1
|
Fang QQ, Gu YJ, Wang Y, Wang ZC, Lin XY, Guo K, Zhuang ZM, Zhong XC, Zhang LY, Chen J, Tan WQ. The therapeutic potential of Rosiglitazone in modulating scar formation through PPAR-γ pathway. Eur J Pharmacol 2025; 996:177445. [PMID: 40054722 DOI: 10.1016/j.ejphar.2025.177445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/12/2025]
Abstract
The prevention and treatment of scars has always posed a challenge in the medical field. Researchers have reached the consensus that safe, effective and affordable treatments are needed. Here, by conducting non-targeted metabolomics and RNA sequencing experiments, we revealed that a significant number of metabolites and genes related to glucose and lipid metabolism underwent changes during scar formation, with peroxisome proliferator-activated receptor-γ (PPAR-γ) exerting a profound influence. Considering that rosiglitazone is a selective orally active PPAR-γ receptor agonist, scar models were induced in rats, and rosiglitazone was administered at different dosages. We characterized rosiglitazone as a crucial mediator in a rat scar model in vivo and in vitro in two models of transforming growth factor β1(TGF-β1) stimulated fibroblasts (NIH 3T3 and 3T3 L1). Functionally, activation of PPAR-γ with rosiglitazone effectively impedes fibrosis and mitigates scar formation. Rosiglitazone also inhibits some inflammatory factors, and downregulates triglyceride, lactic acid, glycogen and lactic dehydrogenase levels in rat scars. Conversely, rosiglitazone increases adenosine triphosphate (ATP) production and increases free fatty acid levels and the activity of acetyl-CoA carboxylase, fatty acid synthetase, succinate dehydrogenase. Collectively, these findings shed light on the underlying mechanisms and suggest that the use of rosiglitazone could be a promising therapeutic approach to alleviate fibrosis and reduce scar formation.
Collapse
Affiliation(s)
- Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Yang-Jun Gu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang Province, PR China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Li-Yun Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| | - Jian Chen
- Department of Ultrasound Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, PR China.
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
2
|
LoPresti ST, Kulkarni MM, Julian DR, Johnson ZI, Lantonio BL, Ismail N, Yates CC, Brown BN. Effect of Fibroblast Signaling on Macrophage Polarization. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00141-5. [PMID: 40311758 DOI: 10.1016/j.ajpath.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/24/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025]
Abstract
Systemic and organ-specific fibrotic disorders are a leading cause of death worldwide. Crosstalk between fibroblasts and macrophages has been suggested as a key event leading to either resolution or aberrant remodeling and fibrosis. This study sought to identify the impacts of the timing and effects of exposure to quiescent (basal) and transforming growth factor-β-stimulated (activated) fibroblast secreted products on macrophage polarization and function. Naïve (M0 macrophages), lipopolysaccharide/interferon-γ-stimulated (M1 macrophages), and IL-4-stimulated (M2 macrophages) macrophages were exposed to basal or activated fibroblast conditioned media (FBCM) for 24 hours before, after, or during macrophage polarization. Macrophage function and polarization were quantified by phagocytosis, nitric oxide, and arginase activity assays and by cytokine array. FBCM from activated fibroblasts led to a pronounced up-regulation of arginase-1 compared with that from quiescent fibroblasts in M0 macrophages. Moreover, treatment with FBCM from activated fibroblasts resulted in significant increases in arginase-1 immunoexpression as well as urea production in M2 macrophages when applied antecedent, concurrent, or subsequent to M2 macrophage polarizing cytokines. Activated FBCM enhanced several proinflammatory cytokines, such as IL-1β and IL-6, in all macrophage subsets while only increasing tumor necrosis factor-α in M1 macrophages. This study elucidates multiple proinflammatory and profibrotic effects of fibroblasts on M1 and M2 macrophages, providing insights into the complex orchestration of macrophage-fibroblast crosstalk in fibrosis and the critical role of fibroblasts in the inflammatory response to injury.
Collapse
Affiliation(s)
- Samuel T LoPresti
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mangesh M Kulkarni
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dana R Julian
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zariel I Johnson
- Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania
| | - Brandon L Lantonio
- Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania
| | - Nahed Ismail
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Pathology and Laboratory Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Cecelia C Yates
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Bryan N Brown
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Zhao W, Jia Z, Han J, Sun X. Boswellia Extract Promotes Healing and Resolving Inflammation in Oral Ulcers of Rat. J Oral Pathol Med 2025; 54:131-140. [PMID: 39871413 DOI: 10.1111/jop.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Recurrent aphthous ulcers significantly impact patients' quality of life due to their painful and recurrent nature, necessitating more effective treatments. This study explores the therapeutic potential of Boswellia to treat recurrent aphthous ulcers by its anti-inflammatory and healing promotion effect in a rat oral ulcer model. METHODS Network pharmacology techniques were employed to elucidate Boswellia's active components and potential targets. Intersecting targets of Boswellia and oral ulcer-related genes were screened for protein-protein interaction network analysis and functional enrichment. An oral ulcer model in rats was used and rats were treated with Boswellia extract. The healing process was monitored by measuring the ulcer area and body weight changes. Histological analysis was performed, and the role of Boswellia in macrophage polarization was investigated through gene expression analysis and protein array tests. The underlying mechanism involving PPARγ activation was also explored. RESULTS Network pharmacology analysis revealed Boswellia's interaction with key genes and pathways associated with inflammation and lipid metabolism, such as MAPK3, PPARG, and PTGS2. Boswellia extract significantly accelerated oral ulcer healing and recovered weight loss in rats. Histological examinations revealed reduced tissue swelling and inflammatory cell infiltration in treated groups. Furthermore, Boswellia extract decreased infiltration of M1 macrophage presence while increasing M2 macrophage, indicating an inflammation-resolving effect. In vitro studies showed that Boswellia extract enhanced M2-related gene expression and decreased pro-inflammatory cytokines, which is PPARγ dependent. CONCLUSION Boswellia extract promotes oral ulcer healing and resolves inflammation, primarily through the modulation of macrophage polarization via PPARγ activation.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhuoqun Jia
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiao Han
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaojun Sun
- Department of Oral Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Jablonka-Shariff A, Broberg C, Snyder-Warwick AK. FK506 Enhancement of Neuromuscular Junction Recovery After Nerve Injury Is Macrophage-Dependent. Muscle Nerve 2025; 71:463-473. [PMID: 39780562 DOI: 10.1002/mus.28336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Motor recovery following nerve injury is dependent on time required for muscle reinnervation. This process is imperfect, however, and recovery is often incomplete. At the neuromuscular junction (NMJ), macrophage signaling aids muscle reinnervation. Tacrolimus (FK506) treatment speeds functional recovery through unknown mechanisms. This study investigated whether macrophages were required for FK506 neuroenhancing effects. METHODS Wildtype (WT) mice and mice with impaired macrophage recruitment to injury sites (Ccr2 -/- ) were injected subcutaneously with either saline or FK506 for 3 days prior to sciatic nerve transection and immediate repair and then daily for 4 weeks. Functional recovery was assessed by grid walk and muscle force. Morphometric NMJ and macrophage analyses were conducted in extensor digitorum longus muscles. RESULTS FK506-injected WT mice showed increased proportions of fully reinnervated NMJs and terminal Schwann cells/NMJ (p < 0.05), improved recovery of tetanic muscle force (p < 0.05), and improved grid walking (p < 0.05) relative to controls. Ccr2 -/- mice showed no enhancements in recovery; Ccr2 -/- mice treated with FK506 did not differ from controls on any tested metric. We also observed at the NMJ of WT mice increased macrophage numbers with FK506 treatment and increased macrophages expressing FK506 binding protein, FKBP52, after nerve injury. DISCUSSION These results show that macrophages are required for FK506-mediated improvements in NMJ reinnervation and muscle function. These data implicate macrophages in the mechanism underlying FK506-mediated enhancement of motor recovery after nerve injury. Enhanced knowledge of the neuroenhancing mechanism of FK506 may identify new clinically relevant therapeutic targets.
Collapse
Affiliation(s)
- Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Curtis Broberg
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Biernacki M, Skrzydlewska E. Metabolic pathways of eicosanoids-derivatives of arachidonic acid and their significance in skin. Cell Mol Biol Lett 2025; 30:7. [PMID: 39825220 PMCID: PMC11742234 DOI: 10.1186/s11658-025-00685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting. The most frequently analyzed oxylipins, especially in skin cells, are eicosanoids, which are derivatives of arachidonic acid (AA). Their level depends on both environmental factors and endogenous metabolic disorders. However, they play an important role in homeostasis mechanisms related to the structural and functional integrity of the skin, including maintaining redox balance, as well as regulating inflammatory processes arising in response to endogenous and exogenous factors reaching skin cells. Therefore, it is believed that dysregulation of eicosanoid levels may contribute to the development of skin diseases, such as psoriasis or atopic dermatitis, which in turn suggests that targeted control of the generation of specific eicosanoids may have diagnostic significance and beneficial therapeutic effects. This review is the first systemic and very detailed approach presenting both the causes and consequences of changes in phospholipid metabolism leading to the generation of eicosanoids, changes in the level of which result in specific metabolic disorders in skin cells leading to the development of various diseases. At the same time, existing literature data indicate that further detailed research is necessary to understand a clear relationship between changes in the level of specific eicosanoids and the pathomechanisms of specific skin diseases, as well as to develop an effective diagnostic and therapeutic approach.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland.
| |
Collapse
|
6
|
Helmy NA, Abdel Aziz EA, Raouf MAE, Korany RMS, Mansour DA, Baraka SM, Hassan AA, Gomaa E, Faisal MM, Basha WAA, Fahmy EM, Alhotan RA, Ayyoub A, Selim S. Revealing the impact of tadalafil-loaded proniosomal gel against dexamethasone-delayed wound healing via modulating oxido-inflammatory response and TGF-β/Macrophage activation pathway in rabbit model. PLoS One 2025; 20:e0315673. [PMID: 39775258 PMCID: PMC11706462 DOI: 10.1371/journal.pone.0315673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
A serious challenge of the chronic administration of dexamethasone (DEX) is a delay in wound healing. Thus, this study aimed to investigate the potential of Tadalafil (TAD)-loaded proniosomal gel to accelerate the healing process of skin wounds in DEX-challenged rabbits. Skin wounds were induced in 48 rabbits of 4 groups (n = 12 per group) and skin wounds were treated by sterile saline (control), TAD-loaded proniosomal gel topically on skin wound, DEX-injected rabbits, and DEX+TAD-loaded proniosomal gel for 4 weeks. The optical photography, transmission electron microscopy, in vitro release profile, and stability studies revealed the successful preparation of the selected formula with good stability. DEX administration was associated with uncontrolled oxido-inflammatory reactions, suppression in immune response in skin wounds, and consequently failure in the healing process. TAD-loaded proniosomal gel-treated rabbits manifested a marked enhancement in the rate of wound closure than control and DEX groups (p < 0.05). The TAD-loaded proniosomal gel successfully antagonized the impacts of DEX by dampening MDA production, and enhancing total antioxidant capacity, coupled with modulation of inflammatory-related genes, inducible nitric oxide synthase, tumor necrosis factor-alpha, interleukin-1β, and matrix metalloproteinase 9, during all healing stages (p < 0.05). This was in combination with significant amplification of immune response-related genes, CD68 and CD163 (p < 0.05). Moreover, the histopathological, Masson's Trichrome-stain, and immune-histochemical studies indicated a successful tissue recovery with the formation of new blood vessels in groups treated with TAD-loaded proniosomal gel, as manifested by well-organized collagen fibers, upregulation of transforming growth factor β1, and vascular endothelial growth factor immune expression in skin tissues (p < 0.05). Overall, the topical application of TAD-loaded proniosomal gel is useful in improving the delayed wound healing linked to DEX therapy via regulating the release of inflammatory/macrophage activation mediators and enhanced antioxidant capacity, angiogenesis, and vascularity.
