1
|
Nayerpour Dizaj T, Doustmihan A, Sadeghzadeh Oskouei B, Akbari M, Jaymand M, Mazloomi M, Jahanban-Esfahlan R. Significance of PSCA as a novel prognostic marker and therapeutic target for cancer. Cancer Cell Int 2024; 24:135. [PMID: 38627732 PMCID: PMC11020972 DOI: 10.1186/s12935-024-03320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
One of the contributing factors in the diagnosis and treatment of most cancers is the identification of their surface antigens. Cancer tissues or cells have their specific antigens. Some antigens that are present in many cancers elicit different functions. One of these antigens is the prostate stem cell antigen (PSCA) antigen, which was first identified in the prostate. PSCA is a cell surface protein that has different functions in different tissues. It can play an inhibitory role in cell proliferation as well as a tumor-inducing role. PSCA has several genetic variants involved in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship with clinical features can provide more information on diagnosis and treatment of patients with cancers. Most studies on the PSCA have focused on prostate cancer. While it is also expressed in other cancers, little attention has been paid to its role as a valuable diagnostic, prognostic, and therapeutic tool in other cancers. PSCA has several genetic variants that seem to play a significant role in cancer susceptibility in some tissues, so identifying the characteristics of this antigen and its relationship and variants with clinical features can be beneficial in concomitant cancer therapy and diagnosis, as theranostic tools. In this study, we will review the alteration of the PSCA expression and its polymorphisms and evaluate its clinical and theranostics significance in various cancers.
Collapse
Affiliation(s)
- Tina Nayerpour Dizaj
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Doustmihan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Sadeghzadeh Oskouei
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - MirAhmad Mazloomi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Dorff TB, Narayan V, Forman SJ, Zang PD, Fraietta JA, June CH, Haas NB, Priceman SJ. Novel Redirected T-Cell Immunotherapies for Advanced Prostate Cancer. Clin Cancer Res 2022; 28:576-584. [PMID: 34675084 PMCID: PMC8866199 DOI: 10.1158/1078-0432.ccr-21-1483] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/21/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023]
Abstract
Immunotherapy has failed to achieve durable remissions in advanced prostate cancer patients. More potent T-cell-redirecting strategies may be needed to overcome the immunologically exclusive and suppressive tumor microenvironment. Clinical trials are underway, seeking to define the optimal target for T-cell redirection, such as PSMA, PSCA, or STEAP-1, as well as the optimal strategy, with CAR or bispecific antibodies. As results continue to emerge from these trials, understanding differential toxicity and efficacy of these therapies based on their targets and functional modifications will be key to advancing these promising therapies toward clinical practice. This review provides a unique depth and breadth of perspective regarding the diverse immunotherapy strategies currently under clinical investigation for men with advanced prostate cancer.
Collapse
Affiliation(s)
- Tanya B. Dorff
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Vivek Narayan
- Division of Hematology/Medical Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Peter D. Zang
- University of Southern California, Los Angeles, California
| | - Joseph A. Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carl H. June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Naomi B. Haas
- Division of Hematology/Medical Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saul J. Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
3
|
Onuma K, Sato Y, Okuyama H, Uematsu H, Homma K, Ohue M, Kondo J, Inoue M. Aberrant activation of Rho/ROCK signaling in impaired polarity switching of colorectal micropapillary carcinoma. J Pathol 2021; 255:84-94. [PMID: 34156098 DOI: 10.1002/path.5748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
Micropapillary carcinoma (MPC) is a morphologically distinctive form of carcinoma, composed of small nests of cancer cells surrounded by lacunar spaces. Invasive MPC is associated with poor prognosis. The nests of tumor cells in MPC reportedly exhibit reverse polarity, although the molecular mechanisms underlying MPC patterns are poorly understood. Using the cancer tissue-originated spheroid (CTOS) method, we previously reported polarity switching in colorectal cancer (CRC). When cultured in suspension, the apical membrane promptly switches from the outside surface of the CTOSs to the surface of the lumen inside the CTOSs under extracellular matrix (ECM)-embedded conditions, and vice versa. Here, we investigated two CTOS lines from CRC patient tumors with MPC lesions. Xenograft tumors from the CTOSs exhibited the MPC phenotype. The MPC-CTOSs did not switch polarity in vitro. Time-course analysis of polarity switching using real-time imaging of the apical membrane revealed that local switching was continually propagated in non-MPC-CTOSs, while MPC-CTOSs were unable to complete the process. Integrin β4 translocated to the outer membrane when embedded in ECM in both MPC and non-MPC-CTOSs. Protein levels, as well as the active form of RhoA, were higher in MPC-CTOSs. The suppression of RhoA activity by GAP overexpression enabled MPC-CTOSs to complete polarity switching both in vitro and in vivo, while overexpression of active RhoA did not affect polarity switching in non-MPC-CTOSs. Pretreatment with a ROCK inhibitor enabled MPC-CTOSs to complete polarity switching both in vitro and in vivo, although delayed treatment after becoming embedded in ECM failed to do so. Thus, the inability to switch polarity might be a cause of MPC, in which the aberrant activation of RhoA plays a critical role. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Yumi Sato
