD in group B (21%) was lower than that in both group A (50%; P = .025) and group C (36%; P = .066). The 100-day corticosteroid doses were 205 ± 111 mg in group B, 229 ± 149 mg in group A (P = .256), and 286.54 ± 259.67 mg in group C (P = .016). Compared with group C, group B showed significantly lower incidences of femoral head necrosis (P = .034) and hypertension (P = .015). Infection rates were comparable among these groups. CONCLUSION Our results suggest that risk stratification-directed, low-dose corticosteroid prophylaxis significantly decreased the incidence of acute GVHD grades II to IV, accelerated platelet recovery, and reduced adverse events without increasing infections.
Collapse
Affiliation(s)
- Ying-Jun Chang
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Lan-Ping Xu
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Yu Wang
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Xiao-Hui Zhang
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Huan Chen
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Yu-Hong Chen
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Feng-Rong Wang
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Wei Han
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Yu-Qian Sun
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Chen-Hua Yan
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Fei-Fei Tang
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Xiao-Dong Mo
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Kai-Yan Liu
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China
| | - Xiao-Jun Huang
- Ying-Jun Chang, Lan-Ping Xu, Yu Wang, Xiao-Hui Zhang, Huan Chen, Yu-Hong Chen, Feng-Rong Wang, Wei Han, Yu-Qian Sun, Chen-Hua Yan, Fei-Fei Tang, Xiao-Dong Mo, Kai-Yan Liu, and Xiao-Jun Huang, Peking University People's Hospital and Peking University Institute of Hematology; Xiao-Jun Huang, Peking-Tsinghua Center for Life Sciences; and Ying-Jun Chang and Xiao-Jun Huang, Collaborative Innovation Center of Hematology, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
30
|
GLCCI1 and Glucocorticoid Receptor Genetic Diversity and Response to Glucocorticoid-Based Treatment of Graft-versus-Host Disease. Biol Blood Marrow Transplant 2015; 21:1246-50. [PMID: 25843653 DOI: 10.1016/j.bbmt.2015.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/16/2015] [Indexed: 11/20/2022]
Abstract
The genetic diversity of loci implicated in glucocorticoid (GC) response has been associated with interindividual variations in responsiveness to GC in various diseases, such as asthma and inflammatory bowel disorders. In acute graft-versus-host disease (aGVHD), similar differences of first-line therapy responsiveness are also observed, with approximately 40% of patients failing to respond to GC. Here, the distribution of functionally relevant single nucleotide polymorphisms (SNP) belonging to the GC-induced transcript 1 GLCCI1 (rs37972) and the glucocorticoid receptor (rs41423247, rs6195 and rs6198) gene loci were analyzed alongside clinical factors for their association with the response to corticosteroids in aGVHD. The frequencies of variant alleles did not differ significantly between corticoresistant patients, their donors, and their corticosensitive peers (P = .10 to 1.00). Severe and early onset of aGVHD, bone marrow as the stem cell source, and an HLA mismatch were associated with the failure to respond to GC in logistic regression. After including the single SNPs to the model, carriers of the rs41423247 polymorphism had a higher probability of responding to GC, whereas all other polymorphisms did not affect the likelihood of response.
Collapse
|