1
|
Duzgun D, Oltean S. Aberrant Splicing as a Mechanism for Resistance to Cancer Therapies. Cancers (Basel) 2025; 17:1381. [PMID: 40282556 PMCID: PMC12025770 DOI: 10.3390/cancers17081381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Cancer is biologically diverse, highly heterogeneous, and associated with molecular alterations, significantly contributing to mortality worldwide. Currently, cancer patients are subjected to single or combination treatments comprising chemotherapy, surgery, immunotherapy, radiation therapy, and targeted therapy. Chemotherapy remains the first line of treatment in cancer but faces a major obstacle in the form of chemoresistance. This obstacle has resulted in relapses and poor patient survival due to decreased treatment efficacy. Aberrant pre-mRNA alternative splicing can significantly modulate gene expression and function involved in the resistance mechanisms, potentially shaping the intricate landscape of tumour chemoresistance. Thus, novel strategies targeting abnormal pre-mRNA alternative splicing and understanding the molecular mechanisms of chemotherapy resistance could aid in overcoming the chemotherapeutic challenges. This review first highlights drug targets, drug pumps, detoxification mechanisms, DNA damage response, and evasion of apoptosis and cell death as key molecular mechanisms involved in chemotherapy resistance. Furthermore, the review discusses the progress of research on the dysregulation of alternative splicing and molecular targets involved in chemotherapy resistance in major cancer types.
Collapse
Affiliation(s)
| | - Sebastian Oltean
- Department of Clinical and Biomedical Sciences, Faculty of Health Sciences, University of Exeter, Exeter EX1 2LU, UK
| |
Collapse
|
2
|
Zhang N, Wang X, Li Y, Lu Y, Sheng C, Sun Y, Ma N, Jiao Y. Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer. Commun Biol 2025; 8:77. [PMID: 39825074 PMCID: PMC11748638 DOI: 10.1038/s42003-024-07383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025] Open
Abstract
Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer. Additionally, we explore the role of CPIs in tumor drug resistance to gain a deeper understanding of their potential applications in the development of new anti-cancer therapeutic approaches.
Collapse
Affiliation(s)
- Nan Zhang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Xinjia Wang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yu Li
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yiwei Lu
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Chengcheng Sheng
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yumeng Sun
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Ningye Ma
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| | - Yisheng Jiao
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| |
Collapse
|
3
|
Xiang S, Gong X, Qiu T, Zhou J, Yang K, Lan Y, Zhang Z, Ji Y. Insights into the mechanisms of angiogenesis in infantile hemangioma. Biomed Pharmacother 2024; 178:117181. [PMID: 39059349 DOI: 10.1016/j.biopha.2024.117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Infantile hemangioma (IH) is the most common benign tumor in infants and usually resolves on its own. However, a small portion of IH cases are accompanied by serious complications and other problems, impacting the physical and psychological health of the children affected. The pathogenesis of IH is highly controversial. Studies have shown that abnormal blood vessel formation is an important pathological basis for the development of IH. Compared with that in normal tissues, the equilibrium of blood vessel growth at the tumor site is disrupted, and interactions among other types of cells, such as immune cells, promote the rapid proliferation and migration of vascular tissue cells and the construction of vascular networks. Currently, propranolol is the most common systemic drug used to inhibit the growth of IHs and accelerate their regression. The purpose of this review is to provide the latest research on the mechanisms of angiogenesis in IH. We discuss the possible roles of three major factors, namely, estrogen, hypoxia, and inflammation, in the development of IH. Additionally, we summarize the key roles of tumor cell subpopulations, such as pericytes, in the proliferation and regression of IH considering evidence from the past few years, with an emphasis on the possible mechanisms of propranolol in the treatment of IH. Angiogenesis is an important event during the development of IH, and an in-depth understanding of the molecular mechanisms of angiogenesis will provide new insights into the biology and clinical treatment of IH.
Collapse
Affiliation(s)
- Shanshan Xiang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China; Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zixin Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Li J, Chen Q, Ni S, Dong X, Mi T, Xie Y, Yuan X, Luo X, Wang H. CENPF May Act as a Novel Marker and Highlight the Influence of Pericyte in Infantile Hemangioma. Angiology 2024:33197241262373. [PMID: 38898633 DOI: 10.1177/00033197241262373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Infantile hemangioma (IH), a benign microvascular tumor, is marked by early and extensive proliferation of immature hemangioma endothelial cells (Hem-ECs) that naturally regress through differentiation into fibroblasts or adipocytes. However, a challenge persists, as the unique biological behavior of IH remains elusive, despite its general sensitivity to propranolol treatment. Recent evidence suggests that abnormal volume proliferation in IH is primarily attributed to the accumulation of hemangioma pericytes (Hem-Pericytes), in addition to Hem-ECs. Centromere protein F (CENPF) is involved in regulating mitotic processes and has been associated with malignant tumor cell proliferation. It is a key player in maintaining genomic stability during cell division. Our findings revealed specific expression of CENPF in Hem-Pericytes, with a proliferation index (PI) approximately half that of Ki67 (3.28 vs 6.97%) during the proliferative phase of IH. This index decreased rapidly in the involuting phase (P < .05), suggesting that the contribution of pericytes to IH development was comparable to that of Hem-ECs. Tumor expansion and shrinkage may be due to the proliferation, reduction, and differentiation of Hem-Pericytes. In conclusion, we speculate CENPF as a novel marker for clinical pathological diagnosis and a potential therapeutic target, fostering advancements in drug development.