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Hiroaki Okuyama
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Hiroyuki Uematsu
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Keiichiro Homma
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayuki Ohue
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
HDAC4 promotes nasopharyngeal carcinoma progression and serves as a therapeutic target. Cell Death Dis 2021; 12:137. [PMID: 33542203 PMCID: PMC7862285 DOI: 10.1038/s41419-021-03417-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/05/2023]
Abstract
Histone deacetylases (HDACs) are involved in tumor progression, and some have been successfully targeted for cancer therapy. The expression of histone deacetylase 4 (HDAC4), a class IIa HDAC, was upregulated in our previous microarray screen. However, the role of HDAC4 dysregulation and mechanisms underlying tumor growth and metastasis in nasopharyngeal carcinoma (NPC) remain elusive. Here, we first confirmed that the HDAC4 levels in primary and metastatic NPC tissues were significantly increased compared with those in normal nasopharyngeal epithelial tissues and found that high HDAC4 expression predicted a poor overall survival (OS) and progression-free survival (PFS). Functionally, HDAC4 accelerated cell cycle G1/S transition and induced the epithelial-to-mesenchymal transition to promote NPC cell proliferation, migration, and invasion in vitro, as well as tumor growth and lung metastasis in vivo. Intriguingly, knockdown of N-CoR abolished the effects of HDAC4 on the invasion and migration abilities of NPC cells. Mechanistically, HDAC3/4 binds to the E-cadherin promoter to repress E-cadherin transcription. We also showed that the HDAC4 inhibitor tasquinimod suppresses tumor growth in NPC. Thus, HDAC4 may be a potential diagnostic marker and therapeutic target in patients with NPC.
Collapse
|
5
|
Xu LP, Qiu HB, Yuan SQ, Chen YM, Zhou ZW, Chen YB. Downregulation of PSCA promotes gastric cancer proliferation and is related to poor prognosis. J Cancer 2020; 11:2708-2715. [PMID: 32201541 PMCID: PMC7066023 DOI: 10.7150/jca.33575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Dysregulation of prostate stem cell antigen (PSCA) has been implicated in human cancers. Studies have reported that PSCA expression is generally high in prostate cancer, which correlates with a worse survival. PSCA is also highly expressed in bladder, ovarian, and pancreatic cancers. However, PSCA is expressed at low levels in gastric, gallbladder and oesophageal cancers. At present, the clinical significance, expression pattern and biological function of PSCA in gastric cancer (GC) are still unclear. Methods: Previously, we used cDNA microarray as a screening tool to compare GC tissues with its matched normal gastric mucosa tissues (MNGT), and obtained the differentially expressed genes of the two tissue types. PSCA is one of the genes significantly down-regulated in GC tissues. In this study, we detected the expression of PSCA in GC tissues and MNGT by western-blot experiment and immunohistochemical staining (IHC). Then the relationship between the expression pattern of PSCA and the clinicopathological characteristics and survival in GC was analyzed. In order to further study the function of PSCA in GC, lentivirus was used to construct stable cell lines with knockdown and overexpression of PSCA gene. We used AGS and MKN45 cell lines for plasmid transfection. Colony formation assay, MTS and nude mice xenograft model were performed to investigate the effect of PSCA in GC. Results: Western-blot and IHC assays demonstrated that the expression of PSCA in GC tissues was significantly lower than that in the MNGT. PSCA expression in GC tissues was high in 252 (57.5%) and low in 186 (42.5%) of 438 patients. PSCA expression for MNGT was high in 273 (62.3%) and low in 165 (37.7%) of 438 patients. PSCA expression was significantly associated with T classification (P=0.024), N classification (P=0.018) and TNM stage (P=0.019) using χ2 test. The relationship between PSCA expression level and patient survival was analysed using Kaplan-Meier analysis and the log-rank test. Low levels of PSCA expression were significantly associated with a poorer OS than high expression levels of PSCA (P=0.011). In the COX regression analysis of OS, all 9 variables in the univariate analysis were significantly correlated with OS (P<0.05), while the variables found to be independently correlated with OS in the multivariate analysis were PSCA expression (P=0.036), age (P<0.001), gender (P=0.007), and TNM stage (P<0.001), respectively. Univariate and multivariate analyses showed that PSCA was an independent prognostic factor for OS in GC. In vitro MTS cell proliferation experiment and clonal formation experiment and in vivo nude mouse subcutaneous tumorigenesis experiment all proved that knockdown of PSCA gene can improve the proliferation ability of GC cells, while in vitro experiment proved that overexpression of PSCA can reduce the proliferation ability of GC cells.It was found that knockdown of PSCA gene can improve the proliferation ability of GC cells both in vitro and in vivo, while overexpression of PSCA can reduce the proliferation ability of GC cells in vitro. Conclusion: Our study showed that the expression of PSCA gene was decreased in GC, which was related to more advanced pathological stages. And the expression level of PSCA in GC was an independent good prognostic factor. PSCA gene had the function of inhibiting GC proliferation.