Collapse
Affiliation(s)
- Nermin A. Helmy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Elsayed A. Abdel Aziz
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mustafa Abd El Raouf
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reda M. S. Korany
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Doaa A. Mansour
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City Egypt
| | - Sara M. Baraka
- Chemistry of Natural Compounds Department, National Research Centre, Giza, Egypt
| | - Arwa A. Hassan
- Pharmacology and Toxicology, Ministry of Health & Population, Cairo, Egypt
| | - Eman Gomaa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), Cairo, Egypt
| | - Mennatullah M. Faisal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Walaa A. A. Basha
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Esraa. M. Fahmy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rashed A. Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Anam Ayyoub
- College of Life Sciences, Northwest A & F University, Xianyang, Yangling District, Shaanxi, China
| | - Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom, Egypt
| |
Collapse
|
7
|
Zhang Q, Gu R, Dai Y, Chen J, Ye P, Zhu H, He W, Nie X. Molecular mechanisms of ubiquitination in wound healing. Biochem Pharmacol 2025; 231:116670. [PMID: 39613112 DOI: 10.1016/j.bcp.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Wound healing is a complex biological process involving multiple cellular and molecular mechanisms. Ubiquitination, a crucial post-translational modification, plays a vital role in regulating various aspects of wound healing through protein modification and degradation. This review comprehensively examines the molecular mechanisms of ubiquitination in wound healing, focusing on its regulation of inflammatory responses, macrophage polarization, angiogenesis, and the activities of fibroblasts and keratinocytes. We discuss how ubiquitination modifies key signaling pathways, including TGF-β/Smad3, NF-κB, and HIF-α, which are essential for proper wound healing. Understanding these mechanisms provides insights into potential therapeutic strategies for treating impaired wound healing, particularly in conditions such as diabetes. The review highlights recent advances in understanding ubiquitination's role in wound healing and discusses future research directions for developing targeted therapeutic approaches.
Collapse
Affiliation(s)
- Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; School Medical Office, Zunyi Medical University, Zunyi 563006, PR China.
| | - Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Wenping He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| |
Collapse
|
8
|
Chen C, Yang J, Shang R, Tang Y, Cai X, Chen Y, Liu Z, Hu W, Zhang W, Zhang X, Huang Y, Hu X, Yin W, Lu Q, Sheng H, Fan D, Ju Z, Luo G, He W. Orchestration of Macrophage Polarization Dynamics by Fibroblast-Secreted Exosomes during Skin Wound Healing. J Invest Dermatol 2025; 145:171-184.e6. [PMID: 38838771 DOI: 10.1016/j.jid.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024]
Abstract
Macrophages undertake pivotal yet dichotomous functions during skin wound healing, mediating both early proinflammatory immune activation and late anti-inflammatory tissue remodeling processes. The timely phenotypic transition of macrophages from inflammatory M1 to proresolving M2 activation states is essential for efficient healing. However, the endogenous mechanisms calibrating macrophage polarization in accordance with the evolving tissue milieu remain undefined. In this study, we reveal an indispensable immunomodulatory role for fibroblast-secreted exosomes in directing macrophage activation dynamics. Fibroblast-derived exosomes permitted spatiotemporal coordination of macrophage phenotypes independent of direct intercellular contact. Exosomes enhanced macrophage sensitivity to both M1 and M2 polarizing stimuli, yet they also accelerated timely switching from M1 to M2 phenotypes. Exosome inhibition dysregulated macrophage responses, resulting in aberrant inflammation and impaired healing, whereas provision of exogenous fibroblast-derived exosomes corrected defects. Topical application of fibroblast-derived exosomes onto chronic diabetic wounds normalized dysregulated macrophage activation to resolve inflammation and restore productive healing. Our findings elucidate fibroblast-secreted exosomes as remote programmers of macrophage polarization that calibrate immunological transitions essential for tissue repair. Harnessing exosomes represents a previously unreported approach to steer productive macrophage activation states with immense therapeutic potential for promoting healing in chronic inflammatory disorders.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jiacai Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Ruoyu Shang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yuanyang Tang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Cai
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yunxia Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Zhihui Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Wengang Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Weiguang Zhang
- Department of Intensive Care, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yong Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaohong Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Wenjing Yin
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China; Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Qudong Lu
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Hao Sheng
- Department of Urology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dejiang Fan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| |
Collapse
|
9
|
Aono K, Koshizaka M, Shoji M, Kaneko H, Maeda Y, Kato H, Maezawa Y, Miyabayashi M, Ishikawa M, Sekiguchi A, Motegi SI, Tsukamoto S, Taniguchi A, Shoda Y, Yoshimura T, Kawashima J, Yoshinaga K, Nakagami H, Takami Y, Sugimoto K, Hashimoto K, Okubo N, Yoshida T, Ohara M, Kogure A, Suzuki D, Kuzuya M, Watanabe K, Takemoto M, Oshima J, Yokote K. Less frequent skin ulcers among patients with Werner syndrome treated with pioglitazone: findings from the Japanese Werner Syndrome Registry. Aging (Albany NY) 2024; 16:13526-13533. [PMID: 39625398 PMCID: PMC11723649 DOI: 10.18632/aging.206161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND AND AIM Werner syndrome (WS) is an autosomal recessive, adult-onset, progeroid syndrome caused by WRN mutations. As refractory skin ulcers significantly affect the quality of life of patients with WS, this study identified ulcer risk factors and assessed prevention methods. METHODS We analyzed the data of 51 patients with WS enrolled in the Japanese Werner Syndrome Registry between 2016 and 2022. A cross-sectional analysis was performed to determine the association with skin ulcers at baseline. Statistical analyses were conducted, including Welch's and Pearson's chi-square tests. Age was adjusted using a logistic regression model. RESULTS The mean patient age was 48.8±7.6 years, and 66.7% of patients presented with skin ulcers. Univariate analysis showed that patients with skin ulcers were older than those without ulcers. Systolic blood pressure (SBP) was higher in patients with skin ulcers. Patients without skin ulcers received metformin and pioglitazone treatment significantly more often than those with ulcers. Logistic regression analysis adjusted for age showed that higher SBP remained a significant risk factor for skin ulcers. Patients administered pioglitazone had lower ulcer morbidity. CONCLUSIONS Age and SBP are risk factors for skin ulcers in patients with WS. Moreover, pioglitazone treatment may prevent skin ulcers.
Collapse
Affiliation(s)
- Kazuto Aono
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaya Koshizaka
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Mayumi Shoji
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Hiyori Kaneko
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yukari Maeda
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hisaya Kato
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Makoto Miyabayashi
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mai Ishikawa
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Sekiguchi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shinji Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Akira Taniguchi
- Department of Orthopaedic Surgery, Nara Medical University, Nara, Japan
| | - Yukiko Shoda
- Department of Dermatology, Sumitomo Hospital, Osaka, Japan
| | - Toru Yoshimura
- Diabetes and Endocrinology, Saga-Ken Medical Centre Koseikan, Saga, Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayo Yoshinaga
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ken Sugimoto
- General Geriatric Medicine, Kawasaki Medical School, Okayama, Japan
| | - Kunihiko Hashimoto
- Department of Endocrinology and Metabolic Medicine, Nippon Life Hospital, Osaka, Japan
| | - Naoki Okubo
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Yoshida
- Department of Orthopaedic Surgery, North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masato Ohara
- Department of Orthopaedic Surgery, North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Asako Kogure
- Department of Dermatology, Showa General Hospital, Tokyo, Japan
| | - Daisuke Suzuki
- Department of Dermatology, Showa General Hospital, Tokyo, Japan
| | - Masafumi Kuzuya
- Geriatrics and General Internal Medicine, Meitetsu Hospital, Nagoya, Japan
| | - Kazuhisa Watanabe
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Minoru Takemoto
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare, Narita, Japan
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
10
|
Adhikary K, Sarkar R, Maity S, Sadhukhan I, Sarkar R, Ganguly K, Barman S, Maiti R, Chakraborty S, Chakraborty TR, Bagchi D, Banerjee P. Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals. Pharmaceuticals (Basel) 2024; 17:1294. [PMID: 39458935 PMCID: PMC11510503 DOI: 10.3390/ph17101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetes-related ulcers and slow-healing wounds pose a significant health risk to individuals due to their uncertain causes. Mortality rates for diabetes foot ulcers (DFUs) range from 10% after 16 months to 24% after five years. The use of bioactive phytochemicals can play a key role in healing wounds in a predictable time. Recent literature has demonstrated that various natural substances, including flavonoids, saponins, phenolic compounds, and polysaccharides, play key roles at different stages of the wound-healing process through diverse mechanisms. These studies have categorized the compounds according to their characteristics, bioactivities, and modes of action. In this study, we evaluated the role of natural compounds derived from plant sources that have been shown to play a crucial role in immunomodulation. Macrophages are closely involved in immunomodulation within the wound microenvironment and are key players in efferocytosis, inflammation resolution, and tissue regeneration, all of which contribute to successful wound healing. Phytochemicals and their derivatives have shown capabilities in immune regulation, including macrophage migration, nitric oxide synthase inhibition, lymphocyte and T-cell stimulation, cytokine activation, natural killer cell enhancement, and the regulation of NF-κβ, TNF-α, and apoptosis. In this review, we have studied the role of phytochemicals in immunomodulation for the resolution of diabetic wound inflammation.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda 752050, Odisha, India;
| | - Riya Sarkar
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Sriparna Maity
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Ishani Sadhukhan
- Department of Food Processing, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Riya Sarkar
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Saurav Barman
- Department of Soil Science, Centurion University of Technology and Management, Paralakhemundi 761211, Odisha, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura 722101, West Bengal, India;
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology, City University of New York (CUNY), Brooklyn, NY 11201, USA
| | - Tandra R. Chakraborty
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Pradipta Banerjee
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Luo Z, Lu Y, Zheng S, Liu K, Fu W, Pan Y. Chemically Modified PPARγ mRNA Unleashes Adipogenic Potential in 3T3-L1-Predipocytes: An Approach for Accelerated Wound Healing. Int J Med Sci 2024; 21:2480-2493. [PMID: 39439458 PMCID: PMC11492871 DOI: 10.7150/ijms.97885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/31/2024] [Indexed: 10/25/2024] Open
Abstract
Background: Adipocytes play a crucial role in tissue regeneration, contributing to the restoration of damaged areas and modulating the inflammatory milieu. The modulation of gene expression through chemically modified PPARγ mRNA (PPARγ-modRNA) introduces a sophisticated approach to precisely control adipogenic processes. This study aims to explore the adipogenic potential of the PPARγ-modRNA in 3T3-L1 preadipocytes and its role in wound healing. Materials and Methods: We transfected 3T3-L1 preadipocytes with PPARγ-modRNA to investigate adipogenic differentiation and cellular proliferation in vitro. In vivo, we employed a murine full-thickness skin defect model and compared the effects of modRNA-mediated PPARγ overexpression with control groups. Additionally, we conducted RNA sequencing on luciferase-modified mRNA (LUC) and PPARγ-modRNA-transfected cells (PPAR) for a comprehensive understanding of molecular mechanisms. Results: PPARγ-modRNA significantly enhanced adipogenesis and proliferation in 3T3-L1 preadipocytes in vitro. The injection of PPARγ-modified mRNA led to accelerated wound healing compared to the control groups in vivo. RNA sequencing revealed upregulation of adipogenesis-related genes in the PPAR group, notably associated with the TNF signaling pathway. Subsequently, the KEGG analysis indicated that modRNA-mediated PPARγ overexpression effectively promoted adipogenesis while inhibiting TNF-α-mediated inflammation and cellular apoptosis. Conclusions: This study demonstrates the innovative use of PPARγ-modRNA to induce adipogenesis and expedite wound healing. The nuclear expression of PPARγ through modRNA technology signifies a notable advancement, with implications for future therapeutic strategies targeting adipogenic processes and the inhibition of inflammation in the context of wound healing.