Collapse
Affiliation(s)
- Jiwei Li
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Kunming Children's Hospital, Kunming, China
| | - Qiang Chen
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Sili Ni
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Dong
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Mi
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yimin Xie
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xingang Yuan
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Luo
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Wang
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Lin Y, Lin Y, Zhong X, Chen Q, Tang S, Chen J. A case report and literature review on reactive cutaneous capillary endothelial proliferation induced by camrelizumab in a nasopharyngeal carcinoma patient. Front Oncol 2023; 13:1280208. [PMID: 38090483 PMCID: PMC10715407 DOI: 10.3389/fonc.2023.1280208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/08/2023] [Indexed: 02/29/2024] Open
Abstract
Camrelizumab, a monoclonal antibody, blocks programmed cell death protein-1 from binding to T cells and programmed cell death ligand 1 on tumor cells, thereby ensuring sustained T cell activation and blocking immune escape of various types of cancer, including nasopharyngeal carcinoma. Reactive cutaneous capillary endothelial hyperplasia (RCCEP) is the most common immune-related adverse event in patients treated with camrelizumab. We report a case nasopharyngeal carcinoma in a patient with camrelizumab-induced RCCEP. A 68-year-old man diagnosed with nasopharyngeal carcinoma developed RCCEP at multiple locations after 3 months of camrelizumab treatment. RCCEP of the right lower eyelid affected closure of the right eye. In this report, we also reviewed previous literature on camrelizumab-induced RCCEP. In summary, the mechanism underlying camrelizumab-induced RCCEP remains unclear. RCCEP typically gradually subsides after discontinuing camrelizumab treatment. Larger nodules can be treated with lasers, ligation, or surgery. Although surgical excision is effective, RCCEP may recur in patients undergoing camrelizumab treatment. RCCEP management may not be required in the absence of adverse effects on the patient's daily life.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiasheng Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
6
|
Eirin A, Chade AR. Cardiac epigenetic changes in VEGF signaling genes associate with myocardial microvascular rarefaction in experimental chronic kidney disease. Am J Physiol Heart Circ Physiol 2023; 324:H14-H25. [PMID: 36367693 PMCID: PMC9762979 DOI: 10.1152/ajpheart.00522.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Chronic kidney disease (CKD) is common in patients with heart failure and often results in left ventricular diastolic dysfunction (LVDD). However, the mechanisms responsible for cardiac damage in CKD-LVDD remain to be elucidated. Epigenetic alterations may impose long-lasting effects on cellular transcription and function, but their exact role in CKD-LVDD is unknown. We investigate whether changes in cardiac site-specific DNA methylation profiles might be implicated in cardiac abnormalities in CKD-LVDD. CKD-LVDD and normal control pigs (n = 6 each) were studied for 14 wk. Renal and cardiac hemodynamics were quantified by multidetector CT and echocardiography. In randomly selected pigs (n = 3/group), cardiac site-specific 5-methylcytosine (5mC) immunoprecipitation (MeDIP)- and mRNA-sequencing (seq) were performed, followed by integrated (MeDiP-seq/mRNA-seq analysis), and confirmatory ex vivo studies. MeDIP-seq analysis revealed 261 genes with higher (fold change > 1.4; P < 0.05) and 162 genes with lower (fold change < 0.7; P < 0.05) 5mC levels in CKD-LVDD versus normal pigs, which were primarily implicated in vascular endothelial growth factor (VEGF)-related signaling and angiogenesis. Integrated MeDiP-seq/mRNA-seq analysis identified a select group of VEGF-related genes in which 5mC levels were higher, but mRNA expression was lower in CKD-LVDD versus normal pigs. Cardiac VEGF signaling gene and VEGF protein expression were blunted in CKD-LVDD compared with controls and were associated with decreased subendocardial microvascular density. Cardiac epigenetic changes in VEGF-related genes are associated with impaired angiogenesis and cardiac microvascular rarefaction in swine CKD-LVDD. These observations may assist in developing novel therapies to ameliorate cardiac damage in CKD-LVDD.NEW & NOTEWORTHY Chronic kidney disease (CKD) often leads to left ventricular diastolic dysfunction (LVDD) and heart failure. Using a novel translational swine model of CKD-LVDD, we characterize the cardiac epigenetic landscape, identifying site-specific 5-methylcytosine changes in vascular endothelial growth factor (VEGF)-related genes associated with impaired angiogenesis and cardiac microvascular rarefaction. These observations shed light on the mechanisms of cardiac microvascular damage in CKD-LVDD and may assist in developing novel therapies for these patients.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Alejandro R Chade
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
- Department of Medicine, University of Missouri-Columbia, Columbia, Missouri
| |
Collapse
|
7
|
Gong X, Li Y, Yang K, Chen S, Ji Y. Infantile hepatic hemangiomas: looking backwards and forwards. PRECISION CLINICAL MEDICINE 2022; 5:pbac006. [PMID: 35692445 PMCID: PMC8982613 DOI: 10.1093/pcmedi/pbac006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
Infantile hepatic hemangiomas (IHHs) are common benign tumors seen in the liver of infants. IHHs are true infantile hemangiomas (IHs) and have phases of proliferation and involution parallel to those of cutaneous IHs. The definition and classification of IHH are still confusing in the literature. The mechanisms during the pathogenesis of IHH have yet to be discovered. The clinical manifestations of IHH are heterogeneous. Although most IHH lesions are asymptomatic, some lesions can lead to severe complications, such as hypothyroidism, consumptive coagulopathy, and high-output congestive cardiac failure. Consequently, some patients can possibly encounter a fatal clinical condition. The heterogeneity of the lesions and the occurrence of disease-related comorbidities can make the treatment of IHH challenging. Oral propranolol is emerging as an effective systemic approach to IHH with obvious responses in tumor remission and symptom regression. However, the precise clinical characteristics and treatment strategies for patients with severe IHH have not yet been well established. Here, we summarize the epidemiology, pathogenic mechanism, clinical manifestations, diagnosis, and treatment of IHH. Recent updates and future perspectives for IHH will also be elaborated.