Collapse
Affiliation(s)
- Li-Pu Xu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Bo Qiu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shu-Qiang Yuan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Ming Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-Wei Zhou
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying-Bo Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
6
|
Jiang S, Li D, Liang Z, Wang Y, Pei X, Tang J. High expression of IGBP1 correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Biol Markers 2019; 35:33-40. [PMID: 31875416 DOI: 10.1177/1724600819896374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Immunoglobulin binding protein 1 (IGBP1) is an important signal transduction regulator that mediates various functions. However, its expression profile, role, and clinical significance in cancers are uncertain. The purpose of this study was to determine the expression profile and the prognostic significance of IGBP1 in esophageal squamous cell carcinoma (ESCC). METHODS Polymerase chain reaction assay, western blotting, and immunohistochemistry (IHC) assay were performed to examine IGBP1 expression in ESCC tissues and matched adjacent non-cancerous tissues. Moreover, IHC was used to evaluate IGBP1 expression in archived 190 paraffin-embedded ESCC specimens. Statistical analyses were applied to evaluate the prognostic value and the correlations between IGBP1 expression and the clinical parameters. RESULTS We found that the messenger RNA and protein levels of IGBP1 were up-regulated in the ESCC tissues compared with their adjacent non-cancerous tissues. High expression of IGBP1 in ESCC patients was positively associated with T classification (P=0.013) and vital status (P=0.03). The ESCC patients with higher IGBP1expression had a shorter survival time than those with lower IGBP1 expression. Importantly, multivariate analysis demonstrated that the expression of IGBP1 was an independent prognostic factor for ESCC (P< 0.05). CONCLUSIONS We provide the first evidence that increased IGBP1 expression correlates with poor prognosis of ESCC, and that IGBP1 may be a tumor promoter of ESCC, which provide a promising prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Sicong Jiang
- Department of Thoracic Oncology, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi, China
| | - Daojing Li
- Department of Thoracic Oncology, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi, China
| | - Zibin Liang
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yanhua Wang
- Department of Thoracic Oncology, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi, China
| | - XiaoFeng Pei
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jianjun Tang
- Department of Thoracic Oncology, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University
| |
Collapse
|
7
|
Sang Y, Zhang R, Sun L, Chen KK, Li SW, Xiong L, Peng Y, Zeng L, Huang G. MORF4L1 suppresses cell proliferation, migration and invasion by increasing p21 and E-cadherin expression in nasopharyngeal carcinoma. Oncol Lett 2018; 17:294-302. [PMID: 30655767 PMCID: PMC6313188 DOI: 10.3892/ol.2018.9588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/14/2018] [Indexed: 12/14/2022] Open
Abstract
Mortality factor 4-like 1 (MORF4L1) is a member of a subgroup of histone acetyltransferases and belongs to the mortality factor on chromosome 4 (MORF4) class of proteins. However, the role of MORF4L1 in cancers is largely unknown. Using reverse transcription-quantitative polymerase chain reaction and published datasets, the present study demonstrated that the expression of MORF4L1 is decreased in several cancers, including nasopharyngeal carcinoma (NPC). Additionally, the methylation rate of the promoter of MORF4L1 was identified to be significantly higher in tumour cells than in normal cells. The ectopic expression of MORF4L1 was also revealed to inhibit cell proliferation, colony formation, migration and invasion in NPC, whereas the knockdown of MORF4L1 promoted cell proliferation, colony formation, migration and invasion. Mechanistically, the present study demonstrated that MORF4L1 functions as a tumour suppressor by increasing p21 and E-cadherin levels. These findings may be useful novel targets for treating patients with NPC.
Collapse
Affiliation(s)
- Yi Sang
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Longhua Sun
- Respiratory Department, Nanchang Hospital of Integrative Traditional Chinese and Western Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330008, P.R. China
| | - Kaddie Kwok Chen
- College of Arts and Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Si-Wei Li
- Department of Radiation Oncology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Longxin Xiong
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Yongjian Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Lei Zeng
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Guofu Huang
- Nanchang Key Laboratory of Cancer Pathogenesis and Translational Research, Center Laboratory, The Third Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| |
Collapse
|
8
|
Sang Y, Cheng C, Zeng YX, Kang T. Snail promotes metastasis of nasopharyngeal carcinoma partly by down-regulating TEL2. Cancer Commun (Lond) 2018; 38:58. [PMID: 30253797 PMCID: PMC6156863 DOI: 10.1186/s40880-018-0328-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 09/14/2018] [Indexed: 11/11/2022] Open
Abstract