Collapse
Affiliation(s)
- Zucheng Luo
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yeheng Lu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shaoluan Zheng
- Department of plastic and reconstructive surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
| | - Ke Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyan Pan
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Xue JD, Gao J, Tang AF, Feng C. Shaping the immune landscape: Multidimensional environmental stimuli refine macrophage polarization and foster revolutionary approaches in tissue regeneration. Heliyon 2024; 10:e37192. [PMID: 39296009 PMCID: PMC11408064 DOI: 10.1016/j.heliyon.2024.e37192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
In immunology, the role of macrophages extends far beyond their traditional classification as mere phagocytes; they emerge as pivotal architects of the immune response, with their function being significantly influenced by multidimensional environmental stimuli. This review investigates the nuanced mechanisms by which diverse external signals ranging from chemical cues to physical stress orchestrate macrophage polarization, a process that is crucial for the modulation of immune responses. By transitioning between pro-inflammatory (M1) and anti-inflammatory (M2) states, macrophages exhibit remarkable plasticity, enabling them to adapt to and influence their surroundings effectively. The exploration of macrophage polarization provides a compelling narrative on how these cells can be manipulated to foster an immune environment conducive to tissue repair and regeneration. Highlighting cutting-edge research, this review presents innovative strategies that leverage the dynamic interplay between macrophages and their environment, proposing novel therapeutic avenues that harness the potential of macrophages in regenerative medicine. Moreover, this review critically evaluates the current challenges and future prospects of translating macrophage-centered strategies from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Jing-Dong Xue
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jing Gao
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ai-Fang Tang
- Department of Geratology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Chao Feng
- Department of Reproductive Medicine, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| |
Collapse
|
13
|
Wolf SJ, Audu CO, Moon JY, Joshi AD, Melvin WJ, Barrett EC, Mangum K, de Jimenez GS, Rocco S, Buckley S, Ahmed Z, Wasikowski R, Kahlenberg JM, Tsoi LC, Gudjonsson JE, Gallagher KA. Diabetic Wound Keratinocytes Induce Macrophage JMJD3-Mediated Nlrp3 Expression via IL-1R Signaling. Diabetes 2024; 73:1462-1472. [PMID: 38869447 PMCID: PMC11333374 DOI: 10.2337/db23-0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Macrophage (Mφ) plasticity is critical for normal wound repair; however, in type 2 diabetic wounds, Mφs persist in a low-grade inflammatory state that prevents the resolution of wound inflammation. Increased NLRP3 inflammasome activity has been shown in diabetic wound Mφs; however, the molecular mechanisms regulating NLRP3 expression and activity are unclear. Here, we identified that diabetic wound keratinocytes induce Nlrp3 gene expression in wound Mφs through IL-1 receptor-mediated signaling, resulting in enhanced inflammasome activation in the presence of pathogen-associated molecular patterns and damage-associated molecular patterns. We found that IL-1α is increased in human and murine wound diabetic keratinocytes compared with nondiabetic controls and directly induces Mφ Nlrp3 expression through IL-1 receptor signaling. Mechanistically, we report that the histone demethylase, JMJD3, is increased in wound Mφs late post-injury and is induced by IL-1α from diabetic wound keratinocytes, resulting in Nlrp3 transcriptional activation through an H3K27me3-mediated mechanism. Using genetically engineered mice deficient in JMJD3 in myeloid cells (Jmjd3f/flyz2Cre+), we demonstrate that JMJD3 controls Mφ-mediated Nlrp3 expression during diabetic wound healing. Thus, our data suggest a role for keratinocyte-mediated IL-1α/IL-1R signaling in driving enhanced NLRP3 inflammasome activity in wound Mφs. These data also highlight the importance of cell cross-talk in wound tissues and identify JMJD3 and the IL-1R signaling cascade as important upstream therapeutic targets for Mφ NLRP3 inflammasome hyperactivity in nonhealing diabetic wounds. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sonya J. Wolf
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Christopher O. Audu
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Jadie Y. Moon
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Amrita D. Joshi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - William J. Melvin
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Emily C. Barrett
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Kevin Mangum
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - Sabrina Rocco
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Sam Buckley
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Zara Ahmed
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - J. Michelle Kahlenberg
- Department of Dermatology, University of Michigan, Ann Arbor, MI
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
14
|
Clayton SM, Shafikhani SH, Soulika AM. Macrophage and Neutrophil Dysfunction in Diabetic Wounds. Adv Wound Care (New Rochelle) 2024; 13:463-484. [PMID: 38695109 PMCID: PMC11535468 DOI: 10.1089/wound.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Significance: The incidence of diabetes continues to rise throughout the world in an alarming rate. Diabetic patients often develop diabetic foot ulcers (DFUs), many of which do not heal. Non-healing DFUs are a major cause of hospitalization, amputation, and increased morbidity. Understanding the underlying mechanisms of impaired healing in DFU is crucial for its management. Recent Advances: This review focuses on the recent advancements on macrophages and neutrophils in diabetic wounds and DFUs. In particular, we discuss diabetes-induced dysregulations and dysfunctions of macrophages and neutrophils. Critical Issues: It is well established that diabetic wounds are characterized by stalled inflammation that results in impaired healing. Recent findings in the field suggest that dysregulation of macrophages and neutrophils plays a critical role in impaired healing in DFUs. The delineation of mechanisms that restore macrophage and neutrophil function in diabetic wound healing is the focus of intense investigation. Future Directions: The breadth of recently generated knowledge on the activity of macrophages and neutrophils in diabetic wound healing is impressive. Experimental models have delineated pathways that hold promise for the treatment of diabetic wounds and DFUs. These pathways may be useful targets for further clinical investigation.
Collapse
Affiliation(s)
- Shannon M. Clayton
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Sasha H. Shafikhani
- Department of Internal Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University, Chicago, Illinois, USA
| | - Athena M. Soulika
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
15
|
Zandigohar M, Pang J, Rodrigues A, Roberts RE, Dai Y, Koh TJ. Transcription Factor Activity Regulating Macrophage Heterogeneity during Skin Wound Healing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:506-518. [PMID: 38940624 PMCID: PMC11300156 DOI: 10.4049/jimmunol.2400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Monocytes and macrophages (Mos/Mϕs) play diverse roles in wound healing by adopting a spectrum of functional phenotypes; however, the regulation of such heterogeneity remains poorly defined. We enhanced our previously published Bayesian inference TF activity model, incorporating both single-cell RNA sequencing and single-cell ATAC sequencing data to infer transcription factor (TF) activity in Mos/Mϕs during skin wound healing. We found that wound Mos/Mϕs clustered into early-stage Mos/Mϕs, late-stage Mϕs, and APCs, and that each cluster showed differential chromatin accessibility and differential predicted TF activity that did not always correlate with mRNA or protein expression. Network analysis revealed two highly connected large communities involving a total of 19 TFs, highlighting TF cooperation in regulating wound Mos/Mϕs. This analysis also revealed a small community populated by NR4A1 and NFKB1, supporting a proinflammatory link between these TFs. Importantly, we validated a proinflammatory role for NR4A1 activity during wound healing, showing that Nr4a1 knockout mice exhibit decreased inflammatory gene expression in early-stage wound Mos/Mϕs, along with delayed wound re-epithelialization and impaired granulation tissue formation. In summary, our study provides insight into TF activity that regulates Mo/Mϕ heterogeneity during wound healing and provides a rational basis for targeting Mo/Mϕ TF networks to alter phenotypes and improve healing.
Collapse
Affiliation(s)
- Mehrdad Zandigohar
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612
| | - Jingbo Pang
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition
| | - Alannah Rodrigues
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612
| | - Rita E. Roberts
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612
| | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration, Department of Kinesiology and Nutrition
| |
Collapse
|
16
|
Nakagawa K, Watanabe K, Mizutani K, Takeda K, Takemura S, Sakaniwa E, Mikami R, Kido D, Saito N, Kominato H, Hattori A, Iwata T. Genetic analysis of impaired healing responses after periodontal therapy in type 2 diabetes: Clinical and in vivo studies. J Periodontal Res 2024; 59:712-727. [PMID: 38501307 DOI: 10.1111/jre.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/28/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE This study aims to investigate the mechanisms underlying the impaired healing response by diabetes after periodontal therapy. BACKGROUND Outcomes of periodontal therapy in patients with diabetes are impaired compared with those in patients without diabetes. However, the mechanisms underlying impaired healing response to periodontal therapy have not been sufficiently investigated. MATERIALS AND METHODS Zucker diabetic fatty (ZDF) and lean (ZL) rats underwent experimental periodontitis by ligating the mandibular molars for one week. The gingiva at the ligated sites was harvested one day after ligature removal, and gene expression was comprehensively analyzed using RNA-Seq. In patients with and without type 2 diabetes (T2D), the corresponding gene expression was quantified in the gingiva of the shallow sulcus and residual periodontal pocket after non-surgical periodontal therapy. RESULTS Ligation-induced bone resorption and its recovery after ligature removal were significantly impaired in the ZDF group than in the ZL group. The RNA-Seq analysis revealed 252 differentially expressed genes. Pathway analysis demonstrated the enrichment of downregulated genes involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. PPARα and PPARγ were decreased in mRNA level and immunohistochemistry in the ZDF group than in the ZL group. In clinical, probing depth reduction was significantly less in the T2D group than control. Significantly downregulated expression of PPARα and PPARγ were detected in the residual periodontal pocket of the T2D group compared with those of the control group, but not in the shallow sulcus between the groups. CONCLUSIONS Downregulated PPAR subtypes expression may involve the impaired healing of periodontal tissues by diabetes.
Collapse
Affiliation(s)
- Keita Nakagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuki Watanabe
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Takeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Takemura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eri Sakaniwa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kido
- Department of General Dentistry, Tokyo Medical and Dental University Dental Hospital, Tokyo, Japan
| | - Natsumi Saito
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromi Kominato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhiko Hattori
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Saitama, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
17
|
Aguilar-Guadarrama AB, Díaz-Román MA, Osorio-García M, Déciga-Campos M, Rios MY. Chemical Constituents from Agave applanata and Its Antihyperglycemic, Anti-inflammatory, and Antimicrobial Activities Associated with Its Tissue Repair Capability. PLANTA MEDICA 2024; 90:397-410. [PMID: 38365219 DOI: 10.1055/a-2270-5527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Agave applanata is a Mexican agave whose fresh leaves are employed to prepare an ethanol tonic used to relieve diabetes. It is also applied to skin to relieve varicose and diabetic foot ulcers, including wounds, inflammation, and infections. In this study, the chemical composition of this ethanol tonic is established and its association with antihyperglycemic, anti-inflammatory, antimicrobial, and wound healing activities is discussed. The fresh leaves of A. applanata were extracted with ethanol : H2O (85 : 15). A fraction of this extract was lyophilized, and the remainder was partitioned into CH2Cl2, n-BuOH, and water. CH2Cl2 and n-BuOH fractions were subjected to a successive open column chromatography process. The structure of the isolated compounds was established using nuclear magnetic resonance and mass spectrometry spectra. The antihyperglycemic activity was evaluated through in vivo sucrose and glucose tolerance experiments, as well as ex vivo intestinal absorption and hepatic production of glucose. Wound healing and edema inhibition were assayed in mice. The minimum inhibitory concentrations (MICs) of the hydroalcoholic extract, its fractions, and pure compounds were determined through agar microdilution against the most isolated pathogens from diabetic foot ulcers. Fatty acids, β-sitosterol, stigmasterol, hecogenin (1: ), N-oleyl-D-glucosamine, β-daucosterol, sucrose, myo-inositol, and hecogenin-3-O-α-L-rhamnopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)-β-D-glucopyranosyl-(1 → 3)]-β-D-glucopyranosyl-(1 → 4)-β-D-galactopyranoside (2: ) were characterized. This research provides evidence for the pharmacological importance of A. applanata in maintaining normoglycemia, showing anti-inflammatory activity and antimicrobial effects against the microorganisms frequently found in diabetic foot ulcers. This plant plays an important role in wound healing and accelerated tissue reparation.
Collapse
Affiliation(s)
| | - Mónica Aideé Díaz-Román
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Morelos, México
| | - Maribel Osorio-García
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Morelos, México
| | - Myrna Déciga-Campos
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - María Yolanda Rios
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Morelos, México
| |
Collapse
|
18
|
Samuel AR, Campbell C, DeGeorge BR, Black J, Stranix JT. Abdominal Panniculectomy: Determining the Impact of Diabetes on Adverse Outcomes and Complications. Plast Surg (Oakv) 2024; 32:33-39. [PMID: 38433807 PMCID: PMC10902484 DOI: 10.1177/22925503221078850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Background: Despite its association with obesity, the relation between diabetes and the abdominal panniculectomy is less well-established. The purpose of this study was to evaluate the result of diabetes on post-panniculectomy complications in a large cohort and to establish the risk factors associated with unfavorable post-operative outcomes. Methods: Patients that underwent a panniculectomy between 2010 and 2018 were identified in PearlDiver, a national insurance claims database, and identified by Current Procedural Terminology code 15380. Patient demographics and comorbidities were elucidated, and various complications were then identified. Descriptive statistics as well as a multivariate analysis were used to evaluate the association of risk factors and complications. Results: A total of 8282 panniculectomy patients were identified-4245 with diabetes, 4037 without. Obesity, tobacco use, and diabetes were all identified as significant risk factors in developing a surgical site infection, wound disruption, as well as needing to undergo reoperation. Diabetic panniculectomy patients had a higher rate of readmission as well as reoperation and sustained a higher rate of surgical complications, even when matched for. Conclusion: Diabetic panniculectomy patients are at a greater risk for developing complications. Identifying potential risk factors in this patient population could help reduce post-operative complications following a panniculectomy.