Collapse
Affiliation(s)
- Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanan Li
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Siyuan Chen
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Cornelius VA, Fulton JR, Margariti A. Alternative Splicing: A Key Mediator of Diabetic Vasculopathy. Genes (Basel) 2021; 12:1332. [PMID: 34573314 PMCID: PMC8469645 DOI: 10.3390/genes12091332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease is the leading cause of death amongst diabetic individuals. Atherosclerosis is the prominent driver of diabetic vascular complications, which is triggered by the detrimental effects of hyperglycemia and oxidative stress on the vasculature. Research has extensively shown diabetes to result in the malfunction of the endothelium, the main component of blood vessels, causing severe vascular complications. The pathogenic mechanism in which diabetes induces vascular dysfunction, however, remains largely unclear. Alternative splicing of protein coding pre-mRNAs is an essential regulatory mechanism of gene expression and is accepted to be intertwined with cellular physiology. Recently, a role for alternative splicing has arisen within vascular health, with aberrant mis-splicing having a critical role in disease development, including in atherosclerosis. This review focuses on the current knowledge of alternative splicing and the roles of alternatively spliced isoforms within the vasculature, with a particular focus on disease states. Furthermore, we explore the recent elucidation of the alternatively spliced QKI gene within vascular cell physiology and the onset of diabetic vasculopathy. Potential therapeutic strategies to restore aberrant splicing are also discussed.
Collapse
Affiliation(s)
| | | | - Andriana Margariti
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast BT9 7BL, UK; (V.A.C.); (J.R.F.)
| |
Collapse
|
9
|
Deng K, Yao J, Huang J, Ding Y, Zuo J. Abnormal alternative splicing promotes tumor resistance in targeted therapy and immunotherapy. Transl Oncol 2021; 14:101077. [PMID: 33774500 PMCID: PMC8039720 DOI: 10.1016/j.tranon.2021.101077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal alternative splicing is involve in abnormal expression of genes in cancer. Abnormal alternative splicing events promote malignant progression of cancer. Abnormal alternative splicing develops tumor resistance to targeted therapy by changing the target point and signal transduction pathway. Abnormal alternative splicing develops tumor resistance to immunotherapy by changing cell surface antigens and protein structure.
Abnormally alternative splicing events are common hallmark of diverse types of cancers. Splicing variants with aberrant functions play an important role in cancer development. Most importantly, a growing body of evidence has supported that alternative splicing might play a significant role in the therapeutic resistance of tumors. Targeted therapy and immunotherapy are the future directions of tumor therapy; however, the loss of antigen targets on the tumor cells surface and alterations in drug efficacy have resulted in the failure of targeted therapy and immunotherapy. Interestingly, abnormal alternative splicing, as a strategy to regulate gene expression, is reportedly involved in the reprogramming of cell signaling pathways and epitopes on the tumor cell surface by changing splicing patterns of genes, thus rendering tumors resisted to targeted therapy and immunotherapy. Accordingly, increased knowledge regarding abnormal alternative splicing in tumors may help predict therapeutic resistance during targeted therapy and immunotherapy and lead to novel therapeutic approaches in cancer. Herein, we provide a brief synopsis of abnormal alternative splicing events in cancer progression and therapeutic resistance.
Collapse
Affiliation(s)
- Kun Deng
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Jingwei Yao
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jialu Huang
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Yubo Ding
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jianhong Zuo
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China; The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China; Clinical Laboratory, The Third Affiliated Hospital of University of South China, Hengyang, Hunan 421900, China.
| |
Collapse
|
10
|
Platelet-derived growth factor-B signalling might promote epithelial-mesenchymal transition in gastric carcinoma cells through activation of the MAPK/ERK pathway. Contemp Oncol (Pozn) 2021; 25:1-6. [PMID: 33911974 PMCID: PMC8063901 DOI: 10.5114/wo.2021.103938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Epithelial-mesenchymal transition (EMT) is important in the metastasis of tumours and is triggered by several key growth factors, including platelet-derived growth factor-B (PDGF-B). But, whether PDGF-B signalling promotes EMT in gastric carcinoma cells is still unknown. Material and methods We established 2 gastric carcinoma cell lines (MKN28 and MKN45) to stably overexpress PDGF-B by lentiviral vectors, and expression of E-cadherin, N-cadherin, and ERK-1 were detected by western blot assay. Then, PDGF-B overexpression and normal MKN28 and MKN45 cells were cocultured with PDGFR-b positive fibroblast (hs738) and MAPK inhibitors were added; also, the expressions of ERK-1, E-cadherin, and N-cadherin were detected by western blot assay. Results After being cocultured with hs738 cells, expressions of ERK-1 and N-cadherin protein in PDGF-B overexpression MKN28 and MKN45 cells were much higher than normal MKN28 and MKN45 cells (p < 0.05), and those could be decreased by MAPK inhibitor. Also, expressions of E-cadherin protein in PDGF-B overexpression MKN28 and MKN45 cells were much lower than normal MKN28 and MKN45 cells (p < 0.05), and they could be increased by MAPK inhibitor. Conclusions Our data indicate that PDGF-B signalling can induce EMT in gastric carcinoma cells. Thr tumour microenvironment is imperative in the process of PDGF-B signalling inducing EMT in gastric carcinoma cells. Also, activation of MAPK/ERK pathway, which is a downstream pathway of PDGF-B signalling, might participate in this process.