Background Metastasis is the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC). We previously reported that TEL2, a negative regulator of SERPINE1, could inhibit NPC metastasis to lymph nodes. Method A series of in vivo and in vitro assays were performed to elucidate the regulation between Snail and TEL2. TEL2 expression was analyzed in three representative NPC cell lines expressing low levels of Snail (S26, 6-10B, HK1) and two cell lines expressing high levels of Snail (S18, 5-8F). Luciferase and chromatin immunoprecipitation assays were used to analyze the interaction between Snail and TEL2. The roles of the Snail/TEL2 pathway in cell migration and invasion of NPC cells were examined using transwell assays. Metastasis to the lungs was examined using nude mouse receiving NPC cells injection through the tail vein. Results Ectopic Snail expression down-regulated TEL2 at the mRNA and protein levels, whereas knockdown of Snail using short hairpin RNA up-regulated TEL2. Luciferase and chromatin immunoprecipitation assays indicated that Snail binds directly to the TEL2 promoter. Ectopic Snail expression enhanced migration and invasion of NPC cells, and such effects were mitigated by TEL2 overexpression. TEL2 overexpression also attenuated hypoxia-induced cell migration and invasion, and increased the number of metastatic pulmonary nodules. Snail overexpression reduced the number of metastatic pulmonary nodules. Conclusions TEL2 is a novel target of Snail and suppresses Snail-induced migration, invasion and metastasis in NPC. Electronic supplementary material The online version of this article (10.1186/s40880-018-0328-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Sang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Department of Center Laboratory, The Eighth Affiliated Hospital of Sun Yat-Sen University, No. 3025 Shennan Middle Road, Shenzhen, 518033, People's Republic of China.,Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, No.128 Xianshan North Road, Nanchang, 330008, People's Republic of China
| | - Chun Cheng
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, No.128 Xianshan North Road, Nanchang, 330008, People's Republic of China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
9
|
Heinrich MC, Göbel C, Kluth M, Bernreuther C, Sauer C, Schroeder C, Möller-Koop C, Hube-Magg C, Lebok P, Burandt E, Sauter G, Simon R, Huland H, Graefen M, Heinzer H, Schlomm T, Heumann A. PSCA expression is associated with favorable tumor features and reduced PSA recurrence in operated prostate cancer. BMC Cancer 2018; 18:612. [PMID: 29855276 PMCID: PMC5984312 DOI: 10.1186/s12885-018-4547-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/22/2018] [Indexed: 11/28/2022] Open
Abstract
Background Prostate Stem Cell Antigen (PSCA) is frequently expressed in prostate cancer but its exact function is unclear. Methods To clarify contradictory findings on the prognostic role of PSCA expression, a tissue microarray containing 13,665 prostate cancers was analyzed by immunohistochemistry. Results PSCA staining was absent in normal epithelial and stromal cells of the prostate. Membranous and cytoplasmic PSCA staining was seen in 53.7% of 9642 interpretable tumors. Staining was weak in 22.4%, moderate in 24.5% and strong in 6.8% of tumors. PSCA expression was associated with favorable pathological and clinical tumor features: Early pathological tumor stage (p < 0.0001), low Gleason grade (p < 0.0001), absence of lymph node metastasis (p < 0.0001), low pre-operative PSA level (p = 0.0118), negative surgical margin (p < 0.0001) and reduced PSA recurrence (p < 0.0001). PSCA expression was an independent predictor of prognosis in multivariate analysis (hazard ratio 0.84, p < 0.0001). Conclusions The absence of statistical relationship to TMPRSS2:ERG fusion status, chromosomal deletion or high tumor cell proliferation argues against a major role of PSCA for regulation of cell cycle or genomic integrity. PSCA expression is linked to favorable prognosis. PSCA measurement is a candidate for inclusion in multi-parametric prognostic prostate cancer tests. Electronic supplementary material The online version of this article (10.1186/s12885-018-4547-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie-Christine Heinrich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Charlotte Sauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Cornelia Schroeder
- Department of Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.,Department of Urology, Section for translational Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Asmus Heumann
- Department of Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| |
Collapse
|
10
|
Stable knockdown of ZBTB7A promotes cell proliferation and progression in nasopharyngeal carcinoma. TUMORI JOURNAL 2018; 104:37-42. [PMID: 29699474 DOI: 10.5301/tj.5000706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIMS Although high expression of ZBTB7A is positively relative to metastasis in nasopharyngeal carcinoma (NPC) patients, the association between its low expression and metastasis of NPC remains unclear. The present study aimed to definitely identify the association. METHODS The level of ZBTB7A was effectively knocked down by stable transfection of short hair RNA plasmid in NPC cell lines CNE2 and 5-8F (shRNA-CNE2 and shRNA-5-8F), compared with the cells that stably transfected empty plasmid (NC-CNE2 and NC-5-8F). The levels of ZBTB7A were assessed by real-time polymerase chain reaction and Western blot in the cell lines. MTT assay, colorimetric focus-formation assay, flow cytometry, wound healing assay, transwell assays, and xenograft model were performed to analyze cell vitality, proliferation, cell cycle, migration, invasion, and tumorigenicity. RESULTS The levels of ZBTB7A were effectively reduced in shRNA-CNE2 and shRNA-5-8F. Their carcinogenicity was stronger separately than the abilities of NC-CNE2 and NC-5-8F. NC-CNE2 and shRNA-CNE2 were selected to establish the xenograft model because of their stronger tumorigenicity than NC-6-10B and shRNA-5-8F. The assay showed that shRNA-CNE2 had stronger tumorigenicity than NC-CNE2. CONCLUSIONS The results demonstrated the reverse association between the expression of ZBTB7A and the tumorigenicity of NPC. We postulate that some oncogenic pathways, which are suppressed by ZBTB7A, will vicariously promote the proliferation and progression of NPC when ZBTB7A is decreased.