Collapse
|
19
|
Lewicki S, Zwoliński M, Hovagimyan A, Stelmasiak M, Szarpak Ł, Lewicka A, Pojda Z, Szymański Ł. Chitosan-Based Dressing as a Sustained Delivery System for Bioactive Cytokines. Int J Mol Sci 2023; 25:30. [PMID: 38203201 PMCID: PMC10778940 DOI: 10.3390/ijms25010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Wounds represent a common occurrence in human life. Consequently, scientific investigations are underway to advance wound healing methodologies, with a notable focus on dressings imbued with biologically active compounds capable of orchestrating the wound microenvironment through meticulously regulated release mechanisms. Among these bioactive agents are cytokines, which, when administered to the wound milieu without appropriate protection, undergo rapid loss of their functional attributes. Within the context of this research, we present a method for fabricating dressings enriched with G-CSF (granulocyte colony-stimulating factor) or GM-CSF (granulocyte-macrophage colony-stimulating factor), showcasing both biological activity and protracted release dynamics. Based on Ligasano, a commercial polyurethane foam dressing, and chitosan crosslinked with TPP (sodium tripolyphosphate), these dressings are noncytotoxic and enable cytokine incorporation. The recovery of cytokines from dressings varied based on the dressing preparation and storage techniques (without modification, drying, freeze-drying followed by storage at 4 °C or freeze-drying followed by storage at 24 °C) and cytokine type. Generally, drying reduced cytokine levels and their bioactivity, especially with G-CSF. The recovery of G-CSF from unmodified dressings was lower compared to GM-CSF (60% vs. 80%). In summary, our freeze-drying approach enables the storage of G-CSF or GM-CSF enriched dressings at 24 °C with minimal cytokine loss, preserving their biological activity and thus enhancing future clinical availability.
Collapse
Affiliation(s)
- Sławomir Lewicki
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
| | - Michał Zwoliński
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland; (M.Z.); (A.H.); (M.S.)
| | - Adrian Hovagimyan
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland; (M.Z.); (A.H.); (M.S.)
| | - Marta Stelmasiak
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland; (M.Z.); (A.H.); (M.S.)
| | - Łukasz Szarpak
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Clinical Research and Development, LUX MED Group, 02-676 Warsaw, Poland
| | - Aneta Lewicka
- Military Centre of Preventive Medicine, 05-100 Nowy Dwór Mazowiecki, Poland;
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Magdalenka, Poland
| |
Collapse
|
20
|
Cavalcante-Silva J, Koh TJ. Targeting the NOD-Like Receptor Pyrin Domain Containing 3 Inflammasome to Improve Healing of Diabetic Wounds. Adv Wound Care (New Rochelle) 2023; 12:644-656. [PMID: 34841901 PMCID: PMC10701516 DOI: 10.1089/wound.2021.0148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
Significance: Chronic skin wounds are a significant health problem around the world, often leading to amputation and even death. Although persistent inflammation is a hallmark of these poorly healing wounds, few available therapies have been designed to target inflammation. In this review, we summarize available evidence of the role of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome in impaired wound healing and describe strategies to inhibit the inflammasome to improve wound healing. Recent Advances: The NLRP3 inflammasome plays an important physiological role in skin wound healing, during which transient inflammasome activity contributes to both epidermal and dermal healing. In contrast, sustained activity of the NLRP3 inflammasome leads to impaired epidermal and dermal healing associated with diabetes. Of importance, preclinical studies have demonstrated that inhibiting the NLRP3 inflammasome-induced resolution of inflammation, increased granulation tissue formation and collagen deposition, and accelerated reepithelialization and wound closure. Critical Issues: NLRP3 inflammasome inhibitors have appealing potential for translation into therapies for chronic wounds. Although preclinical studies have shown promising results, there is a need for human/clinical studies to evaluate dosing formulations, potential therapeutic effects, dose-response relationships, and possible side effects. Future Directions: Among strategies to inhibit the NLRP3 inflammasome, glyburide, metformin, peroxisome proliferator-activated receptor agonists, and the dipeptidyl peptidase 4 inhibitor saxagliptin appear to be closest to clinical translation, as these drugs are already Food and Drug Administration approved for other indications. Future clinical studies are needed to develop topical formulations of these drugs, and to assess the safety and efficacy of these inhibitors, to improve healing of chronic wounds.
Collapse
Affiliation(s)
- Jacqueline Cavalcante-Silva
- Center for Wound Healing and Tissue Regeneration; University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Kinesiology and Nutrition; University of Illinois at Chicago, Chicago, Illinois, USA
| | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration; University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Kinesiology and Nutrition; University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Rauchenwald T, Handle F, Connolly CE, Degen A, Seifarth C, Hermann M, Tripp CH, Wilflingseder D, Lobenwein S, Savic D, Pölzl L, Morandi EM, Wolfram D, Skvortsova II, Stoitzner P, Haybaeck J, Konschake M, Pierer G, Ploner C. Preadipocytes in human granulation tissue: role in wound healing and response to macrophage polarization. Inflamm Regen 2023; 43:53. [PMID: 37904253 PMCID: PMC10617061 DOI: 10.1186/s41232-023-00302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Chronic non-healing wounds pose a global health challenge. Under optimized conditions, skin wounds heal by the formation of scar tissue. However, deregulated cell activation leads to persistent inflammation and the formation of granulation tissue, a type of premature scar tissue without epithelialization. Regenerative cells from the wound periphery contribute to the healing process, but little is known about their cellular fate in an inflammatory, macrophage-dominated wound microenvironment. METHODS We examined CD45-/CD31-/CD34+ preadipocytes and CD68+ macrophages in human granulation tissue from pressure ulcers (n=6) using immunofluorescence, immunohistochemistry, and flow cytometry. In vitro, we studied macrophage-preadipocyte interactions using primary human adipose-derived stem cells (ASCs) exposed to conditioned medium harvested from IFNG/LPS (M1)- or IL4/IL13 (M2)-activated macrophages. Macrophages were derived from THP1 cells or CD14+ monocytes. In addition to confocal microscopy and flow cytometry, ASCs were analyzed for metabolic (OXPHOS, glycolysis), morphological (cytoskeleton), and mitochondrial (ATP production, membrane potential) changes. Angiogenic properties of ASCs were determined by HUVEC-based angiogenesis assay. Protein and mRNA levels were assessed by immunoblotting and quantitative RT-PCR. RESULTS CD45-/CD31-/CD34+ preadipocytes were observed with a prevalence of up to 1.5% of total viable cells in human granulation tissue. Immunofluorescence staining suggested a spatial proximity of these cells to CD68+ macrophages in vivo. In vitro, ASCs exposed to M1, but not to M2 macrophage secretome showed a pro-fibrotic response characterized by stress fiber formation, elevated alpha smooth muscle actin (SMA), and increased expression of integrins ITGA5 and ITGAV. Macrophage-secreted IL1B and TGFB1 mediated this response via the PI3K/AKT and p38-MAPK pathways. In addition, ASCs exposed to M1-inflammatory stress demonstrated reduced migration, switched to a glycolysis-dominated metabolism with reduced ATP production, and increased levels of inflammatory cytokines such as IL1B, IL8, and MCP1. Notably, M1 but not M2 macrophages enhanced the angiogenic potential of ASCs. CONCLUSION Preadipocyte fate in wound tissue is influenced by macrophage polarization. Pro-inflammatory M1 macrophages induce a pro-fibrotic response in ASCs through IL1B and TGFB1 signaling, while anti-inflammatory M2 macrophages have limited effects. These findings shed light on cellular interactions in chronic wounds and provide important information for the potential therapeutic use of ASCs in human wound healing.
Collapse
Affiliation(s)
- Tina Rauchenwald
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Handle
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Catherine E Connolly
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Antonia Degen
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christof Seifarth
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Lobenwein
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dragana Savic
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Leo Pölzl
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Evi M Morandi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Dolores Wolfram
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University Innsbruck, Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Marko Konschake
- Institute of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
22
|
Tang Q, Dong M, Xu Z, Xue N, Jiang R, Wei X, Gu J, Li Y, Xin R, Wang J, Xiao X, Zhou X, Yin S, Wang Y, Chen J. Red blood cell-mimicking liposomes loading curcumin promote diabetic wound healing. J Control Release 2023; 361:871-884. [PMID: 37532149 DOI: 10.1016/j.jconrel.2023.07.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The excessive inflammatory response is known to be a major challenge for diabetic wound healing, while bacteria secreted toxin, α-hemolysin (Hlα), was recently reported to prolong inflammation and delay diabetic wound healing. In this study, we designed a red blood cell membrane (RBCM)-mimicking liposome containing curcumin (named RC-Lip) for the treatment of diabetic wounds. RC-Lips were successfully fabricated using the thin film dispersion method, and the fusion of RBC membrane with the liposomal membrane was confirmed via surface protein analysis. RC-Lips efficiently adsorbed Hlα, thereby reducing the damage and pro-apoptotic effects of Hlα on keratinocytes. Furthermore, they remarkably facilitated liposome uptake into macrophages with advanced curcumin release and regulation of M2 macrophage polarization. In a diabetic mouse and infected wound model, RC-Lips treatment significantly promoted wound healing and re-epithelialization while downregulating interleukin-1β (IL-1β) and upregulating interleukin-10 (IL-10). In summary, the results showed that the spongiform RC-Lips effectively modulate the inflammatory response after adsorbing Hlα and regulating M2 macrophage polarization, leading to a significant promotion of wound healing in diabetic mice. Hence, this study provides a prospective strategy of efficiently mediating inflammatory response for diabetic wounds.
Collapse
Affiliation(s)
- Qinghan Tang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mei Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Zeyu Xu
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Nannan Xue
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ruihan Jiang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xuchao Wei
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jingyue Gu
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yue Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Rongshuang Xin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jia Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xueying Xiao
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xin Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
23
|
Papanas N, Popovic DS. Beta-Catenin Signaling Pathway: Perhaps We Should Start Exploring it for Diabetic Foot Ulcer Healing? INT J LOW EXTR WOUND 2023; 22:441-443. [PMID: 34213961 DOI: 10.1177/15347346211029818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diabetic foot ulcers (DFUs) remain a common debilitating and costly complication of diabetes mellitus. Indeed, despite all efforts and emerging technologies, many DFUs are difficult to heal and frequently recur. Thus, novel therapeutic approaches are urgently needed. Specific targeting of different molecular and cellular pathways implicated in wound healing emerges as an attractive therapeutic modality to improve outcomes. One of the novel pathways that carry this potential is the wingless-type mouse mammary tumor virus integration site family/beta-catenin signaling pathway (WβcSP). It plays an important role in different stages of wound healing, including inflammation, proliferation, and remodeling. Potential therapeutic implications of WβcSP activation include producing agonists and/or blocking its endogenous inhibitors. Thus, we should perhaps start exploring potential ways of its therapeutic implication to improve DFU healing.