Collapse
|
11
|
Li J, Li Z, Wang C, Li Z, Xu H, Hu Y, Tan Z, Zhang F, Liu C, Yang M, Wang Y, Jin Y, Peng Z, Biswas S, Zhu L. The Regulatory Effect of VEGF-Ax on Rat Bone Marrow Mesenchymal Stem Cells' Angioblastic Differentiation and Its Proangiogenic Ability. Stem Cells Dev 2020; 29:667-677. [PMID: 32079499 DOI: 10.1089/scd.2019.0198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jianjun Li
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhihao Li
- Department of Spinal Surgery, Jingzhou Central Hospital, Jingzhou, China
| | - Chengqiang Wang
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhijia Li
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixia Xu
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunteng Hu
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwen Tan
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fu Zhang
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chun Liu
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minsheng Yang
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yihan Wang
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanglei Jin
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ziyue Peng
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sourabh Biswas
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lixin Zhu
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Gomez-Acevedo H, Dai Y, Strub G, Shawber C, Wu JK, Richter GT. Identification of putative biomarkers for Infantile Hemangiomas and Propranolol treatment via data integration. Sci Rep 2020; 10:3261. [PMID: 32094357 PMCID: PMC7039967 DOI: 10.1038/s41598-020-60025-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022] Open
Abstract
Infantile hemangiomas (IHs) are the most common benign tumors in early childhood. They show a distinctive mechanism of tumor growth in which a rapid proliferative phase is followed by a regression phase (involution). Propranolol is an approved treatment for IHs, but its mechanism of action remains unclear. We integrated and harmonized microRNA and mRNA transcriptome data from newly generated microarray data on IHs with publicly available data on toxicological transcriptomics from propranolol exposure, and with microRNA data from IHs and propranolol exposure. We identified subsets of putative biomarkers for proliferation and involution as well as a small set of putative biomarkers for propranolol's mechanism of action for IHs, namely EPAS1, LASP1, SLC25A23, MYO1B, and ALDH1A1. Based on our integrative data approach and confirmatory experiments, we concluded that hypoxia in IHs is regulated by EPAS1 (HIF-2α) instead of HIF-1α, and also that propranolol-induced apoptosis in endothelial cells may occur via mitochondrial stress.
Collapse
Affiliation(s)
- Horacio Gomez-Acevedo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | - Yuemeng Dai
- Mesquite Rehabilitation Institute, Mesquite, Texas, USA
| | - Graham Strub
- Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Carrie Shawber
- Department of Surgery, New York-Presbyterian/Morgan Stanley Children's Hospital, Columbia University, New York, New York, USA
| | - June K Wu
- Department of Reproductive Sciences in Obstetrics & Gynecology and Surgery, Columbia University, New York, New York, USA
| | - Gresham T Richter
- Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children's Hospital, Little Rock, Arkansas, USA
| |
Collapse
|
13
|
Machado MJC, Boardman R, Riu F, Emanueli C, Benest AV, Bates DO. Enhanced notch signaling modulates unproductive revascularization in response to nitric oxide-angiopoietin signaling in a mouse model of peripheral ischemia. Microcirculation 2019; 26:e12549. [PMID: 30974486 PMCID: PMC6899699 DOI: 10.1111/micc.12549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/28/2019] [Accepted: 04/08/2019] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Arteriolargenesis can be induced by concomitant stimulation of nitric Oxide (NO)-Angiopoietin receptor (Tie)-Vascular Endothelial Growth Factor (VEGF) signaling in the rat mesentery angiogenesis assay. We hypothesized that the same combination of exogenously added growth factors would also have a positive impact on arteriolargenesis and, consequently, the recovery of blood flow in a model of unilateral hindlimb ischemia. RESULTS AND METHODS NO-Tie mice had faster blood flow recovery compared to control mice, as assessed by laser speckle imaging. There was no change in capillary density within the ischemic muscles, but arteriole density was higher in NO-Tie mice. Given the previously documented beneficial effect of VEGF signaling, we tested whether NO-Tie-VEGF mice would show further improvement. Surprisingly, these mice recovered no differently from control, arteriole density was similar and capillary density was lower. Dll4 is a driver of arterial specification, so we hypothesized that Notch1 expression would be involved in arteriolargenesis. There was a significant upregulation of Notch1 transcripts in NO-Tie-VEGF compared with NO-Tie mice. Using soluble Dll4 (sDll4), we stimulated Notch signaling in the ischemic muscles of mice. NO-Tie-sDll4 mice had significantly increased capillary and arteriole densities, but impaired blood flow recovery. CONCLUSION These results suggest that Dll4 activation early on in revascularization can lead to unproductive angiogenesis and arteriolargenesis, despite increased vascular densities. These results suggest spatial and temporal balance of growth factors needs to be perfected for ideal functional and anatomical revascularisation.