Collapse
|
11
|
Qiu WZ, Zhang HB, Xia WX, Ke LR, Yang J, Yu YH, Liang H, Huang XJ, Liu GY, Li WZ, Xiang YQ, Kang TB, Guo X, Lv X. The CXCL5/CXCR2 axis contributes to the epithelial-mesenchymal transition of nasopharyngeal carcinoma cells by activating ERK/GSK-3β/snail signalling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:85. [PMID: 29665837 PMCID: PMC5905166 DOI: 10.1186/s13046-018-0722-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/26/2018] [Indexed: 12/22/2022]
Abstract
Background Distant metastasis is the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC). Although several biomarkers correlate with metastasis and prognosis, the molecular mechanisms of NPC development and progression remain unclear. Methods Quantitative RT-PCR (qRT-PCR), western blotting, cell growth, foci formation, migration and invasion assays, and xenograft mouse models were utilized to examine the expression levels and functions of the CXCL5/CXCR2 axis in NPC. A luciferase reporter assay, western blotting, immunofluorescence, and migration and invasion assays were used to identify and verify the ERK/GSK-3β/Snail signalling pathway. Results CXCL5 was significantly increased in the sera of NPC patients, and high expression levels of CXCL5/CXCR2 in NPC primary tissues indicated poor survival. CXCL5 and CXCR2 were upregulated in NPC cell lines. Ectopic expression of the CXCL5/CXCR2 axis promoted NPC cell migration and invasion in vitro and the formation of lung metastases in vivo. Mechanistically, the dual overexpression of CXCL5 and CXCR2 promoted cell spreading by inducing the epithelial-mesenchymal transition (EMT) through the activation of the ERK/GSK-3β/Snail signalling pathway. Conclusion The CXCL5/CXCR2 axis contributes to the EMT of NPC cells by activating ERK/GSK-3β/Snail signalling, and this axis may be a potential diagnostic marker and therapeutic target for patients with NPC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0722-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Ze Qiu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Hai-Bo Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wei-Xiong Xia
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Liang-Ru Ke
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, 4365 Kangxin Road, Shanghai, 201321, People's Republic of China
| | - Ya-Hui Yu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Hu Liang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Xin-Jun Huang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Guo-Ying Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Wang-Zhong Li
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Yan-Qun Xiang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Tie-Bang Kang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
| | - Xiang Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China. .,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
| | - Xing Lv
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China. .,Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
12
|
Zhong Y, Huang H, Chen M, Huang J, Wu Q, Yan GR, Chen D. POU2F1 over-expression correlates with poor prognoses and promotes cell growth and epithelial-to-mesenchymal transition in hepatocellular carcinoma. Oncotarget 2018; 8:44082-44095. [PMID: 28489585 PMCID: PMC5546464 DOI: 10.18632/oncotarget.17296] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/03/2017] [Indexed: 12/31/2022] Open
Abstract
Despite recent efforts to understand activities of POU domain class 2 transcription factor 1 (POU2F1), little is known about the roles of POU2F1 in hepatocellular carcinoma (HCC) tumorigenesis and its correlation with any clinicopathological feature of HCC. In this study, we found that POU2F1 was significantly up-regulated in HCC specimens compared with adjacent non-cancerous liver specimens. The high POU2F1 protein expression level positively correlated with large tumor size, high histological grade, tumor metastasis and advanced clinical stage, and HCC patients with high POU2F1 levels exhibited poor prognoses. We further demonstrated that POU2F1 over-expression promoted HCC cell proliferation, colony formation, epithelial-to-mesenchymal transition (EMT), migration and invasion, while silencing of POU2F1 inhibited these malignant phenotypes. POU2F1 induced the expression of Twist1, Snai1, Snai2 and ZEB1 genes which are involved in the regulation of EMT. Furthermore, POU2F1 was up-regulated by AKT pathway in HCC, and POU2F1 over-expression reversed the inhibition of malignant phenotypes induced by AKT knock-down, indicating POU2F1 is a key down-stream effector of AKT pathway. Collectively, our results indicate that POU2F1 over-expression is positively associated with aggressive phenotypes and poor survival in patients with HCC, and POU2F1 regulated by AKT pathway promotes HCC aggressive phenotypes by regulating the transcription of EMT genes. POU2F1 may be employed as a new prognostic factor and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yonghao Zhong
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongyang Huang
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Chen
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinzhou Huang
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingxia Wu
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guang-Rong Yan
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| | - De Chen
- Biomedicine Research Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Liu L, Li E, Luo L, Zhao S, Li F, Wang J, Luo J, Zhao Z. PSCA regulates IL-6 expression through p38/NF-κB signaling in prostate cancer. Prostate 2017; 77:1389-1400. [PMID: 28845520 DOI: 10.1002/pros.23399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol (GPI)-anchored cell surface protein. We previously reported that PSCA involved in proliferation and invasion of PCa cells, however, the underlying mechanisms are unknown. In this study, we aimed to explore the regulating role of PSCA gene expression in interleukin-6 (IL-6) autocrine of PCa cells. METHODS The stable knockdown-PSCA and ectopically overexpressed-PSCA vector were constructed and transfected into human PCa DU145 and PC-3M cells. The effects of PSCA overexpression or knockdown were determined in proliferation, invasion, and metastasis assays. The effect of PSCA on the expression and secretion of IL-6 was evaluated by immunoblotting and ELISA. Subcellular localization and expression pattern of PSCA and IL-6 protein were examined by immunohistochemistry. Its clinical significance was statistically analyzed. RESULTS The results showed that stable knockdown of PSCA delayed proliferation, migration, and invasion while overexpressing PSCA enhanced the proliferation, migration, and invasion in vitro and the lung metastasis in vivo of PCa cells. Importantly, the PSCA involved in the IL-6 secretion and positively regulated p38/NF-κB/IL-6 signaling, leading to enhanced PCa cell invasion and metastasis. Both the expression of PSCA and IL-6 were significantly associated with poor biochemical recurrence-free survival of patients with PCa. PSCA protein expression showed a prognostic value in overall survival as indicated by Kaplan-Meier analysis. CONCLUSIONS These results indicate that PSCA regulates the expression and secretion of IL-6 in human PCa cells through p38/NF-κB signaling pathways. PSCA may be a potential diagnostic marker and therapeutic target for PSCA-positive PCa.