Collapse
Affiliation(s)
- Nikolaos Papanas
- Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Djordje S Popovic
- Clinical Centre of Vojvodina, Novi Sad, Serbia
- Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
24
|
Tang Y, Jia Z, Li X, Zhao X, Zhang S, Luo L, Xia L, Fang Z, Zhang Y, Chen M. Mechanism of wound repair in diabetic rats using nanosilver-free alginate dressing. J Wound Care 2023; 32:cli-clx. [PMID: 37561702 DOI: 10.12968/jowc.2023.32.sup8.cli] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
OBJECTIVE Nanosilver-alginate dressing can effectively promote the healing of diabetic wounds in rats. However, due to the potential toxicity of nanosilver, its widespread application in hard-to-heal wound healing is limited. In the present study, the role and potential mechanism of nanosilver-free alginate gel (NSFAG) in the healing process of diabetic wounds were explored. METHOD A diabetic rat skin wound model was established, and wounds were treated with saline (NC group), nanosilver gel (NSG group) or nanosilver-free alginate gel (NSFAG group) for seven consecutive days. RESULTS NSFAG significantly promoted wound healing and increased the content of protein and hydroxyproline in granulation tissues, and was superior to NSG (p<0.05). Immunohistochemical analyses revealed that the skin wound tissue structure of the NSFAG group was intact, and the number of skin appendages in the dermis layer was significantly higher compared with the NC group and the NSG group (p<0.05). Western blot analysis found that the protein expression of the epidermal stem cell marker molecules CK19 and CK14 as well the proliferation marker of keratinocytes Ki67 in the NSFAG group was significantly higher compared with the NC group or NSG group (p<0.05). Additionally, the proliferation marker of keratinocytes Ki67 in the NSFAG group was significantly higher compared with the NC or NSG group (p<0.05). Immunofluorescence staining analyses indicated that the CK19- and CK14-positive cells were mainly distributed around the epidermis and the newly formed appendages in the NSFAG group, and this result was not observed in the NC or NSG groups. CONCLUSION The present findings demonstrate that NSFAG can effectively accelerate wound healing in diabetic rats by promoting epidermal stem cell proliferation and differentiation into skin cells, as well as formation of granulation tissue, suggesting that it can be a potential dressing for diabetic wounds.
Collapse
Affiliation(s)
- Ying Tang
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Zeguo Jia
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Xueting Li
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Shiqi Zhang
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Li Luo
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Li Xia
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Zhaohui Fang
- Institute of Traditional Chinese Medicine Diabetes Prevention, Anhui Academy of Traditional Chinese Medicine, People's Republic of China
| | - Yuanzhi Zhang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, People's Republic of China
| | - Mingwei Chen
- Department of Endocrinology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
- Institute of Traditional Chinese Medicine Diabetes Prevention, Anhui Academy of Traditional Chinese Medicine, People's Republic of China
| |
Collapse
|
25
|
Karhana S, Dabral S, Garg A, Bano A, Agarwal N, Khan MA. Network pharmacology and molecular docking analysis on potential molecular targets and mechanism of action of BRAF inhibitors for application in wound healing. J Cell Biochem 2023. [PMID: 37334778 DOI: 10.1002/jcb.30430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Topical application of BRAF inhibitors has been shown to accelerate wound healing in murine models, which can be extrapolated into clinical applications. The aim of the study was to identify suitable pharmacological targets of BRAF inhibitors and elucidate their mechanisms of action for therapeutic applicability in wound healing, by employing bioinformatics tools including network pharmacology and molecular docking. The potential targets for BRAF inhibitors were obtained from SwissTargetPrediction, DrugBank, CTD, Therapeutic Target Database, and Binding Database. Targets of wound healing were obtained using online databases DisGeNET and OMIM (Online Mendelian Inheritance in Man). Common targets were found by using the online GeneVenn tool. Common targets were then imported to STRING to construct interaction networks. Topological parameters were assessed using Cytoscape and core targets were identified. FunRich was employed to uncover the signaling pathways, cellular components, molecular functions, and biological processes in which the core targets participate. Finally, molecular docking was performed using MOE software. Key targets for the therapeutic application of BRAF inhibitors for wound healing are peroxisome proliferator-activated receptor γ, matrix metalloproteinase 9, AKT serine/threonine kinase 1, mammalian target of rapamycin, and Ki-ras2 Kirsten rat sarcoma viral oncogene homolog. The most potent BRAF inhibitors that can be exploited for their paradoxical activity for wound healing applications are Encorafenib and Dabrafenib. By using network pharmacology and molecular docking, it can be predicted that the paradoxical activity of BRAF inhibitors can be used for their potential application in wound healing.
Collapse
Affiliation(s)
- Sonali Karhana
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Swarna Dabral
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aakriti Garg
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aysha Bano
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nidhi Agarwal
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Mohd Ashif Khan
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
26
|
Ead JK, Armstrong DG. Granulocyte-macrophage colony-stimulating factor: Conductor of the wound healing orchestra? Int Wound J 2023; 20:1229-1234. [PMID: 36632762 PMCID: PMC10031218 DOI: 10.1111/iwj.13919] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a glycoprotein and is derived from both hemopoietic and nonhemopoietic sources which exert immunomodulatory properties. Various theories have been proposed to explain why some wounds become chronic and non-healing. Generalized suppression of inflammation locally or systemically may impede the body's physiological healing response by crippling the activity of reparative cells within the wound ecosystem. Thus, highlighting the importance of promoting host-directed therapeutics with immunomodulatory properties. The temporal and spatial expression of GM-CSF and GM-CSF receptors in the integumentary system suggests that epithelial-derived GM-CSF functions in an autocrine/paracrine manner. This may positively affect wound healing physiology via local inflammatory regulation promoting macrophage survival. Although diabetes negatively affects multiple aspects of wound healing GM-CSF activation is particularly impacted. Compared to acute/healthy wounds diabetic foot ulcers (DFU) only partially activate GM-CSF activity. There is a deleterious chain of events associated with this unfortunate sequala. DFUs also have a high proportion of monocytes and an absence of activated macrophages which results in an impaired inflammatory response. This may potentially serve as a vital point for GM-CSF to act as a companion diagnostic/theragnostic modality to help modulate the inflammatory response in wound healing. Correcting macrophage immune dysfunction with exogenous GM-CSF may help restore the immune balance in the wound ecosystem and jumpstart the wound healing cascade. Thus, the recognized beneficial role of GM-CSF in immune regulation across many studies provides a rationale for the initiation of the ongoing randomized controlled trials using GM-CSF.
Collapse
Affiliation(s)
- J. Karim Ead
- Department of SurgeryUSC Keck School of MedicineLos AngelesUSA
| | | |
Collapse
|
27
|
Role of Innate Immune Cells in Chronic Diabetic Wounds. J Indian Inst Sci 2023. [DOI: 10.1007/s41745-022-00355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
28
|
Karnam K, Sedmaki K, Sharma P, Mahale A, Ghosh B, Kulkarni OP. Pharmacological blockade of HDAC3 accelerates diabetic wound healing by regulating macrophage activation. Life Sci 2023; 321:121574. [PMID: 36931496 DOI: 10.1016/j.lfs.2023.121574] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
AIMS Here, we report the effect of histone deacetylase 3 (HDAC3) inhibition associated with macrophage activation, IL-1β expression, angiogenesis and wound healing in diabetic mice. MAIN METHODS To determine the expression of HDAC3 in diabetic mice wounds, hyperglycemia was induced in C57BL/6 mice with streptozotocin followed by induction of 6 mm wounds. To understand the effect of HDAC3 selective inhibitor, BG45, wound tissues were isolated for analysing M1/M2 markers expression, immune cells infiltration, angiogenesis and healing factors expression. CD11b+F4/80+ cells were sorted from the wound tissues and analysed for the expression of M1/M2 markers using RT-qPCR and flow cytometer. In cell based assays, HDAC3 expression was measured in macrophages stimulated with high glucose (HG) plus LPS. Macrophages treated with BG45 and HG + LPS were analysed for the expression of pro-IL-1β, mature IL-1β, oxidative stress and pro-inflammatory (M1) and anti-inflammatory (M2) factors. KEY FINDINGS HDAC3 was found to be upregulated in impaired diabetic mice wounds and in macrophages stimulated with HG + LPS. Topical application of BG45 loaded gel accelerated the wound healing in diabetic mice and was evident by improved expression of Collagen-1A, IL-10, TGF-β, and angiogenesis (CD31, VEGF). BG45 treatment decreased the expression of IL-1β, TNF-α, and IL-6 (M1 phenotype), reduced oxidative stress and promoted the expression of Arginase-1 and YM1/2 (M2 phenotype) in macrophages treated with HG + LPS. BG45 also improved the expression of CD11b+F4/80+CD206+ cells in wound tissues and reduced expression of inflammatory markers. SIGNIFICANCE HDAC3 is upregulated in diabetic mice wounds and HDAC3 selective inhibitor promotes the wound healing by regulating macrophage activation, angiogenesis and IL-1β.
Collapse
Affiliation(s)
- Kalyani Karnam
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India
| | - Kavitha Sedmaki
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India
| | - Ashutosh Mahale
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India; Epigenetic Research Laboratory, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, India.
| |
Collapse
|
29
|
Lazarus HM, Pitts K, Wang T, Lee E, Buchbinder E, Dougan M, Armstrong DG, Paine R, Ragsdale CE, Boyd T, Rock EP, Gale RP. Recombinant GM-CSF for diseases of GM-CSF insufficiency: Correcting dysfunctional mononuclear phagocyte disorders. Front Immunol 2023; 13:1069444. [PMID: 36685591 PMCID: PMC9850113 DOI: 10.3389/fimmu.2022.1069444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Endogenous granulocyte-macrophage colony-stimulating factor (GM-CSF), identified by its ability to support differentiation of hematopoietic cells into several types of myeloid cells, is now known to support maturation and maintain the metabolic capacity of mononuclear phagocytes including monocytes, macrophages, and dendritic cells. These cells sense and attack potential pathogens, present antigens to adaptive immune cells, and recruit other immune cells. Recombinant human (rhu) GM-CSF (e.g., sargramostim [glycosylated, yeast-derived rhu GM-CSF]) has immune modulating properties and can restore the normal function of mononuclear phagocytes rendered dysfunctional by deficient or insufficient endogenous GM-CSF. Methods We reviewed the emerging biologic and cellular effects of GM-CSF. Experts in clinical disease areas caused by deficient or insufficient endogenous GM-CSF examined the role of GM-CSF in mononuclear phagocyte disorders including autoimmune pulmonary alveolar proteinosis (aPAP), diverse infections (including COVID-19), wound healing, and anti-cancer immune checkpoint inhibitor therapy. Results We discuss emerging data for GM-CSF biology including the positive effects on mitochondrial function and cell metabolism, augmentation of phagocytosis and efferocytosis, and immune cell modulation. We further address how giving exogenous rhu GM-CSF may control or treat mononuclear phagocyte dysfunction disorders caused or exacerbated by GM-CSF deficiency or insufficiency. We discuss how rhu GM-CSF may augment the anti-cancer effects of immune checkpoint inhibitor immunotherapy as well as ameliorate immune-related adverse events. Discussion We identify research gaps, opportunities, and the concept that rhu GM-CSF, by supporting and restoring the metabolic capacity and function of mononuclear phagocytes, can have significant therapeutic effects. rhu GM-CSF (e.g., sargramostim) might ameliorate multiple diseases of GM-CSF deficiency or insufficiency and address a high unmet medical need.
Collapse
Affiliation(s)
- Hillard M. Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, United States
| | - Katherine Pitts
- Medical Affairs, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Tisha Wang
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Elinor Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Elizabeth Buchbinder
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Michael Dougan
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - David G. Armstrong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT, United States
| | | | - Timothy Boyd
- Clinical Development, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Edwin P. Rock
- Clinical Development, Partner Therapeutics, Inc., Lexington, MA, United States
| | - Robert Peter Gale
- Hematology Centre, Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| |
Collapse
|
30
|
Worsley AL, Lui DH, Ntow-Boahene W, Song W, Good L, Tsui J. The importance of inflammation control for the treatment of chronic diabetic wounds. Int Wound J 2022. [PMID: 36564054 DOI: 10.1111/iwj.14048] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/25/2022] Open
Abstract
Diabetic chronic wounds cause massive levels of patient suffering and economic problems worldwide. The state of chronic inflammation arises in response to a complex combination of diabetes mellitus-related pathophysiologies. Advanced treatment options are available; however, many wounds still fail to heal, exacerbating morbidity and mortality. This review describes the chronic inflammation pathophysiologies in diabetic ulcers and treatment options that may help address this dysfunction either directly or indirectly. We suggest that treatments to reduce inflammation within these complex wounds may help trigger healing.