Collapse
Affiliation(s)
- Maria J. C. Machado
- Division of Cancer and Stem CellsTumour and Vascular Biology Laboratories, Cancer BiologySchool of MedicineQueen's Medical CentreUniversity of NottinghamNottinghamUK
| | - Rachel Boardman
- Division of Cancer and Stem CellsTumour and Vascular Biology Laboratories, Cancer BiologySchool of MedicineQueen's Medical CentreUniversity of NottinghamNottinghamUK
| | - Federica Riu
- Division of Cancer and Stem CellsTumour and Vascular Biology Laboratories, Cancer BiologySchool of MedicineQueen's Medical CentreUniversity of NottinghamNottinghamUK
| | | | - Andrew V. Benest
- Division of Cancer and Stem CellsTumour and Vascular Biology Laboratories, Cancer BiologySchool of MedicineQueen's Medical CentreUniversity of NottinghamNottinghamUK
- COMPARE University of Birmingham and University of NottinghamNottinghamUK
| | - David O. Bates
- Division of Cancer and Stem CellsTumour and Vascular Biology Laboratories, Cancer BiologySchool of MedicineQueen's Medical CentreUniversity of NottinghamNottinghamUK
- COMPARE University of Birmingham and University of NottinghamNottinghamUK
| |
Collapse
|
14
|
CircSMARCA5 Regulates VEGFA mRNA Splicing and Angiogenesis in Glioblastoma Multiforme Through the Binding of SRSF1. Cancers (Basel) 2019; 11:cancers11020194. [PMID: 30736462 PMCID: PMC6406760 DOI: 10.3390/cancers11020194] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs are a large group of RNAs whose cellular functions are still being investigated. We recently proposed that circSMARCA5 acts as sponge for the splicing factor Serine and Arginine Rich Splicing Factor 1 (SRSF1) in glioblastoma multiforme (GBM). After demonstrating by RNA immunoprecipitation a physical interaction between SRFS1 and circSMARCA5, we assayed by real-time PCR in a cohort of 31 GBM biopsies and 20 unaffected brain parenchyma controls (UC) the expression of total, pro-angiogenic (Iso8a) and anti-angiogenic (Iso8b) mRNA isoforms of Vascular Endothelial Growth Factor A (VEGFA), a known splicing target of SRSF1. The Iso8a to Iso8b ratio: (i) increased in GBM biopsies with respect to UC (p-value < 0.00001); (ii) negatively correlated with the expression of circSMARCA5 (r-value = −0.46, p-value = 0.006); (iii) decreased in U87-MG overexpressing circSMARCA5 with respect to negative control (p-value = 0.0055). Blood vascular microvessel density, estimated within the same biopsies, negatively correlated with the expression of circSMARCA5 (r-value = −0.59, p-value = 0.00001), while positively correlated with that of SRSF1 (r-value = 0.38, p-value = 0.00663) and the Iso8a to Iso8b ratio (r-value = 0.41, p-value = 0.0259). Kaplan-Meier survival analysis showed that GBM patients with low circSMARCA5 expression had lower overall and progression free survival rates than those with higher circSMARCA5 expression (p-values = 0.033, 0.012, respectively). Our data convincingly suggest that circSMARCA5 is an upstream regulator of pro- to anti-angiogenic VEGFA isoforms ratio within GBM cells and a highly promising GBM prognostic and prospective anti-angiogenic molecule.
Collapse
|
15
|
Oligodendroglia Are Particularly Vulnerable to Oxidative Damage after Neurotrauma In Vivo. J Neurosci 2018; 38:6491-6504. [PMID: 29915135 DOI: 10.1523/jneurosci.1898-17.2018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 05/13/2018] [Accepted: 05/16/2018] [Indexed: 01/13/2023] Open
Abstract
Loss of function following injury to the CNS is worsened by secondary degeneration of neurons and glia surrounding the injury and is initiated by oxidative damage. However, it is not yet known which cellular populations and structures are most vulnerable to oxidative damage in vivo Using Nanoscale secondary ion mass spectrometry (NanoSIMS), oxidative damage was semiquantified within cellular subpopulations and structures of optic nerve vulnerable to secondary degeneration, following a partial transection of the optic nerve in adult female PVG rats. Simultaneous assessment of cellular subpopulations and structures revealed oligodendroglia as the most vulnerable to DNA oxidation following injury. 5-Ethynyl-2'-deoxyuridine (EdU) was used to label cells that proliferated in the first 3 d after injury. Injury led to increases in DNA, protein, and lipid damage in oligodendrocyte progenitor cells and mature oligodendrocytes at 3 d, regardless of proliferative state, associated with a decline in the numbers of oligodendrocyte progenitor cells at 7 d. O4+ preoligodendrocytes also exhibited increased lipid peroxidation. Interestingly, EdU+ mature oligodendrocytes derived after injury demonstrated increased early susceptibility to DNA damage and lipid peroxidation. However, EdU- mature oligodendrocytes with high 8-hydroxyguanosine immunoreactivity were more likely to be caspase3+ By day 28, newly derived mature oligodendrocytes had significantly reduced myelin regulatory factor gene mRNA, indicating that the myelination potential of these cells may be reduced. The proportion of caspase3+ oligodendrocytes remained higher in EdU- cells. Innovative use of NanoSIMS together with traditional immunohistochemistry and in situ hybridization have enabled the first demonstration of subpopulation specific oligodendroglial vulnerability to oxidative damage, due to secondary degeneration in vivoSIGNIFICANCE STATEMENT Injury to the CNS is characterized by oxidative damage in areas adjacent to the injury. However, the cellular subpopulations and structures most vulnerable to this damage remain to be elucidated. Here we use powerful NanoSIMS techniques to show increased oxidative damage in oligodendroglia and axons and to demonstrate that cells early in the oligodendroglial lineage are the most vulnerable to DNA oxidation. Further immunohistochemical and in situ hybridization investigation reveals that mature oligodendrocytes derived after injury are more vulnerable to oxidative damage than their counterparts existing at the time of injury and have reduced myelin regulatory factor gene mRNA, yet preexisting oligodendrocytes are more likely to die.