Collapse
Affiliation(s)
- Luhao Liu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
- Department of Organ Transplantation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ermao Li
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Lianmin Luo
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Shankun Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Futian Li
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Jiamin Wang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Jintai Luo
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| | - Zhigang Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of GuangZhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Wang G, Tang J, Zhan W, Zhang R, Zhang M, Liao D, Wang X, Wu Y, Kang T. CBX8 Suppresses Tumor Metastasis via Repressing Snail in Esophageal Squamous Cell Carcinoma. Theranostics 2017; 7:3478-3488. [PMID: 28912889 PMCID: PMC5596437 DOI: 10.7150/thno.20717] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
The poor clinical outcome and prognosis of esophageal squamous cell carcinoma (ESCC) is mainly attributed to its highly invasive and metastatic nature, making it urgent to further elicit the molecular mechanisms of the metastasis of ESCC. The function of each polycomb chromobox (CBX) protein in cancer is cell-type-dependent. Although CBX8 has been reported to promote the esophageal squamous cell carcinoma (ESCC) tumorigenesis, its role in ESCC metastasis has not been explored yet. In this study, we report that the inhibition of cell migration, invasion, and metastasis in ESCC requires CBX8-mediated repression of Snail, a key transcription factor that induces epithelial-to-mesenchymal transition (EMT), and that CBX8 inversely correlated with Snail in the ESCC tissues. Moreover, this novel function of CBX8 is dependent on its binding with the Snail promoter, which in turn suppresses the transcription of Snail. Collectively, CBX8 may play paradoxical roles in ESCC, inhibiting metastasis while promoting cell proliferation.
Collapse
|
15
|
Meng F, Liu B, Xie G, Song Y, Zheng X, Qian X, Li S, Jia H, Zhang X, Zhang L, Yang YL, Fu L. Amplification and overexpression of PSCA at 8q24 in invasive micropapillary carcinoma of breast. Breast Cancer Res Treat 2017; 166:383-392. [PMID: 28755148 DOI: 10.1007/s10549-017-4407-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/17/2017] [Indexed: 11/24/2022]
Abstract
PURPOSE Invasive micropapillary carcinoma (IMPC) of the breast has distinct histological features and molecular genetic profiles. Gains/amplifications of 8q24 are found associated with IMPC. Although the prostate stem cell antigen (PSCA) gene is located at chromosome 8q24, and found over-expressed in prior studies, its prognostic values and biological significance in IMPC have not been well studied. METHODS Fluorescence in situ hybridization (FISH) was used to assess the frequencies of PSCA copy number gains in IMPC, invasive ductal carcinoma of no special type (IDC-NST), and invasive lobular carcinoma (ILC) samples. The protein expression levels of PSCA were examined in 56 IMPC, 72 IDC-NST, and 56 ILC samples using immunohistochemical analysis. RESULTS PSCA gene amplification was detected in 45.2% (14/31) of the IMPC, 28.1% (9/32) of the IDC-NST, and none (0/25) of the ILC. PSCA protein expression was observed in 58.9% (33/56), 40.3% (29/72), and 3.6% (2/56) of IMPC, IDC-NST, and ILC samples, respectively. The concordant rate of the immunohistochemistry and FISH data was 85.2%. PSCA gene amplification highly correlated with its protein overexpression (rs = 0.687, P < 0.001), suggesting that gene amplification is an important mechanism involved in PSCA overexpression. Our univariate analysis showed that the patients with PSCA-positive IMPC had a decreased disease-free survival (DFS) compared to PSCA-negative IMPC patients (P = 0.003). Our multivariate analysis confirmed the worse DFS in PSCA-positive IMPC patients (P = 0.022). CONCLUSIONS Our results indicate that PSCA may be an attractive target in the 8q24 amplicon and that it may serve as a molecular marker of metastasis and recurrence in IMPC. The differential expression of PSCA may be associated with cell adhesion. Detection of PSCA protein and gene amplification may help manage and predict the prognosis of IMPC patients.