Collapse
Affiliation(s)
- Anna L Worsley
- Royal Veterinary College, Department of Pathobiology and Population Sciences, London, UK.,UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Dennis H Lui
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Winnie Ntow-Boahene
- Royal Veterinary College, Department of Pathobiology and Population Sciences, London, UK.,UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Liam Good
- Royal Veterinary College, Department of Pathobiology and Population Sciences, London, UK
| | - Janice Tsui
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
31
|
Li S, Yang P, Ding X, Zhang H, Ding Y, Tan Q. Puerarin improves diabetic wound healing via regulation of macrophage M2 polarization phenotype. BURNS & TRAUMA 2022; 10:tkac046. [PMID: 36568527 PMCID: PMC9773819 DOI: 10.1093/burnst/tkac046] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022]
Abstract
Background Skin wound healing depends on the progress of different but overlapping stages of healing, including hemostasis, inflammatory, proliferative and remodeling. Failure of these stages to occur in a timely and gradual manner may result in non-healing pathological wounds. Macrophages and neutrophils have been shown to play an essential role in the inflammatory responses of wound tissue, and their active plasticity allows them to modulate tissue damage and repair functions. The ability of macrophages and neutrophils to regulate the occurrence and resolution of inflammatory processes is essential for the treatment of pathological wound healing. Methods Mice were categorized into negative control, streptozotocin, streptozotocin + puerarin and puerarin groups. The traditional Chinese medicine extract puerarin was selected to treat different groups of mice with a full-thickness skin defect wound. Cells of the RAW264.7 cell line were stimulated under different puerarin conditions. Then, real time quantitative polymerase chain reaction (RT-qPCR), western blot, immunofluorescence and other assays were carried out to explore the effect of puerarin on wound healing and its molecular mechanism. Results Animal experiments found that the wound healing of diabetic mice treated with puerarin was significantly accelerated, and histological analysis found that puerarin treatment markedly decreased the infiltration of macrophages and neutrophils in wound tissue. Through western blot, RT-qPCR and immunofluorescence experiments, it was observed that puerarin treatment remarkably inhibited nuclear factor kinase B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, downregulated the expression of inflammatory cytokines and induced the M2 polarization of macrophages. At the cellular level, we also observed that puerarin improved M2 macrophage polarization and inhibited inflammatory pathway activation in a high-glucose culture. Conclusion Puerarin has a significant therapeutic effect on wound healing in diabetic mice. The therapeutic effect is achieved by regulating macrophage polarization through suppressing NF-κB and MAPK signaling cascades.
Collapse
Affiliation(s)
| | | | - Xiaofeng Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, NO. 321, Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Hao Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, NO. 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Youjun Ding
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, NO. 321, Zhongshan Road, Nanjing, Jiangsu 210008, China
| | | |
Collapse
|
32
|
Qiu J, Shu C, Li X, Zhang WC. PAQR3 depletion accelerates diabetic wound healing by promoting angiogenesis through inhibiting STUB1-mediated PPARγ degradation. J Transl Med 2022; 102:1121-1131. [PMID: 36775352 DOI: 10.1038/s41374-022-00786-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogenesis of diabetic wounds is closely associated with the dysregulation of macrophage polarization. However, the underlying mechanism remains poorly understood. In this study, we aimed to investigate the potential effects of PAQR3 (progestin and adipoQ receptor 3) silencing in accelerating diabetic wound healing. We showed that PAQR3 silencing promoted skin wound healing and angiogenesis in diabetic mice, which was accompanied by enhanced M2 macrophage polarization and elevated expression of PPARγ (peroxisome proliferator-activated receptor γ). PAQR3 silencing also promoted M2 polarization and increased PPARγ protein level in PMA-treated THP-1 cells. Moreover, knockdown of PAQR3 in macrophages enhanced the migration of HaCaT cells and tube formation of HUVECs. The ubiquitination of PPARγ protein in macrophages was repressed by PAQR3 silencing. STUB1 (STIP1 homology and U-box-containing protein 1) binds with the PPARγ protein to mediate PPARγ ubiquitination and degradation in macrophages, which was impaired by PAQR3 silencing. The PPARγ inhibitor, GW9662, or STUB1 overexpression abrogated the enhanced M2 macrophage polarization induced by PAQR3 silencing. Therefore, these findings demonstrates that PAQR3 silencing accelerates diabetic wound healing by promoting M2 macrophage polarization and angiogenesis, which is mediated by the inhibition of STUB1-mediated PPARγ protein ubiquitination and degradation.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, P.R. China
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, P.R. China.
| | - Xin Li
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, P.R. China
| | - Wei-Chang Zhang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, P.R. China
| |
Collapse
|
33
|
Kawanishi M, Kami K, Nishimura Y, Minami K, Senba E, Umemoto Y, Kinoshita T, Tajima F. Exercise-induced increase in M2 macrophages accelerates wound healing in young mice. Physiol Rep 2022; 10:e15447. [PMID: 36200164 PMCID: PMC9535257 DOI: 10.14814/phy2.15447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 05/27/2023] Open
Abstract
Moderate-intensity exercise performed during wound healing has been reported to decrease inflammatory cytokines and chemokines and accelerate wound healing. However, its effect on macrophage phenotype and the mechanism by which exercise accelerates wound healing remain unclear. The purpose of this study was to investigate the effect of exercise on macrophage phenotype during wound healing and to clarify the relationship between angiogenesis and wound healing. 12-week-old male C57BL/6J mice were divided into sedentary (n = 6) and exercise groups (n = 6). The exercise group performed moderate-intensity treadmill running exercise (9.0 m/min, 60 min) for 10 days. Double immunofluorescence analysis was performed using F4/80+ inducible nitric oxide synthase (iNOS)+ for M1 macrophages, F4/80+ transforming growth factor-beta (TGF-β)1+ for M2 macrophages, and CD31+ alpha smooth muscle actin (α-SMA)+ for angiogenesis. The exercise group showed significantly accelerated wound healing compared with the sedentary group. From early wound healing onward, exercise significantly inhibited M1 macrophage infiltration and increased M2 macrophage count. Exercise also significantly increased angiogenesis. Furthermore, the M2 macrophage phenotype was significantly correlated with angiogenesis in the exercise group, indicating that M2 macrophages and angiogenesis are related to accelerated wound healing. These findings suggest that moderate-intensity exercise increases TGF-β1 derived from M2 macrophages, which may be associated with enhanced angiogenesis and wound healing in young mice.
Collapse
Affiliation(s)
- Makoto Kawanishi
- Department of Rehabilitation MedicineWakayama Medical UniversityWakayamaJapan
| | - Katsuya Kami
- Department of Rehabilitation MedicineWakayama Medical UniversityWakayamaJapan
- Department of Rehabilitation, Wakayama Faculty of Health Care SciencesTakarazuka University of Medical and Health CareWakayamaJapan
| | - Yukihide Nishimura
- Department of Rehabilitation MedicineIwate Medical UniversityMoriokaJapan
| | - Kohei Minami
- Department of Rehabilitation MedicineWakayama Medical UniversityWakayamaJapan
| | - Emiko Senba
- Department of Rehabilitation MedicineWakayama Medical UniversityWakayamaJapan
- Department of Physical TherapyOsaka Yukioka College of Health ScienceIbarakiJapan
| | - Yasunori Umemoto
- Department of Rehabilitation MedicineWakayama Medical UniversityWakayamaJapan
| | - Tokio Kinoshita
- Department of Rehabilitation MedicineWakayama Medical UniversityWakayamaJapan
| | - Fumihiro Tajima
- Department of Rehabilitation MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
34
|
Yao D, Zou Y, Lv Y. Maresin 1 enhances osteogenic potential of mesenchymal stem cells by modulating macrophage peroxisome proliferator-activated receptor-γ-mediated inflammation resolution. BIOMATERIALS ADVANCES 2022; 141:213116. [PMID: 36115155 DOI: 10.1016/j.bioadv.2022.213116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Inflammation resolution plays a significant role in attenuating bone injury aggravated by acute inflammation and maintaining bone homeostasis. Maresin 1 (MaR1), a specialized pro-resolving mediators (SPMs), is biosynthesised in macrophages (Mφs) that regulates acute inflammation. Strategies to accelerate the resolution of inflammation in bone repair include not only promoting vanish of acute inflammation, also improving osteogenic microenvironment. Here, previously prepared difunctional demineralized bone matrix (DBM) scaffold was used to study thoroughly the "cross-talk" between Mφs lipid metabolism and mesenchymal stem cells (MSCs) behaviors in vitro. The pro-resolving mechanism in Mφs treated with MaR1 was elaborated. Furthermore, the biological behaviors of MSCs in co-culture system were evaluated. The results indicated that MaR1 had an enhanced capability and performance in peroxisome proliferator-activated receptor-γ (PPAR-γ) activation, M2-type Mφs polarization, and lipid droplets (LDs) biogenesis in Mφs in vitro. The nuclear receptor PPAR-γ enhanced the anti-inflammatory proteins expression and the polarization of Mφs toward M2 subtype, thereby favoring the proliferation, migration, and osteogenesis of MSCs. Overall, the results verified that MaR1 facilitated MSCs behaviors by regulating PPAR-γ-mediated inflammatory response, which implied that PPAR-γ exhibited a significant role in the dialogue between MSCs behaviors and Mφs lipid metabolism.
Collapse
Affiliation(s)
- Dongdong Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Yang Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
35
|
Chakraborty R, Borah P, Dutta PP, Sen S. Evolving spectrum of diabetic wound: Mechanistic insights and therapeutic targets. World J Diabetes 2022; 13:696-716. [PMID: 36188143 PMCID: PMC9521443 DOI: 10.4239/wjd.v13.i9.696] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/12/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder resulting in an increased blood glucose level and prolonged hyperglycemia, causes long term health conse-quences. Chronic wound is frequently occurring in diabetes patients due to compromised wound healing capability. Management of wounds in diabetic patients remains a clinical challenge despite many advancements in the field of science and technology. Increasing evidence indicates that alteration of the biochemical milieu resulting from alteration in inflammatory cytokines and matrix metalloproteinase, decrease in fibroblast and keratinocyte functioning, neuropathy, altered leukocyte functioning, infection, etc., plays a significant role in impaired wound healing in diabetic people. Apart from the current pharmacotherapy, different other approaches like the use of conventional drugs, antidiabetic medication, antibiotics, debridement, offloading, platelet-rich plasma, growth factor, oxygen therapy, negative pressure wound therapy, low-level laser, extracorporeal shock wave bioengineered substitute can be considered in the management of diabetic wounds. Drugs/therapeutic strategy that induce angiogenesis and collagen synthesis, inhibition of MMPs, reduction of oxidative stress, controlling hyperglycemia, increase growth factors, regulate inflammatory cytokines, cause NO induction, induce fibroblast and keratinocyte proliferation, control microbial infections are considered important in controlling diabetic wound. Further, medicinal plants and/or phytoconstituents also offer a viable alternative in the treatment of diabetic wound. The focus of the present review is to highlight the molecular and cellular mechanisms, and discuss the drug targets and treatment strategies involved in the diabetic wound.
Collapse
Affiliation(s)
- Raja Chakraborty
- Institute of Pharmacy, Assam Don Bosco University, Kamrup 782402, Assam, India
| | - Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati 781026, Assam, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati 781026, Assam, India
| |
Collapse
|
36
|
Sharifiaghdam M, Shaabani E, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Macrophages as a therapeutic target to promote diabetic wound healing. Mol Ther 2022; 30:2891-2908. [PMID: 35918892 PMCID: PMC9482022 DOI: 10.1016/j.ymthe.2022.07.016] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
It is well established that macrophages are key regulators of wound healing, displaying impressive plasticity and an evolving phenotype, from an aggressive pro-inflammatory or "M1" phenotype to a pro-healing or "M2" phenotype, depending on the wound healing stage, to ensure proper healing. Because dysregulated macrophage responses have been linked to impaired healing of diabetic wounds, macrophages are being considered as a therapeutic target for improved wound healing. In this review, we first discuss the role of macrophages in a normal skin wound healing process and discuss the aberrations that occur in macrophages under diabetic conditions. Next we provide an overview of recent macrophage-based therapeutic approaches, including delivery of ex-vivo-activated macrophages and delivery of pharmacological strategies aimed at eliminating or re-educating local skin macrophages. In particular, we focus on strategies to silence key regulator genes to repolarize wound macrophages to the M2 phenotype, and we provide a discussion of their potential future clinical translation.
Collapse
Affiliation(s)
- Maryam Sharifiaghdam
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Shaabani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium; Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium.