Collapse
|
16
|
Zhu L, Xie J, Liu Z, Huang Z, Huang M, Yin H, Qi W, Yang Z, Zhou T, Gao G, Zhang J, Yang X. Pigment epithelium-derived factor/vascular endothelial growth factor ratio plays a crucial role in the spontaneous regression of infant hemangioma and in the therapeutic effect of propranolol. Cancer Sci 2018; 109:1981-1994. [PMID: 29664206 PMCID: PMC5989849 DOI: 10.1111/cas.13611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022] Open
Abstract
Infantile hemangioma (IH) is a benign tumor that is formed by aberrant angiogenesis and that undergoes spontaneous regression over time. Propranolol, the first-line therapy for IH, inhibits angiogenesis by downregulating activation of the vascular endothelial growth factor (VEGF) pathway, which is hyperactivated in IH. However, this treatment is reportedly ineffective for 10% of tumors, and 19% of patients relapse after propranolol treatment. Both pro-angiogenic and anti-angiogenic factors regulate angiogenesis, and pigment epithelium-derived factor (PEDF) is the most effective endogenous anti-angiogenic factor. PEDF/VEGF ratio controls many angiogenic processes, but its role in IH and the relationship between this ratio and propranolol remain unknown. Results of the present study showed that the PEDF/VEGF ratio increased during the involuting phase of IH compared with the proliferating phase. Similarly, in hemangioma-derived endothelial cells (HemEC), which were isolated with magnetic beads, increasing the PEDF/VEGF ratio inhibited proliferation, migration, and tube formation and promoted apoptosis. Mechanistically, the VEGF receptors (VEGFR1 and VEGFR2) and PEDF receptor (laminin receptor, LR) were highly expressed in both IH tissues and HemEC, and PEDF inhibited HemEC function by binding to LR. Interestingly, we found that propranolol increased the PEDF/VEGF ratio but did so by lowering VEGF expression rather than by upregulating PEDF as expected. Furthermore, the combination of PEDF and propranolol had a more suppressive effect on HemEC. Consequently, our results suggested that the PEDF/VEGF ratio played a pivotal role in the spontaneous regression of IH and that the combination of PEDF and propranolol might be a promising treatment strategy for propranolol-resistant IH.
Collapse
Affiliation(s)
- Liuqing Zhu
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinye Xie
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenyin Liu
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhijian Huang
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mao Huang
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haofan Yin
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Qi
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhonghan Yang
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ti Zhou
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guoquan Gao
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products (Sun Yat-sen University), Guangzhou, China.,China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jing Zhang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xia Yang
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products (Sun Yat-sen University), Guangzhou, China.,Engineering and Technology Research Center for Disease-Model Animals, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, Woolard J. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int J Mol Sci 2018; 19:E1264. [PMID: 29690653 PMCID: PMC5979509 DOI: 10.3390/ijms19041264] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGFxxxa or VEGFxxxb isoforms. Alternative splicing events at exons 5⁻7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF165a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.
Collapse
Affiliation(s)
- Chloe J Peach
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Viviane W Mignone
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
- CAPES-University of Nottingham Programme in Drug Discovery, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Maria Augusta Arruda
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
- CAPES-University of Nottingham Programme in Drug Discovery, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Diana C Alcobia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| |
Collapse
|
18
|
Weddell JC, Imoukhuede PI. Integrative meta-modeling identifies endocytic vesicles, late endosome and the nucleus as the cellular compartments primarily directing RTK signaling. Integr Biol (Camb) 2018; 9:464-484. [PMID: 28436498 DOI: 10.1039/c7ib00011a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, intracellular receptor signaling has been identified as a key component mediating cell responses for various receptor tyrosine kinases (RTKs). However, the extent each endocytic compartment (endocytic vesicle, early endosome, recycling endosome, late endosome, lysosome and nucleus) contributes to receptor signaling has not been quantified. Furthermore, our understanding of endocytosis and receptor signaling is complicated by cell- or receptor-specific endocytosis mechanisms. Therefore, towards understanding the differential endocytic compartment signaling roles, and identifying how to achieve signal transduction control for RTKs, we delineate how endocytosis regulates RTK signaling. We achieve this via a meta-analysis across eight RTKs, integrating computational modeling with experimentally derived cell (compartment volume, trafficking kinetics and pH) and ligand-receptor (ligand/receptor concentration and interaction kinetics) physiology. Our simulations predict the abundance of signaling from eight RTKs, identifying the following hierarchy in RTK signaling: PDGFRβ > IGFR1 > EGFR > PDGFRα > VEGFR1 > VEGFR2 > Tie2 > FGFR1. We find that endocytic vesicles are the primary cell signaling compartment; over 43% of total receptor signaling occurs within the endocytic vesicle compartment for these eight RTKs. Mechanistically, we found that high RTK signaling within endocytic vesicles may be attributed to their low volume (5.3 × 10-19 L) which facilitates an enriched ligand concentration (3.2 μM per ligand molecule within the endocytic vesicle). Under the analyzed physiological conditions, we identified extracellular ligand concentration as the most sensitive parameter to change; hence the most significant one to modify when regulating absolute compartment signaling. We also found that the late endosome and nucleus compartments are important contributors to receptor signaling, where 26% and 18%, respectively, of average receptor signaling occurs across the eight RTKs. Conversely, we found very low membrane-based receptor signaling, exhibiting <1% of the total receptor signaling for these eight RTKs. Moreover, we found that nuclear translocation, mechanistically, requires late endosomal transport; when we blocked receptor trafficking from late endosomes to the nucleus we found a 57% reduction in nuclear translocation. In summary, our research has elucidated the significance of endocytic vesicles, late endosomes and the nucleus in RTK signal propagation.