Collapse
Affiliation(s)
- Fanfan Meng
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Bingbing Liu
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
- Third Central Hospital of Tianjin, Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China
| | - Gan Xie
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Yawen Song
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Xia Zheng
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Xiaolong Qian
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Shuai Li
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Hongqin Jia
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Xinmin Zhang
- Department of Pathology, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Lanjing Zhang
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
- Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
- Department of Biological Sciences, Faculty of Arts and Sciences, Rutgers University, Newark, NJ, USA
| | - Yi-Ling Yang
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.
| | - Li Fu
- Department of Breast Pathology and Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
16
|
Exploratory investigation of PSCA-protein expression in primary breast cancer patients reveals a link to HER2/neu overexpression. Oncotarget 2017; 8:54592-54603. [PMID: 28903367 PMCID: PMC5589606 DOI: 10.18632/oncotarget.17523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/29/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Prostate stem cell antigen (PSCA) has been suggested as biomarker and therapeutic target for prostate cancer. Recent advances showed that PSCA is up-regulated in other cancer entities, such as bladder or pancreatic cancer. However, the clinical relevance of PSCA-expression in breast cancer patients has not yet been established and is therefore addressed by the current study. METHODS PSCA-protein expression was assessed in 405 breast cancer patients, using immunohistochemistry (PSCA antibody MB1) and tissue microarrays. RESULTS PSCA-expression was detected in 94/405 patients (23%) and correlated with unfavorable histopathological grade (p=0.011) and increased Ki67 proliferation index (p=0.006). We observed a strong positive correlation between PSCA-protein expression and HER2/neu receptor status (p<0.001). PSCA did not provide prognostic information in the analyzed cohort. Interestingly, the distribution of PSCA-expression among triple negative patients was comparable to the total population. CONCLUSION We identified a subgroup of PSCA-positive breast cancer patients, which could be amenable for a PSCA-targeted therapy. Moreover, given that we found a strong positive correlation between PSCA- and HER/neu expression, targeting PSCA may provide an alternative therapeutic option in case of trastuzumab resistance.
Collapse
|
17
|
Garg M. Epithelial, mesenchymal and hybrid epithelial/mesenchymal phenotypes and their clinical relevance in cancer metastasis. Expert Rev Mol Med 2017; 19:e3. [PMID: 28322181 DOI: 10.1017/erm.2017.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer metastasis occurs through local invasion of circulating tumour cells (CTCs), intravasation, transportation to distant sites, and their extravasation followed by colonisation at secondary sites. Epithelial-mesenchymal transition (EMT) is a normal developmental phenomenon, but its aberrant activation confers tumour cells with enhanced cell motility, metastatic properties, resistant to therapies and cancer stem cell (CSC) phenotype in epithelium-derived carcinoma. Experimental studies from various research papers have been reviewed to determine the factors, which interlink cancer stemness and cellular plasticity with EMT. Although existence of CSCs has been linked with EMT, nevertheless, there are controversies with the involvement of type of tumour cells, including cells with E (epithelial) and M (mesenchymal) phenotype alone or hybrid E/M phenotype in different types of cancers. Studies on CTCs with hybrid E/M phenotypes during different stages of cancer metastasis reveal strong association with tumour -initiation potential, cellular plasticity and types of cancer cells. Cells with the hybrid E/M state are strictly controlled by phenotypic stability factors coupled to core EMT decision-making circuits, miR200/ZEB and miR-34/Snail. Understanding the regulatory functions of EMT program in cancer metastasis can help us to characterise the biomarkers of prognostic and therapeutic potential. These biomarkers when targeted may act as metastatic suppressors, inhibit cellular plasticity and stemness ability of tumour cells and can block metastatic growth.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry,University of Lucknow,Lucknow - 226007,UP,India
| |
Collapse
|
18
|
Raychaudhuri K, Chaudhary N, Gurjar M, D'Souza R, Limzerwala J, Maddika S, Dalal SN. 14-3-3σ Gene Loss Leads to Activation of the Epithelial to Mesenchymal Transition Due to the Stabilization of c-Jun Protein. J Biol Chem 2016; 291:16068-81. [PMID: 27261462 DOI: 10.1074/jbc.m116.723767] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Loss of 14-3-3σ has been observed in multiple tumor types; however, the mechanisms by which 14-3-3σ loss leads to tumor progression are not understood. The experiments in this report demonstrate that loss of 14-3-3σ leads to a decrease in the expression of epithelial markers and an increase in the expression of mesenchymal markers, which is indicative of an induction of the epithelial to mesenchymal transition (EMT). The EMT was accompanied by an increase in migration and invasion in the 14-3-3σ(-/-) cells. 14-3-3σ(-/-) cells show increased stabilization of c-Jun, resulting in an increase in the expression of the EMT transcription factor slug. 14-3-3σ induces the ubiquitination and degradation of c-Jun in an FBW7-dependent manner. c-Jun ubiquitination is dependent on the presence of an intact nuclear export pathway as c-Jun is stabilized and localized to the nucleus in the presence of a nuclear export inhibitor. Furthermore, the absence of 14-3-3σ leads to the nuclear accumulation and stabilization of c-Jun, suggesting that 14-3-3σ regulates the subcellular localization of c-Jun. Our results have identified a novel mechanism by which 14-3-3σ maintains the epithelial phenotype by inhibiting EMT and suggest that this property of 14-3-3σ might contribute to its function as a tumor suppressor gene.