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
37
|
Liu K, Gao X, Hu C, Gui Y, Gui S, Ni Q, Tao L, Jiang Z. Capsaicin ameliorates diabetic retinopathy by inhibiting poldip2-induced oxidative stress. Redox Biol 2022; 56:102460. [PMID: 36088760 PMCID: PMC9468458 DOI: 10.1016/j.redox.2022.102460] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022] Open
Abstract
Background Oxidative stress and the resultant hyperpermeability play a vital role in the pathogenesis of diabetic retinopathy (DR). Poldip2 has been implicated in H2O2 production, but the effects of capsaicin on poldip2 have not been reported. Methods Diabetic Sprague-Dawley (SD) rats induced with STZ were treated with capsaicin or AAV9-poldip2-shRNA, and human retinal microvascular endothelial cells (HRMECs) were treated with capsaicin or poldip2 siRNA. Results Current data indicated that the expression of PPARγ, poldip2, Nox4, VCAM-1, HIF-1α, and VEGF increased in rat retinas with DR and in HRMECs treated with high glucose. The production of ROS or H2O2 in the tissues, serum, and cells increased, and the paracellular permeability of cultured HRMECs with high glucose significantly increased. In addition, overt hyperpermeability of retinal microvessels and increased retinal neovascularization in diabetic rats were observed. However, capsaicin treatment inhibited these increases and suppressed the expression of PPARγ by enhancing its phosphorylation and ubiquitination in the retinas of DR rats. Poldip2 knockdown in HRMECs or its silencing in the retina of DR rats concomitantly led to reduced levels of Nox4, VCAM-1, HIF-1α, VEGF, ROS, and H2O2, and the paracellular permeability of HRMECs or the hyperpermeability of retinal microvessels in diabetic rat retinas decreased. Similarly, after PPARγ knockdown in HRMECs, poldip2, Nox4, HIF-1α, VEGF, ROS, and H2O2 decreased, and the monolayer paracellular permeability was reduced accordingly. Conclusion Capsaicin may ameliorate diabetic retinopathy by activating TRPV1 and suppressing the PPARγ-poldip2-Nox4 pathway.
Collapse
|
38
|
Tong KP, Intine R, Wu S. Vitamin C and the management of diabetic foot ulcers: a literature review. J Wound Care 2022; 31:S33-S44. [PMID: 36113854 DOI: 10.12968/jowc.2022.31.sup9.s33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The lifetime risk of developing a diabetic foot ulcer (DFU) in people with diabetes is as high as 25%. A trio of factors constitute the diabetic foot syndrome that characterises DFUs, including neuropathy, vascular disease and infections. Vitamin C has important functions in the nervous, cardiovascular, and immune systems that are implicated in DFU development. Furthermore, vitamin C deficiency has been observed in individuals with DFUs, suggesting an important function of vitamin C in DFU management and treatment. Therefore, this literature review evaluates the role of vitamin C in the nervous, cardiovascular and immune systems in relation to wound healing and DFUs, as well as discussing vitamin C's lesser known role in depression, a condition that affects many individuals with a DFU. METHOD A literature search was done using PubMed, Cochrane Library, Embase, Ovid, Computer Retrieval of Information on Scientific Projects, and NIH Clinical Center. Search terms included 'diabetic foot ulcer,' 'diabetic foot,' 'vitamin C,' and 'ascorbic acid.' RESULTS Of the 71 studies initially identified, seven studies met the inclusion criteria, and only three were human clinical trials. Overall, the literature on this subject is limited, with mainly observational and animal studies, and few human clinical trials. CONCLUSION There is a need for additional human clinical trials on vitamin C supplementation in individuals with a DFU to fill the knowledge gap and guide clinical practice.
Collapse
Affiliation(s)
- Khanh Phuong Tong
- Dr William M Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, Illinois, US
| | - Robert Intine
- School of Graduate and Postdoctoral Studies, College of Health Professions, Rosalind Franklin University of Medicine and Science, Illinois, US
| | - Stephanie Wu
- Dr William M Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, Illinois, US
| |
Collapse
|
39
|
Ouyang L, Qiu D, Fu X, Wu A, Yang P, Yang Z, Wang Q, Yan L, Xiao R. Overexpressing HPGDS in adipose-derived mesenchymal stem cells reduces inflammatory state and improves wound healing in type 2 diabetic mice. Stem Cell Res Ther 2022; 13:395. [PMID: 35922870 PMCID: PMC9351105 DOI: 10.1186/s13287-022-03082-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022] Open
Abstract
Background In diabetes, delayed wound healing was considered as the result of excessive recruitment and retention of pro-inflammatory cells and factors. Hematopoietic prostaglandin D synthase (HPGDS) was identified from differently expressed genes of diabetic human foot skin. HPGDS is responsible for the production of prostaglandin D2 (PGD2), an inflammatory mediator. Therefore, we aim to explore whether HPGDS could be a therapeutic target in the diabetic wound (DW). Method In this study, we compared gene expression profilings of diabetic human foot skin and non-diabetic human foot skin from the Gene Expression Omnibus database. We detected the characteristics of immune components in diabetic mice wound and investigated the role and underlying mechanism of the differently expressed Hpgds for the diabetic wound healing. For in vivo studies, we engineered ADSC to overexpress Hpgds (ADSCHpgds) and evaluated its effects on diabetic wound healing using a full-thickness skin wound model. For in vitro studies, we evaluated the role of ADSCHpgds conditioned medium and PGD2 on Lipopolysaccharide (LPS) induced macrophage. Results Hpgds was significantly down-regulated in type 2 diabetic mice wound and its deficiency delayed normal wound healing. ADSCHpgds accelerated DW healing by reducing neutrophil and CD8T cell recruitment, promoting M2 macrophage polarization and increasing the production of growth factors. ADSCHpgds conditioned medium showed superior capability in promoting M2 macrophage transition than conditioned medium derived from ADSC alone. Conclusion Our results demonstrated that Hpgds is required for wound healing, and ADSCHpgds could accelerate DW healing by improving anti-inflammatory state and normalizing the proliferation phase of wound healing in mice. These findings provide a new insight in the therapeutic strategy of diabetic wound. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03082-w.
Collapse
Affiliation(s)
- Long Ouyang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Daojing Qiu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Aiping Wu
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, People's Republic of China
| | - Pengyuan Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
40
|
Mahmoudi A, Firouzjaei AA, Darijani F, Navashenaq JG, Taghizadeh E, Darroudi M, Gheibihayat SM. Effect of diabetes on efferocytosis process. Mol Biol Rep 2022; 49:10849-10863. [PMID: 35902446 DOI: 10.1007/s11033-022-07725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Diabetes is a complex of genetic, metabolic, and autoimmune disorders that are characterized by hyperglycemia. Elevated apoptotic cell count following defective clearance of dead cells that can cause chronic inflammation is a hallmark of the diabetic wound. Effective dead cell clearance is a prerequisite for rapid inflammation resolution and successful recovery. Efferocytosis is a multistep process in which phagocytes engulf the dead cells. Cell body elimination is of great significance in disease and homeostasis. Recent research has clarified that diabetic wounds have an enhanced load of the apoptotic cell, which is partly attributed to the dysfunction of macrophages in apoptotic clearance at the site of the diabetic wounds. In the current work, we highlight the pathways implicated in efferocytosis, from the diagnosis of apoptotic cells to the phagocytic swallowing and the homeostatic resolution, and explain the possible pathophysiological episodes occurring when the proceeding is abrogated. Also, we describe the last development in the management of inflammation in diabetes wound and future directions of surveillance.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of medical biotechnology and nanotechnology, faculty of medicine, Mashhad University of Medical science, Mashhad, Iran
| | - Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Darijani
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Eskandar Taghizadeh
- Department of Medical Genetic, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, Iran.
| |
Collapse
|
41
|
Xue Y, Reddy SK, Garza LA. Toward Understanding Wound Immunology for High-Fidelity Skin Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a041241. [PMID: 35667792 PMCID: PMC9248820 DOI: 10.1101/cshperspect.a041241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Effective tissue repair is vital for the survival of organisms. Yet, how the immune system coordinates with tissue stem cells (SCs) to effect postnatal tissue restoration remains elusive. This review presents current knowledge surrounding wound-induced SC and immune signaling that favors tissue repair, including wound healing and regeneration. We discuss factors that affect regenerative capacities among organisms and the dynamics of local immune cells and SCs during reepithelialization. We also present recent insights into how immune niches communicate with SCs or other body systems to restore the epithelial architecture. Additionally, we summarize our findings on functional wound regeneration, specifically how alarmin (double-stranded RNA [dsRNA])-activated Toll-like receptor signaling and host-microbe interaction-related immune pathways alter the regenerative property of skin SCs. Last, we touch on mechanisms by which known immunologic cellular and molecular signaling might boost the skin's regenerative property. Overall, this review will provide insights into how therapeutically modulating immune signaling could enhance postnatal tissue regeneration.
Collapse
Affiliation(s)
| | - Sashank K Reddy
- Department of Plastic and Reconstructive Surgery
- Department of Biomedical Engineering
- Institute for NanoBioTechnology
| | - Luis A Garza
- Department of Dermatology
- Department of Cell Biology
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21231, USA
| |
Collapse
|
42
|
Wang YX, Chen JJ, Cen Y, Li ZY, Zhang ZY. [Research advances on exosomes derived from adipose-derived mesenchymal stem cells in promoting diabetic wound healing]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:491-495. [PMID: 35599426 DOI: 10.3760/cma.j.cn501120-20210218-00057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Impaired healing of diabetic wounds is mainly attributed to its pathological mechanism, and refractory diabetic wounds bring heavy burdens to patients and society. Exosomes derived from stem cells possess the similar ability as stem cells in promoting tissue regeneration and more clinical advantages and are gradually playing important roles in wound healing. In recent years, researches have shown that exosomes derived from adipose-derived mesenchymal stem cells (ADSC-EXOs) can promote the healing of diabetic wounds by participating in various processes of wound healing. This article reviews the pathological mechanism leading to impaired healing of diabetic wounds, the related mechanism and the application prospect of ADSC-EXOs in promoting diabetic wound healing.
Collapse
Affiliation(s)
- Y X Wang
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - J J Chen
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Y Cen
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Z Y Li
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Z Y Zhang
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
43
|
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater 2022; 110:2542-2573. [PMID: 35579269 PMCID: PMC9544096 DOI: 10.1002/jbm.b.35086] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process that is critical in restoring the skin's barrier function. This process can be interrupted by numerous diseases resulting in chronic wounds that represent a major medical burden. Such wounds fail to follow the stages of healing and are often complicated by a pro‐inflammatory milieu attributed to increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treatment of chronic wounds is still regarded as a significant unmet medical need due to the complex symptoms caused by the metabolic disorder of the wound microenvironment. As a result, several advanced medical devices, such as wound dressings, wearable wound monitors, negative pressure wound therapy devices, and surgical sutures, have been developed to correct the chronic wound environment and achieve skin tissue regeneration. Most medical devices encompass a wide range of products containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate, and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic‐co‐glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive molecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds). This review addresses these medical devices with a focus on biomaterials and applications, aiming to deliver a critical theoretical reference for further research on chronic wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
44
|
Xie C, Luo M, Chen M, Wang M, Qu X, Lei B. Bioactive Poly(octanediol-citrate-polyglycol) Accelerates Skin Regeneration through M2 Polarization Immunomodulating and Early Angiogenesis. Adv Healthc Mater 2022; 11:e2101931. [PMID: 35108457 DOI: 10.1002/adhm.202101931] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/06/2022] [Indexed: 12/17/2022]
Abstract
The inhibition of inflammation and the promotion of early angiogenesis are paid much attention in skin tissue engineering. Citric acid-based biomaterials are widely used in tissue engineering due to their bioactive structure and biocompatibility, but there are few studies on investigating their role and mechanism in wound repair and skin regeneration. Herein, the potential anti-inflammation mechanism of poly(octanediol-citrate-polyglycol) (POCG) copolymer is reported in regulating skin wound repair. It is found that POCG can modulate macrophages phenotype through downregulating the expression of proinflammatory cytokines (tumor necrosis facor-α (Tnf-α), Interleukin-1β (IL-1β), and Interleukin-6 (IL-6) and polarizing macrophages to anti-inflammatory (M2) phenotype. POCG can promote endothelial cell vascularization by increasing the expression of angiogenesis factors (vascular endothelial growth factor (Vegf) and cluster of differentiation 31CD31) mediated by the macrophage polarization. The in vivo study shows that POCG can accelerate skin wound repair through suppressing the acute inflammation and inducing early angiogenesis through the polarization modulation. Furthermore, the POCG polymer has good biocompatibility for both immune cells and tissue cells. This study may provide the important theoretical support on the bioactivity of citrate-based biomaterials and expanding their applications in tissue engineering.