Collapse
Affiliation(s)
- Jared C Weddell
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W Springfield Ave., 3233 Digital Computer Laboratory, Urbana, IL 61801, USA.
| | | |
Collapse
|
19
|
Yuan SM, Guo Y, Xu Y, Wang M, Chen HN, Shen WM. The adipogenesis in infantile hemangioma and the expression of adipogenic-related genes. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11596-11602. [PMID: 31966516 PMCID: PMC6966052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2017] [Indexed: 06/10/2023]
Abstract
Infantile hemangioma, a common benign tumor of infancy, grows quickly in six months to one year after birth, then slowly involutes into fibrofatty tissue childhood. In this study, we observed the adipogenesis in hemangioma and investigated the expression of adipogenic differentiation-related genes. 33 fresh resected hemangioma samples were collected, including 18 proliferating cases (less than one year old), 9 involuting cases (from one to five years old), and 6 involuted cases (more than five years old). The pathological evolution of hemangioma was observed by H-E staining. The expression of Perilipin A was showed by immunohistochemistry staining. The expression and location of PPAR-γ (a key transcription factor in adipogenesis) was displayed by Immunofluorescence staining, with the co-staining of α-SMA and CD31. The expression of adipose differentiation-related genes including PPAR-γ2, LPL, CEBPA, and Perilipin A was detected by Quantitative real time PCR. The results of H-E and Immunohistochemical staining showed the increase of adipose cells as hemangioma developed from the proliferative phase to involuting phase and later to involuted phase. Immunofluorescence staining showed that PPAR-γ wa expressed in the perivascular cells in hemangioma. Quantitative PCR analysis showed a significant increase of PPAR-γ2, LPL, CEBPA and Perilipin A genes' expression in the involuting and involuted heangioma. In conclusion, the PPAR-γ(+) perivascular cells (specific mesenchymal stem cells or pericytes) contribute to the adipogenesis in hemangioma. The siginificantly increased expression of adipogenic differentiation-related genes in the involuting and involuted phase suggested that they played a role in the adipogenesis in hemangioma.
Collapse
Affiliation(s)
- Si-Ming Yuan
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, Jiangsu, China
| | - Yao Guo
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, Jiangsu, China
| | - Yuan Xu
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, Jiangsu, China
| | - Min Wang
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, Jiangsu, China
| | - Hai-Ni Chen
- Department of Plastic Surgery, Children’s HospitalNanjing 210008, Jiangsu, China
| | - Wei-Min Shen
- Department of Plastic Surgery, Children’s HospitalNanjing 210008, Jiangsu, China
| |
Collapse
|
20
|
Barratt SL, Blythe T, Jarrett C, Ourradi K, Shelley-Fraser G, Day MJ, Qiu Y, Harper S, Maher TM, Oltean S, Hames TJ, Scotton CJ, Welsh GI, Bates DO, Millar AB. Differential Expression of VEGF-A xxx Isoforms Is Critical for Development of Pulmonary Fibrosis. Am J Respir Crit Care Med 2017; 196:479-493. [PMID: 28661183 DOI: 10.1164/rccm.201603-0568oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Fibrosis after lung injury is related to poor outcome, and idiopathic pulmonary fibrosis (IPF) can be regarded as an exemplar. Vascular endothelial growth factor (VEGF)-A has been implicated in this context, but there are conflicting reports as to whether it is a contributory or protective factor. Differential splicing of the VEGF-A gene produces multiple functional isoforms including VEGF-A165a and VEGF-A165b, a member of the inhibitory family. To date there is no clear information on the role of VEGF-A in IPF. OBJECTIVES To establish VEGF-A isoform expression and functional effects in IPF. METHODS We used tissue sections, plasma, and lung fibroblasts from patients with IPF and control subjects. In a bleomycin-induced lung fibrosis model we used wild-type MMTV mice and a triple transgenic mouse SPC-rtTA+/-TetoCre+/-LoxP-VEGF-A+/+ to conditionally induce VEGF-A isoform deletion specifically in the alveolar type II (ATII) cells of adult mice. MEASUREMENTS AND MAIN RESULTS IPF and normal lung fibroblasts differentially expressed and responded to VEGF-A165a and VEGF-A165b in terms of proliferation and matrix expression. Increased VEGF-A165b was detected in plasma of progressing patients with IPF. In a mouse model of pulmonary fibrosis, ATII-specific deficiency of VEGF-A or constitutive overexpression of VEGF-A165b inhibited the development of pulmonary fibrosis, as did treatment with intraperitoneal delivery of VEGF-A165b to wild-type mice. CONCLUSIONS These results indicate that changes in the bioavailability of VEGF-A sourced from ATII cells, namely the ratio of VEGF-Axxxa to VEGF-Axxxb, are critical in development of pulmonary fibrosis and may be a paradigm for the regulation of tissue repair.