Collapse
Affiliation(s)
- Kumarkrishna Raychaudhuri
- From the KS215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Neelam Chaudhary
- Laboratory of Cell Death and Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India, and Graduate Studies, Manipal University, Manipal, Karnataka 576104, India
| | - Mansa Gurjar
- From the KS215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Roseline D'Souza
- From the KS215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Jazeel Limzerwala
- From the KS215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Subbareddy Maddika
- Laboratory of Cell Death and Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India, and
| | - Sorab N Dalal
- From the KS215, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India,
| |
Collapse
|
19
|
Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum Genomics 2016; 10:10. [PMID: 27098205 PMCID: PMC4839075 DOI: 10.1186/s40246-016-0074-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/14/2016] [Indexed: 01/08/2023] Open
Abstract
Members of the lymphocyte antigen-6 (Ly6)/urokinase-type plasminogen activator receptor (uPAR) superfamily of proteins are cysteine-rich proteins characterized by a distinct disulfide bridge pattern that creates the three-finger Ly6/uPAR (LU) domain. Although the Ly6/uPAR family proteins share a common structure, their expression patterns and functions vary. To date, 35 human and 61 mouse Ly6/uPAR family members have been identified. Based on their subcellular localization, these proteins are further classified as GPI-anchored on the cell membrane, or secreted. The genes encoding Ly6/uPAR family proteins are conserved across different species and are clustered in syntenic regions on human chromosomes 8, 19, 6 and 11, and mouse Chromosomes 15, 7, 17, and 9, respectively. Here, we review the human and mouse Ly6/uPAR family gene and protein structure and genomic organization, expression, functions, and evolution, and introduce new names for novel family members.
Collapse
|
20
|
Huang JZ, Chen M, Zeng M, Xu SH, Zou FY, Chen D, Yan GR. Down-regulation of TRPS1 stimulates epithelial-mesenchymal transition and metastasis through repression ofFOXA1. J Pathol 2016; 239:186-96. [PMID: 26969828 DOI: 10.1002/path.4716] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/02/2016] [Accepted: 02/20/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Jin-Zhou Huang
- Institutes of Life and Health Engineering, Jinan University; and Biomedicine Research Centre; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
| | - Min Chen
- Institutes of Life and Health Engineering, Jinan University; and Biomedicine Research Centre; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
| | - Ming Zeng
- Institutes of Life and Health Engineering, Jinan University; and Biomedicine Research Centre; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
| | - Song-Hui Xu
- Institutes of Life and Health Engineering, Jinan University; and Biomedicine Research Centre; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
| | - Fei-Yan Zou
- Institutes of Life and Health Engineering, Jinan University; and Biomedicine Research Centre; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
| | - De Chen
- Biomedicine Research Centre and Department of Surgery; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes; Guangzhou People's Republic of China
| | - Guang-Rong Yan
- Institutes of Life and Health Engineering, Jinan University; and Biomedicine Research Centre; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
- Biomedicine Research Centre and Department of Surgery; Third Affiliated Hospital of Guangzhou Medical University; People's Republic of China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province; Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes; Guangzhou People's Republic of China
| |
Collapse
|
21
|
SUN2 exerts tumor suppressor functions by suppressing the Warburg effect in lung cancer. Sci Rep 2015; 5:17940. [PMID: 26658802 PMCID: PMC4674702 DOI: 10.1038/srep17940] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023] Open
Abstract
SUN2, a key component of LINC (linker of nucleoskeleton and cytoskeleton) complex located at the inner nuclear membrane, plays unknown role in lung cancer. We found that SUN2 expression was decreased in lung cancer tissue compared with paired normal tissues and that higher SUN2 levels predicted better overall survival and first progression survival. Overexpression of SUN2 inhibits cell proliferation, colony formation and migration in lung cancer, whereas knockdown of SUN2 promotes cell proliferation and migration. Additionally, SUN2 increases the sensitivity of lung cancer to cisplatin by inducing cell apoptosis. Mechanistically, we showed that SUN2 exerts its tumor suppressor functions by decreasing the expression of GLUT1 and LDHA to inhibit the Warburg effect. Finally, our results provided evidence that SIRT5 acts, at least partly, as a negative regulator of SUN2.Taken together, our findings indicate that SUN2 is a key component in lung cancer progression by inhibiting the Warburg effect and that the novel SIRT5/SUN2 axis may prove to be useful for the development of new strategies for treating the patients with lung cancer.
Collapse
|