Collapse
Affiliation(s)
- Chenxi Xie
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Meng Luo
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Mi Chen
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Min Wang
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
45
|
Msheik Z, El Massry M, Rovini A, Billet F, Desmoulière A. The macrophage: a key player in the pathophysiology of peripheral neuropathies. J Neuroinflammation 2022; 19:97. [PMID: 35429971 PMCID: PMC9013246 DOI: 10.1186/s12974-022-02454-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/29/2022] [Indexed: 12/22/2022] Open
Abstract
Macrophages are present in all mammalian tissues and coexist with various cell types in order to respond to different environmental cues. However, the role of these cells has been underestimated in the context of peripheral nerve damage. More importantly, macrophages display divergent characteristics, associated with their origin, and in response to the modulatory effects of their microenvironment. Interestingly, the advent of new techniques such as fate mapping and single-cell transcriptomics and their synergistic use has helped characterize in detail the origin and fate of tissue-resident macrophages in the peripheral nervous system (PNS). Furthermore, these techniques have allowed a better understanding of their functions from simple homeostatic supervisors to chief regulators in peripheral neuropathies. In this review, we summarize the latest knowledge about macrophage ontogeny, function and tissue identity, with a particular focus on PNS-associated cells, as well as their interaction with reactive oxygen species under physiological and pathological conditions. We then revisit the process of Wallerian degeneration, describing the events accompanying axon degeneration, Schwann cell activation and most importantly, macrophage recruitment to the site of injury. Finally, we review these processes in light of internal and external insults to peripheral nerves leading to peripheral neuropathies, the involvement of macrophages and the potential benefit of the targeting of specific macrophages for the alleviation of functional defects in the PNS.
Collapse
|
46
|
Wu XY, Nie L, Lu XJ, Fei CJ, Chen J. Molecular characterization, expression and functional analysis of large yellow croaker (Larimichthys crocea) peroxisome proliferator-activated receptor gamma. FISH & SHELLFISH IMMUNOLOGY 2022; 123:50-60. [PMID: 35227879 DOI: 10.1016/j.fsi.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ) are nuclear receptors with distinct roles in energy metabolism and immunity. Although extensively studied in mammals, immunomodulatory roles of this molecule in teleost fish remain to be investigated. In this study, large yellow croaker (Larimichthys crocea) PPARγ (LcPPARγ) sequence was cloned, which encodes a polypeptide of 541 amino acids that include signature domains belonging to the nuclear receptor superfamily. Phylogenetically, LcPPARγ was most closely related to PPARγ derived from European sea bass (Dicentrarchus labrax). Quantitative analysis shown a ubiquitous expression of this molecule, with highest expression level detected in the intestine. The expression of LcPPARγ was decreased in the intestine, muscle, body kidney, spleen and head kidney-derived monocytes/macrophages (MO/MФs) over the course of Vibrio alginolyticus (V. alginolyticus) infection. In contrast, an up-regulation of LcPPARγ was observed in head kidney-derived MO/MФs following docosahexaenoic acid (DHA) treatment. This increase in LcPPARγ leads to an up-regulation of LcCD11b and LcCD18 and an enhancement of complement-mediated phagocytosis. Furthermore, cytokine secretions of V. alginolyticus-stimulated MO/MФs were modulated following LcPPARγ activations that up-regulated the expression of LcIL-10, while decreased the expression of LcIL-1β, LcTNF-α and LcTGF-β1. Overall, our results indicated that LcPPARγ plays a role in regulating functions of MO/MФs and likely contribute to MO/MФs polarization.
Collapse
Affiliation(s)
- Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo City, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, Ningbo City, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo City, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, Ningbo City, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo City, China
| | - Chen-Jie Fei
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo City, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, Ningbo City, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo City, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, Ningbo City, China.
| |
Collapse
|
47
|
Clapacs Z, ONeill CL, Shrimali P, Lokhande G, Files M, Kim DD, Gaharwar AK, Rudra JS. Coiled Coil Crosslinked Alginate Hydrogels Dampen Macrophage-Driven Inflammation. Biomacromolecules 2022; 23:1183-1194. [PMID: 35170303 DOI: 10.1021/acs.biomac.1c01462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alginate hydrogels are widely used for tissue engineering and regenerative medicine due to their excellent biocompatibility. A facile and commonly used strategy to crosslink alginate is the addition of Ca2+ that leads to hydrogelation. However, extracellular Ca2+ is a secondary messenger in activating inflammasome pathways following physical injury or pathogenic insult, which carries the risk of persistent inflammation and scaffold rejection. Here, we present graft copolymers of charge complementary heterodimeric coiled coil (CC) peptides and alginate that undergo supramolecular self-assembly to form Ca2+ free alginate hydrogels. The formation of heterodimeric CCs was confirmed using circular dichroism spectroscopy, and scanning electron microscopy revealed a significant difference in crosslink density and homogeneity between Ca2+ and CC crosslinked gels. The resulting hydrogels were self-supporting and display shear-thinning and shear-recovery properties. In response to lipopolysaccharide (LPS) stimulation, peritoneal macrophages and bone marrow-derived dendritic cells cultured in the CC crosslinked gels exhibited a 10-fold reduction in secretion of the proinflammatory cytokine IL-1β compared to Ca2+ crosslinked gels. A similar response was also observed in vivo upon peritoneal delivery of Ca2+ or CC crosslinked gels. Analysis of peritoneal lavage showed that macrophages in mice injected with Ca2+ crosslinked gels display a more inflammatory phenotype compared to macrophages from mice injected with CC crosslinked gels. These results suggest that CC peptides by virtue of their tunable sequence-structure-function relationship and mild gelation conditions are promising alternative crosslinkers for alginate and other biopolymer scaffolds used in tissue engineering.
Collapse
Affiliation(s)
- Zain Clapacs
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63139, United States
| | - Conor L ONeill
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63139, United States
| | - Paresh Shrimali
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63139, United States
| | - Giriraj Lokhande
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Megan Files
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Darren D Kim
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63139, United States
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Jai S Rudra
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63139, United States
| |
Collapse
|
48
|
The Immune-Centric Revolution in the Diabetic Foot: Monocytes and Lymphocytes Role in Wound Healing and Tissue Regeneration-A Narrative Review. J Clin Med 2022; 11:jcm11030889. [PMID: 35160339 PMCID: PMC8836882 DOI: 10.3390/jcm11030889] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Monocytes and lymphocytes play a key role in physiologic wound healing and might be involved in the impaired mechanisms observed in diabetes. Skin wound macrophages are represented by tissue resident macrophages and infiltrating peripheral blood recruited monocytes which play a leading role during the inflammatory phase of wound repair. The impaired transition of diabetic wound macrophages from pro-inflammatory M1 phenotypes to anti-inflammatory pro-regenerative M2 phenotypes might represent a key issue for impaired diabetic wound healing. This review will focus on the role of immune system cells in normal skin and diabetic wound repair. Furthermore, it will give an insight into therapy able to immuno-modulate wound healing processes toward to a regenerative anti-inflammatory fashion. Different approaches, such as cell therapy, exosome, and dermal substitute able to promote the M1 to M2 switch and able to positively influence healing processes in chronic wounds will be discussed.
Collapse
|
49
|
Alam A, Abubaker Bagabir H, Sultan A, Siddiqui MF, Imam N, Alkhanani MF, Alsulimani A, Haque S, Ishrat R. An Integrative Network Approach to Identify Common Genes for the Therapeutics in Tuberculosis and Its Overlapping Non-Communicable Diseases. Front Pharmacol 2022; 12:770762. [PMID: 35153741 PMCID: PMC8829040 DOI: 10.3389/fphar.2021.770762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death from a single infectious agent. The estimated total global TB deaths in 2019 were 1.4 million. The decline in TB incidence rate is very slow, while the burden of noncommunicable diseases (NCDs) is exponentially increasing in low- and middle-income countries, where the prevention and treatment of TB disease remains a great burden, and there is enough empirical evidence (scientific evidence) to justify a greater research emphasis on the syndemic interaction between TB and NCDs. The current study was proposed to build a disease-gene network based on overlapping TB with NCDs (overlapping means genes involved in TB and other/s NCDs), such as Parkinson's disease, cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and lung cancer. We compared the TB-associated genes with genes of its overlapping NCDs to determine the gene-disease relationship. Next, we constructed the gene interaction network of disease-genes by integrating curated and experimentally validated interactions in humans and find the 13 highly clustered modules in the network, which contains a total of 86 hub genes that are commonly associated with TB and its overlapping NCDs, which are largely involved in the Inflammatory response, cellular response to cytokine stimulus, response to cytokine, cytokine-mediated signaling pathway, defense response, response to stress and immune system process. Moreover, the identified hub genes and their respective drugs were exploited to build a bipartite network that assists in deciphering the drug-target interaction, highlighting the influential roles of these drugs on apparently unrelated targets and pathways. Targeting these hub proteins by using drugs combination or drug repurposing approaches will improve the clinical conditions in comorbidity, enhance the potency of a few drugs, and give a synergistic effect with better outcomes. Thus, understanding the Mycobacterium tuberculosis (Mtb) infection and associated NCDs is a high priority to contain its short and long-term effects on human health. Our network-based analysis opens a new horizon for more personalized treatment, drug-repurposing opportunities, investigates new targets, multidrug treatment, and can uncover several side effects of unrelated drugs for TB and its overlapping NCDs.
Collapse
Affiliation(s)
- Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Armiya Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Nikhat Imam
- Department of Mathematics, Institute of Computer Science and Information Technology, Magadh University, Bodh Gaya, India
| | - Mustfa F Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
50
|
Kula A, Dawidowicz M, Mielcarska S, Kiczmer P, Chrabańska M, Rynkiewicz M, Świętochowska E, Waniczek D. Periostin in Angiogenesis and Inflammation in CRC-A Preliminary Observational Study. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58010096. [PMID: 35056404 PMCID: PMC8779348 DOI: 10.3390/medicina58010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
Abstract
Background and Objectives: To assess the periostin level and the concentrations of pro-inflammatory cytokines: TNFα, IFN-γ, IL-1β and IL-17 in tumor and marginal tissues of CRC and to investigate the influence of periostin on angiogenesis by MVD (microvessel density) and concentration of VEGF-A in relation to clinicopathological parameters of patients. Materials and Methods: The study used 47 samples of tumor and margin tissues derived from CRC patients. To determinate the concentration of periostin, VEGF-A, TNFα, IFNγ, IL-1β and IL-17, we used the commercially available enzyme- linked immunosorbent assay kit. MVD was assessed on CD34-stained specimens. The MVD and budding were assessed using a light microscope Results: We found significantly higher concentrations of periostin, VEGF-A, IFN-γ, IL-1 β, IL-17 and TNFα in the tumor samples compared with surgical tissue margins. The tumor concentrations of periostin were correlated with tumor levels of VEGF-A, IFN-γ, IL-1β and TNFα. We observed significant correlation between margin periostin and VEGF-A, IFN-γ, IL-17 and TNFα in tumor and margin specimens. Additionally, we found a significantly negative correlation between periostin tumor concentration and microvessel density at the invasive front. Tumor periostin levels were also correlated positively with tumor budding. Conclusions: Periostin activity may be associated with pro-inflammatory cytokine levels: TNFα, IFN-γ, IL-1β and IL-17. Our results also suggest the role of periostin in angiogenesis in CRC and its upregulation in poorly vascularized tumors. Further research on the regulations between periostin and cytokines are necessary to understand the interactions between tumor and immune tumor microenvironment, which could be helpful in the development of new targeted therapy.
Collapse
Affiliation(s)
- Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, University of Silesia, 35 Ceglana, 40-514 Katowice, Poland; (M.D.); (D.W.)
- Correspondence:
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, University of Silesia, 35 Ceglana, 40-514 Katowice, Poland; (M.D.); (D.W.)
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (S.M.); (E.Ś.)
| | - Paweł Kiczmer
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland; (P.K.); (M.C.); (M.R.)
| | - Magdalena Chrabańska
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland; (P.K.); (M.C.); (M.R.)
| | - Magdalena Rynkiewicz
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland; (P.K.); (M.C.); (M.R.)
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland; (S.M.); (E.Ś.)
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, University of Silesia, 35 Ceglana, 40-514 Katowice, Poland; (M.D.); (D.W.)
| |
Collapse
|