Collapse
Affiliation(s)
| | - Thomas Blythe
- 1 Academic Respiratory Unit, School of Clinical Sciences
| | | | | | - Golda Shelley-Fraser
- 2 Department of Histopathology, Cheltenham and Gloucestershire NHS Trust, Cheltenham, United Kingdom
| | | | | | | | - Toby M Maher
- 5 NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Sebastian Oltean
- 6 Department of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Thomas J Hames
- 7 University of Exeter Medical School, Exeter, United Kingdom; and
| | - Chris J Scotton
- 7 University of Exeter Medical School, Exeter, United Kingdom; and
| | | | - David O Bates
- 8 Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ann B Millar
- 1 Academic Respiratory Unit, School of Clinical Sciences
| |
Collapse
|
21
|
Ni C, Ma P, Qu L, Wu F, Hao J, Wang R, Lu Y, Yang W, Erben U, Qin Z. Accelerated tumour metastasis due to interferon-γ receptor-mediated dissociation of perivascular cells from blood vessels. J Pathol 2017; 242:334-346. [PMID: 28418194 DOI: 10.1002/path.4907] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/30/2022]
Abstract
Angiostasis mediated by interferon (IFN)-γ is a key mechanism of anti-tumour immunity; however, the effect of IFN-γ on host vascular endothelial growth factor A (VEGFA)-expressing cells during tumour progression is still elusive. Here, we developed transgenic mice with IFN-γ receptor (IFNγR) expression under control of the Vegfa promoter (V-γR). In these mice, the IFN-γ responsiveness of VEGFA-expressing cells led to dramatic growth suppression of transplanted lung carcinoma cells. Surprisingly, increased mortality and tumour metastasis were observed in the tumour-bearing V-γR mice, in comparison with the control wild-type and IFNγR-deficient mice. Further study showed that perivascular cells were VEGFA-expressing cells and potential IFN-γ targets. In vivo, tumour vascular perfusion and pericyte association with blood vessels were massively disrupted in V-γR mice. In vitro, IFN-γ inhibited transforming growth factor-β signalling by upregulating SMAD7, and therefore downregulated N-cadherin expression in pericytes. Importantly, IFN-γ neutralization in vivo with a monoclonal antibody reduced tumour metastasis. Together, the results suggest that IFNγR-mediated dissociation of perivascular cells from blood vessels contributes to the acceleration of tumour metastasis. Thus, the inhibition of tumour growth via IFN-γ-induced angiostasis might also accelerate tumour metastasis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chen Ni
- Medical Research Centre, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Pan Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, PR China
| | - Liwei Qu
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, PR China
| | - Fan Wu
- Medical Research Centre, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Junfeng Hao
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, PR China
| | - Ruirui Wang
- Medical Research Centre, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Yu Lu
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, PR China
| | - Wei Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, PR China
| | - Ulrike Erben
- Medical Research Centre, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, PR China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, PR China
| | - Zhihai Qin
- Medical Research Centre, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, PR China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
22
|
Vascular endothelial growth factor-A 165b ameliorates outer-retinal barrier and vascular dysfunction in the diabetic retina. Clin Sci (Lond) 2017; 131:1225-1243. [PMID: 28341661 PMCID: PMC5450016 DOI: 10.1042/cs20170102] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/09/2017] [Accepted: 03/24/2017] [Indexed: 01/11/2023]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the developed world. Characteristic features of DR are retinal neurodegeneration, pathological angiogenesis and breakdown of both the inner and outer retinal barriers of the retinal vasculature and retinal pigmented epithelial (RPE)–choroid respectively. Vascular endothelial growth factor (VEGF-A), a key regulator of angiogenesis and permeability, is the target of most pharmacological interventions of DR. VEGF-A can be alternatively spliced at exon 8 to form two families of isoforms, pro- and anti-angiogenic. VEGF-A165a is the most abundant pro-angiogenic isoform, is pro-inflammatory and a potent inducer of permeability. VEGF-A165b is anti-angiogenic, anti-inflammatory, cytoprotective and neuroprotective. In the diabetic eye, pro-angiogenic VEGF-A isoforms are up-regulated such that they overpower VEGF-A165b. We hypothesized that this imbalance may contribute to increased breakdown of the retinal barriers and by redressing this imbalance, the pathological angiogenesis, fluid extravasation and retinal neurodegeneration could be ameliorated. VEGF-A165b prevented VEGF-A165a and hyperglycaemia-induced tight junction (TJ) breakdown and subsequent increase in solute flux in RPE cells. In streptozotocin (STZ)-induced diabetes, there was an increase in Evans Blue extravasation after both 1 and 8 weeks of diabetes, which was reduced upon intravitreal and systemic delivery of recombinant human (rh)VEGF-A165b. Eight-week diabetic rats also showed an increase in retinal vessel density, which was prevented by VEGF-A165b. These results show rhVEGF-A165b reduces DR-associated blood–retina barrier (BRB) dysfunction, angiogenesis and neurodegeneration and may be a suitable therapeutic in treating DR.
Collapse
|
23
|
Yamamoto H, Rundqvist H, Branco C, Johnson RS. Autocrine VEGF Isoforms Differentially Regulate Endothelial Cell Behavior. Front Cell Dev Biol 2016; 4:99. [PMID: 27709112 PMCID: PMC5030275 DOI: 10.3389/fcell.2016.00099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 01/06/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF) is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration, and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2). We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO) synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell homeostasis in normoxia and hypoxia.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
| | - Helene Rundqvist
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholm, Sweden
| | - Cristina Branco
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
| | - Randall S. Johnson
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
- Department of Cell and Molecular Biology, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
24
|
Rongioletti F, Failla MC, Atzori L, Ferreli C. Skin manifestations of POEMS and AESOP syndrome in the same patient revealing plasma cell dyscrasia. J Cutan Pathol 2016; 43:1167-1171. [DOI: 10.1111/cup.12798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Franco Rongioletti
- AOU, S. Giovanni di Dio Hospital, Mario Aresu Department of Medical Science, Section of Dermatology; University of Cagliari; Cagliari Italy
| | | | - Laura Atzori
- AOU, S. Giovanni di Dio Hospital, Mario Aresu Department of Medical Science, Section of Dermatology; University of Cagliari; Cagliari Italy
| | - Caterina Ferreli
- AOU, S. Giovanni di Dio Hospital, Mario Aresu Department of Medical Science, Section of Dermatology; University of Cagliari; Cagliari Italy
| |
Collapse
|